

COMPUTER

12 Elektor Electronics 4/2002

A CompactFlash card is a small
memory card, originally devel-
oped by Sandisk, with dimen-
sions of approximately 4×4 cm.
Since it uses non-volatile mem-
ory cells, the contents of the
memory are retained for years,
even without a separate source
of power. Such cards are used
particularly often in Digicams.

Presently, the memory capac-
ity can be as much as 1 GBytes.
IBM, by the way, even supplies
mini hard disks in CompactFlash

format with capacities of up
to 1 GBytes.

Figure 1
shows the dimen-
sions and pin
designations of

the CompactFlash
card (which we will

abbreviate to ‘CF card’). Two
different thicknesses are speci-
fied: 3.3 mm for Type I cards and
5 mm for Type II. Most solid-
state cards are Type I, while CF
hard disks are Type II.

CompactFlash Drive
on IDE Bus
solid-state memory for the PC

Design by Paul Goossens

CompactFlash cards are memory media that retain their contents without
a supply voltage. They are used in digital cameras, among other things.
Thanks to the ‘intelligence’ present in such a card, it can also be easily
connected to a PC, for example for use as a ‘solid-state drive’. The super-
simple adapter described here makes it easy to connect all types of
CompactFlash cards to a PC.

COMPUTER

134/2002 Elektor Electronics

The prices of CF cards have dropped
sharply in the last year, so you can presently
buy a card with a capacity of 64 MBytes for
less than £ 60.

Internally, a CF card consists of a number
of memory modules driven by a their own
controller. Data input and output take place
in parallel, just as with a hard disk. Thanks to
this ‘intelligent’ design, such a card can eas-
ily work together with a microcontroller sys-
tem or PC.

PCMCIA adapters are available to allow
CF cards to be used with notebooks. These
are actually nothing more than extenders for
the connection bus.

There is a wide variety of commercially
available card readers, fitted with USB, ser-
ial-port or parallel-port connectors, to allow
CF cards to be used with PCs.

Given the affordable prices and non-
volatile memory characteristics of CF cards,
it is unquestionably interesting to use such a
card as an extra storage medium for the PC,
for instance as a replacement for the floppy-
disk drive. For this, you do not even have to
buy a separate reader, since the circuit
described in this article provides a much sim-
pler solution.

Passive circuit
The intelligence present in the card allows it
to be used in three different modes. One of
these is the ‘true IDE mode’, which is
obtained by connecting pin 9 to ground. In
this mode, the external behaviour of the card
is the same as that of a hard disk drive with
an IDE interface. The only other thing we
need is a sort of adapter with two connectors
to allow the CF card to be connected to the
IDE bus of the PC.

The schematic diagram of this adapter cir-
cuit is shown in Figure 2. It primarily consists
of two connectors, augmented by some pas-
sive components. K1 is the connector for the
IDE bus, while K2 provides the connection to
the CF card.

The remaining components can be quickly
described. LED D1 makes the read and write
activities of the CF card visible, with R1
determining how much current flows through
the LED. Pin 39 of the CF connector is con-
nected to +5 V via resistor R2. This makes
the CF card act as a ‘master’ on the IDE bus.
If pin 39 is connected to ground by means of
jumper JP1, the CF card will act as a ‘slave’
on the bus. The two capacitors C1 and C2
decouple the supply voltage.

There is yet another connector (K3) on the
circuit board; it is used to connect the supply
voltage. In spite of the fact that the CF card
needs only +5 V and ground, a four-way con-

TOP

1 25

26 50

1.01

41.65

42.67

1.01

0.99

36
.3

9

1.60

measurements in mm

024032 - 12

Figure 1. CompactFlash card dimensions and pin designations.

Figure 1: Pin designations
Function Pin Pin Function

GND 1 26 CD1
D03 2 27 D11
D04 3 28 D12
D05 4 29 D13
D06 5 30 D14
D07 6 31 D15
CE1; CE1; CS0 7 32 CE2; CE2; CS1
A10 8 33 VS1
OE 9 34 IORD
A09 10 35 IOWR
A08 11 36 WE
A07 12 37 RDY; BSY; IREQ; INTRQ
VCC 13 38 VCC
A06 14 39 CSEL
A05 15 40 VS2
A04 16 41 RESET; RESET; RESET
A03 17 42 WAIT; WAIT; IORDY
A02 18 43 INPACK
A01 19 44 REG
A00 20 45 BVD2; SPKR; DSAP
D00 21 46 BVD1; STSCHG; PDIAG
D01 22 47 D08

Notes:
XX = inverted signal
For pins with three designations (aa; bb; cc): aa: in Memory mode

bb: in I/O mode
cc: in True IDE mode

nector has been chosen here in order to
remain compatible with the supply connec-
tors inside the PC. The 12-V pins of these con-
nectors are thus not used.

