
WiFi Remote
Control

for LED ribbon strips, relays, actuators and motors

 Wi-Fi Controller Board l Recycle your ATX Power Supply
Off to the EF Library l Lost Model Finder l Lithium-ion Battery

Recycling Made Easy l Taming the Beast (5) l From BASIC to
Python (2) LCR Meter Shootout Konrad Zuse’s Z1 through Z4

US $9.00 - Canada $10.00

www.elektor-magazine.com

June 2013

magazine

www.hdl.co.jp/EL/

w
w

w
.h

d
l.

co
.j

p
/E

L/
SAVING COST=TIME with readily
available FPGA boards
■ Basic and simple features, single power supply operation
■ Quality and reliability is provided by years of sales
■ Same board size and connector layout – ACM/XCM series
■ All stocked items are ready to be shipped immediately
■ Over 100 varieties of FPGA/CPLD boards are available
■ Customizing speed grade and/or any features are possible
■ Free download technical documents before purchasing
■ High quality and highly reliable FPGA /CPLD boards from Japan
■ Almost all products are RoHS compliance

 E
-m

ai
l :

 s
2

@
h

d
l.

co
.j

p

 F
ax

 :
+ 8

1-
72

-6
20

-2
00

3

Spartan-6 PLCC68 FPGA Module

XILINX PLCC68 Series

FPGA/CPLD Stamp Module
PLCC68 Series
FPGA/CPLD Stamp Module
PLCC68 Series
Easy and Quickly Mountable Module

FPGA Module IC socket mountable
• 50 I/Os (External clock inputs
 are available)
• 3.3V single power supply
 operation (Voltage converters for auxiliary
 power supply are built-in)
• Separated supply-inputs: Core, I/O drivers
• JTAG signal
• All PLCC68 series have common pin
 assignment
• Very small size (25.3 x 25.3 [mm])
• RoHS compliance
• MADE IN JAPAN

XP68-03

XC6SLX45-2CSG324C
3.3V single power supply operation
On-board oscillator, 50MHz
 RoHS compliant

Cyclone III PLCC68 FPGA Module

ALTERA PLCC68 Series

AP68-04

EP3C25U256C8N
3.3V single power supply operation
On-board oscillator, 50MHz
 RoHS compliant

See all our products, A/D D/A conversion board,
boards with USB chip from FTDI and accessories at :

FPGA / CPLD Boards from JAPAN

Spartan-6 FGG484 FPGA board

XILINX FPGA Board

XC6SLX45-2FGG484C
XC6SLX75-2FGG484C
XC6SLX100-2FGG484C
XC6SLX150-2FGG484C
Credit card size (86 x 54 mm)
 RoHS compliant

XCM-018/018Z series
Cyclone IV E F780 FPGA board

ALTERA FPGA Board

EP4CE30F29C8N
EP4CE40F29C8N
EP4CE115F29C8N
Credit card size (86 x 54 mm)
 RoHS compliant

ACM-204 series

EP2AGX45DF25C6N
EP2AGX65DF25C6N
EP2AGX95DF25C6N
EP2AGX125DF25C6N
Credit card size (86 x 54 mm)
 RoHS compliant

ACM-025 series
Arria II GX F572 FPGA board

EP4CGX50CF23C8N
EP4CGX75CF23C8N
EP4CGX110CF23C8N
EP4CGX150CF23C7N
Credit card size (86 x 54 mm)
 RoHS compliant

ACM-024 series
CycloneIV GX F484 FPGA board

XC5VLX30-1FFG676C
XC5VLX50-1FFG676C
XC5VLX85-1FFG676C
XC5VLX110-1FFG676C
Compact size (43 x 54 mm)
 RoHS compliant

XCM-109 series
Virtex-5 FFG676 FPGA board

Spartan-3A FTG256 FPGA board
XCM-305 series

XC3S700A-4FTG256C
XC3S1400A-4FTG256C
Compact size (54 x 53 mm)
 RoHS compliant

XC6SLX100-2FGG676C
XC6SLX150-2FGG676C
Credit card size (86 x 54 mm)
 RoHS compliant

XCM-206 series
Spartan-6 FGG676 FPGA board

■ One for general power(3.3V 3A max)
 and the Two variable outputs for
 Vccio(0.8V to 3.3, 3A max)
■ For ACM/XCM-2 series FPGA boards
■ Power Switch and LED
■ Power input:DC5V/2.1[mm] Jack/
 Terminal Block (option)
■ Board size : 156x184 [mm]
■ 4 Layers PCB, Thru-hole

Universal Board (Type2)

ZKB-106
Cyclone IV USB-FPGA Board

USB- FPGA Board

EP4CE15F17C8N
Compact size (54 x 53 mm)
 RoHS compliant

EDA-301
Spartan-6 USB-FPGA board

XC6SLX16-2CSG225C
Compact size (54 x 53 mm)
 RoHS compliant

EDX-301

5" LCD Touch Panel Module
5 inch TFT full color LCD display
with WVGA(800x480) resolution
resistive touch panel

• 3.3 V single power supply operation
• Piezo buzzer to beep
• Useful plastic bezel is included to assemble
• LTM-compatible pin assignment

UTL-021

Naamloos-4 1 29-04-13 09:27

Take out a GOLD Membership now!

Take out your Membership now at www.elektor.com/members

Join the Elektor Community

Your GOLD Membership contains:
• 8 Regular editions of Elektor magazine in

print and digital
• 2 Jumbo editions of Elektor magazine in print

and digital (January/February and July/August
double issues)

• Elektor annual DVD-ROM
• A minimum of 10% DISCOUNT on all

products in Elektor.STORE
• Direct access to Elektor.LABS
• Direct access to Elektor.MAGAZINE; our online

archive for members
• Elektor.POST sent to your email account

(incl. 25 extra projects per year)
• An Elektor Binder to store these 25 extra

projects
• Exclusive GOLD Membership card

www.elektor.com/memberswww.elektor.com/memberswww.elektor.com/members

ALSO AVAILABLE:
The all-paperless GREEN Membership, which
delivers all products and services, including
Elektor.MAGAZINE, online only.

Take out a GOLD

Adv Green-Gold membership USA 130227.indd 1 27-02-13 11:18Naamloos-2 1 05-04-13 07:45

m
ag

az
in

e

4 | June 2013 | www.elektor-magazine.com

	 8	 Elektor World
•	The Tube in the Lunchbox
•	Getting Control

	10	 Day 1 — Make it just the way
you want
Getting started with DesignSpark
PCB and configure it to your likings.
This tutorial shows you how to set
up your personal preferences in
this latest release of PCB design
software.

	13	 The Cat’s Whisker
Crystal Diode FRIHO D.R.P

	14	 Wi-Fi Controller Board
Control your home from your
mobile phone with this universal
Wi-Fi controller board. We show
how to set the color of an RGB
LED strip, but you can use it for a
variety of other applications.

	22	 Recycle your
ATX Power Supply
This ATX bench top power supply
adapter board converts any
standard ATX computer power
supply into a convenient supply
for breadboarding and general
workbench use.

	26	 Off to the EF Library!
Using Elektor’s ‘Embedded
Firmware Library’, code for
an embedded project can be
generated swiftly without the need
to know which type of interface

will be used. This tool helps both
beginners and old hands.

	34	 Lost Model Finder
Build this radio detection finder and
never lose your radio controlled
plane again. Simply switch on the
receiver and it points you straight
to the crash location.

	40	 Lithium-ion Battery
Recycling Made Easy
Re-using Lithium-ion batteries can
be tricky. Often they are charged
inside the equipment, so there
isn’t a separate charger available.
Luckily, a charger for used (or new)
Li-ion cells is fairly easy to build.

	44	 Taming the Beast (5)
Although FPGA applications can be
designed using schematic diagrams
with logic symbols, in practice this

Community Projects

DesignSpark

Contents

www.elektor-magazine.com | June 2013 | 5

	66	 New Performance Require-
ments for Resistors
Today’s aircrafts are increasingly fuel
efficient and need to conform to anti-
pollution regulations. The humble
resistor can be helpful, provided
some of its key specifications are
given close consideration.

	70	 News & New Products
A selection of news items received
from the electronics industry, labs
and organizations.

	74	 Retronics: Konrad Zuse’s Z1
through Z4 and beyond
Ever since the earliest days of
mathematics and logical thought,
people have tried to find ways to
simplify the repetitive work involved.
This article takes a tour of Konrad
Zuse’s impressive contributions to
the development of the computer.
Series Editor: Jan Buiting.

	78	 Hexadoku
Elektor’s monthly puzzle with an
electronics touch.

	79	 Gerard’s Columns: In the
Clouds
A column or two from our
columnist Gerard Fonte.

	82	 Next Month in Elektor
A sneak preview of articles on the
Elektor publication schedule.

	64	 LCR Meter Shootout
A quick comparison between
Elektor’s 500 ppm LCR Meter
and two other LCR measurement
devices

is usually done with a hardware
description language. An advantage
of the latter approach is that
complex functions are often easier
to express in algorithms than in
schematics. Accordingly, in this
installment we guide you through
the process of programming an
FPGA application.

	54	 From BASIC to Python (2)
This second installment elaborates
on graph plotting and Fourier
synthesis. And without much effort
we setup a graphical user interface.

	62	 Beefing up DAC Resolution
Improve the resolution of ordinary,
cheap digital/analog converters
by using the output of one as a
programmable voltage reference
for the others.

MagazineLabs

Industry

June 2013Volume 4 – No. 54

•Community

6 | June 2013 | www.elektor-magazine.com

No. 54, ~June 2013
ISSN 1947-3753

Elektor Magazine is published 10 times a year
including double issues in January/February and July/
August at $80 per year, Canada add $15 per year; by

Elektor International Media LLC
111 Founders Plaza, Suite 300
East Hartford, CT 06108.

Phone: 860.289.0800
Fax: 860.461.0450
www.elektor.com

Elektor is also published in French, Spanish,
German and Dutch. Together with franchised
editions the magazine is on circulation in more than
50 countries.

Memberships:
Elektor USA
P.O. Box 462228
Escondido, CA 92046.

Phone: 800-269-6301
E-mail: elektor@pcspublink.com
Internet: www.elektor.com

Head Office:
Elektor International Media b.v.
PO Box 11
NL-6114-ZG Susteren
The Netherlands
Telephone: (+31) 46 4389444,
Fax: (+31) 46 4370161

Advertising:
Strategic Media Marketing
Peter Wostrel
2 Main Street
Gloucester MA 01930.

Phone: 978-281-7708,
Fax: 978-281-7706
E-mail: peter@smmarketing.us
Advertising rates and terms available on request.

Copyright Notice
The circuits described in this magazine are for domestic
use only. All drawings, photographs, printed circuit
board layouts, programmed integrated circuits, disks,
CD-ROMs, DVDs, software carriers and article texts
published in our books and magazines (other than third-
party advertisements) are copyright Elektor International
Media b.v. and may not be reproduced or transmitted
in any form or by any means, including photocopying,
scanning and recording, in whole or in part without prior
written permission from the Publisher. Such written
permission must also be obtained before any part of
this publication is stored in a retrieval system of any
nature. Patent protection may exist in respect of circuits,
devices, components etc. described in this magazine.
The Publisher does not accept responsibility for failing
to identify such patent(s) or other protection. The
submission of designs or articles implies permission to
the Publisher to alter the text and design, and to use the
contents in other Elektor International Media publications
and activities. The Publisher cannot guarantee to return
any material submitted.

© Elektor International Media b.v. 2013
Printed in the USA

The Team
Managing Editor:	 Jan Buiting

Publisher:	 Hugo Van haecke

Membership Manager: 	 Shannon Barraclough

International Editorial Staff:	Harry Baggen, Thijs Beckers, Eduardo Corral, Wisse
Hettinga, Denis Meyer, Jens Nickel, Clemens Valens

Laboratory Staff:	 Ton Giesberts, Luc Lemmens, Tim Uiterwijk,
Clemens Valens, Jan Visser

Graphic Design & Prepress: 	Giel Dols, Jeanine Opreij, Mart Schroijen

Online Manager: 	 Daniëlle Mertens

Managing Director: 	 Don Akkermans

A Case for Boards

Looking at our readers’ main interests, PCB
design and production rank pretty high. Elek-
tor PCBs are famous the world over not just
for their quality, but also their consistent look
and feel. How did that come about?
Here at Elektor, the change from manual
artwork design using masking tape and pho-
tographic reproduction techniques to a 100 %
PC-driven process was gradual, and took
place in the early 1990s. The use of a PC to
draw a schematic and then run a PCB design
program was not forced or even suggested by
the publishers at the time. Back then, some
of the younger lab designers boldly set out to discover the advantages of the PC
route, eventually supplying files instead of drawings to their colleagues in the
PCB design department. Others stuck to pencil, paper and rubber with equally
good results particularly in RF and space critical designs. No matter how the final
artwork got produced, Elektor never actually mass-produced their circuit boards—
this was always farmed out to PCB manufacturers. We did, however, handle the
storage and packaging of what must have amounted to hundreds of thousands of
those blue and green boards. Also, to this day Elektor Labs have their own PCB
etching and drilling facilities. The equipment is used to make prototypes and one-
offs of any board, single or double sided, TH or SMD.
I do recall the excitement in the lab and editorial offices about 20 years ago when
a parcel arrived containing 500 or so boards for a recently published project.
At last, the proud designer was able to see the fruit of his design efforts. More
importantly however, readers all over the world were able to construct circuits on
superbly produced circuit boards with a component overlay and silk screen finish!
Today, there is still the satisfaction not only of publishing these wonderful designs
and getting response from you, but also of holding a perfectly machined printed
circuit board with an Elektor production number printed to aid identification.

Jan Buiting, Managing Editor

www.elektor-magazine.com | June 2013 | 7

AP Circuits
www.apcircuits.com 33

Beta Layout
www.pcb-pool.com 39

Cleverscope
www.cleverscope.com 39

DLP Design
www.dlpdesign.com 33

ExpressPCB
www.expresspcb.com 71

EzPCB
www.ezpcb.com 53

Fabstream
www.fabstream.com 9

HuMANDATA
www.hdl.co.jp/EL/ 2

Pololu
www.pololu.com 33

Saelig
www.saelig.com 73

Not a supporting company yet?
Contact Peter Wostrel (peter@smmarketing.us, Phone 978-281-7708, Fax 978-281-7706)

to reserve your own space for the next edition of our members' magazine

Our network

Connects you to

Supporting Companies

United Kingdom
Wisse Hettinga
+31 46 4389428
w.hettinga@elektor.com

USA
Hugo Van haecke
+1 860-875-2199
h.vanhaecke@elektor.com

Germany
Ferdinand te Walvaart
+49 241 88 909-17
f.tewalvaart@elektor.de

France
Denis Meyer
+31 46 4389435
d.meyer@elektor.fr

Netherlands
Harry Baggen
+31 46 4389429
h.baggen@elektor.nl

Spain
Eduardo Corral
+34 91 101 93 95
e.corral@elektor.es

Italy
Maurizio del Corso
+39 2.66504755
m.delcorso@inware.it

Sweden
Wisse Hettinga
+31 46 4389428
w.hettinga@elektor.com

Brazil
João Martins
+55 11 4195 0363
joao.martins@editorialbolina.com

Portugal
João Martins
+351 21413-1600
joao.martins@editorialbolina.com

India
Sunil D. Malekar
+91 9833168815
ts@elektor.in

Russia
Nataliya Melnikova
+7 (965) 395 33 36
Elektor.Russia@gmail.com

Turkey
Zeynep Köksal
+90 532 277 48 26
zkoksal@beti.com.tr

South Africa
Johan Dijk
+31 6 1589 4245
j.dijk@elektor.com

China
Cees Baay
+86 21 6445 2811
CeesBaay@gmail.com

•Community

8 | June 2013 | www.elektor-magazine.com

Compiled by
Wisse Hettinga

Elektor World

The Tube in the Lunchbox:
reader comments
Elektor readers like you, consistently demonstrate the
true spirit behind the magazine, enhancing and extending the
editorial content with your own investigations and experiments. Component
related articles remain the most popular and in last April’s Elektor World we
showed the ‘Tube in the Lunchbox’ and asked for more details.
Among others, Christopher Kessler from Germany and Jan Swenker from The
Netherlands dug out more information on this. Christopher found the specs of
this tube in the “Valvo Fotovervielfacher 1978-79”. In total he found 6 pages

of information on the device and figured that its current price tag was around 30 dollars. Jan’s information
confirms the date of origin: 1978. He pointed us also to the Hamamatsu Photomultiplier Tubes book from
1986 (you can find the PDF on the internet). The book has the specs of a replacement tube, the model
R1450... It is time to get our hands dirty getting this tube to work!
Many thanks to Jan and Christopher

 Getting control
“In engineering, control system theory focuses on how to manipulate a
system’s inputs to change its behavior. DIYers are familiar with many
simple, open-loop control systems — such as those in basic stepper
motors. But today, project kits for everything from robotic sumo cars
to auto-piloted model aircraft demand DIYers learn more about the
theory behind complex, closed-loop control systems”, Brian Douglas
says in his “Tech the Future” essay in Circuit Cellar magazine’s June
2013 edition. “DIYers aren’t going back to the classroom, they’re going
online — educating themselves on websites and turning to open-source
software and hardware”. Douglas should know. The Seattle-based
control systems engineer has a YouTube site dedicated to fostering a
practical understanding of control system theory, www.youtube.com/
user/ControlLectures. Douglas is one of the essayists featured in CC’s
recurring “Tech The Future” section, which focuses on developing
trends and breakthroughs in technology. Visit circuitcellar.com/
category/tech-the-future to read more of Douglas’s essay, and others.

https://212.178.132.86/owa/redir.aspx?C=_cdo37KwhEidAN8OCYUu5FoV52UxE9BIriVKNmbCSw-rpcf2FSWixeJLv_VzAwHFv7CtKYwPYYE.&URL=http%3a%2f%2fwww.youtube.com%2fuser%2fControlLectures
https://212.178.132.86/owa/redir.aspx?C=_cdo37KwhEidAN8OCYUu5FoV52UxE9BIriVKNmbCSw-rpcf2FSWixeJLv_VzAwHFv7CtKYwPYYE.&URL=http%3a%2f%2fwww.youtube.com%2fuser%2fControlLectures

Naamloos-1 1 29-04-13 09:01

10 | June 2013 | www.elektor-magazine.com

Today I will walk you through how to make global
setting changes using DesignSpark technology
files so that you can make DesignSpark work
just the way you want.

Getting started
But before we start configuring DesignSpark
it’s important to know that DesignSpark uses
styles to specify the formatting rules for design

primitives like shapes, text and tracks. Each style
has a name to make it easy to reference, just
like in a word processor. I normally try to give
styles meaningful names so that you can know
what the style is without checking its properties
directly. For example, having a style named “Via”
is ok if you only have one via but calling it “Via
(0.45 mm x 0.95 mm)” makes it immediately
obvious that the via has a 0.45 mm drill and a
0.95 mm copper pad. You are free to add custom
styles to the technology files but this discussion
we will be focusing on the system default styles
like “[Symbol Names]” which is the style name
used for reference designators and component
names.

Also, don’t forget to double check the DesignSpark
technology file path which can be changed on
the General tab in the Settings->Preferences
menu. In my installation I had to change it to C:\
Users\Public\Documents\DesignSpark PCB 5.0\
Technology. If this path is incorrect DesignSpark
won’t find any technology files automatically
which makes it harder to use. You can check
if the directory path is correct if it contains .ptf
and .stf files.

Schematic technology files
Schematic technology files are where you can
configure:

•	 The line styles used for terminal and junction
connections

•	 Predefined text styles used in the schematic
(font, size, etc.)

•	 How various line elements are drawn (solid,
dashed, etc.)

•	 How the connection line elements are drawn

By Neil Greunding

Day 1 – Make it
just the way you want
The good folks at RS Components have just released version 5.0 of
DesignSpark PCB and the first thing I like to do with a new tool is to get it
configured just the way I like it. DesignSpark lets you configure everything on
a per file basis or globally.

Figure 1.
Schematic with default
parameters.

Figure 2.
Default Fonts set to Arial.

TIPS & TRICKS

(solid, width, etc.)
•	 Any predefined electrical nets, although I

would do this in the schematic instead
•	 Any predefined electrical net classes

(ground, power, etc.)
•	 The colors used to draw various elements
You can change these parameters from the
Settings->Design Technology menu and in the
View->Colors menu.
You can see what the default parameters look like
by loading an example project. The chipKit Max32
project schematics should appear as shown in
Figure 1.

I personally find that the stroke fonts look old
fashioned and so I like to change them to Arial
since it’s a standard true type font. After playing
around for a few minutes this is what I came up
with Figure 2.

So how do we implement this in the schematic
technology file? The first thing you need to do
is open the default.stf schematic technology file
which is normally located in C:\Users\Public\
Documents\DesignSpark PCB 5.0\Technology
which will open as a blank schematic document.
Now open the Settings->Design Technology menu
and change the Net Names, Pin Names, Pin
Numbers and Symbol Names text styles to use an
Arial font with a height of 80. I also changed the
Normal text style to Arial as well but with a size
of 120. I then went into the View->Colors menu
and changed the Pin Names and Pin Numbers
fields to black.
Once you’ve made all of your changes, save
the technology file so you can use it for new
schematic pages by selecting “default.stf” in the
new document menu window

PCB technology files
PCB technology files are one of the best
DesignSpark features because they let you
combine all of your basic design rules and layer
stackups into files that are easily reused. For
example, I have a file for simple low cost 2-layer
boards and another for 4-layer boards. I can then
choose which file I want to use when creating a
new PCB document. This feature isn’t common
with other PCB design packages.

PCB technology files let you configure:
•	 The design units (mm, mils, etc) and the

resolution.
•	 The design grids, especially the working grid
•	 The layer stackup and colors
•	 The track spacing and clearance rules
•	 The pad and track styles, although you

would usually specify the pad styles in your
library components and only specify the
default track styles in the technology file

•	 The default net classes, but I usually specify
them in the schematic instead

•	 Autorouter and autoplacer rules
•	 Basic design elements like board shapes,

mounting holes, etc.

Let’s see how this works by working through an
example for a simple 2-layer board. The first step
is copy and existing technology file so we don’t
have to start from nothing, so let’s start with C:\
Users\Public\Documents\DesignSpark PCB 5.0\
Technology\metric.ptf to and save it with a new
name like my2layer.ptf. The first thing to modify
is the design units in Settings->Units menu. I
always use mm with a precision of 4 decimal
places, but if you prefer imperial units choose in
or mil instead. You can then set up your preferred
design grids in the Settings->Grids menu.

Configuring the layers in done on the Layers
tab in the Settings->Design Technology menu.
By default the metric technology file has a Top
Silkscreen, Top Copper, Documentation, Bottom
Copper and Bottom Silkscreen layers already
defined. Since all my boards are surface mount,
I added a Top Paste, Top Solder Mask, Bottom
Solder Mask and a Bottom Paste layer. You
can add layers by clicking on the Add button
and entering the layer parameters as shown
in the example of the Top Solder Mask layer
in Figure 3.

Figure 3.
Configuring the layers.

making the minimum 0.25 mm so that you can
route the power traces onto the component pads.
The final step is to edit the via styles in the Pad
Styles tab. For a basic technology 2-layer board
I would use a via with a 0.45 mm drill with a
0.95 mm pad. You can also define other via styles
if you like to use a variety of different via sizes.
At this point you have a set of basic design rules
and constraints for a basic 2-layer board that
can be easily reused with future 2-layer boards.
When you create a new PCB design, select the
appropriate technology file when prompted in
the PCB Creation Wizard.

Conclusion
Now that we have configured DesignSpark’s
default parameters the next steps are to
configure DesignSpark’s libraries and to create
some documentation templates. Fortunately
DesignSpark comes with a large set of libraries
which makes getting started much easier.

(130172)

Once you’ve added all the layers you want, you
can order them properly in the layer stackup by
moving them up and down in the Layers window.
When you’re done you should see something
like Figure 4.

Next, let’s configure the spacing rules by clicking
on the Spacings tab. Here you will see a matrix
of all the spacing rules between the different
object types. For a basic 2-layer board with 10-mil
tracks and 10-mil spacing, the rules could look
like in Figure 5.

Also don’t forget to click on the Rules tab. The
important parameters are the minimum annular
ring and the component spacing. After that it’s
time to set the default track widths in the Track
Styles tab. For a 10 mil/10 mil board I would set
the minimum and normal signal track widths to
0.25 mm. The power track widths can be anything
you want for the normal width, but I recommend

Figure 5.
Design rules.

Figure 4.
Configuring the layers.

Hi, I’m Neil Gruending and I have used
numerous different PCB CAD packages as
an electronics design engineer over the
years. I’m pretty particular about my tools
and I like to learn how to maximize my
productivity with them whenever possible.
I also enjoy sharing what I’ve learned on
my website at www.gruending.net and on
Twitter as @ngruending.

12 | June 2013 | www.elektor-magazine.com

Usually when I start writing an article, for inspira-
tion I look at what’s around on my desk. For this
edition of Weird World of Components a Crystal
Diode type FRIHO D.R.P. caught my eye. It is
mentioned in an old Radio Bauer Katalog from
1926 — we are talking old stuff here — and it is
one of the main components of old crystal radio
systems.

To be honest, I have no idea how or when I
acquired this component, but in my early years
I used to spend a lot of time browsing stuff in a
renowned shop called Quakkelstein in Vlaardin-
gen, The Netherlands. Most likely this was where
I picked it up and since then it had been living on
my desk or in my drawer. Now this component
takes us back to the early days of Radio. It is an
automated ‘cat’s whisker’ diode. Turning the knob
changes the position of a small wire (the whisker)
on the galena crystal, allowing you to find the
best spot for the diode to be doing what a diode
should do: pass current in one direction only.
This is what listening to the Radio encompassed
those days. To get a decent signal you needed to
twist and tweak the inductor, the capacitor and
the rectifier diode.

But how good where these diodes compared to
what we have today? To measure the character-
istics of a diode is really simple. Basically, if you
want to do a decent job getting the I-V charac-
teristic, all you need is a power supply, a voltage
meter and an ammeter. Getting this diode to work
properly is challenging to say the least. You need
to fiddle around a bit to find the right spot where
the diode effect peaks. I started out trying to find
that spot with an ohmmeter, but soon I had to
conclude that wasn’t going to work. The mea-
surement results were all over the place. I was
ready to give up when I decided to give it a final
shot and bring in some more equipment. An HP
generator, a Hameg HMO1522 oscilloscope and a
330-ohm resistor finally gave me some promis-
ing results. In Figure 2 the oscilloscope displays
a very fuzzy signal, but with some imagination
you can see the FRIHO cutting of the sinusoidal
input signal. Figure 3 shows the characteristic
of a present-day diode in the same measure-
ment setup.

Looking at the results I am amazed a component
like the FRIHO D.R.P. actually worked! Today a
huge variety of diodes exists for all kinds of appli-
cations. Small signal diodes, zener diodes, vari-
cap diodes or varactors, tunnel diodes, and all of
them are available in a variety of packages. It is
interesting to realize they all relate to this very
old Cat’s Whisker diode in some way.

(130169)

Wisse Hettinga
(Elektor)

The Cat’s Whisker
weird World of Components

1

2

3

•Projects

14 | June 2013 | www.elektor-magazine.com

The project you are about to encounter took a
while to complete. It all started a year ago with
a Home Automation system [1] originally devel-
oped by two trainees at Elektor Labs, Koen and
Jesper. One part of their system was an RGB
LED strip controlled over Ethernet, i.e. with a
cable. The idea was nice, but I felt that a wireless
connection would be a more appealing solution.

Also, I wanted a web browser based application,
compatible with most browsers, and that used
sliders to control the color of the strip. So Koen
set out to develop the lot, but unfortunately his
trainee period ended before he could finish the
project and he went back to college. Before he
left Elektor, Koen had explained to me the prob-
lems he had run into, some of which still needed

By Clemens Valens
(Elektor.Labs)

Wi-Fi Controller Board
Control RGB LED strips, motors,
relays & stuff, but no wires

With Wi-Fi modules pervasive
it’s high time to start
thinking about adding
household appliances to
your home Wi-Fi network.
Controlling your home
from your mobile phone
has never been easier
thanks to the universal
Wi-Fi controller board
presented here.
Although we used
it to set the color
of an RGB LED
strip, you can use
the board for a
plethora of other
applications.

Wi-Fi Controller Board

www.elektor-magazine.com | June 2013 | 15

addressing. I then took it on me to finalize the
project, and so it spent the next few months on
my desk gathering dust! When I finally found the
time and energy to dive into it, I failed to recall
most of what Koen had told me, and basically I
had to start all over.

Koen’s circuit was essentially an ATmega328 AVR
microcontroller (MCU) controlling three MOSFETs
with PWM signals to regulate the intensity of the
three colors. For the Wi-Fi connection a WizFi220
module from WIZnet was used that communicates
with the MCU over a simple serial link. Since I
was in possession of an Arduino shield sporting
this very Wi-Fi module [2] and since an Arduino
Uno board is based on an ATmega328, I decided
to build my prototype as an Arduino application.
All I needed was a second shield with the MOS-
FETs on it so that I could drive the LED strip. This
was quickly slapped onto a piece of prototyping
board (Figure 1).

Then it was programming time. Parsing the HTTP
commands received from the Wi-Fi module and
sending back the required answers was not so
complicated, but when I wanted to change the
web page I ran into Koen’s problems. First of all
there were the sliders that control the LED strip’s
color from within a browser that I had so light-
heartedly requested. As I then learned, there
are no sliders in standard HTML. Searching the
Internet I discovered that HTML 5 may be aware
of sliders, but only very few browsers support it,
so HTML 5 was not an option. Koen had solved
this by using the JavaScript libraries JQuery and
JQuery-UI [3]. These are online libraries for web
pages to use to implement all kinds of nifty con-
trols and other functions. Some inconveniences
of these libraries are that they are online, mean-
ing that you need an Internet connection to use
them, and also that they are too large to put
them in the MCU’s program memory. Since I had
no other solution, I decided to stick to the use
of the online JavaScript libraries.

Looking through Koen’s web page code I suddenly
remembered the problem he had mentioned before
he left: for some reason the Wi-Fi module closed
the connection after receiving a command, disal-
lowing the browser to send more commands. Con-
sequently you could change the color of the LED
strip just once, unless you rebooted the module.
Koen had found a workaround using a complicated

JavaScript that made the browser change its com-
munication port before it would send a command.
This workaround also involved using the HTTP GET
command to send the color data, whereas this com-
mand is actually meant to get data from a server
(who would have guessed that?). To send data you
are supposed to use the POST (or PUT) command.

A much more elegant solution however is to add
the line “Connection: close” to the server’s
reply to a GET command. Now I could delete the
workaround script, making the web page much
smaller, and I could switch to using the POST
command, which, I felt, was more appropriate.
This is what the POST command looks like when it
is send by Firefox (the color data is at the end):

POST / HTTP/1.1
Host: 192.168.2.15
User-Agent: Mozilla/5.0 (Windows NT 6.1;
WOW64; rv:17.0) Gecko/17.0 Firefox/17.0
Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
DNT: 1
Connection: keep-alive
Content-Type: application/x-www-form-
urlencoded; charset=UTF-8
Content-Length: 23

Figure 1.
The prototype based on an
Arduino Uno, an Elektor
Wi-Fi shield (120306) and a
piece of prototyping board.

•Projects

16 | June 2013 | www.elektor-magazine.com

PWM color control in software.
Porting the AVR code to the PIC should have
been an easy and straight forward exercise, but
it wasn’t. Of course I had complicated things a bit
by wanting to include a bootloader and USB func-
tionality, but Microchip could have made it a bit
easier. I was using my super-duper full-featured
XC8 compiler that Microchip is raving about but
found it impossible to get the USB code to com-
pile, let alone to work. I got this code from the
Microchip Application Libraries v2012-10-15 and
only after many hours of fruitless fiddling with
compiler settings and pragmas did I find a state-
ment somewhere on the internet saying that XC8
is not (yet) compatible with the Microchip Appli-
cation Libraries. Duh! I needed another compiler.
Again internet came to the rescue and within fif-
teen minutes I had an official full-featured C18
compiler up and running without shelling out a
dime. Another fifteen minutes more and I had
the USB serial port example up and running.
Now it was time to add my Wi-Fi code — which
went pretty smoothly except for fitting all the
data in the PIC’s segmented RAM — and try it
out. And of course it worked. Not. Actually, it
worked a bit. I could change the color of the
strip once or twice, but then Wi-Fi communica-
tion would stop. When I controlled the strip over
the USB serial port, it all worked fine. So, back
to the debugging table where I discovered that
the USB interrupt seemed to hold up the serial
port interrupt, causing data loss. By this time I
was pretty fed up with it all and decided to sim-
ply disable the USB port in Wi-Fi mode instead of
going to the bottom of the problem. (I suggest
you give it a try if it really interests you. Please
let me know if you find the solution.)

Building it
Now my second — PIC-based — prototype was
functioning as intended with the parts I wanted
to use (Figure 2); the time to design a nice PCB
had finally come. Since the goal was to control
an LED strip, I decided to build it into a small,
discreet enclosure. The PCB is designed in such
a way that the enclosure requires minimal tool-
ing, especially when you use the blue transpar-
ent version that allows you to view the status
LEDs inside. In that case no drilling is needed at
all; you only have to trim some standoffs inside.
Even with a 20-pin MCU several pins remained
unused so I added some extra functionality to
the board. In combination with the bootloader

Origin: null
Pragma: no-cache
Cache-Control: no-cache

red=79&green=10&blue=20

The next step was to make the web page look
pretty on mobile devices. On my smartphone the
sliders were shown very small, making it impos-
sible to move them with any precision. The solu-
tion was to add the viewport meta tag to the
header of the web page, like this:

<meta name=’viewport’
content=’width=device-width, user-
scalable=no’ />

With this line added to the HTML code of the web
page it now nicely filled the screen of my Android
phone while looking good on a PC as well. (On
an iPad it occupied only about a quarter of the
screen and I have not tried to improve that.)
Meanwhile I had also optimized the size of the
rest of the program and now my goal was to
make it all fit in as little memory as possible. An
important improvement came from compress-
ing the web page. You can do this with gzip and
then add the line “Content-encoding: gzip”
to the server’s reply. Most, if not all, browsers
will know how to handle zipped web pages. The
disadvantage of doing this is that it is now a bit
more complicated to change the web page; there-
fore you only do this when its design is finished.

At that point I had a fully working prototype based
on Arduino compatible hardware with software that
compiled within the Arduino IDE. If you want the
details, please visit [4]. I could have stopped here,
but I wanted better hardware; a stack of three
PCBs for such a simple circuit just didn’t feel right.
Looking for an MCU with fewer pins I found that I
could not stay on Atmel’s AVR platform because
the parts that would be suitable are difficult to
get. However, I did happen to have a couple of
Microchip PIC18F14K50 devices lying around. This
is a 20-pin MCU with USB, which was interest-
ing because that would allow for comfy PC-based
configuration of the Wi-Fi module (see also [2]).
Another interesting feature is the USB bootloader
Microchip provides (for free), which enables easy
firmware development without a special program-
mer. Unfortunately, this MCU has only one PWM
channel, so I had to implement the three-channel

Wi-Fi Controller Board

www.elektor-magazine.com | June 2013 | 17

sion port and three power channels;
•	FlowBoard compatible with FlowStone 3 [5];
•	something I have not imagined yet.

To make these different applications possible the
board has been equipped with a switched mode
regulator so it can be powered from a 7 V to
40 V DC power supply without wasting too much
calories. The board can also be powered from

this made the board into a much more versatile
platform that you can use for other applications
as well. It can be used as:

•	Wi-Fi RGB LED (strip) controller;
•	 three-channel controller to switch relays or

control motors over Wi-Fi or USB (or both);
•	USB to serial port adapter;
•	rapid prototyping system with Wi-Fi, expan-

22p22p

100n

1k

1k

1k 1k 1k

WizFi220

USB-B

IRL540

IRL540

IRL540

1N5819

47k

47k

BZX79-C3V0

ICSP

MCP1825S-3302E/AB

10u 10V 100n 10u 10V 100n

EXPANSION

1k

10k

GND

3V3+V5+

Vin

RXDTXD

GPIO27

GPIO29

LM2575T-5.0/NOPB

1N5819

330u 16V100u 50V

1N5819

330u 1A

3x 1N5819

BARREL JACK

1
2
3
4
5
6
7
8

17
18
19
20

9
1101
12
13
14
15
16

IC1

PIC18F14K50-I/P

X1

12MHz
C1C2

C3

R1

S1

R2

D5

D6

D7
D8

R3 R4 R5

1

2

1

3
4
5
6
7
8

9

10
11
12
13
14
15
16
17

18

19
20
21
22

4232
25
26
27

120718 - 11

28
29
30

31

32 33 34

35
36
37
38
39
40
41
42
43
44
45
46
47

48

MOD1

1
2
3
4

K1

T1

T2

T3

D1

R6

R7

D2

1 2 3 4 5 6

JP1

IC2

C4 C5 C6 C7

1
2
3
4
5

JP2

R8

T4

BC547

R9

TP1

3PT2PT

TP4

TP5TP6

TP7

TP8

1

2

3

5

4

IC3

D3 C8C9

D4

L1

1
2

JP3

D9D10D11

K2

K3

+5V

Vin

+3V3

LINK

OK
RXD

+3V3

3V3+V5++5V
Vin

VSS
D+
D-

VUSB
RC0
RC1
RC2
RB4

RB5/RX
RB6

VDD
RA5/OSC1
RA4/OSC2
RA3/MCLR
RC5
RC4
RC3
RC6
RC7
RB7/TX

EXT ANT

GND

JTAG_TCK
JTAG_TDO
JTAG_TDI
JTAG_TMS
JTAG_NTRST
ALARM1
RTC_OUT1

VBAT

DC_DC_CNTL
ALARM2
ADC1
ADC2
MSPI_MISO/GPIO6
MSPI_MOSI/GPIO7
MSPI_CLK/GPIO5
VOUT_1V8

GND

MSPI_CS0/GPIO4
MSPI_CS1/GPIO13
I2C_CLK/GPIO9
PWM0/GPIO10
GPIO19/CLK_44MHZ GPIO20/CLK_22MHZ

GPIO21/CLK_11MHZ
I2C_DATA/GPIO8

SSPI_MISO
SSPI_CLK
SSPI_CS

SSPI_MOSI

GND

VIN_3V3 EN_1V8 VDDIO

EXT_RESETN
UART1_CTS/GPIO26
UART1_RTS/GPIO27

UART1_RX/GPIO3
UART1_TX/GPIO2
UART0_TX/GPIO1

UART0_RTS/GPIO25
UART0_RX/GPIO0

UART0_CTS/GPIO24
GPIO31
GPIO30
GPIO29
GPIO28

GND

VBUS
D-
D+
GND

OFF

FB

1
2
3
4
5
6

Figure 2.
Circuit diagram of the
Wi-Fi Controller Board.
Did you ever notice how
people always connect the
barrel jack the wrong way
around? The center pin is
supposed to be the common
connection. I was wicked
here on purpose because of
PCB layout considerations.

•Projects

18 | June 2013 | www.elektor-magazine.com

For the power connector you can either use a
center-pin barrel jack or a standard 2-pin .2’’
pitch PCB terminal block. A diode provides a basic
protection against polarity inversion.
A 5-pin extension header allows the use of the
free MCU ports for custom purposes. A row of
test points extends this connector in one direc-
tion; the in-circuit serial programming (ICSP)
connector extends it in the other direction. All
together they give access to ten MCU pins and
all the power supplies. An LED connected to RC4
and a pushbutton are available too. Because the
application program can be changed easily thanks
to the bootloader and the USB interface, these
options make the board into an excellent rapid
prototyping platform.
All parts (except the Wi-Fi module) are standard
through-hole parts so it should not pose any
problems to assemble the board. I suggest you
mount the Wi-Fi module first as it is a bit fiddly
to position properly because of its many connec-
tions. Note that the voltage regulators should be
mounted lying on their belly (see Figure 4, or on
the solder side of the board). The reason for this
is that if you don’t use the proposed enclosure
and you mount them standing up, they can eas-
ily be screwed to a heat sink (not that you really
need one). The MOSFETs should lie on their back
to fit in the enclosure.
If the LEDs must stick through the enclosure
you should drill the holes first to get the length
of their leads right. LED D5 (connected to RC4)
and the pushbutton each have been positioned
exactly under a standoff so that you can drill
holes for them without tedious measuring first,
just drill through the standoffs. The enclosure
has a battery trap allowing you to mount Wi-Fi
status LEDs on the solder side so you can see
them only when you open the trap.
The pushbutton needs a cap of the right height.
The 16-mm model will be almost flush with the
top side of the enclosure.

To fit the PCB in the enclosure you need to trim
in the top cover the four standoffs that keep
the enclosure together. An easy way to do this
is with a large drill bit. Do not trim too much or
the screws won’t have any material left to bite
into. You should also break away the two bits of
plastic meant to keep the battery in place.
The Wi-Fi module has a small connector for a
better antenna (Figure 5). If you use it, just
leave it dangling.

the USB port, but keep in mind that the Wi-Fi
module may consume quite a lot of power when
it is transmitting. A large 3.3-V linear regula-
tor provides power for the Wi-Fi module (due to
current requirements you cannot use the 3.3 V
regulator integrated in the MCU). The module is
accompanied by three status LEDs indicating if
the module is connected to an access point or
not, and if data is being exchanged. Because the
MCU is powered from 5 V and the Wi-Fi module
from 3.3 V, level converter circuitry was added
for the inputs of the Wi-Fi module. The MCU can
handle 3.3 V-level input signals directly.

The MCU is clocked from a 12-MHz crystal oscil-
lator to get the USB timing right. The pushbut-
ton connected to the reset pin (MCLR) will serve
mostly to activate bootloader mode (the external
reset input must be disabled for this to work, fuse
MCLRE=OFF). If the bootloader is not needed, this
pushbutton can function as a reset button or it
can be used for some other function.

The three conservatively rated MOSFETs feature
an RDS(on) of 0.077 Ω, can switch up to 100 volts
and are protected by flyback diodes so they can
handle inductive loads too. As an output con-
nector I have opted for a standard 4-pin .2’’
(5.08 mm) pitch PCB terminal block even though
most of the LED strips I have seen are equipped
with a smaller pitch connector. However, since
I do not know how standard these connectors
are or if they are all wired in the same way, I
preferred a more flexible solution. You can easily
make an adapter cable from, say a floppy disk
drive power cable (Figure 3).

Figure 3.
A typical RGB LED strip with
an adapter cable salvaged
from a PC power supply.

Wi-Fi Controller Board

www.elektor-magazine.com | June 2013 | 19

sion connector) and then connect the board to
a free USB port of your PC. LED D5 starts blink-
ing and you can send AT commands to the new
virtual COM port (the number or name of which
you will have to get from your operating system).
If the Wi-Fi module is connected to an AP (i.e.
when status LEDs ‘LINK’ and ‘OK’ are both on)
type “+++” in a serial port terminal program to
force the module into command mode (the ‘OK’
LED should be switched off). Now refer to [2] to
configure the module.

To put the Wi-Fi module in LAP mode instead
requires some dexterity. Watch the blinking LED
closely, and get into its rhythm. When you feel
ready, press pushbutton S1 when the LED is off
and keep it pressed during two full blinks. Release
the button only when the LED goes off after the
second blink. If you managed to do this properly
then after a second or so the three Wi-Fi status

Programming the board
The firmware you can download for this project
[6] contains the bootloader, the RGB LED strip
application and the fuse settings in a single HEX
file. Burn the HEX file into the MCU using an
appropriate programmer (PICKIT, ICD or other)
and you’re set. With the bootloader programmed
in the MCU you’re ready to upload your own appli-
cations. The procedure is as follows:

•	do not power the board, make sure JP3 is
not in place;

•	connect the board to a free USB port of your
PC;

•	press pushbutton S1 and keep it pressed
while you place JP3. Actually, instead of JP3,
I used a normally-closed (NC) pushbutton
(microswitches are perfect for this). In this
case, while you hold down S1, briefly press
the microswitch to enter bootloader mode;

•	The PC (Windows, Linux or Mac) should now
detect the board as an HID. If this is the first
time on a Windows PC, you have to show it
the .INF file that comes with the download;

•	on the PC launch the HIDBootloader tool
provided in the download (Windows, down-
load the Linux or Mac version from the
Microchip website) (Figure 6). It should dis-
cover the board instantly;

•	browse to your executable (HEX file) and
click the program button;

•	to quit bootloader mode and to start the
application, click the Reset button or toggle
the power supply of the board without hold-
ing down S1.

Configuring the Wi-Fi module
In [2] I showed you how to configure the WizFi220
module over a serial port using AT commands.
This technique is useful if, for instance, you want
the MCU to reconfigure the module on the fly. It
also allows configuration of options not accessible
in another way. The board presented here has
a special mode to allow this way of configuring
the module. The Wi-Fi module offers an easier
way if all you want to do is connect to an existing
Wi-Fi network. In this case you have to put the
module in so-called Limited Access Point (LAP)
mode. The board can do this as well.

For both methods you have to put the board in
USB-to-serial mode first. To do so, connect RC2
to +5 V (for example, with a wire on the exten-

Figure 4.
The almost finished
board, revision 1.0, fully
assembled. Rev. 1.1 is
identical except for some
parts that have been moved
slightly for a better fit with
the enclosure.

Figure 5.
Three 2.4 GHz antennas,
one from Winizen (top)
and the two others kindly
provided by the girls from
2J (www.2j-antennae.com).

•Projects

20 | June 2013 | www.elektor-magazine.com

LEDs will suddenly flash rapidly several times and
the module enters LAP mode. (If you count three
blinks the module will restore its factory defaults,
it’s a quick way to get you out of trouble.) If you
have the board connected to a serial port moni-
tor you will see the message:

 IP SubNet Gateway
 192.168.1.1: 255.255.255.0: 192.168.1.1
[OK]

Now make sure that the module is in range of
the AP you want to use with the board. Check for
new access points with a PC, a smartphone or a
tablet. If all is well you should see one labeled
“WizFiAPxxxx” where xxxx is a number. Con-
nect to it — it is an open AP so you don’t need
any pass phrases — and point a web browser to
the address 192.168.1.1. You should see a page
similar to Figure 7. Click on the link “Find Avail-
able Wireless Networks”. A list will appear with
the networks in range from which you can pick
the one you want. Click “Save And Continue”.
This will take you back to the first form, which
now shows the details of the selected network.
Depending on the security settings of this network
you can enter a pass phrase. Click the “Save”
button to store the configuration.

Click the link “Network Settings (TCP/IP)” and
fill in the form. I prefer to use a static IP for
the module so I always know its address, but
this is up to you. In the field “S2W Connection
method” type “1,1,,80”. This will turn it into a
serial gateway listening on port 80, the default
HTTP port used by web browsers. Again, feel
free to use another value. When done click the
“Save” button.

The “Administration Settings” link allows you to
enter a password for the module. I have not
used this option.

When done configuring click the “Logout” link.
Now you will see the message “Rebooting…” and
the Wi-Fi connection will be lost. The WizFi mod-
ule will restart and try to connect directly to the
selected network. If all goes well the LEDs “LINK”
and “OK” will light up, meaning that you can now
connect to the board. Enter the IP address of the
module in the browser and wait until you get the
page from Figure 8. When the page loads cor-
rectly you are ready to play.

Figure 6.
Use this tool to upload a
new application to the Wi-Fi
Controller Board.

Figure 7.
The WizFi module’s
configuration page that’s
accessible in Limited Access
Point mode makes life very
easy.

Figure 8.
The Wi-Fi Controller Board
web page as seen from an
Android smartphone. Is blue
semi On or semi Off?

Wi-Fi Controller Board

www.elektor-magazine.com | June 2013 | 21

Internet Links

[1] 	Elektor Home Control:
www.elektor-labs.com/node/2325

[2] 	Wi-Fi/Bluetooth shield:
www.elektor.com/120306

[3] 	JQuery(UI):
http://jquery.com & http://jqueryui.com

[4] 	Arduino version:
www.elektor-labs.com/node/2373

[5] 	FlowStone (in this issue):
www.elektor.com/130064

[6] 	Firmware, Eagle PCB files, BOM; ordering:
www.elektor.com/120718

It was fun to be able to control the lights in my
house from the outside with my mobile phone.
However, this is not how I plan to use the board.
My intention is to hook it up to the motorized
garage door so a smartphone becomes the key.
It will then also be possible to give access to our
home to someone even when we are (far) away.
Indeed, this board has many possibilities, use
your imagination!

(120718)

COMPONENT LIST
Resistors (5%, 0.25W)
R1,R2,R3,R4,R5,R8 = 1kΩ
R6,R7 = 47kΩ
R9 = 10kΩ

Capacitors
C1,C2 = 22pF, ceramic, 50V, 2.5mm pitch
C3,C5,C7 = 100nF, Z5U, 50V, 5mm pitch
C4,C6 = 10µF 63V, radial, 2.5mm pitch
C8 = 330µF 16V, radial, 3.5mm pitch
C9 = 100µF 50V, radial, 3.5mm pitch

Inductors
L1 = 330µH 1A, 5mm pitch, e.g. Würth Elektronik

type 7447452331

Semiconductors
D1,D3,D4,D9,D10,D11 = 1N5819
D2 = 3V zener diode, e.g. BZX79-C3V0
D5,D6,D7,D8 = LED, green, 3mm
IC1 = PIC18F14K50-I/P

IC2 = MCP1825S-3302E/AB
IC3 = LM2575T-5.0/NOPB
T1,T2,T3 = IRL540
T4 = BC547

Miscellaneous
MOD1 = WizFi220 w. antenna, Elektor # 130076-92
JP1 = 6-pin pinheader, 0.1” pitch, vertical
JP2 = 5-pin pinheader, 0.1” pitch, vertical
JP3 = 2-pin pinheader, 0.1” pitch vertical
Jumper for JP3
K1 = USB-B receptacle
K2 = Connector 1x4, 90deg, 0.2” pitch, e.g. MSTBA4
K3 = DC socket
20-way DIP socket for IC1
S1 = Multimec type RA3FTL6 w. cap type S09-16.0
X1 = 12MHz quartz crystal, HC49/S case
Enclosure, Hammond type 1593QGY
PCB, Elektor # 120718-1

1
2

3
4

5
6

2
3

1

•Projects

22 | June 2013 | www.elektor-magazine.com

For any electronics or embedded system tin-
kering, you have to have a good power supply.
Now I don’t know about your personal lab equip-
ment budget, but mine is rather, well… let’s just
say that I’m married to the head of the finance
department and she’s not exactly an electronics
engineer. You’ve probably crafted a few linear
regulated power supplies over the years, but it’s
no trivial task to design and build a variable high
powered lab supply. And also, if you’re anything
like me, the majority of what you tinker around
with is digital circuits and low-voltage analog
stuff, like audio preamps and such.