Construction
The double-sided printed circuit board shown
in Figure 3 is quite handy for building the cir-
cuit. Although all that we have here is two
connectors and a few auxiliary components,
the 50-pin CF connector is a bit difficult. The
pin pitch of a normal connector is 0.1 inch,
but with a CF connector it is only 0.05 inch
(slightly more than 1 mm). It is thus practi-
cally impossible to link the two connectors
together using loose lengths of wire. Even
with the printed circuit board, it is essential
to work carefully and use a fine soldering iron
tip.

If your enthusiasm has been
aroused and you want to build this
circuit, we would like to give you
some good advice: first see whether
you can obtain the CF connector! It
is available from Farnell, among oth-
ers, but most electronic components
shops won’t have such a connector
in stock. Once you have the connec-
tor, you can buy the circuit board and
the rest of the components.

The connectors, the resistors and
the LED are all fitted to the top side
of the board. The two decoupling
capacitors are fitted to the bottom
side, which means that you must cut
their leads short on the top side so
they won’t touch the CF card.

For the power supply connector,
take an extension cable or splitter for

the PC power supply (a standard
item that can be bought in any PC
shop) and cut off the plug. Then sol-
der the wires attached to the (male)
mating connector to the K3 position.
The red wire is +5 V, the two black
wires are ground and the yellow
wire is +12 V.

After all of this is done, you can fit
JP1 as needed to have the CF card
be seen by the PC as a slave drive (if
there is already a hard disk or CD-
ROM drive on the IDE bus in ques-
tion and it is configured as the mas-
ter). Without the jumper, the card is
automatically the master.

Following this, the adapter board
can be fitted into the PC and con-
nected. One option is to make a slot
in a blank 5.25-inch front panel and

COMPUTER

14 Elektor Electronics 4/2002

Figure 2. Schematic diagram of the adapter: no active components.

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

2728

2930

3132

3334

K1

3536

3738

3940

IDE

K2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

4

5

6

7

8

9

CompactFlash

+5V

D0

D1

D2

D3

D4

D5

D6

D7

D9

D8

D10

D11

D12

D13

D14

D15

PDIAG

ADD2

CS1

RESET

IOWR

IORD

IORDY

INTRQ

ADD1

ADD0

CS0

DSAP

D0

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

D15

CS0

ADD1

ADD2

ADD0

CS1

IORD

IOWR

INTRQ

RESET

IORDY

DSAP

PDIAG

R2

10
k

R1

1k

D1

D
S

A
P

+5V

IOIS16

DMARQ

DMACK

K3
C1

100n

C2

100n

+5V

JP1

+5V

024032 - 11

MASTER = ON
SLAVE = OFF

fit the card on the back of the panel,
upside down. K2 must be located
just behind the opening. The circuit
board can be connected to one of the
IDE busses on the motherboard
using K1 and a standard IDE cable.
Connect the mating connector
attached to K3 to one of the PC’s free
power supply plugs.

Now everything is ready for use. To
be on the safe side, we recommend
that you insert or remove the CF
card only when the PC is off.

After you have connected a CF
card for the first time and started up
the computer, Windows will report
that a driver for the new device is
being installed. Normally, the driver
will already be present and the rest
of the procedure is automatic, but
sometimes you may have to insert
the Windows installation CD in the
CD-ROM drive.

After the driver has been
installed, Windows will automati-
cally recognise the CF card as a sort
of hard disk drive and you can read
and write files in the usual manner.

In concluding this article, we
wish to give you a clear warning:
always plug the CF card into the
connector on the circuit board the
right way around. This means that
the top side of the CF card must
face towards the circuit board. This
is also why the board is fitted in the
computer with the components to
the bottom. The photo at the begin-
ning of the article clearly shows

what we mean. If you want to play
safe here, you can fit a small nib in
the insertion slot for the CF card. As
can be seen in Figure 1, the guide
grooves on the two opposite edges
of the CF card have different widths,
and you can take advantage of this.

(024032-1)

COMPUTER

154/2002 Elektor Electronics

C1

C2

D1

HOEK1

H
O

E
K

2

HOEK3

H
O

E
K

4

JP1

K1

K2

K3

R
1

R
2

0VNC +5V

024032-1

(C) ELEKTOR
024032-1

Figure 3. This double-sided printed circuit
board makes it easier to build the circuit,
especially as regards fitting K2.