In most cases, I am messing around with a micro-
controller and a few opamps, so typically it’s
handy for me to have a 5 V rail for the controller
(and any glue logic I might have) and +/-12 V
rails for the opamps. Increasingly, the sample
devices I’m working with (for example the Fre-
escale DSP56367 DSP or the NXP LPC2101 ARM-7
microcontroller) require low voltage rails for inter-
nal core and IO, namely 1.8 V and 3.3 V. This is
a pain in the butt if you have to build a supply
with all these rails for each project, but most of
them (except 1.8 V) can be obtained from off-

the-shelf PC ATX switching power supplies. This
is great, because somehow (I don’t exactly know
how) over the years I have accumulated several
of them. They all have 3.3 V, 5 V, 5 V Standby
and ±12 V supply outputs. Granted, on many,
cross regulation of the 12 V rails is not fantastic.
But for the vast majority of opamp circuits it is
more than adequate.

Design considerations
So, why not just put a bunch of banana jack bind-
ing posts directly on the power supply, as I’ve
seen so many people do across the web? Good
question! Here’s why:

•	ATX PSUs are designed with extremely
tight clearances inside them. If you go
putting binding posts in there, you may be
closing in on safety clearances (and these
are important. The AC power input side of
most switching supplies sees voltage spikes
over 1000 volts and DC busses around
+370 volts. It’s not worth risking life and
limb!)

•	You have a perfectly good computer power
supply, and if you’re anything like me you
may want to use it to power op amps one
day, and a computer motherboard the next.
Why modify it beyond its original use?

I wanted a more elegantly designed solution, that
not only had the binding posts, but also some clip
points I could clip alligator leads onto.
So I set about designing a PCB for adapting
the ATX supply to bench top use. As with any-
thing, a good place to start is to define some
specifications.

By Ben Jordan (USA)

Recycle
your ATX Power Supply
Elegant adapter board makes it easy
This ATX bench top power supply adapter board allows you to convert any stan-
dard ATX computer power supply into a convenient supply for breadboarding and
general electronics workbench use — simply and elegantly.

Features
•	Outputs for ±12 V, 5 V, 5 V Standby and 3.3 V
•	No ATX power supply hacking necessary
•	 Easy on and off switching of the connected ATX power supply
•	 LED status indication
•	Capable of handling heavy supply currents
•	Binding posts for each voltage output
•	Slots for easy connection of alligator clips

ATX power supply adapter

www.elektor-magazine.com | June 2013 | 23

The adapter shall:

•	not alter the power supply itself;
•	use an ATX connector;
•	have binding posts for each ATX power

supply voltage and standby;
•	have a matching return (GND) binding post

for each voltage output;

•	be capable of handling heavy supply
currents;

•	have a switch circuit to make use of the ATX
on/off controller;

•	have LEDs to monitor standby and Power
Good signal, and

•	use through-hole PCB design, so you, dear
reader, can make one for yourself easily.

J1

10

11
12
13
14
15
16
17
18
19
20

1
2
3
4
5
6
7
8
9

K4 K11

K18K15

C4

100n

C1

100n

K5 K12

K16K17

C8

100n

C5

100n

K6 K13

K20K19

C6

100n

K7 K14

K9K8

C7

100n

+12V

–12V

U1.A

3 21

U1.B

5 41

U1.E
11 121

U1.F

TP1

14 151

U1.C

7 61

U1.D
9 101

+5V0

+3V3

+5V STBY

R3

10k

R2

10k

R4

220R

R1

220R

K3K10

K2 K1

D1

FAULT

D2

U1
16

8

1

1

2

3

4

1

2

3

4

C3

100n

C2

100n

PWR
OK

OFF

ON

U1 = TC4049B

120619 - 11

VSTBY

VSTBY

PB ON

PB OFF

ATX ON

+12V

–12V

+5V0

+3V3

PWR OK
ATX ON

PWR OK

VSTBY

S1

S2

Figure 1.
The schematic shows how
simple this power supply
add-on actually is.

•Projects

24 | June 2013 | www.elektor-magazine.com

in their multi-meter and get a more accurate
measurement anyway.

No complex circuit
Figure 1 shows the circuitry for this design. The
switching circuit is a simple latch based on two

I had also considered a built-in panel meter
so you could monitor the output voltage of
each output, but I quickly realized this would
be unnecessary feature-creep for this applica-
tion, since the outputs are fixed and fairly well
regulated, and most users (like me) can plug

COMPONENT LIST
Resistors
R1,R4 = 220Ω
R2,R3 = 10kΩ

Capacitors
C1-C8 = 100nF

Semiconductors
D1 = LED, 3mm, yellow

D2 = LED, 3mm, 2-pin bicolor
IC1 = TC4049B

Miscellaneous
K3-K7,K10-K14 = binding post (socket) for banana

plug
J1 = ATX connector for PCB mounting
S1,S2 = tactile push button

Figure 2.
The component layout
leaves no room for
misinterpretation. Note that
the ATX connector should be
mounted on the bottom side
of the PCB.

ATX power supply adapter

www.elektor-magazine.com | June 2013 | 25

The plated-through holes designated K3 to K14
are for bolting the back conductive end of the
banana socket binding post onto. Notice the use
of multiple vias in a circle around each of these
and also around the mounting holes. These offer
increased strength for tightening up screws over
them and also for the binding posts a good low-
resistance current path through the PCB.

In practice
This ATX adapter board offers standard 0.75”
jack spacing for dual-banana plugs and has color-
coded binding posts for each of the voltage rails:
5 V standby, 3.3 V, 5 V, +12 V and –12 V. I have
now been using this board extensively at work
and at home, powering several development kits
off a single ATX supply. At work I have an Altium
Nanoboard-II and two Altium Nanoboard 3000
FPGA development boards all running at once
from one power supply, as well as a few other
things. It has really simplified things well for me!

(120619)

Internet Links

[1] 	http://jordandsp.com/ATX-bench-top-power-
supply-adapter.php

[2] 	www.elektor.com/120619

inverters from a 4049 HEX CMOS inverter, pow-
ered from the ATX standby 5 V rail. The other
gates in the inverter are used to drive the power
on control signal to the PSU and the LEDs. Press-
ing S2 turns on the power supply while S1 turns
it off again. D2, a bi-color LED, indicates standby
mode (green) or powered-on mode (red).
ATX power supplies have built-in protection, but
there’s also a Power Good output that tells the
motherboard when the PSU is ready, or if there’s
a fault condition. It would be nice to have this
displayed on an LED. I used a yellow LED for
D1 which indicates when Power Good goes high
(Power Good is an active low signal). This way,
you get some warning of ATX power supply fault
conditions. In general, any continuous flashing
is bad and your power supply probably has a
problem.

All the capacitors provide a bit of decoupling for
the different supply outputs, except C3 which is
for de-bouncing the on-off circuit. All the capaci-
tors are ceramic 100 nF types. R1 and R4 are LED
dropping resistors and R2/R3 form the feedback
paths for the on/off dual-inverter latch.

I have seen others converting ATX power supplies
to bench top lab supplies and putting minimum
load resistors in them. In my experience this is
not necessary since the cooling fan is generally
enough of a minimum load and most modern
switching power supplies are designed to run
down to zero load anyway. But if it makes you
feel better, you can attach a 10 or 20 W resistor
to the 5 V rail (10 Ω will usually suffice) by sol-
dering the power resistor between the 5 V and
GND binding posts at the rear.

Board design
This adapter board acts as a break-out board with
an ATX header and the necessary on/off circuitry
as well as standard-spaced binding posts for plug-
ging in single or dual banana plugs. The silkscreen
overlay as a guide for placement is shown in Fig-
ure 2. Note that the ATX power supply socket must
be mounted on the rear side of the PCB, with all
other components on the front side.
An additional novelty of this board is the unique
plated slots around its edge, which are used to
clip on ‘alligator’ style test leads as well. The
silkscreen text indicates the output voltage of
each one. The board layout is available as a PDF
download from [2].

I want it
This project is available in limited supply as a complete kit, with the
PCB, all components including binding posts, components and an ATX
connector, plus comprehensive assembly instructions which include
the schematic diagram and PCB assembly diagram, as well as drill
templates for panel mounting. Visit [1] for more information on price
and ordering.

•Projects

26 | June 2013 | www.elektor-magazine.com

In the previous edition we described our modular
‘Embedded Firmware Library’ (EFL), written in
the C programming language. This helps begin-
ners and old hands alike to develop code for
an embedded project that is independent of the
underlying hardware and which can therefore
easily be ported from board to board and from
microcontroller to microcontroller. This is achieved
using a hardware abstraction layer consisting of

a code file for the board and a code file for the
microcontroller.

However, the idea of modularity is taken even
further in the EFL. Protocol libraries allow pro-
grams that communicate to be written without
knowledge of the communication channel that will
be used: it makes no difference whether com-
mands and data are transferred using a UART and

By Jens Nickel
(Elektor Germany Editor)

If a suitable protocol is defined, hardware connected to your PC can be controlled
using a terminal emulator program. The necessary firmware can be rustled up
quickly using Elektor’s ‘Embedded Firmware Library’ (EFL), and the code can be
written without knowledge of whether a UART or some other interface will be used
for the connection. The protocol described here is ideal for experimentation and
development purposes.

Off to the EF Library!
Controlling hardware
using a UART or SPI interface

EFL

www.elektor-magazine.com | June 2013 | 27

RS-232 or RS-485 connection, or using TCP/IP
over Ethernet. Just a couple of lines of the appli-
cation program code need to be changed to use
a different interface. In this article we will look
at this in more detail and present a protocol that
can be used in simple hardware control applica-
tions and for development.

Mini protocol
When trying to get code up and running simple
tests such as turning a LED on and off or reading
a digital input can be very helpful. Often, how-
ever, a microcontroller board will not have any
buttons to help you carry out such tests. One
alternative option is to control the board from
a PC, for example over a serial interface. If the
protocol is restricted to ordinary printable ASCII
characters it is easy to use a terminal emula-
tor program to send commands to the board,
avoiding the need for special-purpose software
on the PC.

Our mini protocol (called ‘BlockProtocol’) is
designed to let us set and clear pins on the
microcontroller from the PC terminal. If there
is an LED connected to the pin in question, this
gives immediate feedback; otherwise a multi-
meter or oscilloscope can be used. There are
also simple commands for obtaining the status
of digital inputs and for reading ADC conversion
results from the analogue inputs (see the text
box ‘BlockProtocol’). The code in the accompa-
nying library module can of course be extended
in many ways as required. Perhaps a reader will
be inspired by the control protocols designed by
Andreas Eppinger [2] and Uwe Altenburg [3],
which offer a much wider range of facilities.

Map, blocks and board pins
The BlockProtocol includes the ‘x’ command spe-
cially designed for use in development with the
EFL. The command causes the board to send a
dump of the EFL tables to the PC. The tables are
used by the hardware layer to determine the
microcontroller pins and registers that need to
be changed in response to a function call. The
entries are specific to the board and any expan-
sion board that might be attached. The screenshot
in Figure 1 shows what appears in the terminal
window when the board shown alongside is used.
On the left is the ‘map’ including the features of
the microcontroller such as the UART and ADC
that are set up by the board initialization code.

The peripheral blocks are shown in the middle,
while on the right is a list of the pins on the board.
This is particularly important information for any-
one planning to adapt or write an EFL board file
for a new board. More extensive documentation
on the internals of the EFL are given in the extra
document that can be downloaded at [1].

Control via UART
We shall now show by example how easy it is to
use the protocol in your own microcontroller appli-
cations. We will use an experimental node, famil-
iar from our series on the ElektorBus. This is a
very compact board based on an ATmega328. As
usual we will connect the node to the PC using its

Figure 1.
Dump of the EFL tables
as seen in the terminal
emulator. On the left
is the map with the
microcontroller features in
use (red numbers in the
board block diagram); in
the middle is the block table
(blue numbers); and on the
right are the board pins
(green numbers).

120668 - 16

SENSOR

SENSOR

ADC/2.0

ADC/2.1

ADC/2.2

ADC/2.3

ADC/SDA/2.4

ADC/SCL/2.5

MOSI/1.3

MISO/1.4

SCK/1.5

3.0/RXD
RS485

3.1/TXD

3.2

3.3

3.4

3.5

3.6

3.7

µC

(4)

(10)

(12) (13) (14) (15)

{0}

{1}

{2}

[5]

[1]

[3]
[4]

[0]

[2]

(11)

(5)
(6)
(7)
(8)

(0)

(1)

(2)

(3)

(9)

(+0)
(+1)
(+2)
(+3)
(+4)
(+5)

•Projects

28 | June 2013 | www.elektor-magazine.com

In this case the code is the same as in the EFL
example software from the previous issue, as we
are using the same board and the same microcon-
troller. The ‘Libraries’ directory includes the files
UARTInterface.h and UARTInterface.c, which form
the library for the UART interface on the board.
Here this is our RS-485 driver (corresponding
to the ‘physical layer’ of our communications).
There is also a module implementing our proto-
col (BlockProtocolEFL.c and BlockProtocolEFL.h).
Together these two library modules provide a
defined software interface which we will now
look at.

A little code
In the main source file of the application code
itself we need to include the library header files
as follows.

#include “UARTInterfaceEFL.h”
#include “BlockProtocolEFL.h”

The main function in an EFL-based project is
always structured in the same way: see List-
ing 1. In the application set-up function, which
is called whenever the application starts up, we
initialize the libraries:

UARTInterface_LibrarySetup();
UARTInterface_SetBaudrate(0, 38400);
BlockProtocol_LibrarySetup(UARTInterface_
Send, 0, UARTInterface_GetRingbuffer(0));

Here the second line sets the baud rate of UART
interface block 0 (which is where we have our
RS-485 driver connected) to 38400 baud. The
third line needs a bit more explanation. We are
telling the BlockProtocol library that it should use
the function UARTInterface_Send when it wants
to send data from the board. The second param-
eter is the number of the UART interface block to
be used (even though on the experimental node
there is only one UART interface).

The third parameter is a pointer to a ‘ring buffer’
(or ‘circular buffer’) to be used to store received
bytes. Here the required pointer is obtained as
the return value of the function UARTInterface_
GetRingbuffer(0), which is also implemented in
the UARTInterface library.

In the main application loop function, which is
called regularly when the application is running,

RS-485 interface and a USB-to-RS-485 converter
(Figure 2). Instead of the ElektorBus protocol
we will use our new text-based BlockProtocol.

The necessary firmware for the microcontroller
can be downloaded at [4]; the application can
also be found in the EFL code base at [5]. An
overview of the files is given in the extra doc-
umentation mentioned above. Double-clicking
‘ExperimentalUART.atsln’ opens the project in
Atmel Studio: see the screenshot in Figure 3.
On the right-hand side is a list of the files in
the project. The files Controller.h, Controller.c,
Board.h and Board.c form the hardware layer.

Figure 2.
Our small microcontroller
board can be controlled over
a UART/RS-485 interface
with the help of a simple
ASCII text-based protocol
and a terminal emulator
program.

Listing:
Basic structure of an EFL application.

int main(void)
{
	 Controller_Init();
	 Board_Init();
	 Extension_Init();
	
	 ApplicationSetup();
	
	 while(1)
	 {
		 ApplicationLoop();
	 }
};

EFL

www.elektor-magazine.com | June 2013 | 29

character sequences given above.

Higher-level commands
Directly controlling port pins is not the main rai-
son d’être of the EFL. If we want to port our
device control program to use a different micro-
controller board with different wiring, we would
have to change the character sequences given
above inside the PC or Android software.
For this reason the mini-protocol also allows
hardware-independent control of digital inputs
and outputs, just like when writing code to run

we need just a single line:
BlockProtocol_Engine();

This is the main function in the BlockProtocol
library. It checks whether characters from the PC
have been received in the ring buffer, and as soon
as a <CR> (ASCII 13) is seen it is interpreted
as the end of a command and the command is
then carried out. A response is assembled, which
is either simply ‘Ok’ or a value such as ‘HIGH’
or ‘LOW’, or information about the EFL variables
in table form.

Let’s try it
Having compiled the code and flashed it into the
board we can try it out using a terminal emula-
tor program such as HTerm [6]. First we have to
specify which COM port to use and the baud rate.
In the ‘input control’ window we have to set the
program up so that the <CR> character is sent
when the Enter key is pressed (see Figure 4).

We will first use the library at its lowest level to
demonstrate direct access to to the output port
pins of the microcontroller. From the circuit dia-
gram of the experimental node [7] we can deter-
mine that the red LED on the board is connected
to port pin PD4. Port D on the AVR microcontroller
corresponds to port index 3. And so we simply
type into the terminal emulator

p 3 4 + <ENTER>

and the red LED on the board will light.

As another example, using commands like
‘p 2 0 +’ or ‘p 2 0 -’ we can set and clear pin
PC0 on the expansion connector. If an expansion
board, such as the sensor/LED board form the
previous issue or the relay board from the Elek-
torBus series [8], is fitted this gives us a simple
way to control external hardware devices from
the PC. Instead of the terminal emulator program
we could run a dedicated program on the PC to
send commands like ‘p 2 0 +’ to the appropriate
COM port in order to switch the relay.

Alternatively we could connect a smartphone to
the experimental node using the Andropod RS-
485-UART bridge board [9] and write a small
Android app. The software at [10] could be used
as a starting point for such a project, replacing
the bytes of the ElektorBus protocol with the

Figure 3.
Code to control hardware
over a UART interface.

Figure 4.
The HTerm terminal
emulator lets you choose
what is sent when the Enter
key is pressed.

•Projects

30 | June 2013 | www.elektor-magazine.com

B 0 0 ? <CR>

we can request the status of the test button (but-
ton 0 of button block 0). And with

R 0 0 + <CR>

we can turn on a relay.

Three-wire interface
The approach described above assumes that we
have external access to a UART on the microcon-
troller, for example via RX and TX pins brought
out on the board. We also need a more-or-less
complete EFL microcontroller description file
which describes not only the I/O pins and ADC
functions but also the UART functions that are
available.

When starting out with a new microcontroller (for
example because you want to develop an EFL
microcontroller description file for other read-
ers to use) it is probably simplest to start with
the I/O functions. The first major hurdles are
to study the datasheet to determine how to go
about setting the level on the I/O pins and reading
their status, and to find at least three general-
purpose I/O pins that are brought out to con-
venient points: fortunately most boards satisfy
this condition. It will then be possible to control
the board using the protocol described above,
over a three-wire SPI interface implemented in
software. One of the wires is a clock signal, the
second carries bytes from the master (the PC)
to the slave (the board), and the third carries
bytes in the opposite direction.

The SPI specification allows for the further pos-
sibility of having communications over the three-
wire interface initiated by the slave rather than
by the master. In this case each participant takes
its ‘out’ line high and waits for the other partici-
pant to do the same. Then communication can
begin, with, as usual in SPI systems, the mas-
ter providing the clock and data bytes flowing in
both directions simultaneously. When there are
no more data to send a ‘stop character’ (<LF>,
ASCII 10) is sent. When both participants have
sent this byte, the communication is complete.

We have encapsulated this protocol in the EFL
module called ‘ThreeWireInterfaceEFL’. With the
help of this module it is easy to set up communi-

on the microcontroller itself as described in the
previous issue.
With the string

L 0 1 + <CR>

we can switch on LED 1 in LED block 0 (which
on our board is the yellow LED). With

BlockProtocol
Each command starts with a single character, possibly followed by one
or two decimal values. These specify to the EFL the pin on which the
command will act. A final character is used to specify any particular
action to be performed.

x
Outputs the EFL map, block and board pin tables (see additional
documentation at [1]).

p x y +, p x y –, p x y ?, p x y #, p x y *
For microcontroller pin y on port x: set high; set low; read state; read
ADC conversion result (if applicable); toggle under timer control.

b x +, b x –, b x ?, b x #, b x *
For board pin with index x in the board pin table: set high; set low; read
state; read ADC; toggle.

i x y +, i x y -, i x y ?, i x y #, i x y *
For pin in position y within the block with index x in the block table: set
high; set low; read state; read ADC; toggle.

C x y +, C x y –, C x y ?, C x y #, C x y *
For pin y of connector x: set high; set low; read state; read ADC;
toggle.

L x y +, L x y –, L x y ?, L x y *
For LED in position y in LED block x: set high; set low; read state;
toggle.

R x y +, R x y –, R x y ?
For relay in position y in relay block x: set high; set low; read state.

B x y ?
For button in position y in button block x: read state.

A x y #
For ADC in position y in ADC block x: read conversion result.

*
Stop timer-controlled toggling.

EFL

www.elektor-magazine.com | June 2013 | 31

inserted in the main application loop the processor
will regularly check whether a string, terminated
with a <CR> character, has appeared in one of
the input ring buffers. If so, then its contents
are sent out on the other communication chan-
nel. Then the other input ring buffer is similarly
checked, and so on.

It should almost go without saying that the gate-
way module itself is programmed in a manner
independent of the underlying communication
channels and can therefore easily be used to per-
form other similar gateway functions. The func-
tion OneToOneGateway_LibrarySetup takes two
triples of parameters to specify the two com-
munications channels being connected. In this
example the call appears as follows:

OneToOneGateway_
LibrarySetup(UARTInterface_Send,
0, UARTInterface_GetRingbuffer(0),
ThreeWireInterface_Send, 0,
ThreeWireInterface_GetRingbuffer(0));

We now just need to plug the cable into the
experimental node’s expansion connector (pins
PC0 to PC2, see Figure 6) and flash the appro-
priate hex file into its microcontroller.

The pins used to form the three-wire interface
have to be specified separately for the two dif-
ferent boards. The three-wire interface on each
device is a separate peripheral block: recall that

cations using the software SPI interface in place
of the UART interface.
The code required in the application set-up func-
tion is now as follows:

ThreeWireInterface_LibrarySetup();

BlockProtocol_
LibrarySetup(ThreeWireInterface_Send, 0,
ThreeWireInterface_GetRingbuffer(0));

These lines tell the BlockProtocol library that we
will be using the three-wire interface to send and
receive data: compare them with the code for
setting up the UART interface above.
In the main application loop we need the
command

ThreeWireInterface_Listen(0);

which checks whether the other device has taken
its data line high to indicate a request to send
data. If so, the communication is set up. When
using the UART for communication we do not
need a listener function like this, as in that case
a microcontroller interrupt can be used to detect
when characters arrive and automatically store
them in the ring buffer.

Making contact with an Arduino
To demonstrate the EFL concept we selected an
Arduino Uno board. The code for this board can
be found in the project ArduinoUnoEFL [4][5]. We
decided to use general-purpose I/O pins PB0, PB1
and PB2 to access the board: these are brought
out on the ‘digital’ I/O connector as Digital8 to
Digital10. A simple three-way cable (for exam-
ple using Conrad order code 741221) provides
a practical solution (see Figure 5).
Of course we also need a connection to the PC at
the other end, and that will also need to have a
three-wire interface. We pressed an experimen-
tal node board into service as a gateway, con-
verting from three-wire format to RS-485 (and
thence to USB) and back again. The firmware
involved can also be downloaded at [4] or [5]:
the Atmel Studio project can be found in the
directory ‘ExperimentalSPI’.
The gateway function has its own library mod-
ule called OneToOneGatewayEFL. With a call to

OneToOneGateway_Engine();

Figure 5.
Communication with an
Arduino Uno over a three-
wire interface.

•Projects

32 | June 2013 | www.elektor-magazine.com

(130154)

Internet Links

[1] www.elektor-magazine.com/120668

[2] www.elektor-magazine.com/100576

[3] www.elektor-magazine.com/120296

[4] www.elektor-magazine.com/130154

[5] www.elektor-labs.com/efl

[6] www.der-hammer.info/terminal/index.htm (in
German only)

[7] www.elektor-magazine.com/110258

[8] www.elektor-magazine.com/110428

[9] www.elektor-magazine.com/110405

[10] www.elektor-magazine.com/120097

the board file encapsulates the mapping between
peripheral blocks and microcontroller pins. The
configurations for the three-wire interface, includ-
ing these pin assignments, can be found in the
Board_Init function in the file BoardEFL.c.

It rocks!
In the terminal emulator program we first issue
the ‘x’ command. The Arduino board responds
directly, sending the ELF variables out over the
three-wire interface, albeit at a rather more lei-
surely pace than before (the speed is comparable
to that of a 9600 baud serial port).
The command

C 0 13 + <CR>

can be used to set pin 13 of the Arduino’s ‘digi-
tal’ connector high: this pin drives an LED on
the Arduino Uno board, and so we get immedi-
ate visual feedback.

In the next installment we will take the EFL proj-
ect further: suggestions and contributions are
more than welcome.

The most recent version of the EFL code can be
found on the Elektor.Labs pages at [5].

Figure 6.
The experimental node acts
as a gateway between the
three-wire interface and the
UART/RS-485 interface.

www.dlpdesign.com

Add USB to your next project.
It's easier than you might think!USB

Standard 18-pin DIP interface; 0.6x1.26-inch footprint

HIGH-SPEED
DLP-USB1232H: USB 2.0 UART/FIFO

Royalty-free, robust USB drivers

DLP-IO8-G

No in-depth knowledge of USB required

8-Channel Data Acquisition

8 I/Os: Digital I/O
Analog In
Temperature

USB Port Powered
Single-Byte Commands

Only

DLP-IOR4
4-Channel Relay Cable

DLP-TH1b
Temp/Humidity Cable

DLP-RFID1
HF RFID Reader/Writer

DLP-FPGA
USB-to-Xilinx FPGA Module

$29.95!

Only $28.95!
Multipurpose: 7 interfaces

480Mb/s

Find out more at www.pololu.com

Finding the right parts for your robot can be di�cult,
but you also don’t want to spend all your time
reinventing the wheel (or motor controller). That’s
where we come in: Pololu has the unique products
— from actuators to wireless modules — that can
help you take your robot from idea to reality.

Maestro USB
Servo Controllers
Compact, versatile servo
controllers that offer USB,
serial, and internal scripting
control.

Zumo Robot
Arduino-controllable tracked
robot small enough for mini-
sumo (less than 10 cm × 10 cm)
and flexible enough for you to
make it your own.

Provides ten pressure, rotation,
acceleration, and magnetic
measurements that can be
used to calculate absolute
orientation and altitude.

AltIMU-10 Gyro,
Accelerometer,
Compass, and Altimeter

Metal Gearmotors
Available in a wide range of
motor types and gear ratios
that let you choose the right
combination of size, torque,
and speed for your application.

Naamloos-4 1 02-05-13 15:16

•Projects

34 | June 2013 | www.elektor-magazine.com

There are a number of systems around used to
locate lost R/C models. I considered that I could
build a system that was a little bit better. The
concept specifications were:
•	Lightweight transmitter for the plane

•	Battery backup in case of disconnection of
the main battery

•	Using commercial, type approved UHF ISM
band radio modules

•	Range at least 600 ft. (200 m)
•	Receiver to be handheld and able to use

radio direction finding (RDF) to locate the
model.

From this I was able to put to together the design
described here. If you’re strong in model building
and flying, but not in electronics, consider doing
this project as a club activity.

Transmitter
Every country has a series of radio frequencies
allocated to the Instrument, Scientific and Medi-

By Robert Budniak
(Australia)

Lost Model Finder
Straight to the crash site!

Every radio control plane flyer at some time has had a plane go down
outside of the airfield boundaries. Sometimes the location of the pre-

cious plane is easy and at other times they are hard to find. High grass,
trees or even uncertainty where the plane went down all make it hard to find

that elusive plane. So let’s build a radio direction finder (RDF) that ideally takes
you straight to the crash location.

Features
•	 low cost design
•	 TX board in SMD, RX board in T/H technology
•	Suits most 315/433 MHz ISM short range radio modules
•	 Programmable personal callsign on each TX
•	Minimum range: 600 ft (200 m)
•	Maximum range: depends on terrain and TX and RX modules used
•	 4-element Yagi directional antenna on RX

Lost Model Finder

www.elektor-magazine.com | June 2013 | 35

cal Band (ISM), sometimes combined with ‘Short
Range Devices’ (SRD). These frequencies vary
between countries. While in the USA 315 MHz is
used, in Australia and most of Europe we find
433 MHz. Because there is a demand for sim-
ple and cheap transmitters, there are a number
of manufacturers supplying RF modules to this
market. The type of module used in this project
uses Amplitude Shift Keying (ASK), and these
types of modules seem to have a standardized
pin configuration from different manufacturers.
So that’s the RF transmission part taken care of.
Note that the parts list for the project indicates
suggested types only.
As you can see in the schematic in Figure 1,
the RF module just needs to have a data stream
applied its ‘DATA’ pin, and for this project I used
a simple PICAXE08M chip. I chose this microcon-
troller as it was readily available, the program-
ming language was easy to learn, and the chip
did not require any special equipment to program
it. Really an ideal system for low volume and low
complexity projects.
The code is only a few lines (Listing 1), and in
the sample code for this project the coded gener-
ates three short 500-Hz tones and then a pause
of about 2.5 seconds. Whilst the code can be
copied, I would recommend that the line where
the tones are generated is changed if you use
a number of these transmitters near each other
(like in a club environment).
The transmitter is normally powered off the
plane’s receiver. However sometimes the plane’s
battery gets disconnected in an accident, so a
backup battery is provided. The backup battery
is a small Li Po battery (around 130 mAh capac-
ity) that usually powers small indoor planes. This
battery is available cheaply from online suppliers.

Usually you’d use steering diodes to automati-
cally select the power supply. However with the
low voltages used in this project (5 volts and 3.7
volts) even the 0.4 volt drop of a Schottky diode
was a sizable proportion of the voltage. Looking
through some online databases, I found some
small signal transistors type DTB123YK (T1, T2),
which also had base-emitter and base resistors in
the chip. They work quite well in steering the volt-
ages of the batteries, and the voltage drop across
the transistor is just 100 millivolts. The only down
side is that when the main battery is disconnected
the backup battery takes over. Hence the backup
battery needs to be disconnected when the plane

is not in use, or it will run down.
So that the Lost Model Finder can be left per-
manently in situ (it’s cheap enough that one can
have one for each plane), it’s designed with a
charging port combined with an on/off switch.
This is achieved by using the switch in a 2.5-mm
jack socket that’s operated by a 2.5-mm jack.
With the jack inserted, the backup battery is dis-
connected. If a jack that is connected to a char-
ger is inserted, then you can charge the battery.

K1

+V
1

SER IN
2

IN4
3

IN3
4

IN2
5

IN1
6

SER OUT
7

0V
8

IC1

PICAXE-08M2

T1
DTB123YK

K3

T2
DTB123YK

BT1

K5

Antenna

Transmitter
Module

GND
DATA
VCC
Antenna

+5V

K2
TXD
RXD

R2 22kR1

10k

K4

120139 - 11

+5V

C1

100n

1
2
3
4
5

K1

USB-B mini

JP1

JP2

4V1
4V2

JP3

IN4

GND

3

GND

6

SELV1

EN7

SELI2

BATT 5

CHG 8
IC1

MAX1811

USB

AUX

100mA
500mA

R1

1k5
D1

BT1

Li-ion/LiPo

K2

0
+6V5...15V

32

1

IC2
NCP1117ST50

PMEG2010AEH
D2

25V

C4

10u

10V

C2

10u

10V

C3

10u

1C

AUX

120139 - 13

Figure 1.
Circuit diagram of the
transmitter, which is
not much more than a
programmed PICAXE
microcontroller.

Figure 2.
A possible charger circuit
for the LiPo/Li-Ion battery in
the transmitter. It’s either
externally powered (6.5–
15 VDC), or USB powered as
selected on JP1.

Listing 1. PICAXE TX code

main:
sound 4,(0,10,120,10,0,10,120,10,0,10,120,10,0,10)
high 4
pause 2300
goto main

•Projects

36 | June 2013 | www.elektor-magazine.com

age to the regulator if the USB port is selected as
input source. The input decoupling of the MAX1811
(C2) doubles as the regulator output decoupling.
This was done to save space.

PICAXE PE interface
At some point you’ll need to burn the plane ident
program to the PICAXE chip. In case you are using
an FTDI TTL-to-RS232 adapter to interface with
the TXD/RXD pins of the PICAXE in combination
with the PICAXE Programming Editor, you need an
additional inverter circuit as shown in Figure 3.

Receiver
The receiver is based on a complementary module
to the transmitter. However a little more care is
needed in the selection of the receiver, to ensure
it supplies the right signals to our circuit.
Referring to Figure 4, the first output of the
receiver module is from the DATA pin, 14. This
passes to a small-signal FET T1 and the output
goes to a piezoelectric transducer Bz1 (not a
piezoelectric buzzer). What you will hear from this
transducer (hopefully!) is the tones and pauses
generated by the transmitter. In use you listen
for your personal ‘call sign’ that was embedded
in the transmitter.
The second output from the transmitter is the
RSSA output (pin 13). Basically this is a voltage
that is proportional to the signal strength and
used as part of the automatic gain control (AGC)
in these receivers. This signal is applied to the
input of an LM3914 LED driver. The RSSA sig-
nal on the prototype was found to vary between
0.4 volts and 2 volts, so the upper and lower
limits of the LED driver have been set to those
values. I won’t go into the design of the circuit
around the LM3914, since the IC has been used
a zillion times in DIY electronics projects over the
past decades. If you want a more detailed tuto-
rial then point your web browser to [1] and enjoy
Dave’s EEVBlog #204. Say Hello to Dave for us.
The receiver is powered from four AA or AAA
batteries, rechargeable or dry, although three
dries should also work. Despite the transmit-
ter’s datasheet claiming a maximum voltage of
5 volts, the module has been tested to work up
right up to 7 volts.
The only other major item associated with the
receiver is a 4-element ‘Yagi’ directional antenna.
This antenna was chosen for its simplicity and its
directional properties, a feature which will becomes
obviously necessary in the how to use section.

Charger
A suggested circuit for a charger is shown in Fig-
ure 2. Two inputs control the mode the charger is
operating in. One input selects the regulating volt-
age, 4.1 V or 4.2 V (jumper JP2, SELV). The other
input sets the charge current, 100 mA or 500 mA
(jumper JP3, SELI). A nice feature of this IC is the
ability to precondition a near-dead battery before
charging. The enable input (EN) is not used and
thus permanently connected to the power supply.
The general description in the datasheet states
specifically it can be powered from a USB port and
can handle input voltages as low as 4.35 V, the
minimum of a USB port. With higher input voltages
(the MAX1811 can handle 6.5 V max.) and with the
high current set the IC will limit the charge current
to keep the die temperature at a safe level. In case
only a power source with a higher voltage is avail-
able a low-dropout 5V regulator is added (IC2). A
jumper selects the input voltage for the MAX1811
(JP1: AUX or USB). Do not connect an input volt-

12 1

IC1.A

3 41

IC1.B

5 61

IC1.C

9 81

IC1.D
11 101

IC1.E
13 121

IC1.F

14

7

+5V

C1

100n

K3

+5V

TTL-232R-5V

K2
+5V

K1

IC1

+5V

VCC
TXD
RXD

RXD
TXD

120139 - 14

IC1 = 74HC04

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

MOD1

T1

2N7000

R1

1k

BZ1

R3

360R

R2

620R

R4

2k7

LED8
12

LED7
13

LED10
10

LED9
11

LED6
14

LED3
17

LED2
18

LED5
15

LED4
16

V+
3

DIV LO
4

LED1
1

V-
2

IN
5

REF ADJ
8

MD SEL
9

DIV HI
6

REF OUT
7

IC1

LM3914

D2

D3

D4

D5

D6

D7

D8

D9

D1

D10

+4V8 +4V8

Antenna

K1

C1

100n

+4V8

K2

+4V8
0

120139 - 12
Receiver
Module

Figure 3.
Build this inverter circuit
if you use an FTDI TTL-
to-232 adapter between the
transmitter’s TX/RX pins
and, say, a microcontroller.

Figure 4.
The Lost Model Finder
receiver uses an old faithful,
the LM3914 LED bar graph
indicator. The 433 MHz (315
MHz) receiver (RX) module
gets plugged onto the MOD1
connector.

Lost Model Finder

www.elektor-magazine.com | June 2013 | 37

building club may be persuaded to produce a few
sophisticated antennas for members. The author
made the radials from coat hanger wire, although
any stiff wire will do, like electrical installation
wire. Try to cut the radials to the lengths shown
in the drawing in Figure 8 (dimensions for 433
MHz). The author’s prototype was made from
some 3-mm (1/8 in.) corrugated plastic sheet
(corflute; corriboard; Polyflute), with the radi-
als inserted into the cores. The spacing does
not work out exactly, but works well in practice.
Elektor Labs built their Yagi antenna from a 570 x
53 x 12 mm piece of wood and lengths of 2.5 mm2

Building
The transmitter is built on a double-sided PCB
using SMD components (Figure 5). It uses
0.1’’ pitch pinheaders for all external connec-
tions except possibly K3. The artwork may be
downloaded free from [2]. The PICAXE may be
soldered in but also mounted in a DIL-8 socket.
Only solder in the two transistors if using the
battery backup version. Do not connect the RF
module yet to the footprint marked K3.
At this stage you can test the transmitter driver
by connecting a piezoelectric transmitter between
the data and ground pins that go to the RF mod-
ule. After applying power you should be able to
hear your callsign.
The RF module may be connected to the board
with a short length of 4-way flatcable and using
pinheaders and mating IDC sockets. Alternatively,
it may lie flat over the microcontroller board as
shown in Figure 6 (433 MHz version built by
Elektor Labs). Make sure the solder sides of the
board do not touch.
The final part is the installation of a quarter-wave
antenna. A piece of stiff wire about 173 mm in
length will do (I use one core of an Ethernet
cable). When using a 315 MHz TX module the
antenna length becomes 240 mm — remember,
from (300/f)÷4.
The microcontroller board, RF module and backup
battery (if used) may be wrapped in a short
length of shrink wrap tube.

The receiver PCB design is also shown in Fig-
ure 5. This is a single sided board for TH compo-
nents so it should be plain sailing. Insert and sol-
der all the parts into the PCB. The radio module is
mounted vertically. The board and battery holder
for three (or four) AA(A) cells may be mounted on
the Yagi boom behind the reflector. The radiator
(dipole) elements of the Yagi antenna should be
connected to the input of the radio module with
a length of thin 50-Ω coax cable like RG174/U or
/CU. Keep the length to an absolute minimum to
prevent excessive losses. Resist the temptation
to use screened audio cable.

The (optional) charger is built on the board
shown in Figure 7. Do not forget to fit the jump-
ers according to your requirements.

The 4-element antenna is all-homebrew. Var-
ious designs are around on the Internet, and
mechanically skilled members of your local model

COMPONENT LIST
Transmitter

Resistors
R1 = 10kΩ 1%, SMD0805
R2 = 22kΩ 1%, SMD0805

Semiconductors
IC1 = PICAXE-08M2, programmed
T1,T2 = DTB123YK

Miscellaneous
K1,K2,K5 = 3-pin pinheader, 0.1’’ pitch
K3 = 4-pin pinheader, 0.1’’ pitch (optional, see text)
K4,BT1, 2-pin pinheader, 0.1’’ pitch
Transmitter module (on K3), ASK, 433MHz ISM band,

type approved, e.g. Quasar Electronics type QAM-
TX1 (433 MHz), Farnell/Newark # 1304024. USA
readers, use 315MHz equivalent

LiPo battery, 3.7V, 130mAh
PCB # 120139-1

Receiver
Resistors
R1 = 1kΩ
R2 = 620Ω 1%
R3 = 360Ω 1%
R4 = 2.7kΩ

Capacitor
C1 = 100nF, 5mm or 7.5mm pitch

Semiconductors
D1–D10 = LED, orange, 2.5x5mm rectangular, 20mA
T1 = 2N7000
IC1 = LM3914

Miscellaneous
BZ1 = (not on board) piezo transducer, flying leads,

Farnell/Newark # 1193640
K1,K2,(BZ1) = 2-pin pinheader, 0.1’’ pitch
(MOD1) = 15-pin pinheader, straight, SIL, 0.1’’ pitch
MOD1 = AM SuperHet Receiver, QAM-RX3 (433MHz),

RS Components # 742-4484. USA readers, use
315MHz equivalent

Battery holder for 3 or 4 AA(A) batteries, see text
PCB # 120139-2

Figure 5. The Transmitter
board is double-sided
and takes SMD parts;
the Receiver board is a
single-sided design for
through-hole parts. TX
board shown at 150 % of
true size.

•Projects

38 | June 2013 | www.elektor-magazine.com

Testing
Fortunately there is no calibration required. Leave
the transmitter off at this stage. Turn on the
receiver and you should hear white noise with
the occasional pop. The LED indicator should be
showing the lowest LED on.
Turn on the transmitter. You should now hear your
callsign, and the bar graph should be moving up
and down in synchronization with the tones of the
call sign. The bar graph should go to full scale
when the transmitter and receiver are within 10
feet or so (3 m) of each other.

In use
It’s going to take a little practice in order to
successfully use the Lost Model Finder. It’s best
to initially have a friend hide the transmitter
in a park or garden and then try and find the
transmitter.
The antenna is directional and the ‘sharp‘ end
is the end with the greatest sensitivity. When
looking for the transmitter, hold the antenna in
front of you and rotate a full circle. Listen for
your call sign to make sure you’re chasing your
transmitter. The bar graph will indicate where
the maximum signal is. Walk in the direction of
maximum. Continue doing this, stopping occa-
sionally to check your bearings. You should see
that the bar graph increases.
At some point you will get close to the transmit-
ter and the bar graph will be at maximum. Now
point the insensitive (‘blunt’) end of the antenna
in the direction where you think the transmitter
is. Now when you rotate the antenna around you,
you are not looking for the maximum signal but
the minimum signal. You’re sort of sneaking up
from behind.
You can also change whether you hold the
antenna radials parallel to the ground, or per-
pendicular, or any other orientation.
The last few ten feet or so are the hardest in
finding a plane, especially one lost in vegeta-
tion or scrub. Also don’t forget to look up to the
tree top canopy! You never know where these
models are hiding.

 (120139)

[1] Dave’s EEVBlog # 204:
www.youtube.com/watch?v=iIKGvHjDQHs&fe
ature=player_embedded)

[2] Project page:
www.elektor-magazine.com/120139

csa electrical installation wire (introductory pho-
tograph) fitted at the exact positions from Fig-
ure 8. The boom is long and wide enough to hold
the RX board and the battery holder. This antenna
should have about 7 dB gain, allowing the TX to be
found at a distance of about 1,000 feet (300 m)
in a built-up area as Labs were able to measure
in and around their location at Elektor House.
Connect the dipole elements of the antenna to
the receiver via the previously installed cable.
Sticklers for nanovolts may want to add a balun
for proper matching of the symmetrical radiator
to the asymmetrical coax cable, but in this case
the work and cost may defeat the purpose.

COMPONENT LIST
LiPo Charger (optional)

Resistor
R1 = 1.5kΩ SMD 0805

Capacitors
C1 = 100nF SMD0805 X7R
C2,C3 = 10µF 10V, SMD 0805, X7R
C4 = 10µF 25V, SMD 1206, Y5V

Semiconductors
D1 = LED, red, SMD 0805
D2 = PMEG2010AEH, Farnell/Newark # 1510673
IC1 = MAX1811ESA+, Farnell/Newark # 1593327
IC2 = NCP1117ST50T3G, Farnell/Newark # 2112617

Miscellaneous
K1 = mini USB receptacle type B, SMD
K2,(BT2) = 2-pin pinheader, 0.1’’ pitch
JP1,JP2,JP3 = 3-pin pinheader, 0.1’’ pitch, with

jumper
PCB # 120139-3

Figure 7. The charger
board is a double-sided
design for surface mount
components.

Figure 6.
 LiPo Charger board (left)
and TX assembly (right).
The PICAXE board and the
transmitter module may
be connected without a
cable, simply by bending
and soldering the four
pins straight to K3.

Lost Model Finder

www.elektor-magazine.com | June 2013 | 39

Figure 8.
Experimental Yagi antenna
with the receiver electronics
attached on top of the
wooden ‘boom’, behind the
reflector. The directors,
radiator and reflector
were made from electrical
installation wire (c.s.a.
around 2.5 mm2 / 13AWG)
and secured to the wooden
boom with tie wraps — after
carefully centering on the
boom, of course. For safety,
the radial ends should be
covered with a blunt object
or some putty.
Gain is approximately 7
dB. For 315 MHz use, the
element spacing and lengths
should be scaled up by a
factor 1.37.

A

E F G H

B C D

I

A = 30 mm
B = 124.4 mm
C = 138 mm
E = director #2, 307.9 mm*
F = director #1, 310.8 mm*
G = radiator, 2 x 163.5 mm*
H = reflector, 338 mm*
I = boom, 570 mm
* 2.5mm2 / AWG 13 wire

Advertisement

Call Tyler: 1 707 447 7744
sales@pcb-pool.com

www.magic-pcb.com

Embedded RFID
 authenticate, track & protect
 your product

FREE Stencil
with every prototype order

NEW!

www.pcb-pool.com

PCB-POOL® is a registered trademark of

•Projects

40 | june 2013 | www.elektor-magazine.com

Like most people, you probably have some old
equipment lying around that uses a Li-ion battery
for the supply. This type of battery has been used
in most portable equipment produced in the last
few years because it can be easily made in various
sizes and shapes, whilst it also has a relatively
large capacity (compared to NiMH and NiCd).
What can you do with that old MP3 player or
mobile that’s been replaced by a newer, better
version? The electronics can usually not be used
for any other purpose, but that battery can still
come in useful, even if it’s for use in a toy. Since
electronics hobbyists tend to be an inventive lot
they will usually find a way to incorporate and
connect a recycled battery. The author, for exam-
ple, has built a Li-ion battery into a Lego train to
replace three penlight cells (see the main photo).
This still leaves the need to charge the battery.

The original equipment usually contains a special
charger circuit for the battery, most likely on a
small part of the PCB in the equipment. It is dif-
ficult to figure out which components are part
of the charger circuit since no circuit diagram
is normally made available for portable equip-
ment. In that case we’ll just have to build our
own Li-ion charger!

The circuit
The charger circuit described in this article is
built around a Li-ion charger IC made by Maxim
(MAX8677A, see the block diagram in Figure 1).
This IC works completely autonomously so that
there is no need for a microcontroller (and hence
no software!). A number of LEDs is used by the
IC to indicate the state of the charging process.
The IC is very flexible and contains a ‘smart

By Fons Janssen
(Maxim Integrated,
The Netherlands)

Lithium-ion Battery
Recycling Made Easy
meaning: without a microcontroller

It can be quite tricky to reuse Lithium-ion batteries from discarded equipment
since these cells are often charged inside the equipment, meaning that there won’t
be a separate charger that can also be reused. Luckily, it turns out to be fairly
easy to build a charger for used (or new) Li-ion cells.

Li-ion-charger

www.elektor-magazine.com | june 2013 | 41

power selector’ (see Figure 2), which consists
of three electronic switches that direct the charge
and load currents according to the situation. With
an external power source, the IC can use the
available power to both charge the battery and
supply the load. Should the load require more
power than the charger can deliver then the IC
can make the battery supply the extra current.
When there is no external power source avail-
able the load is obviously powered solely by the
battery.
The IC can be powered from a USB port via
pins 15 and 16 (USB). In this case the current
drawn is limited to 500 mA (the maximum for a
USB2.0 port). The IC can also be powered from an
adapter via pins 2 and 3 (DC), where the current
limit can be increased up to a maximum of 2 A.
In the circuit for the charger in this article
(Figure 3) we make use of the DC input, which
gives us greater flexibility in setting the vari-
ous limits. The operating voltage at the input
is between 4.1 to 6.6 V. If the voltage becomes
too high, the IC turns off the input to prevent
it from overheating. The IC can survive voltage
spikes up to a maximum of 14 V.
The charging status is provided by D1, D2 and
D3. The following three states are indicated:

MAX8677A

USB1

+5V

GND

D–
D+
ID

1
2
3

5
4

R1

4k7

D1

R2

4k7

D2

R6

3k3

R9

5k6

R5

4k7

D3

R3

560kR4

560k

MAX8677AETG+

DONE

USUS

ISETPSET

PEN1

PEN2

TSET

IC1

FLT

GND

BAT BAT

CEN UOK

DOK

CHG

USB
USB

THM

SYS
SYS

DC
24

DC
17 18

23

22

19

16
15

13

11

VL

CT10

12
14

20
21

EP

25

1

2

9

3

4

7

5

6

8

C3

4u7

C1

4u7

BATT1

FS1

T3A

R8

10k

C4

68n

C2

100n

R7

10k

SYSTEM

NTC

130117 - 11

NTC

*

Mini USB

Figure 1.
Block diagram of the
internal circuit of the
MAX8677A.

Figure 2.
The ‘smart power selector’
splits the charge and load
currents according to the
demand.

Figure 3.
The complete charger circuit
consists mainly of the
MAX8677 and a mini-USB
connector.

•Projects

42 | june 2013 | www.elektor-magazine.com

maximum charge current can never be reached
as it can not go higher than the maximum input
current.
Both these limits are set using a resistor:
Maximum charge current:
ICHGMAX = 3000/RISET = 3000/R9 = 3000/5.6k
Ω = 535 mA
Maximum input current:
IDCMAX = 3000/RPSET = 3000/R6 = 3000/3.3k
Ω = 909 mA

You can obviously select more suitable values
depending on the power rating of the adapter,
the power consumption of the device and the
desired load current. The IC can provide a maxi-
mum charge current of 1.5 A.
We’ve used a mini-USB connector, which makes
it easy to power the circuit with contemporary
mains adapters. This also ensures that we’re
using a 5 V supply. The maximum input current
should be adjusted according to the rating of the
adapter. The circuit will function just fine when
the adapter can provide a current of at least 1 A.