COMPONENTS LIST

Resistors:
R1 = 1kΩ
R2 = 10kΩ

Capacitors:
C1,C2 = 100nF

Semiconductors:
D1 = LED, yellow, low current

Miscellaneous:
K1 = 40-way boxheader
K2 = 50-way pinheader, angled

pins, 0.05”-grid (Farnell #
3078127)

JP1 = 2-way pinheader with
jumper

Extension cable for PC supply
PCB, order code 024032-1 (see

Readers Services page)

16 Elektor Electronics 4/2002

Furthermore, many users and software sup-
pliers have found it difficult to convert
addresses and date to the trits coding
required by the EDTS controller.

Consequently, the protocol has been
extended to include the command set listed
in Table 1.

Naturally, the existing command set (as
described in the EEDTS Pro book) is still fully
supported, and the new control unit is down-
wards compatible with the old version.

The Märklin protocol formed the starting
point for this move, but since that protocol
does not have any commands for the extra
functions, an extra byte has been specifically
added (in particular, for the locomotive con-
trol commands).

General command structure
The EEDTS Pro control unit communicates
with the PC via the RS232 port using fixed
settings of 9600 baud with no parity, eight
data bits and one stop bit. In order to ensure
correct data transfers, a design has been
used in which a response byte is sent back
for every byte that is sent to the control unit.

A control unit instruction may consists of
1, 2, 3 or 4 bytes, with the first byte being the
command byte.

In general, the command byte is sent back

verbatim as an indication that the
instruction was correctly received,
except in the case of the return com-
mands (single-byte control unit
instructions), for which return infor-
mation is sent back directly in order
to achieve a high data rate.

If the control unit cannot send the
information to the track (for instance,
if the booster is out of service due to
a short circuit), the value ‘65’ is sent
back following the command byte, in
order to inform the PC of this situa-
tion.

In order to inform the control unit
in turn that the booster is out of ser-
vice, a small modification to the
booster interface is necessary. This
will be described in the following
instalment, along with the address-
ing of the keyboard and stand-alone
controller.

Locomotive command
The first byte of the locomotive com-
mand can have a value of 0–15. This
value represents the speed, bearing
in mind that in the old format, speed
level ‘1’ is the ‘reverse’ command (in
the Märklin protocol, it is ‘15’).

The second byte that is sent rep-
resents the locomotive address. The
first 80 addresses correspond to the
80 available addresses in the Märklin
format. However, since there is room
for 256 addresses in the new format,
the command has been extended to
256 addresses.

The only existing ‘standard’ for
this sequence is to be found at
Uhlenbock, which is why this
sequence has been chosen.

The third byte provides informa-
tion regarding the format, direction
of travel and extra functions. The
meanings of the individual bits in
the old format are shown in Table 2,
while the same information for the
new format is shown in Table 3. For
convenience, the values are also
shown in decimal notation.

It is now possible to generate old-
format functions. An important dif-
ference between the two tables is
that in the old format, all four func-
tions are modified by each byte,
while in the ‘new style’ table a sep-
arate byte is used to set each func-
tion.

In the old format, if it is not
desired to modify the extra func-

GENERALINTEREST

EEDTS Pro
Control Unit Protocol
protocol extensions

By S. van de Vries

Without question, the EEDTS Pro proto-
col has been the subject of most discus-
sions related to EEDTS Pro, due to the
fact that it differs from the old EEDTS
and the Motorola protocol.

EEDTS Pro
Control Unit Protocol

GENERALINTEREST

174/2002 Elektor Electronics

activates the ‘red’ output. Even the peculiar-
ity that ‘33-0’ and ‘34-0’ represent the final
two outputs of decoder 64 has been imple-
mented. Turnout activation is rescinded using
command ‘32’.

These commands limit the number of
decoders to 64. If a larger number of decoders
must be supported, recourse can be made to

tions, a ‘0’ or a ‘3’ is sent (the ‘n’ in
the table indicates that F1–F4 do not
change). The new format also
includes the ‘reverse’ and ‘forward’
commands.

The observant reader may have
already noticed that two bits (b1 and
b2) are reserved for the F0 function
and that these bits always have the
same values in the table (’00’ or ‘01’).
The values ‘01’ and ‘10’ are also
allowed, but they are reserved for
assignment to future functions.