Is there an NTC?
Batteries are often provided with an NTC, which
is used to prevent them being charged at tem-
peratures that are too high or too low. The bat-
tery therefore has three connections: a positive
terminal (BAT+), a negative terminal (BAT-) and
a connection for the NTC (see Figure 4). You
should be aware that some batteries with three
connections have only a normal resistor inside
that is used for identification. Its value will be
constant, so won’t vary with the temperature of
the battery.
When an NTC is used it should be connected
between the THM pin and ground (via the BAT-
connection). A resistor (R7) is also connected
between the THM pin and a reference voltage
(VL), which creates a potential divider. The value
of the resistor is chosen such that it has the same
value of the NTC at a temperature of 25 °C. The
voltage at the THM pin at 25 °C will then be equal
to 0.5 VL. When the temperature rises/falls, the
resistance of the NTC falls/rises as will the volt-
age at the THM pin. The IC will only charge when
this voltage is between 0.28 VL and 0.74 VL. With
contemporary NTCs this corresponds to a tem-
perature between 0 °C and 50 °C. When no NTC
is available you should add R8, which causes the
voltage at the THM pin to be 0.5 VL.

The battery is being charged (LED D3), the bat-
tery is fully charged (LED D1), or the battery is
faulty (LED D2).
There are two current limits that can be set with
this IC: one for the maximum charge current and
one for the maximum input current. It’s clear that
the second value should always be larger than
the first. If this isn’t the case, the programmed

NTC

BATT1

BAT– BAT+NTC

130117 - 14

Figure 4.
Most Li-ion batteries with
three connections have an
internal NTC connected as
shown.

Figure 5.
The PCB designed for this
charger has been kept as
small as possible to make
it easier to build it into
existing equipment.

Component list
Resistors
(default: SMD0603)
R1,R2,R5 = 4.7kΩ
R3,R4 = 560kΩ
R6 = 3.3kΩ
R7 = 10kΩ
R8 = 10kΩ (only if NTC in battery)
R9 = 5.6kΩ

Caoacitors
(default: SMD0603)
C1,C3 = 4.7µF (SMD0805)
C2 = 100nF
C4 = 68nF

Semiconductors
D1 = LED, green, 3mm
D2 = LED, red, 3mm
D3 = LED. yellow, 3mm
IC1 = MAX8677AETG+ (24-pin TQFN)

Miscellanous
USB1 = mini USB connector, PCB mount, SMD,

(e.g. Molex 67803-8020, RS Components #
720-6618)

FS1 = fuse, SMD, rating dependent on battery
(e.g. LittleFuse nanofuse 3 AT, Farnell/Newark #
1596930RL)

Print artwork # 130117-1 from [2]

Li-ion-charger

www.elektor-magazine.com | june 2013 | 43

Internet Links

[1] http://datasheets.maximintegrated.com/en/
ds/MAX8677A.pdf

[2] www.elektor.com/130117

Connection tips
If you’re reusing a cellphone battery it will already
have a protection circuit as standard, which pro-
tects the battery from overloads and from being
discharged too deeply. However, if you want to
use a single cell, for example from a battery pack
from an old laptop, then you will have to make
your own protection circuit. The circuit inside
the pack will have been designed to protect the
whole pack and can therefore not be used to
protect a single cell.
A simple fuse (shown in the circuit diagram as
FS1; this is an SMD fuse on the PCB) offers suf-
ficient protection from overloads, which means
that separated cells are perfectly usable. How-
ever, a fuse doesn’t offer any protection against
deep discharging. When these types of cells are
discharged too much it is possible to damage
them. This can happen when an ohmic load is
attached for too long a period, such as a small
incandescent light bulb. Most devices will stop
working once the supply voltage has dropped
below a certain value, which stops the cell from
discharging further. Whether or not a fuse offers
enough protection therefore depends very much
on the type of device that is connected.

Construction
A compact PCB has been designed for this proj-
ect, which uses a large number of SMDs (see
Figure 5). This keeps the PCB very small, which
makes it easier to build into the device. The board
layout (made using DesignSpark) is available as
a free download from [2].
You will need some dexterity and soldering expe-
rience in order to mount the SMDs. For the TQFN
packaged IC you should ideally use a reflow oven,
since the pins and the exposed pad are on the
underside of the 4x4 mm package. However, the
author has thought of a method that can be used
to solder the IC by hand, which is described in
detail in the inset. There are holes on the PCB
for the connections to the LEDs, battery and the
load, so they can be connected easily via wires.
The mini USB connector has two plastic pins that
fit in the associated holes on the PCB, providing
alignment of the socket. If you don’t want to use
the mini USB connector you can use these two
holes for connecting the power. In this case you
have to make sure that the supply voltage is 5 V.

(130117)

Soldering a TQFN by hand
Mounting the IC with a hot
air soldering iron is possible
if you’re experienced enough,
although a reflow oven
makes life much easier.
The method described
here shows how to use an
ordinary soldering iron to
mount the IC, even though
the home made PCB is not
through-plated.
Locate one hole in the
center of the IC’s exposed
pad instead of 9 like in the
PCB design shown. Drill this
hole using a drill bit with
a diameter of 1.5 mm (a).
Position the chip on the PCB
(b) and solder all contacts
along the sides of the chip
(c). Use Litze wire to tidy
everything up again (the
author used a stereoscopic
microscope to get a good
view of everything). When all
contacts on the top side have
been soldered properly we

turn over the board and drop a few pieces of solder into the hole (d).
Find a piece of solid copper cable that fits snugly in the 1.5 mm hole
(one of the cores in a solid core mains cable would be a good choice)
and use a file to make one of the ends completely flat. Put this end
through the hole and heat it up using the soldering iron (e). At some
point the piece of copper wire gets so hot that the pieces of solder in
the hole start to melt. The copper wire will then drop down slightly and
makes contact with the exposed pad of the chip. Then solder the piece
of wire to the ground plane on the solder side of the PCB (f).
You will now have a good electrical and thermal connection between
the exposed pad of the chip and the ground plane on the solder side of
the PCB.

a

b

c

d

e

f

1.50mm

130117 - 15

http://www.elektor.com/130117

•Projects

44 | June 2013 | www.elektor-magazine.com

In the previous installment [4] we took a cautious
initial look at the hardware description languages
VHDL and Verilog for testing an application. In this
final installment we delve into hardware descrip-
tion languages more extensively – in this case,
to define an application. However, working with
two languages is too difficult, so I had to make a
choice. After many sleepless nights and consult-
ing dozens of experts, I ultimately decided to cast
my lot with VHDL. There are various reasons that
can be given for this choice. One is that VHDL
should require less simulation time because it is
more difficult to arrive at a synthesizable design.
That might sound like a reason for choosing Ver-

ilog instead, but it reflects the fact that simula-
tion often takes longer than synthesis, so in the
end you’re done faster. To draw an analogy with
computer programming (Verilog fans should look
the other way and plug their ears at this point),
instead of just throwing together a bit of code and
then using the debugger to turn it into a working
algorithm, you can first spend some time thinking
about your algorithm and then use the debugger
to make sure it works properly.
The application I have chosen here is a DCF77
decoder. I can hear the snide remarks already,
but there are good reasons for this choice. The
radio signal from the DCF77 atomic clock broad-

By Clemens Valens
(Elektor.Labs)

Taming the Beast (5)
Programming an array of 250 Kgates

Although it’s perfectly possible to design FPGA applications using schematic dia-
grams with logic symbols, in practice this is usually done with a hardware descrip-
tion language. An advantage of the latter approach is that complex functions are
often easier to express in algorithms than in schematics. Accordingly, in this in-
stallment we guide you through the process of programming an FPGA application.

FPGA

www.elektor-magazine.com | June 2013 | 45

cast station near Frankfurt in Germany can be
received on 77.5 kHz easily in virtually all of
Europe with an inexpensive module. The signal
coding is fairly simple – it consists of a sequence
of 59 pulses (one per second) which can have
two different lengths (100 ms for “0” or 200 ms
for “1”), which collectively represent the bits of
the time code. The end of the code sequence
is marked by omitting the final pulse (number
60, corresponding to bit 59). A new code is sent
every minute. The date and time are in BCD for-
mat, and there are several check bits that can be
used to verify the validity of the data. This signal
is a good starting point for a project with VHDL
(or Verilog) because it is relatively easy to show
the results on a 7-segment display with simple
logic. For those of you who do not have a DCF77
receiver or who cannot receive the signal because
they live too far away from Frankfurt, we have
written a DCF77 simulator program for Arduino
[5]. That way everyone can join in.
Let’s start with a functional design for a DCF77
decoder. Here we take the ‘naïve’ approach, which
means we assume that the input signal will usu-
ally be good and will stay nicely within specifica-
tions. Thanks to this assumption, the design can
be fairly simple.
As previously mentioned, the input signal consists
of pulses with lengths of 100 ms and 200 ms,
which represent zeros and ones respectively. If you
sample the input signal at a point 150 ms after the
rising edge of each pulse, you will thus see either
a ‘0’ or a ‘1’ (Figure 1). If you also measure the
time between two successive rising edges, you
can detect the missing pulse and therefore iden-
tify the start of the time code. The bits that are
found in this manner are fed into a shift register.
Then the BCD sequences that encode the various
date and time units are extracted from the shift
bit string in the shift register and presented on the
7-segment display. In the C-based pseudocode,
this looks roughly as follows:

do for each clock pulse
{
 counter = counter + 1
 if (counter == 150ms)
 {
 shift_register = (shift_register << 1) + input_signal;
 }
 if (rising_edge(input_signal) == true)
 {
 if (counter >= 1750ms)
 {
 show_content(shift_register);
 }
 counter =;
 }
}

The counter is incremented on each clock pulse.
When the counter reaches 150 ms, the input sig-
nal is sampled and the sample is fed to the shift
register. When a rising edge is detected in the
input signal, a test is made to see whether the
counter has exceeded the maximum value. If it
has, the shift register is full and the data can be
displayed. After this the counter is reset to 0.
That’s all there is to it. You could add all sorts of
bells and whistles to this, such as error detection
and more robustness, but that falls outside the
scope of this introductory example.

How do you do this in VHDL?
Doing the same thing in VHDL is fairly easy
because translating pseudocode into VHDL is
straightforward. The result is the following code
fragment:

 1 process (clock) is
 2 begin
 3 if rising_edge(clock) then
 4 counter <= counter + 1;
 5 if (counter=t150ms) then

Figure 1.
The DCF77 signal and
sampling points.

•Projects

46 | June 2013 | www.elektor-magazine.com

value of the input signal is fed into the bits
shift register in line 6. This is done from the left
end of the shift register, unlike the pseudocode
where it is done from the right. We chose this
approach because the time code starts with the
least significant bit, so the bits are fed into the
shift register in the right order for our purpose.
After 59 pulses, bit 0 is at position 0. The shift
operation looks a bit strange because the con-
catenation function “&” is used for this purpose.
This function simply joins the left part of the
expression to the right part. Here the right part
consists of the 58 bits from 1 to 58 (in reverse
order, without bit 0), which are shifted to posi-
tions 57 to 0. The left part is the 1-bit input sig-
nal, which now ends up in bit 58. The details of
what ISE (or actually XST) does with this con-
struction are not so important here; what mat-
ters is that it works (and it does).
Line 8 checks to see whether a rising edge has
been detected in the input signal. Exactly how
that works is not obvious from the code fragment
(I’ll explain this later), but if a rising edge has
been detected, line 9 checks whether the counter
has exceeded the maximum value of 1750 ms. If
it has, the content of the shift register is copied
to a data register for further processing, which
is done in another fragment described below.
Line 12 resets the counter to zero. It is not nec-
essary to flush the shift register, since it is com-
pletely filled every minute.

The lines not specifically mentioned here are only
there to conform to VHDL syntax rules.
To complete this fragment, all you need is an
edge detector, some VHDL syntax glue, and the
specifications of the input and output signals for
this process. In the final design I also added a
couple of signals that blink the LEDs on the FPGA
board so you can see whether something is actu-
ally happening inside the FPGA.

Edge detection
The edge detector is a key part of this design.
At first I used a simple scheme that compared
the current value of the input signal with the
value during the previous clock pulse. This was
not reliable and caused problems, with the result
that synchronization was occasionally lost. The
solution turned out to be adding another flip-flop
so that instead of comparing the current value
with the previous value, we compare the previ-
ous value with the one before it. In other words,

 6 bits <= input & bits(58 downto 1);
 7 end if;
 8 if input_rise=’1’ then
 9 if (counter>=t1750ms) then
10 data <= bits;
11 end if;
12 counter <= 0;
13 end if;
14 end if;
15 end process;

The definitions and a bit of VHDL syntax are miss-
ing here, but the algorithm is there. I added the
line numbers here because they make it easier to
explain how the code works. In this code, coun-
ter is self-explanatory and bits are the stages
of a 59-bit shift register. Let’s start at the top
with line 1.

This is a process, which means that it will be
executed by the FPGA. Nothing happens without
a process. There can be multiple processes, and
they are all executed at the same time. Within
a process, the order of execution is normally top
to bottom. Our process is dependent on the sig-
nal clock, which means that the process is only
executed when the value of clock changes. The
process starts after line 2 and runs until line 15.
Line 3 causes everything in the process to be
synchronized to the rising edge of the clock sig-
nal. This is made possible by the function ris-
ing_edge. You will often see the following con-
struction in VHDL code:

if clock’event and clock=’1’ then
 ..
end if;

This does the same thing as rising_edge, but it
is a bit old-fashioned. Here we use rising_edge.
There is also a function called falling_edge.
The counter is incremented by 1 in line 4. Easy,
isn’t it? Yes, but you should be careful because
whenever you use the increment function,
which is represented by the “+” sign, you have
to include the numeric_std library in the list of
libraries to be used (as described elsewhere in
this article).

In line 5 the counter value is compared to a con-
stant that corresponds to an interval of 150 ms
with a clock frequency of 8 MHz (the FPGA clock
rate). If the counter is at 150 ms, the current

FPGA

www.elektor-magazine.com | June 2013 | 47

time the value of this signal changes.
After the process declaration, there is a list of
variables that are needed inside the process but
not outside. Here there is only one: history, a
3-bit shift register. This variable is a vector, which
means that it consists of several bits. Note that

instead of comparing t = n with t = n - 1, we
compare t = n - 1 with t = n - 2.
You may be asking yourself whether the func-
tion rising_edge could have been used for this
purpose, but unfortunately the answer is that
this won’t work. If you try this, the XST synthe-
sizer will think that a clock signal is involved, but
since this isn’t the case, XST doesn’t know what
to do and therefore generates an error message.
I included the edge detector in the project as a
separate module (a function in VHDL; see List-
ing 1), but this is not mandatory. However, it
has the advantage that you can easily use the
function in another project.
The module starts with a library instruction,
followed by a use instruction. The purpose of
these instructions is to ensure that the module
can access the appropriate standard functions
and signals. If necessary, you can also add other
libraries here, such as numeric_std (for “+”, as
you may recall). Unlike most programming lan-
guages, these instructions do not apply to the
entire file in which they appear, but only to the
first entity block and associated architecture
block(s) appearing after the instructions. This
means that each entity block is normally pre-
ceded by library statements.

Now let’s have look at the entity block. It can
be regarded as essentially equivalent to a symbol
in a schematic diagram. This is where the inputs
and outputs of the component are defined in the
port section. Here you see that all the signals
are of type std_logic from the std_logic_1164
library, which means that they are logic signals
that can assume various states defined in the
library, including “0”, “1”, and quite a few others.
The signals with the suffix in are the inputs of
the module, while the signals with the suffix out
are the outputs.
After the entity block there is an architecture
block that defines the function. The latter block
has a name (behavioral) and is an implemen-
tation of the specified entity (in this case edge_
detector). The name behavioral is assigned
when you let ISE create a VHDL module. Another
frequently seen name is rtl, which stands for
Register Transfer Level (the level where VHDL
code is compiled), but you can also choose your
own name.
The edge detector is implemented as a pro-
cess that is dependent on the signal clock. The
instructions in the process are executed each

Listing 1. An edge detector module in VHDL.

library ieee;
use ieee.std_logic_1164.all;

entity edge_detector is
 port (input : in std_logic;
 clock : in std_logic;
 rise : out std_logic);
end edge_detector;

architecture behavioral of edge_detector is
begin
 process (clock)
 variable history : std_logic_vector(1 to 3);
 begin
 if rising_edge(clock) then
 rise <= history(2) and not history(3);
 history := input & history(1 to 2);
 end if;
 end process;
end behavioral;

The fully assembled and tested FPGA
development board is available in the Elektor
Shop for just $66.89 plus shipping.

See www.elektor.com/120099

•Projects

48 | June 2013 | www.elektor-magazine.com

here the vector is defined as (1 to 3), while the
shift register in the DCF77 decoder is defined
as (58 downto 0). Both of these definitions are
valid, but you must be careful to avoid acciden-
tally getting the bits confused when you use the
two together.

The edge detector is only active after a rising
edge of the clock signal. When that happens, it
determines the value of the output signal rise
from bits 2 and 3 of history, and then feeds the
current value of the input signal into the shift
register in the same way as the code fragment
for the DCF77 decoder.

As you can see, each block ends with an end
statement (or perhaps end if), possibly followed
by the name of the block concerned, so your fin-
gers will be busy on the keyboard. This is one of
the drawbacks of VHDL: it requires a lot of typing.
Figure 2 shows what ISE thinks the edge detec-
tor should look as a schematic diagram. I person-
ally find this interpretation somewhat strange,
but maybe I’m missing something. Let’s just say
that ISE is not the world’s best draftsman.

I discussed this module in so much detail to illus-
trate what a VHDL module looks like. All modules
follow this pattern of library, entity and archi-
tecture, including the DCF77 decoder module.

Using modules
If you want to use the edge detector in the DCF77
decoder, you have to somehow make XST aware
of its existence. There are various ways to do
this, such as using a library, but here we use the
component method. Listing 2 shows the details
of how this works. This listing also shows the
complete DCF77 decoder module, including the
entity block and the associated architecture
block, the input and output signals, and the local
variables and constants. Just have a good look
at it, take your time, and use the Web for help if
necessary – it’s not all that difficult.

You include the edge detector in the module by
declaring it as a component at the top in the
architecture block. Then you copy the entity
block and replace the word entity by compo-
nent. The next task is to link in this block, which
you do after the start of the architecture block
by generating an instance of the block. For this
purpose, you have to specify a label and then

Listing 2. DCF77 timecode decoder with edge detector.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity dcf77_decoder is
 port (input : in std_logic;
 clock : in std_logic;
 data : out std_logic_vector (58 downto 0));
end dcf77_decoder;

architecture behavioral of dcf77_decoder is

 component edge_detector is
 port (input : in std_logic;
 clock : in std_logic;
 rise : out std_logic);
 end component edge_detector;

 constant t1750ms: integer := 14000000; -- 1750 ms @ 8 MHz
 constant t150ms: integer := 1200000; -- 150 ms @ 8 MHz
 signal counter : integer := 0;
 signal bits : std_logic_vector(58 downto 0) := (others => ‘0’);
 signal input_rise : std_logic := ‘0’;

begin
 edge_detect: edge_detector port map (input => input,
 clock => clock,
 rise => input_rise);

 process (clock) is
 begin
 if rising_edge(clock) then
 counter <= counter + 1;
 if (counter=t150ms) then
 bits <= input & bits(58 downto 1);
 end if;
 if input_rise=’1’ then
 if (counter>=t1750ms) then
 data <= bits; -- Transfer data.
 end if;
 counter <= 0; -- Clear counter.
 end if;
 end if;
 end process;
end behavioral;

FPGA

www.elektor-magazine.com | June 2013 | 49

clock period when a rising edge is detected in
the DCF77 signal.
If you forget to map an input signal of a com-
ponent, you will see a rather baffling error mes-
sage. It tries to explain that the forgotten signal
does not have a default value and may therefore
remain unconnected. Don’t say I didn’t warn you.

Display
Articles of this sort tend to be long because I
try my best to explain everything properly, but

use a port map to indicate which signals (ports)
of the DCF77 decoder on the right in the folder
must be linked to the signals (ports) of the edge
detector on the left in the folder. The clock and
input signals are already taken care of because
they are inputs (ports) of the DCF77 decoder
as part of the entity block. You have to add a
local signal of the same type for the edge detec-
tor output signal rise. Here I gave it the name
input_rise. Now you can use this signal in your
process. It will assume the value “1” for one

Figure 2.
This bizarre schematic
is the result of letting
ISE’s RTL Viewer draw the
schematic diagram of the
edge detector described in
this article (Design tab,
Synthesize – XST ➞
View RTL Schematic).
The signal input is not
connected to anything, and
the operation of this circuit
is a complete mystery to
the author. Maybe he got
something wrong?

Figure 3.
An ISE screenshot showing
the code for the display
and the project hierarchy,
along with the green check
marks which prove that
it’s possible to compile the
project and generate a bit
file.

•Projects

50 | June 2013 | www.elektor-magazine.com

Now you will see a form that you can fill in if you
know which input and output signals you need.
If you don’t know, leave the form blank. When
you’re done, click Next and then Finish. ISE will
create a file for you, containing the template
where you have to add your VHDL code. Add as

my editor is not especially
fond of long articles. Nev-
ertheless, I want to explain
in an article how you can
produce a working VHDL
design, since otherwise the
task is a bit frustrating. As
I still have a lot to explain,
I am omitting the code for
the 7-segment display
from this article. I used
the same two-digit display
as in the third installment
[3], with a BCD to 7-seg-
ment decoder as described
there. This is a standard
textbook exercise, so there
is no need to explain it in
detail. Have a look at the
project for this installment
[5] to see how it all works.
Figure 3 also shows a few
details.

Back to the top
As in the previous install-
ments, everything comes
together at the top, but
now the top is a VHDL
module instead of a sche-
matic diagram. This detail
must be communicated to
ISE in the Design Prop-
erties. First create a new
project based on the previ-
ous one, in the same way
as described at the start of
the third installment [3].
Then delete all schemat-
ics, but keep the UCF file.
Next, open Design Proper-
ties (e.g. at the bottom of
the Project menu) and set
Top-Level Source Type to
“HDL” and Preferred Lan-
guage to “VHDL” (if this
isn’t already done).

Now you can start adding new source files. To
do this, open the Project menu or right-click the
Design tab and select New Source…. Then select
VHDL Module, enter the file name (e.g. top), ver-
ify that Add to project is ticked, and click Next.

Listing 3. The top level of the final DCF77 decoder.

library ieee;
use ieee.std_logic_1164.all;

entity top is
 port (dcf77_input : in std_logic;
 clk_in : in std_logic;
 hour_month : in std_logic;
 time_date : in std_logic;
 led1 : out std_logic;
 led2 : out std_logic;
 t_sample : out std_logic;
 digit1 : out std_logic_vector (6 downto 0);
 digit2 : out std_logic_vector (6 downto 0));
end top;

architecture behavioral of top is

 component two_digit_display is
 port (bcd1 : in std_logic_vector (3 downto 0);
 bcd2 : in std_logic_vector (3 downto 0);
 digit1 : out std_logic_vector (6 downto 0);
 digit2 : out std_logic_vector (6 downto 0));
 end component;

 component dcf77_decoder is
 Port (input : in std_logic;
 clock : in std_logic;
 tick : out std_logic;
 sync : out std_logic;
 data : out std_logic_vector (58 downto 0));
 end component;

 signal data : std_logic_vector (58 downto 0);
 signal bcd1 : std_logic_vector (3 downto 0);
 signal bcd2 : std_logic_vector (3 downto 0);
 signal tick : std_logic;

begin
 display: two_digit_display port map (bcd1 => bcd1,
 bcd2 => bcd2,

FPGA

www.elektor-magazine.com | June 2013 | 51

of the input and output
signals in top, which are
the signals named in the
entity block of the top
module, must match the
names in the UCF file,
because this is how the
pins of the IC are linked
to the VHDL code. All of
the signals in the UCF file
must appear here, as oth-
erwise ISE will complain.
A new feature here is the
use of vectors for the dis-
play pins. You can do this
in the UCF file by using
an index with the name of
the vector – for example,
digit1(0) corresponds to
bit 0 of the digit1 vector
in the top module.

Two components are
called in the architec-
ture block of the top
module: two_digit_dis-
play and dcf77_decoder,
and one instance of each
of them is used. With a
larger display, such as six
digits, you could generate
and link three instances
of two_digit_display,
each with its own label.
For linking the two com-
ponents, I defined several
additional signals that are
not needed outside the
top module. For example,
the tick signal is used to
blink LED1 each time a bit
is received. Since this LED
is not connected to a pin
on the FPGA board, it is
also linked to the t_sam-
ple signal, which in turn
is linked to pin P86 in the

UCF file. This makes it easy to view the sampling
points on an oscilloscope relative to the DCF77
input signal.

The process of the top module does not do any-
thing especially remarkable. It is actually a mul-

many files as the number of modules you intend
to generate. In the present project there are
five: top, DCF77 decoder, edge detector, BCD to
7-segment decoder, and 2-digit display.