Return commands
Last changed

The ‘last changed’ command (‘190’)
will doubtless prove to be useful for
real-time control in layouts having a
large number of return-signalling
units. The response byte contains
the address of the return signaller
whose input state has changed
(with respect to the time at which
this unit was last read). This makes
it possible to quickly determine
which unit must be read.

Return-signalling modules

The return-signalling units can be
read using commands 192–255.

Command ‘192’ is used to read
the first unit, ‘193’ is used to read the
second unit and so on, up to ‘255’ for
the 64th EEDTS return signalling
unit (or 9–16 of the 32nd Märklin
S88).

The value that the control unit
sends back provides a binary repre-
sentation of the inputs (in the case of
a detector module, this is the loco-
motive address).

Turnout
(switch) commands
The turnout (switch) commands are
exactly the same as the Märklin
commands. For instance, command
’33-(1–4)’ activates the ‘green’ output
of a k73, while command ’34-1–4)’

Command
byte

Normal
response

Short
circuit

Second
byte Response Third

byte Response Fourth
byte Response

Locomotive
command 0 - 15 0 - 15 65 0 - 255 0 - 255 See Tables

2 & 3 Third byte

Last changed 190 1..64 65

Return-signalling module 192 - 255 0 - 255 65

Turnout (switch) reset 32 32 65

Turnout (switch) to the left 33 33 65 0 - 255 0 - 255

Turnout (switch) to the right 34 34 65 0 - 255 0 - 255

Program manual controller 40 40 65 16 - 23
24 - 31

41 41 65 16 - 23
24 - 31

Table 1. The extended command set.

0 - 255
Speed

Previous
address

0 - 255 0 - 255 Previous
status

Read manual controller 0 - 255
Speed

0 Address 0 Status

b8 b7 b6 b5 b4 b3 b2 b1 Deci-
mal F0 F1 F2 F3 F4

0 0 0 0 0 0 0 0 0 0 n n n n
0 0 0 0 0 0 1 1 3 1 n n n n
0 1 0 0 0 1 0 0 68 0 0 0 0 0
0 1 0 0 0 1 1 1 71 1 0 0 0 0
0 1 0 0 1 0 0 0 72 0 1 0 0 0
0 1 0 0 1 0 1 1 75 1 1 0 0 0
0 1 0 0 1 1 0 0 76 0 1 1 0 0
0 1 0 0 1 1 1 1 79 1 1 1 0 0
0 1 0 1 0 0 0 0 80 0 0 0 1 0
0 1 0 1 0 0 1 1 83 1 0 0 1 0
0 1 0 1 0 1 0 0 84 0 1 0 1 0
0 1 0 1 0 1 1 1 87 1 1 0 1 0
0 1 0 1 1 0 0 0 88 0 1 1 1 0
0 1 0 1 1 0 1 1 91 1 1 1 1 0
0 1 0 1 1 1 0 0 92 0 0 0 0 1
0 1 0 1 1 1 1 1 95 1 0 0 0 1
0 1 1 0 0 0 0 0 96 0 1 0 0 1
0 1 1 0 0 0 1 1 99 1 1 0 0 1
0 1 1 0 0 1 0 0 100 0 0 1 0 1
0 1 1 0 0 1 1 1 103 1 0 1 0 1
0 1 1 0 1 0 0 0 104 0 1 1 0 1
0 1 1 0 1 0 1 1 107 1 1 1 0 1
0 1 1 0 0 1 0 0 108 0 0 0 1 1
0 1 1 0 0 1 1 1 111 1 0 0 1 1
0 1 1 0 1 1 0 0 112 0 1 0 1 1
0 1 1 0 1 1 1 1 115 1 1 0 1 1
0 1 1 1 1 1 0 0 116 0 1 1 1 1
0 1 1 1 1 1 1 1 119 1 1 1 1 1

Table 2. The old Motorola format.

the normal EEDTS command set, which can
address up to 240 decoders.

Programming
manual controllers
Program manual controller
Command ‘40’ can be used to program the
manual controllers. The command byte (‘40’)
is followed by a second byte that can have a
value of 16–23. The value ‘16’ selects con-
troller 1, ‘17’ selects controller 2 and so on, up
to ‘23’ for controller 8.

If a value in the range of 16–23 is chosen,
the address modification is temporary and is
no longer valid after a power-down. In order to
achieve a permanent address modification, a
value in the range of 24–31 must be chosen
(‘21’ for controller 1 etc., up to ‘31’ for con-
troller 8).

Once the control unit has received the sec-
ond byte, it will send back the controller sta-
tus. This can lie in the range of ‘0’ (control
rotated fully to the left) to ‘255’ (control
rotated fully to the right).

The third byte determines the address
that must be set for the controller, while the
fourth byte indicates the format of the con-
troller and the functions that are already
enabled or disabled in the locomotive (or in
the PC software). In this way, for example,
the control unit knows that if the F3 function
is enabled, it must send the ‘F0 off’ command
to the locomotive when the F0 button is
pressed on the manual controller.

The bits in the fourth byte have the fol-
lowing meanings:

b8 b7 b6 b5 b4 b3 b2 b1
s/h o/n f/r F4 F3 F2 F1 F0

For example, if the fourth byte is assigned a
value of ’36’ (binary ‘00100100’), the controller
settings are as follows:

s/h = 0 format selection:
1 = format set by software
0 = format set by hardware

o/n = 0 format:
1 = old format
0 = new format

f/r = 0 direction of travel:
1 = forward
0 = reverse

F4 = 0 (F4 off)
F3 = 0 (F3 off)
F2 = 1 (F2 on)
F1 = 0 (F1 off)
F0 = 0 (F0 off)

If the s/h bit is ‘1’, this means that the format
(old or new) is not determined by the selec-

tion diode in the manual controller,
but instead by the o/n bit. If the s/h
bit is ‘0’, the format is determined by
the selection diode in the manual
controller.

After the third (address) byte has
been sent to the control unit, the con-
trol unit sends back the address set
for the manual controller (at the time
that the command was sent). Follow-
ing the fourth byte, the control unit
sends back the previously read con-
troller status in the response byte.
The response data can be used by
the EEDTS Pro software, for example,
to restore the original values when
control is passed from a software
controller to a manual controller.

The eight manual controllers can-
not be disabled and will continually
send information to the track. You
should therefore avoid having more
than one controller set to the same
address (except for address ‘0’) or
having the PC send commands to
addresses that are being used by
manual controllers.

In order to avoid problems arising
from the manual controllers, it is a
good idea to first set all manual con-

trollers (or all manual controllers that
are not actively in use) to address ‘0’
when starting up your own program.

Read manual controller

Command ‘41’, which is used to read
out a manual controller, is closely
related to the ‘program manual con-
troller’ command. However, the ‘read
manual controller’ command only
reads data and does not change any
controller settings. In this case as
well, controller status is returned fol-
lowing the second byte.

The values following the third and
fourth bytes are the same as for the
‘program manual controller’ command,
with the understanding that here it
does not matter what value is sent by
the PC, since the control unit does not
do anything with these values.

This completes our presentation
of the most important changes in the
new control unit protocol. The new
microcontroller is available from
Readers Services under order num-
ber 010088-41 and can simply be fit-
ted on the existing control unit cir-
cuit board.

(010088-2)

GENERALINTEREST

18 Elektor Electronics 4/2002

b8 b7 b6 b5 b4 b3 b2 b1 Decimal Description

0 0 0 0 0 1 0 0 4 F1 off F0 off

0 0 0 0 0 1 1 1 7 F1 off F0 on

0 0 0 0 1 0 0 0 8 F1 on F0 off

0 0 0 0 1 0 1 1 11 F1 on F0 on

0 0 0 0 1 1 0 0 12 F2 off F0 off

0 0 0 0 1 1 1 1 15 F2 off F0 on

0 0 0 1 0 0 0 0 16 F2 on F0 off

0 0 0 1 0 0 1 1 19 F2 on F0 on

0 0 0 1 0 1 0 0 20 F3 off F0 off

0 0 0 1 0 1 1 1 23 F3 off F0 on

0 0 0 1 1 0 0 0 24 F3 on F0 off

0 0 0 1 1 0 1 1 27 F3 on F0 on

0 0 0 1 1 1 0 0 28 F4 off F0 off

0 0 0 1 1 1 1 1 31 F4 off F0 on

0 0 1 0 0 0 0 0 32 F4 on F0 off

0 0 1 0 0 0 1 1 35 F4 on F0 on

0 0 1 0 0 1 0 0 36 Reverse F0 off

0 0 1 0 0 1 1 1 39 Reverse F0 on

0 0 1 0 1 0 0 0 40 Forward F0 off

0 0 1 0 1 0 1 1 43 Forward F0 on

Table 3. The new Motorola format.

GENERALINTEREST

20 Elektor Electronics 4/2002

When you wish to use certain devices within
a computer, you’ll need routines that control
them. With older home computers and PCs,
writing such a routine was fairly simple. There
was only ever one program running at a time
so you didn’t have to take into account that
other programs could access the same device.
A well-written program would also make sure
that the device was set back to its default
state at the end of the program’s execution.