The top module is shown in Listing 3. The names

 digit1 => digit1,
 digit2 => digit2);

 dcf77: dcf77_decoder port map (input => dcf77_input,
 clock => clk_in,
 tick => tick,
 sync => led2,
 data => data);

 process (clk_in) is
 begin
 t_sample <= tick;
 led1 <= tick;
 if rising_edge(clk_in) then
 if time_date=’1’ then
 -- Show time.
 if hour_month=’1’ then
 -- Show hours.
 bcd1 <= data(32 downto 29);
 bcd2 <= “00” & data(34 downto 33);
 else
 -- Show minutes.
 bcd1 <= data(24 downto 21);
 bcd2 <= “0” & data(27 downto 25);
 end if;
 else
 -- Show date.
 if hour_month=’1’ then
 -- Show month.
 bcd1 <= data(48 downto 45);
 bcd2 <= “000” & data(49 downto 49);
 else
 -- Show day of month.
 bcd1 <= data(39 downto 36);
 bcd2 <= “00” & data(41 downto 40);
 end if;
 end if;
 end if;
 end process;

end behavioral;

•Projects

52 | June 2013 | www.elektor-magazine.com

tiplexer that shows the hours, minutes, day of
the month or month number on the two-digit
7-segment display, depending on the levels of the
two control signals time_date (P94) and hour_
month (P95). With a but of cutting and pasting
(“&”), the right bits are extracted from the shift
register string to form 4-bit BCD codes, which
in turn are converted into 7-segment signals by
the BCD decoders. Here it should be noted that
it is not necessary to explicitly route the vectors
bcd1 and bcd2 to the display component, since
this is done implicitly by the port map.

When you synthesize this design, you will see a
number of warnings. They are caused by the fact
that some of the bits of the DCF77 shift register
are not used, and that bit 3 of the vector bcd2
is always “0” because the design does not use
eight-bit data (only the year number component
encompasses eight bits, but it is not used here).
You will also see that a nicely ordered hierarchy
has been generated on the Design tab (Figure 3),
just as when you entered the design in sche-
matic form. Everything is therefore restored to
the way it was. As already briefly mentioned, ISE
has an RTL viewer that is able to portray VHDL
code in schematic form (more or less; see Figure
2), which emphasizes the underlying duality: a
schematic is the same as VHDL code, and VHDL
code is the same as a schematic.

Despite my efforts to keep things short, it has
been a long journey. I have tried to convey all
the essential information, but a bit of self-reliance
and determination to build this project yourself
are probably still necessary. Good luck!

(130066)

Web links

[1] 	Part 1: www.elektor.com/120099

[2] 	Part 2: www.elektor.com/120630

[3] 	Part 3: www.elektor.com/120743

[4] 	Part 4: www.elektor.com/130065

[5] 	Part 5: www.elektor.com/130066

Figure 4. The schematic of the DCF77 decoder is virtually
identical to the one in the third installment [3]. Since
the FPGA is not especially comfortable with 5-V signals,
a Zener diode is used to limit the input signal level to
approximately 3 V.

Figure 5. The test circuit being driven by an Arduino
acting as a DCF77 simulator. The display shows the
simulated hours figure (‘17’). The FPGA board is powered
from the Arduino board.

• The latest on electronics and
information technology

• Videos, hints, tips, offers and more
• Exclusive bi-weekly project for

GREEN and GOLD members only
• Elektor behind the scenes
• In your email inbox each Friday

Take out a FREE
membership to
Elektor.POST

Register today at www.elektor.com/newsletterwww.elektor.com/newsletterwww.elektor.com/newsletterwww.elektor.com/newsletter

www.ezpcb

Professional PCB & PCBA Supplier

http://www.ezpcb.com

Professional PCB & PCBA SupplierProfessional PCB & PCBA Supplier

Better Design

More Powerful

Easier to Use

Instant Quote & Pay

New Website Is Online!

EzPCB

Prototype start at $10/ea
2L 4"x4" each

Free Shipping!

1 to 40 Layers
Prototype to Production
Amateur to Professional

order now

 Further information and ordering at www.elektor.com/retronics Further information and ordering at www.elektor.com/retronicswww.elektor.com/retronicswww.elektor.com/retronicswww.elektor.com/retronics

Retronics
80 tales of electronics bygones
This book is a compilation of about 80 Retronics installments published in
Elektor magazine between 2004 and 2012. The stories cover vintage test
equipment, prehistoric computers, long forgotten components, and Elektor
blockbuster projects, all aiming to make engineers smile, sit up, object,
drool, or experience a whiff of nostalgia.

ISBN 978-1-907920-18-9
193 pages • $40.00

10% OFF for GREEN and GOLD Members

NEW!

Naamloos-4 1 02-05-13 15:18

•Projects

54 | June 2013 | www.elektor-magazine.com

The Python language is particularly suited to engi-
neering environments. Often it is advantageous
to represent data graphically. The saying that a
picture is worth a thousand words is also true
in the world of mathematics; an engineer can
interpret so much more from the plot of a curve
compared to a column of sterile mathematical
values. As a rule popular programming languages
already feature tried and tested library routines
to ease the writing process. Python is no excep-
tion to this rule.

Plotting graphs
In Python the standard library for 2D graph plot-
ting is ‘Matplotlib’. Part of the Python philosophy
is summed up in its motto ‘There is only one way’
suggesting that there should only really be one
obvious way to achieve something in Python.
This does not unfortunately apply to the mod-
ules written in the additional libraries, a discov-
ery that has already cost me many hours work.
Notably in Matplotlib there exist simple proce-
dural interfaces and complicated object orientated
interfaces. Examples given in books and on the
Internet use either one method or the other so
it is quite easy to get confused.
The simple interface ‘pyplot’ facilitates very sim-
ple programming. The program in Listing 1 pro-
duces a damped sine wave oscillation. The curve
it describes is shown graphically in a display win-
dow (Figure 1).
The first line of the listing imports the interface
‘pyplot’ as the object ‘plt’. ‘Numpy’ is an exten-
sion to python providing support for mathematical

functions. The second line shows three functions
imported from the Numpy extension.
The ‘linspace’ routine can be used with an interval
(here from 0 to 7) divided into an equal number
of parts (1,000 here) and represented as a vector
(array). This enables a fast and simple calculation
of the value of the function. Numpy functions can
also handle vectors. Using just the line:

y= sin(5*x)*exp(-x)

Calculates all 1,000 values of the y vector.
This relieves you of the more usual ‘For’ loop
constructs and makes the code both fast and
understandable.
The command ‘plt.plot(x,y)’ plots the data as a
curve on the graph and ‘plt.show’ is used to show
it on the graph. To display more than one curve
on the chart as shown in Listing 2 it is necessary
to call the plot function again.
The graph window (Figure 1) automatically shows
a toolbar which allows you to zoom and save the
chart. Apart from this it also indicates the cur-
sor coordinates. Should you want to spice up the
graph with some GUI elements then it will be
necessary to proceed using an object oriented
approach.

Example: frequency response
As an example we can plot the transfer function of
a simple RC low pass filter. The transfer function
shown here is a result of an RC voltage divider
network consisting of a resistor and capacitor
which has a complex impedance:

By
Jean-Claude Feltes
(Luxembourg)

From BASIC to Python (2)
A field report

In the first part of this series we looked at how Python
differs from BASIC. We went over the installation
process and got our first program running. Now we
go a little further with graph plotting and Fourier
synthesis. Finally with not much effort we use a

graphical user interface.

Basic to Python

www.elektor-magazine.com | June 2013 | 55

	 F = 1 / (1 + j ω R C)

The frequency response is given by a plot of
the value of F as a function of frequency (Fig-
ure 2). This is a good example to demonstrate
how Python handles complex variables.
In this program (Listing 3) the Array ‘f’ is calcu-
lated with frequency steps incremented logarith-
mically. For plotting against linearly incrementing
values use ‘linspace()’. An array for the complex
F values is calculated along with an array of the
absolute values ‘Fabs’. Numpy is useful here with
its vector functions. There is no requirement for a
‘For’ loop in the calculation and the code is both
short and understandable.
Finally the plot is displayed, showing a logarith-
mically scaled frequency axis. For a professional
looking result it is important to define the grid
lines:

ax.grid(True, which = “both”, linestyle
= “-”)

The grid lines are defined with “both” indicating
the same line style for both major and minor
subdivisions. Lastly a solid line style is selected.
By adding the following lines of code:

plot phi = f(f)
phi = angle(F)*180.0/pi
ax2 = fig.add_subplot(212)
ax2.plot(f, phi)
ax2.grid(True, which = “both”, linestyle
= “-”)
ax2.set_xscale (“log”)
ax2.set_xlabel(“f/Hz”)
ax2.set_ylabel(“phi/degrees”)

We can show the phase shift introduced by the
filter.

Example: Fourier synthesis
Engineers quite partial to some mathematics will
be pleased to learn that some of the more useful
advanced engineering concepts such as Fourier
synthesis are also catered for in Python.
The example given in Listing 4 shows how a
square wave can be synthesized by summing
30 weighted harmonics of a fundamental sine
wave. Figure 3 shows quite an impressive output
waveform from what is a relatively short program
listing. More or fewer harmonics can be used to

Figure 1.
The plot of a damped
oscillation given in Listing 1.

Figure 2.
The frequency response of
an RC low pass filter given
in Listing 3.

Listing 1: Sinewave.py

import matplotlib.pyplot as plt
from numpy import sin, exp, linspace

x=linspace(0.0, 7.0, 1000)
y= sin(5*x)*exp(-x)

plt.plot(x, y)
plt.show()

Listing 2: Multigraph.py

mport matplotlib.pyplot as plt
from numpy import sin, exp, linspace

x=linspace(0.0, 7.0, 1000)
y1 = sin(5*x)*exp(-x)
y2 = y1* 0.5

plt.plot(x, y1)
plt.plot (x, y2)
plt.show()

•Projects

56 | June 2013 | www.elektor-magazine.com

make the plot by altering the number of harmon-
ics defined in the code.

To GUI or not to GUI?
Dyed in the wool Linux users will tell you that
any system with a GUI is not a serious operat-
ing system and that the computer mouse is in
fact the work of the devil. Despite this view there
are still many people who can appreciate easy to
use, well designed software. Surely the graphical
method of file selection is both convenient and
these days almost indispensable?
Anyhow Python allows the combination of both
graphical and non-graphical elements in the same
program. The program in Listing 5 functions as a
data plotter. Input data is displayed as both text
in a terminal window using the Print command
and also as a plot in a graphic window (Figure 4).
Looking at the functions available in the GUI
libraries you really are spoilt for choice. I began
with the ‘Tkinter’ library because it was already
supplied with the Python interpreter and proved
easy to understand. However a problem occurred
copying a graph to the clipboard so I moved on
to use the ‘wxPython’ library in these examples.
There are also other alternatives available such
as ‘PyQt’ and ‘GTK’.
This data plotter program is a useful example of
the use of GUI elements in a program. It shows
how measurement values stored in a text file
can be edited and then displayed. The values

Listing 3: RC.py

import matplotlib.pyplot as plt
from numpy import pi, linspace, log10, logspace
from numpy import complex, abs # these allow
vector operations

EDIT
R = 10.0E3
C = 100.0E-9

END EDIT

RC = R*C

create f values equally spaced on a log scale
f = logspace (1, 4, 100) # 100 values from 10**1
to 10**4

calculate F (complex) and absolute value Fabs
F = 1 / (1 + 1j* 2 * pi * f * RC)
Fabs = abs(F)

plot Fabs = f(f)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(f, Fabs)
ax.grid(True, which = “both”, linestyle = “-”)
ax.set_xscale (“log”)
ax.set_xlabel(“f/Hz”)
ax.set_ylabel(“U2/U1”)
ax.set_title(“RC low pass frequency response”)
plt.show()

Figure 3.
Fourier synthesis of a
square wave, see Listing 4.

Figure 4.
Data plotter: Terminal
window showing list of
values and their XY plot.

Basic to Python

www.elektor-magazine.com | June 2013 | 57

of the App objects. Next a Frame object creates
a window for the application. This window will
have a menu and text box to enable editing and
display of the data. The Text-Box is essentially
a small editor: here you can edit data or enter
new values, and the clipboard can be controlled
using the standard key-sequence shortcuts. A
right-click on the mouse pops up the classic edi-
tor functions.

are plotted on a two dimensional graph. The X
and Y values are also displayed in the form of
two columns.
In this example I have abandoned pure ‘Pythonic’
object orientated style for the sake of simplicity.
After the necessary modules are imported all the
functions are defined and ‘main’ is at the end of
the program listing.
The main program begins with an instance ‘app’

Listing 4: Fourier.py

“””FOURIER SYNTHESIS OF A SQUARE WAVE”””
#---

EDIT HERE

n = 30 # number of harmonics
nb_points=1000 # horizontal resolution
frequency = 100.0 #Hz
amplitude = 2.0 #V

END OF EDIT AREA
#---

print “Importing modules”
import matplotlib.pyplot as plt
from numpy import sin, exp, linspace, pi
from numpy import zeros
#---

def calc_amplitude(amplitude, i):
 “”” Calculate amplitudes of harmonics”””
 # take only odd harmonics
 if i % 2 == 0:
 ai = 0
 else:
 ai = (4/pi)*amplitude / i
 return ai
#---

def calc_harmonics(nb_points, n):
 “”” Calculate harmonics and resulting voltage
 returns
 uharm = array nb_points * n
 ug = array nb_points
 “””

 # init arrays for resulting voltage and

harmonics
 ug = zeros(nb_points)
 uharm = zeros((nb_points, n+1))

 # harmonics and total voltage
 for i in range(1,n+1):
 ai = calc_amplitude(amplitude, i)
 fi = frequency * i
 uharm[:,i] = ai * sin(2 * pi * fi * t)
 ug = ug + uharm[:,i]
 return uharm, ug
#---

“”” Main program”””

T=1/frequency

equally spaced time array for 1 period
t = linspace(0.0, T, nb_points)

plot harmonics
uharm, ug = calc_harmonics(nb_points, n)
for i in range(1,n+1):
 plt.plot (t, uharm[:,i])

plot resulting voltage
plt.plot (t, ug)

s=str(n)+” harmonics, “+str(frequency)+”Hz,
ampl.=”+str(amplitude)+”V”
plt.title(“Fourier synthesis RECT\n”+s)
plt.xlabel(“t/s”)
plt.ylabel(“u/V”)

make plot visible
plt.show()

•Projects

58 | June 2013 | www.elektor-magazine.com

Listing 5: Dataplot.py

#!/usr/bin/env python
“”” Plot data from file “””
import wx
import os.path
import matplotlib.pyplot as plt

def create_menu(frame):
 # create menu
 menubar = wx.MenuBar()
 # main menus
 mnuFile = wx.Menu()
 mnuData = wx.Menu()
 menubar.Append(mnuFile,”&File”)
 menubar.Append(mnuData,”&Data”)
 # submenus
 m_Open = mnuFile.Append(-1,”&Open”)
 mnuFile.AppendSeparator()
 m_Exit = mnuFile.Append(-1,”&Exit”)
 m_Plot = mnuData.Append(-1,”&Plot”)
 # attach menu to frame
 frame.SetMenuBar(menubar)

 # bind menu events to procedures
 frame.Bind(wx.EVT_MENU, OnExit, m_Exit)
 frame.Bind(wx.EVT_MENU, OnOpen, m_Open)
 frame.Bind(wx.EVT_MENU, OnPlot, m_Plot)
#---
Event handlers
def OnExit(event):
 frame.Close()

def OnOpen(event):
 # ask for filename
 dlg = wx.FileDialog(None,”Open data file”, os.getcwd() ,””, “*.*”, wx.OPEN)
 dlg.ShowModal()
 filename = dlg.GetPath()

 # open file, get data and put it into textbox
 try:
 f = open(filename, “r”)
 data = f.read()
 f.close()
 textbox.SetValue(data)
 except:
 wx.MessageBox(“Could not open file!”)

Basic to Python

www.elektor-magazine.com | June 2013 | 59

def OnPlot(event):
 # plot data
 x,y = fill_xy_with_values(textbox)
 plot_xy(x, y)
#---
def fill_xy_with_values(textbox):
 # “”” get values from textbox
 # returns arrays x, y and number of data points”””
 text=textbox.GetValue()
 lines=text.splitlines()

 x=[]
 y=[]
 for line in lines:
 columns = line.split() #separator can be one or more “ “ or “\t”
 x.append (float(columns[0]))
 y.append (float(columns[1]))

 return x,y
#---
def plot_xy(x, y):
 “”” Plot arrays x, y with matplotlib”””
 plt.figure(1)
 plt.subplot(111) # 1 row, 1 col, plot nb. 1
 plt.grid(True)
 plt.plot(x, y)
 plt.xlabel(“x”)
 plt.ylabel(“y”)
 plt.show()
#---
Main
#---
app = wx.App()

create frame
frame = wx.Frame(None, title=’PLOTTER’, pos=(350,300))

create_menu(frame)
editor textbox for data
textbox=wx.TextCtrl(frame, style = wx.TE_MULTILINE)

show frame and run event loop
frame.Show()
app.MainLoop()

•Projects

60 | June 2013 | www.elektor-magazine.com

Internet Links & Literature

[1] Listings etc.:

	 www.elektor.com/120143

[2] The author’s homepage:

	 http://staff.ltam.lu/feljc/home.html

[3] Python documentation:

	 https://pypi.python.org/pypi/RPi.GPIO

[4] Python tutorials:

	 www.awaretek.com/tutorials.html

[5] Introduction:

	 J.M. Hughes: „Real World Instrumentation
with Python“

[6] Modules available in the Python package:

	 http://pypi.python.org/pypi

[7] Python for engineers:

	 Andrew Pratt: ‘Python Programming and
GUIs for Electronic Engineers’

	 www.elektor.com

The ‘frame.Show()’ function displays a window
and ‘app.MainLoop()’ is used to begin an event
loop. The program waits for an event (mouse
click or keyboard key press) and then branches
to the event handler (the function called when
an event occurs).
The first function defines the menu and binds
menu events to the ‘On’ prefixed event han-
dling procedures. Functions ‘OnExit’, ‘OnOpen’
and ‘OnPlot’ are called from the menu or when
the corresponding key is pressed. ‘OnOpen’ calls
the file selection dialog ‘wx.FileDialog’. This also
uses ‘os.getcwd’ (get current working directory)
to find the file in the current directory.
When the file name is selected an attempt is
made to open the file. A ‘try – except’ statement
is used to detect any file opening error. When the
file can be opened the contents are read into the
variable ‘data’ and put into the text box.
Now the values can be edited, copied or pasted.
Other values can of course also be added instead
of storing them from a file.
The ‘OnPlot’ function displays the data as a graph.
The functions ‘fill_xy_with_values’ and ‘plot_xy’
are also called here. The former reads data from
the textbox and splits it into an array of lines. The
‘for’ loop is next iterated on all the lines which
are split again using ‘line.split()’. The individual
values are then stored in the arrays ‘x[]’ and ‘y[]’.
These are then returned as the function values.
The function ‘plot_xy’ draws the graph (Figure 4).
This small program is of course still a little rudi-
mentary, but an equivalent in Visual BASIC would
require much more work. It would be quite easy
to add a menu option here to store edited data.

Coming up
By now you should have a basic appreciation
of how powerful Python is and also how easy
it can be to use. Python has a growing band of
devotees, if you wish to explore there are many
resources that will take you further than we have
shown you in these examples. Python is well
suited for tasks such as classic data collection
and processing. Things like filters and FFTs are
really no obstacle for Python and you have the
possibility to upgrade your own project with a
graphical user interface.
In the next installment we look into the program-
ming intricacies of data acquisition and control
via the RS485 Elektor Bus.

(120143)

The Author

Jean-Claude
Feltes lectures in
electronics at the
Lycée Technique
des Arts et Métiers
in Luxembourg.
This college caters
for both arts and
technical students
and provides
professional
qualifications for
apprentices and
technicians. He
spends much of his
free time pursuing
his interests in
electronics and
programming [2].

http://www.elektor.com/120143
http://staff.ltam.lu/feljc/home.html
https://pypi.python.org/pypi/RPi.GPIO
http://www.awaretek.com/tutorials.html
http://pypi.python.org/pypi
http://www.elektor.com

www.elektor-magazine.com | June 2013 | 61

Check out

www.elektor-labs.com
and join, share, participate!

See what’s brewing
@ Elektor Labs 24/7

PrefSup US 06-2013.indd 61 02-05-13 15:20

•Projects

62 | June 2013 | www.elektor-magazine.com

The idea for this circuit came from the need to
drive various types of moving-coil voltmeter,
using a microcontroller, via digital/analogue con-
verters with a series resistor on each output. Con-
nected to an ATMega8, my initial circuit worked
okay, but with the most sensitive voltmeters,
the number of usable bits was not enough to
achieve full scale deflection. Rather than use a
specific output resistor for each voltmeter, I used
the circuit described here to increase the resolu-
tion obtained using 8-bit converters. Instead of
using voltage amplification, the trick consists in
obtaining different output voltage ranges from the
D/A converter by changing its reference voltage.

My main criterion in selecting the D/A converter
concerns the minimum 1.5 mA current per out-
put, to avoid the use of external opamps; as a
secondary point, I felt that a single DIL pack-
age would make construction easier. I ended up
choosing a TLC5628 from Texas Instruments,
an 8-bit octal DAC in a DIP16 package, able to
provide an output current of 2 mA per chan-
nel. Each converter channel includes a 256-step
potential divider. The TLC5628 offers an option,
crucial here, of doubling the gain by amplifying
the converter output voltage (Fig. 1).

This device is controlled via a 3-wire serial pro-
gramming bus (SPI), readily compatible with cur-
rent microcontrollers. The command format
consists of eight data bits, three bits for
selecting each of the eight built-in con-
verters, and lastly one bit for selecting the
output voltage gain (×1 or ×2). Before

By Olivier Schrevens
(France)

Beefing up
DAC Resolution
More accuracy on your 8-bit conversions

When you need resolution higher than 8 bits, the cost of mixed analogue/digital
devices increases sharply. I wanted to show how, at no additional cost, I’ve im-
proved the resolution of ordinary, cheap digital/analogue converters, by using the
output of one as a programmable voltage reference for the others.

Vref
1.235V

D / A

Vref

D / A

prog.

x1 or x2 x1 or x2

HR_OUT

100510 - 12

TLC5628

DAC-A
DAC-B
DAC-C
DAC-D
DAC-E
DAC-F
DAC-G
DAC-H

REF-1
REF-2

IC1

DATA

LDAC

LOAD

VDD

GND

CLK 16
15

10

13

three standard
resolution
outputs

four high
resolution
outputs

12

14
11

3

4

6

2
1

7
8
9

5

D1

1V235

R1

CLK
LOAD
DATA

+5V

BU
S

SP
I

100510 - 11

Figure 1.
The principle of cascading

D/A converters:
the output of the first

converter is used as the
voltage reference for the

second converter.

Figure 2.
Configured in this way, the
TLC5628 makes it possible

to cover three voltage
ranges, from 0 to 1.235 V,

0 to 2.47 V, and 0 to 4.94 V
simultaneously, using 256

conversion steps.

More Accuracy

www.elektor-magazine.com | June 2013 | 63

being validated all together by the LDAC
signal, the SPI commands received by
each of the converters in turn can be first
stored in a latch. This option is not used
here. You can find further details in the
device datasheet.

As the circuit shows, the TLC5628 has two sepa-
rate voltage reference inputs (pins 11 and 14),
one for each group of four converters.

The external voltage reference common to the
first four converters, here 1.235 V, provided
by D1, an LM385, is connected to one end of
the dividers, whose other ends are connected
to ground. Hence each of the divider positions
provides a voltage that is directly linked to the
reference voltage.

Clearly, this is the feature we are going to be
exploiting by using one of the D/A converters
to programme the reference voltage for the
other group of converters, thereby increasing
the resolution.

The other three outputs from the first group can
still be used with their normal 8-bit resolution.
So ultimately, in combination with the output
gain doubling option on each of the TLC5628’s
converters, the 8-bit resolution covers three volt-
age ranges from an initial 1.235 V reference.
By combining the RNG (range) bits for the con-
verter providing the reference voltage and for
the channel being used, we obtain the following
three ranges:

0 to 1.235 V
0 to 2.47 V
0 to 4.94 V

This is indeed equivalent to an increase in reso-
lution. So in all we now have seven analogue
outputs: four ‘high resolution’ outputs and three
normal 8-bit outputs.

Of course, other types of converter may well be
perfectly suitable for this circuit, if they have
similar characteristics; for example, TLV5628,
TLC5620, TLV5620, or TLV5604.
However, it should be noted that cascading two
converters in this way has the disadvantage
that their respective precision errors may add
together.

What’s more, by virtue of its architecture, this
digital/analogue converter is more like a pro-
grammable potentiometer than a conventional
DAC based on an R2R network.
As this trick works really well without the need
to add any extra devices, I wanted to share it
with Elektor readers. The test program [1] loops
each of the three maximum output voltages onto
output E (pin 7) for four seconds. The SPI clock
is 11.0592 MHz/4. The SPI bus is in mode 3. An
indication of the running of the program is pro-
vided via the serial port (38,400 baud, 8N1).

(100510)

Internet Link

[1] www.elektor.com/100510

Figure 3. Result of the test program, displaying Vref2 and Vout.