With the introduction of Windows the PC
world changed overnight. It became possible
to run several programs simultaneously.
Although this was already a common practice
in the professional computing world, for the
home user it appeared to be close to magic!

Those home users who were used to con-
trol the hardware directly in their programs
were unfortunately confronted with a new
problem. What happens when two programs
attempt to access the same device at the
same time? As long as you could make sure
yourself that this situation could never occur,
there wasn’t a problem. Worse still, in some
programming languages the facility to access
the hardware directly was left out. In some
cases it was still possible to use the proces-
sor’s I/O instructions via programming tricks.

In this article we will show that the cor-
rect programming of the serial interface under
Windows is not as difficult as most people
imagine. As well as giving your programs
that professional look, they should also run
without problems even in the most recent
versions of Windows.

Operating systems
A short but simple description of an
operating system is that it is nothing
but a (large) program that drives and
controls all components within a
computer. Some of these compo-
nents are the mouse, keyboard, dis-
play, memory, sound, and so on.

The task of the operating system
is to isolate the user program from
the need to know the exact hard-
ware configuration of the computer
on which it runs. The user program
gives instructions to the operating

system, which then takes care of the
rest. This makes it possible for a pro-
gram to run on computers with dif-
ferent hardware configurations,
without having to adapt the pro-
gram. The only requirements are that
the same operating system is
installed on these computers and
that the hardware is up to the task.

Drivers
The actual control of the hardware
occurs via so-called drivers. For each

Serial Ports
under Windows
with an example in Delphi

By Paul Goossens

The use of I/O functions in Windows programs is still a grey area for most
programmers. In this article, we shed some light on the use of the PC’s RS
232 ports in a Windows compatible way.

Table 1
Useful functions in the API for controlling the serial interface.

FileCreate Opens a file
EscapeCommFunction Control of the DTR and RTS outputs
GetCommStatus Request the status of the input pins and the receive

buffer
ReadFile Read the receive buffer
WriteFile Write to the output buffer of the serial port
GetCommState Request the current state of the serial port
SetCommState Set the state of the serial port
GetCommMask Read the event mask. This mask determines which

incidents generate a Windows ‘event’
SetCommMask Set the event mask
ClearCommError Get information regarding the last error in the serial

interface

GENERALINTEREST

214/2002 Elektor Electronics

of the components in the computer the oper-
ating system requires a specific driver. In this
way the operating system can make use of
the latest hardware, as long as the manufac-
turer includes a driver.

APIs
The way in which user programs communi-
cate with the operating system is established
by the API (Application Programming Inter-
face). As the name implies, this is an inter-
face between the user programs and the
operating system. Compilers usually have
libraries and header-files included which take
care of the API calls. When this isn’t the case,
you should refer to the documentation of the
operating system. The API is usually included
with the SDK (Software Development Kit) of
the operating system. These SDKs are usually
available as a free download from the operat-
ing system provider.

As can be seen in Figure 1, a user pro-
gram only communicates with the API of the
operating system. It is of no concern to the
programmer how the operating system works
internally, as long as the API ensures that the
operating system does what the program
asks of it. The API then passes the requests
on to the kernel for further processing. Where
a program requires that the hardware is used,
the kernel gets help from the accompanying
driver program. This then communicates
directly with the hardware.

The communication between the driver
and kernel isn’t via the usual API (Applica-
tion Programming Interface), but via the SPI
(System Programming Interface).

The serial interface
The serial interface is commonly used in
homemade circuits. These circuits usually
contain a microprocessor with an on-chip ser-
ial port. It is a simple matter to give com-
mands to the circuit via this port, or to
request information from it. Even where no
use is made of a controller it is still possible
to use discrete logic circuits to incorporate
serial I/O — an example of this can be seen
in the DCI-PLC article in the June 2001 Elek-
tor Electronics issue.

Computer devices such as printer ports,
serial interfaces, I/O-devices, etc. are treated
by Windows (and most other operating sys-
tems) as special types of file. This means that
a program first has to open this ‘file’ before
being able to use the device. Once such a
‘file’ has been opened there will be several
extra properties and functions that can be
applied to it. Those functions that are rele-
vant to the serial interface are listed in

Program
2

Program
3

Control
program 1

Control
program 2

Control
program 3

Control
program 4

Hardware
1

Hardware
2

Hardware
3

Hardware
4

Kernel

User programs

Hardware

Operating system

API

SPI

020001 - 11

Program
1

Figure 1. Simplified structure of a computer system.

DLLs
Windows makes extensive use of DLL files. These are libraries that can be used
by any program. Most functions of the Windows API are made accessible by
these DLLs. When a program makes use of a DLL it is dynamically linked with
that program (hence the name: Dynamically Linked Library).
To find out which functions are exported by Windows DLLs, you could use the
seemingly unimportant ‘quickview.exe’ program, which is included with most ver-
sions of Windows. This program can be used to open DLLs. Quickview then pre-
sents various information about the DLL, including the names of its functions. This
way a good overview can be obtained of the capabilities of a DLL.
Quickview can be run by right-clicking with the mouse on a DLL file.

Table 2
The most significant fields in a DCB record.

DCBLength The length of the DCB.
BaudRate Speed of the connection in baud.
Binary Binary connection (has to be TRUE in Windows).
Parity Parity check (on or off).
fOutxCtsFlow Enable or disable CTS flow control when sending informa-

tion. When enabled, the driver stops transmitting from the
serial port while the CTS signal is inactive.

fOutxDsrFlow The same as fOutxXCtsFlow, but for the DSR signal.
fDtrControl Settings for the DTR signal.

This can have the following values1:
DTR_CONTROL_DISABLE : DTR becomes low when the port is opened.
DTR_CONTROL_ENABLE : DTR becomes high when the port is opened.
DTR_CONTROL_HANDSHAKE : DTR is used for handshaking.

fDsrSensitivity When active, the driver will ignore all data received when
DSR is low.

1 The DTR signal is controlled by the EscapeCommFunction function, except when the
DTR_CONTROL_HANDSHAKE option is active.

Table 1.
Before you start programming for

the serial port you have to make one
important decision. The serial inter-
face can be opened in two very dif-
ferent ways.

The file can be opened in either
OVERLAPPED or NON-OVER-
LAPPED mode. The OVERLAPPED
mode lets Windows process any
actions in the background, while the
main program continues operating.
With the NON-OVERLAPPED mode
the program has to wait for Win-
dows to complete any serial port
actions, before continuing with its
own execution.

The advantage of OVERLAPPED
is that the program is not unneces-
sarily interrupted every time the ser-
ial port is used. The big disadvan-
tage of this choice is that you don’t
immediately know if the last com-
mand has completed successfully. It
is therefore necessary to write an
‘event-handler’, which is called
every time Windows completes a
serial command. It is unfortunately
fairly easy to make mistakes in this
routine, which are difficult to find
(such as deadlock and race condi-
tions). In fact, only programmers
experienced in parallel programming
should use this mode.

The big advantage of NON-
OVERLAPPED is that the result of
the command is available after it
completes, without having to worry
if the operation itself has completed.
In our example Delphi program
we’ve used NON-OVERLAPPED,
partly to avoid making it needlessly
complex.

Delphi
As an example, we have written a
simple program in Delphi (see List-
ing 1). This program uses the most
important API calls that are relevant
to the use of the serial port.

The ‘Button1Click’ routine is
called when the user clicks on the
OPEN button. This routine opens a
file with a name corresponding to the
selected COM port (COM1, COM2,
etc.).

Opening the file is only half of the
work. Next the serial port has to be
set up. First the current settings are
requested using ‘GetCommState’.
This Windows routine fills the ‘dcb-

GENERALINTEREST

22 Elektor Electronics 4/2002

Listing 1
unit Unit1;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls;

type
TForm1 = class(TForm)
GroupBox1: TGroupBox;
RadioButton1: TRadioButton;
RadioButton2: TRadioButton;
RadioButton3: TRadioButton;
RadioButton4: TRadioButton;
GroupBox2: TGroupBox;
RadioButton5: TRadioButton;
RadioButton6: TRadioButton;
RadioButton7: TRadioButton;
RadioButton8: TRadioButton;
RadioButton9: TRadioButton;
Button1: TButton;
Button2: TButton;
Label1: TLabel;
Label2: TLabel;
CheckBox1: TCheckBox;
CheckBox2: TCheckBox;
CheckBox3: TCheckBox;
CheckBox4: TCheckBox;
CheckBox5: TCheckBox;
CheckBox6: TCheckBox;
Button3: TButton;
Label3: TLabel;
Label4: TLabel;
Label5: TLabel;
Label6: TLabel;
GroupBox3: TGroupBox;
RadioButton10: TRadioButton;
RadioButton11: TRadioButton;
RadioButton12: TRadioButton;
GroupBox4: TGroupBox;
RadioButton13: TRadioButton;
RadioButton14: TRadioButton;
RadioButton15: TRadioButton;
Label7: TLabel;
Edit1: TEdit;
Label8: TLabel;
Button4: TButton;
Edit2: TEdit;
procedure FormActivate(Sender: TObject);
procedure Button1Click(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure RadioButtonComPort(Sender: TObject);
procedure RadioButtonBaudRate(Sender: TObject);
procedure CheckBox1Click(Sender: TObject);
procedure CheckBox2Click(Sender: TObject);
procedure UpdateClick(Sender: TObject);
procedure ComboBox1KeyPress(Sender: TObject; var Key: Char);
procedure RadioButtonParityClick(Sender: TObject);
procedure RadioButtonStopBitsClick(Sender: TObject);
procedure Button4Click(Sender: TObject);
procedure Edit2KeyPress(Sender: TObject; var Key: Char);