On the left, Vout = 1.235 V and Vref2 = 1.235 V, Gain = 1

Centre, Vout = 2.47 V and Vref2 = 2.47 V, Gain = 1

On the right, Vout = 4.94 V and Vref2 = 2.47 V, Gain = 2

•Labs

64 | June 2013 | www.elektor-magazine.com

•	“Wouldn’t it be nice to compare our newest
500 ppm LCR Meter with one we have on
loan from Hameg?”

•	“Yes, that could be interesting.”

•	“I can bring a vintage meter from my
Retronics stock, if you like.”

•	“Awesome. Let’s see how the three
compare!”

This recent coffee chat I had with a few col-
leagues at Elektor HQ resulted in me putting
three LCR Meters with a completely different
background through a quick hands-on test.

The Hameg meter (HM8118 [1], courtesy of
Rohde & Schwarz Netherlands [2]) is a profes-
sional instrument with a price tag of $2,000+.

The vintage meter from the Retronics dept. is
a General Radio Company (GRC) type 1650-A
Impedance Bridge manufactured in 1960, cost-
ing a whopping $1,000 back then [3].

And finally, the Elektor 500 ppm LCR Meter [4],
which should set you back less than $400 in
parts.

I started off with the vintage GRC meter. Since
the apparatus is older than I am and ‘less than
intuitive’ in terms of operation — at least to me
— I first needed to take a look at the manual. It
took me quite some time to dial into the thing
and get an accurate measurement readout. Here’s
a breakdown:

•	read the manual: 10 mins;
•	 figure out how to measure a capacitor

correctly: 5 mins;
•	taking the actual measurement (setting the

dials for ‘zero’ deflection): 3 mins.

To be fair, if you were to use the 1650-A on a
daily basis, you would probably be able to shave
off 80 % of the time needed for a single mea-
surement. Still, that’s over half a minute per
measurement. I have to admit though, the looks,
touch and feel of the sturdy dials and switches do
add to the character of this piece of equipment.

By Thijs Beckers
(Elektor Editorial)

LCR Meter Shootout

Comparison chart

DUT GRC 1650-A Hameg HM8118 Elektor LCR Meter

Resistor 8.2 Ω 8.22 Ω
8.2458 Ω
(Vx=31,86 mV,
Ix=3.862 mA)

8.2379 Ω
(Vm=31.13 mV,
Im=3.779 mA)

Capacitor 100 nF
100 nF
D: 0.0267

102.03 nF
D: 0.01205
Rs=19.20 Ω
(Vx=364.9 mV,
Ix=233.9 µA, 1 kHz)

102.20 nF
D: 0.013
Rs=19,20 Ω
(Vm=398.1 mV,
Ix=256.0 µA, 1 kHz)

Capacitor 100 µF
92 µF
D: 0.1

94.475 µF
D: 0.10099
Rs=170.27 mΩ
(Vx=7.301 mV,
Ix=4.312 mA, 1 kHz)

92.400 µF
D: 0.090
Rs=155.4 mΩ
(Vm=7.076 mV,
Ix=4.091 mA, 1 kHz)

Inductor 1 mH
1.255 mH
Q: 0.63

995.85 µH
Q: 0.49189
Rs=12.722 Ω
(Vx=52.60 mV,
Ix=3.711 mA, 1 kHz)

993.2 µH
Q: 0.492
Rs=12.681 Ω
(Vm=51.18 mV,
Ix=3.621 mA, 1 kHz)

LCR meter Comparison

www.elektor-magazine.com | June 2013 | 65

Then there’s the HM8118. As a modern device,
this one is (more or less) plug-and-play. After
the auto calibration sequence the DUT (Device
Under Test) is inserted into the test fixture
(Hameg HZ181) and the requested component
properties are instantly displayed on the blue
backlit LCD. Estimated time: 40 seconds from
start to finish, without reading the manual.
Sequential measurements? Let’s assume swap-
ping the DUT takes three seconds, selecting the
correct measurement unit another two, total-
ing five seconds.

Last but not least: the Elektor 500 ppm LCR
Meter. With just an LCD, an on/off switch and five
buttons this may be as far as plug-and-play can
take you. The calibration is a once only job that
had already been taken care of on the prototype
I used for this test, so I could go straight to the
actual measurement and put the DUT between
the clips. Estimated time: 10 seconds.
Sequential measurements are probably a little
more time demanding compared to the Hameg
using the Kelvin clips, but the HZ181 test fixture
can also be used on the Elektor LCR Meter.

Summarizing, ease of use has improved a lot
since the 1960’s and looking at the measurement
results the Hameg and the Elektor LCR Meter
kind of photo finished. Our little meter holds its
own against the big gun (see the comparison
chart). Of course it wouldn’t be fair to ignore the
extensive range of options on the Hameg and the
0.05% basic accuracy is nothing to sniff at either.
Surprisingly, after more than 50 years and oper-
ated by a rookie, the GRC 1650-A isn’t even that
far off. Talk about a trusty lab companion. They
don’t make them like that anymore! Or do they?

Care to share your experience with ‘vintage’ lab
devices? Drop us an email at editor@elektor.com.

(130166)

Internet Links

[1] www.hameg.com/13.0.html

[2] testenmeetwinkel.nl

[3] www.elektor.com/075064

[4] www.elektor.com/110758

•Industry

66 | June 2013 | www.elektor-magazine.com

In order to increase fuel efficiency, the weight
of the aircraft is decreased by reducing cabling,
which can be achieved by moving electronics close
to their function. To comply with anti-pollution
regulations, electric engines are being used to
move the aircraft on the ground.
In addition to changing design, the new demands
placed on aircraft manufacturers have also cre-
ated new performance requirements for elec-
tronic components, including resistors. In this
article, we will explore the required parameters
for different types of resistors, including high-
temperature capabilities for stringent operating
conditions and long-term stability.

A history of high-temperature
components in aeronautics applications
Over the past eight years, aircraft manufacturers

have used high-temperature parts in a number of
applications. One of these was landing and brak-
ing monitoring systems, where brake tempera-
tures were measured, and Wheatstone bridges
were used to monitor hydraulic and tire pres-
sure. In this type of application, the electronics
were located in the wheel, and high temperatures
reached them within an hour.
In terms of performance, these systems required
components with operating temperature ranges
from –55 °C to +175 °C, but this quickly needed
to be expanded to +200 °C. Components with
good long-term stability were also required, as
the measurements had to remain stable for the
life of the aircraft. The expected drift after several
thousand hours of life could not exceed a given
percent. Finally, the components had to exhibit
good behavior during acceleration, vibration, and

New Performance
Requirements for Resistors

By
Dominique Vignolo
(Vishay)

in aeronautics
applications

The designs of today’s aircrafts
are being driven by two primary

goals: increasing aircraft fuel
efficiency and conforming to

anti-pollution regulations.
The humble resistor can

be helpful, provided some
of its key specifications

are given close
consideration.

R’s at High Temperature

www.elektor-magazine.com | June 2013 | 67

harsh environments. SMD products were shown
to be the best under such conditions.
Like the aircraft braking monitoring systems, this
sensor required components with an operating
temperature range from –55 °C to +200 °C, very
good long-term stability, and excellent behavior
during acceleration, vibration, and harsh environ-
ments. The application utilized SMD wraparound
chip resistors.

New regulations
With new regulations aimed at reducing pollution
and saving fuel, more and more high- tempera-
ture applications are showing up. For example,
engine temperatures are monitored so they can
be regulated by a computer. This means electron-
ics can be found inside the engine, where tem-
perature can be very high. Taking into account
that the average life of an aircraft is 25 to 30
years, the load-life stability of the components
used at high temperatures is a key parameter for
aeronautics applications. The goal is to find the
best compromise between handling the power
and enhancing long-term stability.
Likewise, sensors can be used to measure tem-
perature of helicopter turbines.

Thermal management
Referring to Figure 1, resistor manufacturers
need only take care of Rth(jsp), but must carefully
consider their choice of material, the resistor
pattern, terminations, etc. Manufacturers who
also improve thermal stability can offer resistors
that can withstand higher and higher tempera-
tures without undergoing significant drifts. This
removes limitations on Tj.
The control of all the others parameters — namely
Ta, Pd, and Rth(spa) — are addressed by the cus-
tomer’s assembly designers. Designers must take
the PCB material, the thickness and layout of
the copper tracks, the cooling system, and the
interaction between surrounding components into
consideration.

A poor thermal management might induce melt-
ing or reduced reliability of the solder joints;
reduce PCB performance (even burn-out); and
lower chip resistor performance.

Rth(jsp) and experimental data
To use the thermal model above, manufacturers
need to provide Rth(jsp) for standard termination
parts, in addition to experimental data relevant
to chip resistors of standard sizes mounted on
various PCBs. These PCB should be chosen to
represent the standard and best cases in terms
of thermal resistance.
In the experimental data collected in Table 1,
we have:
•	PCB sCu — A PCB with a thickness of 1.6

mm, double sided, 35 μm thick copper
(minimum), at least 50 % copper coverage
both sides

•	PCB MCu — A PCB with a thickness of 1.6
mm, double sided, 70 μm thick copper
(minimum), at least 80 % copper coverage
both sides

•	Temperature versus drift was plotted against
time and appears in Figure 1.

Derating curve
of a basic thermal model
The derating curve in Figure 2 is a representa-
tion of a basic thermal model:

PCB

Tj

Ta

130139 - 11

Rth(jsp)

Rth(spa)

Solder pad

SolderFilm resistorLeads

Figure 1.
Thermal parameters for a
wraparound chip resistor.

Table 1. Load-Life drifts after 15,000 hours at various temperatures (experimental data).

Size Rth(jsp) (°C/W)
PCB sCu PCB Mcu

Rth(ja) (°C/W) Rth(ja) (°C/W)

0603 27 200 67

1206 20 110 60

2010 12 95 52

2512 11 95 51

•Industry

68 | June 2013 | www.elektor-magazine.com

The first way to use the derating curve is to
check the maximum power rating that can be
applied at a given temperature. For instance, if
a customer uses the best assembly (52 °C/W),
the maximum power at +200 °C will be 0.57 W.
The second way is to reduce drifts by limiting
the temperature at the surface of the resistor.
In this example, the best assembly is used, but
the customer limits the power to 0.32 W. This
moves the 52 °C/W curve down and the junction
temperature will be +215 °C instead of +230 °C
as with the 52 °C/W curve.

Conclusion
From an analysis of temperature-induced drifts,
we have pointed out some specific features of
our thin film resistors that give them advantages
for high-temperature applications.

The irreversible drifts other than load life are neg-
ligible. The load-life drift depends on Tj, however
it is reached; by pure ambient temperature or the
sum of ambient temperature and power dissipa-
tion (Tj = Ta + Rthja x Pd). This is valid, provid-
ing some Pd limitations given in the datasheets.
From an analysis of actual stability data and drifts
versus time for various temperatures, it is obvi-
ous that even for Tj as high as +230 °C, drifts
are under control and rather predictable from
manufacturing data processes.

To help assembly designers we developed a ther-
mal model showing thermal resistance figures
necessary to use this model. The derating curves
illustrate how good thermal management leads
to load-life drift minimization.

From the above derating curves, it is clear that
the load-life stability of the resistor or of the resis-
tor network is enhanced by properly controlling
the temperature at the surface of the resistor,
thus increasing the life of the components in
extreme operating conditions. Such conditions
are becoming more common as electronics in
aeronautics applications move closer to their
functions.

(130139)

Tc = Ta + Rth x Pd

where
Tc = temperature to be controlled;
Ta = ambient temperature;
Pd = maximum allowed power dissipation;
Rth = thermal resistance between the surface of
the resistor at temperature Tc, and the ambient.

The model can be written as Pd = (Tc – Ta) / Rth.
Per Table 1 we get: Rthja = 52 °C/W for a P2010
chip on a MCu PCB, and Rthja = 95 °C/W for a
P2010 chip on an sCu PCB.

Using the derating curve
Providing Tj max = +230 °C, the maximum power
dissipation of the resistor at Ta = +200 °C will be:

•	0.57 W for Rthp = 52 °C/W — This is the best

assembly.
•	0.32 W for Rthp = 95 °C/W — This is the

standard assembly.

1.8
2

1.6
1.4
1.2

1
0.8
0.6
0.4
1.2

0

130139 - 12

t (h)

Dr
ift

 (%
)

20000 4000 6000 8000 10000 12000 14000

With Pd (Tj = 230˚C) T = 185˚C T = 200˚C T = 215˚C T = 230˚C

1.2
1.1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
165 170 175 180 185 190 195 200 205 210 215 220

130139 - 13

225 230 235 240

Ta (˚C)

52˚C/W 95˚C/W 0.32/52˚C/W

P
(W

)

Figure 2.
High-temperature drift vs.
time.

Figure 3.
Example of a derating curve
(P2010).

powered by Eurocircuits

25% Discount on new Elektor PCBs

Benefit now: Elektor PCB Service offers a permanent
90-day launch discount on new Elektor PCBs!

Check www.elektor.com/pcb for an overview of all Elektor PCBswww.elektor.com/pcbwww.elektor.com/pcb for an overview of all Elektor PCBs

Further information and ordering at www.elektor.com/eagle

EAGLE V6 Getting Started Guide
Learning to fly with Eagle

This book is intended for anyone who wants an introduction to the capabilities of
the CadSoft’s EAGLE PCB design software package. After reading this book while
practicing some of the examples, and completing the projects, you should feel
confident about taking on more challenging endeavors.

The book will quickly allow you to:
• obtain an overview of the main modules of EAGLE: the schematic editor; layout

editor and autorouter in one single interface;
• learn to use some of the basic commands in the schematic and layout editor

modules of EAGLE;
• apply your knowledge of EAGLE commands to a small project;
• learn more about some of the advanced concepts of EAGLE and its capabilities;
• understand how EAGLE relates to the stages of PCB manufacture;
• create a complete project (a proven design from

the engineering team at Elektor), from design
through to PCB fabrication.

208 pages • ISBN 978-1-907920-20-2 • $47.60
Incl. CD-ROM containing EAGLE 6.4.0 for
MS Windows, Linux and Mac

www.elektor.com/eaglewww.elektor.com/eaglewww.elektor.com/eagle

10% OFF for GREEN and GOLD Members

NEW
BOOK

www.elektor.com/eaglewww.elektor.com/eaglewww.elektor.com/eagle

Naamloos-4 1 02-05-13 15:23

•Industry

70 | June 2013 | www.elektor-magazine.com

The guys at iFixit have been accused of favoring one
fruit above all others. Now, to show some apprecia-
tion towards other members of the fruit family, they
decided to test the accessibility, repairability, and
end-of-life design of the Orange.

The Orange is a fickle fruit. Believed to be the hybrid
between a pomelo and a mandarin, the team at
iFixit had no luck opening it with a guitar pick, plas-

tic opening tool, tech knife, ruler, pair of tweezers,
or even an iSesamo! After almost losing all hope, a
tool descended upon them from the repair heavens,
with Morgan Freeman’s voice booming throughout our
teardown room. They called it the oOpener!

The Orange received a first-ever 0 out of 10 Repair-
ability Score for a variety of reasons, but mainly
because it’s... an orange. Lest you think that IFixit
is biased against oranges, note that users will have
to break its outer case in order to open it, the device
is impossible to reassemble, and the internal com-
ponents are filled with acid. Sounds like a bad time
all around.
Some people may have tried the teardown at home
with mild to moderate success. They can celebrate
their success with an Orange Teardown t-shirt! Or if
they’re having technical difficulties with their Orange,
they can make sure they’ve identified their Orange
correctly, and then visit iFixit’s Orange Troubleshoot-
ing Guide to figure out what’s going on. Or perhaps
they just need the right tool for the job.

Having no luck with our vast array of poking, prodding,
and prying tools, a little more heat might be neces-
sary... But it turns out keeping a heat gun on the same
spot for too long will damage the outer layer of the peel
beyond repair. If you’re not extremely cautious, you will
find yourself in need of a new outer peel.

As an added bonus, the Orange comes with a free
accessory, the Orange Peel — an amusing, Slinky-like

contraption, guaranteed to deliver hours of fun.
All ten major internal components of this device are
easily removable. However, iFixit are worried that
they might not go back together as easily as they
come apart, a common problem in fruit repair.
Though the Orange’s repairability is highly question-
able, iFixit do admire its end-of-life design. It is com-
pletely recyclable, compostable, and delicious-able.
We hope that devices like this will someday catch the
attention of other device manufacturers and help keep
electronics out of landfills... unless they are composta-
ble, of course!
Navel Oranges have small, sterile seeds that can-
not be used to reproduce more Oranges — a cutting
from an existing fruit-bearing tree must be grafted
to another tree. This is the most advanced anti-piracy
DRM measure iFixit have seen, definitively ensuring
that Orange owners won’t be able to produce copies
of their Orange to share with their friends.

www.ifixit.com/Teardown/Orange+Teardown/13470/1
(130028-IV)

iFixit (!) admit defeat to Orange repairability

news & new products

www.elektor-magazine.com | June 2013 | 71

Model car sector gets
processing power and
software flexibility
Nordic Semiconductor ASA announced that
Taiwanese original design manufacturer
(ODM), Relight Technologies, has selected
the nRF51822 Bluetooth® low energy and
2.4 GHz proprietary System-on-Chip (SoC)
and the nRF24LE1 SoC as the basis of a
high-end remote control model car radio
transmitter. Relight’s “Smart-Tx” is one of the
most advanced surface radio transmitters for
remote control model car drivers.
The nRF24LE1, a proven 2.4 GHz ULP SoC
used in millions of devices worldwide powers
the wireless link between the transmitter and
vehicle. Relight selected the chip because of its
robust RF performance and because it can be
programmed with the ODM’s own RF software
protocol that has been specifically designed to
cope with the demands of remote control cars
used by enthusiasts. These vehicles can reach
speeds approaching 60 mph and are often
surrounded by many other remote control
vehicles, so range, low latency, and interference
immunity are essential requirements for the
wireless link.

The remote control handset also employs Nor-
dic’s nRF51822 SoC. Apart from its superior RF
performance and ultra-low power consumption
(–92.5dB RX sensitivity in Bluetooth low energy
mode and sub-10mA peak currents when run-
ning off a 3 V coin cell battery), Relight selected
the chip for two key reasons: Seamless con-
nectivity with smartphones, and because the
device’s powerful 32-bit ARM® Cortex™-M0

based processor features ample computing overhead
to cope with the complex remote control algorithms.

In addition to providing the remote controller’s com-
puting capability, the nRF51822 powers the wireless
link between controller and smartphone that relays
the user’s set-up instructions after they have been
selected using the app. The iPhone is a Bluetooth
Smart Ready product, ensuring it is interoperable
with any Bluetooth Smart product. A Bluetooth low
energy radio — as integrated into the nRF51822 — is
a prerequisite for a Bluetooth Smart product.

www.nordicsemi.com
(130028-XI)

Ad
ve

rti
se

m
en

t

•Industry

72 | June 2013 | www.elektor-magazine.com

RFICs flying in Globalstar communication satellites
Peregrine Semiconductor UltraCMOS® Phase Locked Loop (PLL) frequency synthesizer and prescaler devices are
designed into six Globalstar mobile communication satellites that were launched into orbit on February 6, 2013.
Built by Thales Alenia Space in France, the low-Earth orbit satellites transmit audio and data communications for

Globalstar’s mobile voice and data customers worldwide. Peregrine’s PLL and
prescaler enable communication in sixteen C- and S-band transponders in the
system, which connects end users with terrestrial communication networks via
vehicle-mounted mobile devices, as well as fixed terminals, such as those used
for rural telephony. The Peregrine devices feature extremely low phase noise
and Single Event Effect (SEE) immunity — attributes enabled by the insulating
properties of the UltraCMOS process.
Single Event Effects are errors that are caused by naturally-occurring space-
based radiation. There are two primary types of SEEs. Single Event Upsets
(SEUs) are non-destructive and can be corrected. Single Event Latchups (SELs),
on the other hand, are often catastrophic, resulting in permanent damage and
requiring, at a minimum, a power-down to recover. SELs can occur when a
high-energy particle strikes a semiconductor device, causing a short circuit
from power to ground within the device. RFICs manufactured using UltraCMOS
technology do not contain the bulk parasitics found in regular CMOS devices,
making latchup impossible.

Peregrine’s UltraCMOS technology is an advanced RF Silicon-On-Insulator process that utilizes a synthetic sapphire
substrate — a near-perfect electrical insulator. This substrate enables low parasitic capacitance, high signal
isolation, excellent broadband linearity, and inherent SEL immunity. These attributes make UltraCMOS well suited
for high-reliability applications, such as commercial satellites.

www.psemi.com (130028-X)

New industrial analog I/O server
Lantronix’® newest member of its xSensoTM analog sensor networking family
is designed specifically for use in rugged and harsh environments including
industrial automation, process control, manufacturing, chemicals, oil and
gas industries, and many more. The new analog and relay outputs provide
the ability to take action by instantly controlling industrial processes and
equipment based on the sensor readings and predefined thresholds to solve
real-time problems. The Lantronix xSenso product family comprises feature-
rich, low cost solutions for remote sensor monitoring and process control.
The new xSenso Controller is a compact, DIN-rail or wall mount solution that
enables analog sensors (voltage or current) to easily and transparently send
real-time data to any node on the Internet or to a cloud-based application.
In addition to its already robust feature set, the new xSenso can take action
when a condition is met (e.g., temperature threshold, pressure level, etc.),
triggering its internal relays or outputting voltage or current to control an
event in real time. In an existing control system, the xSenso can also be
placed in between the sensor and the controller to mirror the analog data
from its input to its output, while simultaneously presenting the data through

a web browser to computers or mobile devices.
The product family is compatible with some of the most popular off-the-shelf data acquisition systems such as LabVIEW™ and DASYLab™,
and its compact and efficient design enables it to be affordably installed in dispersed or remote locations.

www.lantronix.com (130028-VI)

www.elektor-magazine.com | June 2013 | 73

Wide-temperature ARM system on module

EMAC, Inc. introduces the SoM-9X25, a wide temperature System on Module (SoM) based
on the Atmel AT91SAM9X25 processor. Designed and manufactured in the USA; this wide
temperature, fanless ARM9 400 MHz SoM has an Ethernet PHY included along with 6 serial
ports with auto RS-485 provision. It utilizes up to 1GB of NAND Flash, 8MB of serial data
flash, and up to 128MB of DDR2 RAM. A SoM is a small embedded module that contains the
core of a microprocessor system.

Using the same small 144 pin SODIMM form-factor (2.66” x 1.5”) utilized by other EMAC
SoM modules, the SoM-9X25 is the ideal processor engine for your next design. All of the
ARM processor core is included on this tiny board including: flash, memory, serial ports,
Ethernet, SPI, I2C, I2S audio, CAN 2.0B SDIO, PWMs, timer/counters, A/D, digital I/O lines,
video, clock/calendar, and more.
The SoM-9X25 is designed to plug into a carrier board that contains all the connectors and
any custom I/O required for the application. This approach allows the customer or EMAC to
design a custom carrier board that meets the customer’s I/O, dimensional, and connector
requirements without having to worry about the processor, memory, and standard I/O

functionality. With this System on Module approach, a semi-custom hardware platform can
be developed in as little as a month.
In addition to the option of the developing a Carrier board, one can be purchased off-the-
shelf from EMAC. EMAC provides off-the-shelf Carrier boards that feature A/D, D/A, MMC/SD
card, keypad, LCD, audio, and modem interfaces. The recommended off-the-shelf carrier
board for the SoM-9X25 is the SoM-150ES which allows the user to immediately start
coding their application using the powerful Linux or WinCE operating system and tools.
The System on Module approach provides the flexibility of a fully customized product at a
greatly reduced cost.
EMAC provides a Free Eclipse IDE for Linux development. All the compiling, linking,
downloading, and debugging inherent to software development can be done from one
easy to use high level interface. When developing for Microsoft Windows CE 6.0 applications,
Microsoft Visual Studio 2005/2008 can be utilized. Both Visual Studio and Eclipse provide
everything the user needs for developing SoM-9X25 applications. EMAC provides an SDK for
the SoM-9X25, which contains source examples and drivers. Quantity 1 price for SoM-9x25
starts at $180.

www.emacinc.com/som/som9x25.htm
(130028-IX)

Ad
ve

rti
se

m
en

t

•Magazine

74 | June 2013 | www.elektor-magazine.com

By Peter Beil (Germany)

One of the earliest calculating machines
is the one built by Gottfried Leibniz in
around 1700 (Figure 1). However, a
couple of hundred years passed before
calculating machines were able to carry
out logical operations directly. The
resourceful thinker and inventor Konrad
Zuse (Figure 2) built his Z1 in 1938. This
was a fully-fledged (albeit mechanical)
computer. (The term ‘computer’ derives
from the Latin for ‘reckon together’ or
‘calculate’.) The machine was freely pro-
grammable and calculated using binary
values. The original was destroyed in the
war, but a replica has been made and is
on show in the Deutsches Technikmu-
seum (German Technology Museum) in
Berlin (Figure 3).

Z1: a troubled start
The Z1 computer was based on logi-
cal functions such as ‘and’ and ‘or’,
these functions being computed purely
mechanically! The machine had a consid-
erable number of infelicities arising as a
result of mechanical tolerances, friction
and so on, and the switching elements
often jammed. One advantage the Z1
had over more recent computers is that
its storage was completely non-volatile:

modern machines can only emulate such
a feature indirectly.
Konrad Zuse had seen that the only way
to make the required operations tech-
nically feasible in his computer design
was to use the binary system. This was
in sharp contrast to the researchers and
pioneers in the USA and in Great Britain,
who initially preferred to use the decimal
system.

Z2, 16 bit @ 10 Hz
The mechanical problems with the Z1
prompted Zuse to try an experiment:
in 1939 he designed the Z2, employing
several hundred telephone relays (Fig-
ure 4). It ran at a clock frequency of
approximately 10 Hz, and provided the
four basic arithmetic operations on fixed-
point binary numbers. It sported sixteen-
bit memory and weighed around 300 kg
(660 lb).

Z3: data from filmstrip
In May 1941 Zuse demonstrated his Z3,
the first viable digital computer (Fig-
ure 5). This used 600 relays in the arith-
metic unit and a further 1400 relays in the
memory unit. Like the Z1, it used binary
floating-point arithmetic, and it was the
first universal programmable computer.

Konrad Zuse’s
Z1 through Z4, and Beyond
It all began with zeroes,ones
and algebra
Ever since the earliest days of mathematics and logical thought,
people have tried to find ways to simplify the repetitive work involved.
Based on an understanding of logical functions and relationships vari-
ous highly sophisticated calculating machines were developed. This
article takes a tour of Konrad Zuse’s impressive contributions to the
development of the computer.

1

2

3

4

5

www.elektor-magazine.com | June 2013 | 75

Reportedly Zuse had a friend working at
UFA (a large German film studio) who
gave him the idea of using punched film-
strip as an input medium.
Punching the filmstrip was done directly
on the unit (Figure 6). There was also
of course an accompanying reader:
this used the sprocket holes in the film
to obtain precise alignment with the
punched holes representing the input
data (Figure 7).
The original of the Z3 was also destroyed
in the war, but a fully-functional replica
is on display at the Deutsches Museum
(German Museum of Science and Tech-
nology) in Munich. The replica was made
by (now dissolved) company Zuse KG. A
glance at its innards reveals a phenom-
enal amount of wiring, a rotary switching
mechanism to generate clock signals, and
stepping relays, as subsequently used in
telephone dialing systems (Figures 8, 9
and 10). The machine operated on 22-bit
words, comprising a seven-bit exponent,
a 14-bit mantissa and a sign bit. It had
relay-based storage for 64 words, and
programs always ran in a loop. Num-
bers could be entered using a keyboard
(Figure 11), and results appeared in
a display area using small lamps (Fig-
ure 12). As well as the four basic arith-
metic operations, the Z3 also offered a
square root function.

Z4: still all mechanical
In 1942 Zuse began work on the Z4,
which was first ready for use in 1945
(Figure 13). This machine was also
based on relays and found itself in
competition with the American ‘Mark I’
(1944) and ‘ENIAC’ (1946). However,
these operated on different principles,
for example using valve technology and
decimal representations (Figure 14,
Einiac 1946).
Like the Z3, the Z4 was very similar
in many ways to today’s computers. It
could execute loops, offered floating-
point arithmetic with a 24-bit mantissa,
a 7-bit exponent and a sign bit (and
hence a basic 32-bit word length), and
two simultaneously-operating arithme-
tic units. As well as the basic arithmetic

operations it could calculate squares and
extract roots. The Z4’s instruction set
consisted of a total of 29 instructions.
An electric printing device was connected
to it, but it was not what we would now
recognize as a ‘printer’ but rather was
used to produce logs of the machine’s
computations (Figure 15).
Programs were again entered using
punched filmstrips (Figure 16). ‘Stor-
age’ in the modern sense was not pos-
sible, and interrupting the power supply
resulted in the loss of all data. Ferrite
core memory was not to appear on the
scene until the middle of the 1950s.
The Z4 was capable of about 30 opera-
tions per minute: an addition took half
a second and a multiplication about 3.5
seconds. Work had started on various
refinements, such as program branches
and index registers for address calcula-
tions, but these were lost in the chaos
of war.

Programming language and
post-war developments
It is not widely known that Konrad Zuse
was already at that time aware of the
need for a high-level programming lan-
guage. In 1945 and 1946 he developed
‘Plankalkül’ (‘formal system for plan-
ning’) but he was not able to publish
his results. The work foreshadowed more
modern programming languages such as
Fortran, ALGOL and COBOL.
In the years immediately following the
war the Z4 went on something of an
odyssey through Germany, Switzerland
and France. IBM (among others) was
interested in acquiring the intellectual
property rights with the aim of hampering
further development of the machine. By
the 1950s the machine found itself at the
ETH (Swiss Federal Institute of Technol-
ogy) in Zurich where it was employed to
help with scientific research problems:
in 1950 it was the only computer oper-
ating in continental Europe. In 1960 the
machine completed its travels, coming to
rest in the Deutsches Museum in Munich.
The Zuse company continued to make
scientific mainframe computers for
several years, and in 1961 produced the

6

7

8

9

10

•Magazine

76 | June 2013 | www.elektor-magazine.com

first ever fully-functional plotter in the
form of the ‘Graphomat’. However, the
small company was unable to withstand
the overwhelming competition from the
United States and in 1964 was taken
over by BBC (Brown Boveri & Cie.) and
then in 1967 by Siemens AG.

 (130040)

Acknowledgements

Photographs 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 15, 16 by the author, with the per-
mission of the Deutsches Museum in
Munich:

Photograph 14: wikipedia.de

Photograph 3: German Technology Mu-
seum, Berlin

Photograph 2: Prof. Horst Zuse

Retronics is a monthly section
covering vintage electronics
including legendary Elektor designs.
Contributions, suggestions and
requests are welcome; please
telegraph editor@elektor.com

How a computer like the Z3 ‘thinks’
Each operation ultimately
comes down to the addition or
subtraction or two integers.
Two floating-point numbers
are added as follows. First
the difference between the
exponents is calculated; then
this value is used to shift one
of the mantissas to align the
binary points; and then the
aligned mantissas are added.
Subtraction is performed
similarly, with an additional step
where the two’s complement of the second mantissa is taken.
Multiplication is done by adding the two exponents and then multiplying the
mantissas using an iterative addition method.
Division is similar to multiplication: the exponents are subtracted and the
mantissas then divided using an iterative subtraction method.
Square roots are calculated using an iterative method similar to division.
At a high level the arithmetic unit consists of two parts, one dealing with
calculations on the exponents and one with calculations on the mantissas.
Instructions that are implemented using an iterative algorithm require a
sequencer to drive the separate parts of the machine: this roughly corresponds
to the use of microcode in modern processors.

K. Zuse (l) and H. Nixdorf

11

12

13

14

15 16

All books are now 15% off.
From assembly language to microprocessor design, embedded Linux to C programming,

these tools will help you master any engineering challenge.

For professionals, academia, and enthusiasts alike,

CC-Webshop’s collection of audio and electronics

engineering books will help take your ideas

from concept to creation.

Offer ends 6/30/13

www.cc-webshop.com

 Spring into summer
savings event!

Naamloos-5 1 29-04-13 09:44

•Magazine

78 | June 2013 | www.elektor-magazine.com

Hexadoku Puzzle with an electronic touch
This Hexadoku puzzle doesn’t require anything remotely resembling a Zuse “Retronics” computer to crack. Logic

reasoning, concentration and patience should do the trick and produce the solution. So go ahead entering the right

numbers or letters A-F in the open boxes, find the solution in the gray boxes, submit online, and you automatically

enter the prize draw for one of four vouchers.

The Hexadoku puzzle employs numbers in the hexadecimal
range 0 through F. In the diagram composed of 16 × 16 boxes,
enter numbers such that all hexadecimal numbers 0 through F
(that’s 0-9 and A-F) occur once only in each row, once in each
column and in each of the 4×4 boxes (marked by the thicker

black lines). A number of clues are given in the puzzle and
these determine the start situation.

Correct entries received enter a prize draw. All you need to do
is send us the numbers in the gray boxes.

Solve Hexadoku and win!
Correct solutions received from the entire Elektor readership
automatically enter a prize draw for one Eurocircuits PCB voucher
worth $140.00 and three Elektor book vouchers worth $60.00 each,
which should encourage all Elektor readers to participate.

Participate!

Before July 1, 2013, supply your personal details and the solution
(the numbers in the gray boxes) to the web form at

www.elektor.com/hexadoku

Prize winners
The solution of the April 2013 Hexadoku is: 934CB. The Eurocircuits $140.00 voucher has been awarded to David Smart (USA).

The Elektor $60.00 book vouchers have been awarded to Joseph Reding (Luxembourg), Karsten Krummeich (Germany), and Paul Blaak (Netherlands).

Congratulations everyone!

The competition is not open to employees of Elektor International Media, its business partners and/or associated publishing houses.

9 C 2 4 B D E F 7 6 A 0 5 8 3 1
5 E B D 3 1 A 9 4 F 8 C 6 7 0 2
A F 3 0 8 4 6 7 D 1 2 5 E 9 B C
6 1 7 8 C 0 5 2 E 3 9 B 4 A D F
7 B 6 E 4 A F 1 9 8 0 3 C D 2 5
8 D 9 3 5 2 B 0 6 A C 1 7 E F 4
C 0 1 F 6 8 7 E 5 4 D 2 A B 9 3
2 A 4 5 9 C D 3 F 7 B E 8 0 1 6
3 2 8 1 A 5 0 D B C E F 9 6 4 7
B 4 5 7 E F 8 6 0 2 3 9 1 C A D
D 6 F A 2 7 9 C 1 5 4 8 B 3 E 0
E 9 0 C 1 3 4 B A D 6 7 F 2 5 8
F 3 E B 7 6 C A 2 0 5 4 D 1 8 9
0 5 C 6 D E 1 8 3 9 F A 2 4 7 B
1 8 A 2 F 9 3 4 C B 7 D 0 5 6 E
4 7 D 9 0 B 2 5 8 E 1 6 3 F C A

Gerard's Columns•

www.elektor-magazine.com | June 2013 | 79

By Gerard Fonte (USA)

The Leading Edge
Everyone likes to be at the forefront of technology. Using all
the latest gadgets and applying all the latest ideas. Unless
you’re a company and you have to rip up and throw away all
the old technology for the newest. That’s expensive. And will
it really give you the edge? Or is this just a fad that you’ll
regret in a year or so?
Re-training the engineers and technicians and assemblers is
not cheap. And then there are all those technical issues. Your
engineers haven’t designed this type of system before. What
problems will arise? Worse, what problems will go unseen
until the product has been marketed for a year or so? It’s
not called the “Bleeding Edge” for nothing. This is where
the company hemorrhages capital and time for a perceived
advantage somewhere in the future. If it works, it’s brilliant.
If it doesn’t, pass out the parachutes.
In the 1950’s atomic power was The Thing. Ford developed
the 1958 concept car called the Nucleon that was to operate
on a small atomic fission reactor (similar to those used on
submarines). Can you imagine the results of millions of
unlicensed nuclear reactors tearing across the US, getting
into accidents and spilling their nuclear fuel? The idea seems
mind-boggling today. In 1954 RCA considered an atomic battery
for use with hearing aids. What could possibly go wrong with
strapping a radioactive device to your head for 12 hours a
day—for the rest of your life?
Today’s Thing is cloud computing. There’s all this “excess
hardware and software” that’s just sitting around and not being
used. Why not take advantage of all these cheap resources?
You don’t have to expand your own facilities. All you have to do
is rent them cheaply on the internet. No re-training costs, no
hardware costs, no added personnel. You get instant leading-
edge technology with no risk and fantastic benefits. It seems
like a no-brainer decision. (For reference, atomic power was
billed as being “too cheap to meter.” That’s right—free energy.)

The Fine Print
Except you no longer have control of your data and software.
Someone else does. If you are just playing a game on-line,
control probably isn’t very important. The worst that could
happen is that your avatar could face an untimely and
unexpected termination. But what about your proprietary design
information or financial records? You are now dependent on
another party to keep your data safe and sound.
Of course the companies that supply cloud-computing resources
take a great deal of effort to maintain the highest security for
their data. They usually make at least a second copy of your

data in case of a hardware failure. They have major assets in
place to prevent unauthorized access and infection from viruses
and malware. After all, this is their business. And if they can’t
maintain security, they know that they will be quickly out
of business. However, these companies are probably much
larger targets for hackers than your company. And it’s hard
to protect against a virus that’s completely new. So, it’s really
not a simple task to estimate your risk.
Like anything new, it will take time to determine the precise
characteristics of the cloud. It will probably take five to ten years
for the market to mature to a point where the uncertainties
are small, the weak companies disappear and standards are
set. For example, suppose you are late with a payment. Can
the company withhold your data and cripple your company?
What happens if they go bankrupt? There are many nightmare
scenarios that are limited only by the imagination. Of course,
it’s hard to say what’s realistic and what isn’t.

Change in Infrastructure
However, there is a somewhat subtle aspect that is not always
considered when employing Cloud Computing. Fundamentally,
the company is out-sourcing part of the Information Technology
(IT) Department. This may be good or not. It depends on the
company and the IT Department. The problem is that the out-
sourcing is not obvious. What’s more, it starts the company
down a path that is difficult to reverse.
When a company out-sources product assembly or accounting,
the action is clear. Work is being shifted from inside the company
to a different company. But with the cloud, the IT department
just orders some new software. Everything seems the same.
Yet, as time passes, more and more applications and data are
being quietly shifted off-site. After a while, the on-site hardware
and software requirements are significantly reduced. The IT
department will shrink and personnel may be let go for lack
of work. Quite possibly, the IT department will morph into a
service department that interfaces the company to the cloud
supplier. Again, this may or may not be good for the company.
The important point is that all of the consequences of moving
to the cloud need to be foreseen and considered before any
action is taken. And it seems that it is often the case that the
IT department sows the seeds of its own dissolution without
realizing it.
Further, you can now see that trying to extract yourself from the
cloud is not an easy thing to do. You will have to invest heavily
in hardware and software, hire and re-train IT professionals
and basically re-invent the wheel. Once you’re in the cloud it’s
hard to get back to earth.

 (130182)

In The Clouds

1

2

3

4

5

1

3

2

4

•Store

80 | June 2013 | www.elektor-magazine.com

OS Hard- and Software for Electronics
Applications

Open Source
Electronics on Linux

If you have ever wanted to take advantage of the
expanding field of open source software for electronics
and everyday applications, this book is for you. Using
the Linux OS, Warwick A. Smith guides you through the
world of open source hardware and software, teaching
readers to use EDA tools and software that is readily
available online, free to download. The hardware
projects inside can be built using easily obtainable
parts, in the comfort of your own home, on single sided
PCBs, or professionally manufactured with output files
generated by you. Open Source Electronics on Linux
is about changing today’s electronics enthusiast into
empowered, savvy, discerning engineers capable of
building and modifying their creations, be it solely on
Linux or in tandem with your current operating system.
272 pages • ISBN 978-1-907920-19-6
$47.60

Programming step-by-step
Android Apps

This book is an introduction to programming apps
for Android devices. The operation of the Android
system is explained in a step by step way, aiming to

show how personal applications can be programmed.
A wide variety of applications is presented based
on a solid number of hands-on examples, covering
anything from simple math programs, reading
sensors and GPS data, right up to programming
for advanced Internet applications. Besides writing
applications in the Java programming language, this
book also explains how apps can be programmed
using Javascript or PHP scripts. When it comes to
personalizing your smartphone you should not feel
limited to off the shelf applications because creating
your own apps and programming Android devices is
easier than you think!
244 pages • ISBN 978-1-907920-15-8
$56.40

A whole year of Elektor magazine on a single disk
DVD Elektor 2012

The year volume DVD/CD-ROMs are among the most
popular items in Elektor’s product range. This DVD-ROM
contains all editorial articles published in Volume 2012
of the English, American, Spanish, Dutch, French and
German editions of Elektor. Using the supplied Adobe
Reader program, articles are presented in the same
layout as originally found in the magazine. An extensive
search machine is available to locate keywords in any
article. With this DVD you can also produce hard copy

of PCB layouts at printer resolution, adapt PCB layouts
using your favorite graphics program, zoom in / out
on selected PCB areas and export circuit diagrams and
illustrations to other programs.
ISBN 978-90-5381-273-0 • $37.90

Display, buttons, real time clock and more
Elektor Linux Board
Extension

This extension board was developed to further
propel our Embedded Linux series of articles and the
matching GNUblin board. It has a display, buttons,
a real time clock and 16 GPIOs. Linux devotees,
switch on your solder irons. The Linux extension
board includes everything needed to provide the user
interface for a wide variety of projects!
Module, SMD-populated and tested board, incl.
LCD1, X1, K1-K4, BZ1, BT1 for home assembly
Art.# 120596-91 • $50.20

Taming the Beast
FPGA Development Board

FPGAs are unquestionably among the most versatile but
complex components in modern-day electronics. An
FPGA contains a maze of gates and other circuit elements
that can be used to put together your own digital circuit

Limited Time Offer for GREEN and GOLD Members!
13% DISCOUNT + FREE SHIPPING

www.elektor.com/june

3

1 2

Limited Time Offer for GREEN and GOLD Members!
13% DISCOUNT + FREE SHIPPING

Elektor Store US 06-2013.indd 80 02-05-13 15:24

6

7

8

5

7

8

6

Books, CD-ROMs, DVDs, Kits & Modules

www.elektor-magazine.com | June 2013 | 81

on a chip. This FPGA development board (designed in
the Elektor Labs) shows how easy it is for any electronics
enthusiast, whether professional or amateur, to work
with these programmable logic devices.
Module, ready build and tested Art.# 120099-91
See www.elektor.com/fpgaboard

LabWorX 2
Mastering Surface
Mount Technology

This book takes you on a crash course in
techniques, tips and know-how to successfully
introduce surface mount technology in your
workflow. Even if you are on a budget you too
can jumpstart your designs with advanced fine
pitch parts. Besides explaining methodology
and equipment, attention is given to SMT parts
technologies and soldering methods. Many
practical tips and tricks are disclosed that bring
surface mount technology into everyone’s reach
without breaking the bank. A comprehensive kit
of parts comprising all SMT components, circuit
boards and solder stencils is available for readers
wishing to replicate three projects described in
this book.
282 pages • ISBN 978-1-907920-12-7
$47.60

Sound Secrets and Technology
Electric Guitar

What would today’s rock and pop music be without
electric lead and bass guitars? These instruments
have been setting the tone for more than forty years.
Their underlying sound is determined largely by their
electrical components. But, how do they actually
work? This book answers many questions simply, in
an easily-understandable manner. For the interested
musician (and others), this book unveils, in a simple
and well-grounded way, what have, until now, been
regarded as manufacturer secrets.
The examination explores deep within the guitar,
including pickups and electrical environment, so
that guitar electronics are no longer considered
highly secret. With a few deft interventions, many
instruments can be rendered more versatile and
made to sound a lot better – in the most cost-
effective manner.
287 pages • ISBN 978-1-907920-13-4
$47.60

10 captivating lessons
PIC Microcontroller
Programming

Using the lessons in this book you learn how to
program a microcontroller. You’ll be using JAL, a free

but extremely powerful programming language for
PIC microcontrollers. Assuming you have absorbed
all lessons you should be confident to write PIC
microcontroller programs, as well as read and
understand programs written by other people. You
learn the function of JAL commands such as include,
pin, delay, forever loop, while loop, case, exit loop,
repeat until, if then, as well as the use of functions,
procedures and timer- and port interrupts. You
make an LED blink, build a time switch, measure a
potentiometer’s wiper position, produce sounds,
suppress contact bounce, and control the brightness
of an LED. And of course you learn to debug, meaning:
how to spot and fix errors in your programs.
284 pages • ISBN 978-1-907920-17-2
$47.60

6

on a chip. This FPGA development board (designed in
7the Elektor Labs) shows how easy it is for any electronics
Sound Secrets and Technology

Electric GuitarElectric Guitar
but extremely powerful programming language for
PIC microcontrollers. Assuming you have absorbed

8

7

on a chip. This FPGA development board (designed in Sound Secrets and Technology
Electric GuitarElectric Guitar

Further information and ordering:

www.elektor.com/store
Elektor US
111 Founders Plaza, Suite 300
East Hartford, CT 06108
USA
Phone: 860.289.0800
Fax: 860.461.0450
E-mail: order@elektor.com

Elektor Store US 06-2013.indd 81 02-05-13 15:24

•Magazine

82 | June 2013 | www.elektor-magazine.com

Article titles and magazine contents subject to change; please check www.elektor-magazine.com

Elektor July & August 2013 edition published June 26, 2013

Check out

www.elektor-labs.com
and join, share, participate!

See what’s brewing
@ Elektor Labs 24/7

Next month in Elektor

Elektor Project Generator Edition 2013
Extra-thick edition with an extra bunch of circuits
Next month we publish the 37th edition of Elektor’s famed double edition for the months of July and August. This
loved & collected issue offers a bulk of ideas, projects and practical software in a mix of small and large articles.
Our editors and designers are now burning their midnight oil to make sure you can enjoy lots of pages with
detailed descriptions and inventive electronics applications.

Don’t miss it, this jumbo edition of Elektor packed with articles and projects like:
CAN-checker – ElektorBus-steppermotor control – CDI-ignition for mopeds – Inrush current limiter – Class-D
audio amplifier with 555 – Servo checker – ECG-monitor for Android – USB-power pack – Numitron
Arduino clock – Parking help – Multi-channel temperature logger – IR remote for Android – Extremely
accurate digital clock – Universal precision measurement interface – AVR-USB-keyboard-stick

Ordering Information

www.elektor-magazine.com | June 2013 | 83

ORDERING INFORMATION
To order contact customer service:
Phone: 860.289.0800
Fax: 860.461.0450
Mail: Elektor US
 111 Founders Plaza, Suite 300
 East Hartford, CT 06108
 USA
E-mail: order@elektor.com
On-line at www.elektor.com/store

Customer service hours: 8:30 AM-4:30 PM EST Monday-
Friday. Voice mail available at other times. When leaving a
message please be sure to leave a daytime telephone num-
ber where we can return your call.

PLEASE NOTE: While we strive to provide the best possible
information in this issue, pricing and availability are subject
to change without notice. To find out about current pricing
and stock, please call or email customer service.

COMPONENTS
Components for projects appearing in Elektor are usually
available from certain advertisers in the magazine. If diffi-
culties in obtaining components are suspected, a source will
normally be identified in the article. Please note, however,
that the source(s) given is (are) not exclusive.

PAYMENT
Orders must be prepaid. We accept checks or money orders
(in US $ drawn on a US bank only), VISA, Mastercard,
Discover, and American Express credit cards. We do not
accept C.O.D. orders. We also accept wire transfers. Add $20
to cover fees charged for these transfers.

TERMS OF BUSINESS

Shipping Note: All orders will be shipped from Europe.
Please allow 3–4 weeks for delivery. Shipping and handling
via airmail: $20.00 per order.

Returns
Damaged or miss-shipped goods may be returned for re-
placement or refund. All returns must have an RA #. Call or
email customer service to receive an RA# before returning
the merchandise and be sure to put the RA# on the outside
of the package. Please save shipping materials for possible
carrier inspection. Requests for RA# must be received 30
days from invoice.

Patents
Patent protection may exist with respect to circuits, devices,
components, and items described in our books and maga-
zines. Elektor accepts no responsibility or liability for failing
to identify such patent or other protection.

Copyright
All drawing, photographs, articles, printed circuit boards,
programmed integrated circuits, diskettes, and software car-
riers published in our books and magazines (other than in
third-party advertisements) are copyrighted and may not be
reproduced (or stored in any sort of retrieval system) without
written permission from Elektor. Notwithstanding, printed
circuit boards may be produced for private and personal use
without prior permission.

Limitation of liability
Elektor shall not be liable in contract, tort, or otherwise, for
any loss or damage suffered by the purchaser whatsoever or
howsoever arising out of, or in connection with, the supply of
goods or services by Elektor other than to supply goods as
described or, at the option of Elektor, to refund the purchaser
any money paid with respect to the goods.

MEMBERSHIPS (US & CANADA ONLY)

Order memberships on-line at www.elektor.com/members

All memberships begin with the current issue. Expect 3–4 weeks for receipt of the first issue.
Membership renewals and change of address should be sent to:

Elektor US
P.O. Box 462228
Escondido, CA 92046

E-mail: elektor@pcspublink.com

Memberships may be paid for by check or money order (in US $ drawn on a US bank only). We accept Mastercard, VISA,
Discover and American Express credit cards.

For gift memberships, please include gift recipient’s name and address as well as your own, with remittance. A gift card will
be sent on request. Memberships may be cancelled at any time for a refund of all unmailed issues.

Does your membership expire soon?
Renew it on-line at www.elektor.com/members !

Ordering information US.indd 83 02-05-13 15:27

$25 off

A lifetime of electronics engineering projects, tips,

and analysis, packed onto a portable, USB flash

drive. Keep your archive current with a digital

subscription and download new issue PDFs directly

to the drive! Plus, with 32 GB of storage, there’s plenty

of room for your own notes and projects.

Offer ends 6/30/13

*Complete archive includes all issues in print through time of purchase.

Visit www.cc-webshop.com to purchase.

You’ll have plenty of summer reading
with Circuit Cellar’s CC Gold issues archive.

Naamloos-4 1 29-04-13 09:22