private
{ Private declarations }
hPort : LongInt; {handle for the serial port}
dcbCom : TDCB; {record which holds the properties for the}

{opened COM-port}
Open : Boolean; {Is COM-port open or not?}
ComPort : Integer; {The COM-port number}
BaudRate : LongInt; {desired Baudrate}
Parity : Byte; {Parity}

Com’ record with the current state of
the serial port. A list of the most
interesting fields of this record is
shown in Table 2. Next some of the
fields in this record are set. Lastly,
these settings are made active by
calling ‘SetCommState’. The serial
port is now opened with our
required settings.

In the example program it is possi-
ble to enter some text and then trans-
mit it with a click of the button. The
routine that deals with the transmis-
sion of text is ‘Button4Click’, which is
very straighforward. It transmits the
text using the Windows routine
‘Writefile’.

The program can also display any
received serial data and the state of
all input pins. This is accessed by
pressing the ‘Update input’ button.
The routine used for this is ‘Update-
Click’. First of all the ‘GetModemSta-
tus’ Windows routine is called. This
routine sets a variable (called ‘State’
in our example) with the current
state of the input pins. The next few
lines update the screen with the
state just read.

The second part of this routine
takes care of any characters that
may have been received. First of all
the routine ‘ClearCommError’ is
called. This routine does more than
just clear any possible errors. It also
fills a TCOMSTAT record with
assorted information. The most
important of which is the number of
characters still present in the input
buffer. If this number is greater than
zero, the program calls the Windows
routine ‘ReadFile’. The received char-
acters are then shown on the screen.

The rest of the program is con-
cerned with providing a nice user
interface, allowing the user to
change the settings of the serial
port, choose a different port, etc.

HTML and I/O
HTML and I/O? Wasn’t this article
supposed to be about programming?
The running of programs is certainly
also possible from within HTML
pages. Scripting languages have
been created for just this purpose.
The two best known scripting lan-
guages are JavaScript and VBScript.
We would recommend that you use
JavaScript, since most Internet
browsers support this. To start with,

GENERALINTEREST

234/2002 Elektor Electronics

{use only the constant declared in Windows}
{NOPARITY EVENPARITY ODDPARITY! }

StopBits : Byte; {Nr of stopbits StopBits}
{use only the constant declared in Windows}
{ONESTOPBIT, ONE5STOPBITS or TWOSTOPBITS !}

ReadBuffer : string;

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.FormActivate(Sender: TObject);
begin
ComPort:=1; {Set the startup settings}
RadioButton1.Checked:=true;
BaudRate:=9600;
RadioButton6.Checked:=true;
Parity:=NOPARITY;
RadioButton10.Checked:=true;
StopBits:=ONESTOPBIT;
Radiobutton13.Checked:=true;

Open:=false;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
hPort:=CreateFile (PChar(‘COM’+IntToStr(ComPort)),
GENERIC_READ or GENERIC_WRITE,0,nil,OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,LongInt(0));

if (hPort = LongInt(INVALID_HANDLE_VALUE)) then
MessageDlg (‘Error opening port COM’+IntToStr(ComPort)+’ : ‘+
#13+#10+SysErrorMessage(GetLastError), mtError,[mbOk],0);

if (hPort LongInt(INVALID_HANDLE_VALUE)) then
begin
if GetCommState (hPort,dcbCom) then
begin
dcbCom.Baudrate:=BaudRate;
dcbCom.ByteSize:=8;
dcbCom.Parity:=Byte(Parity);
dcbCom.Flags:=0;
SetCommState (hPort, dcbCom);

end;
end;

if (hPort LongInt(INVALID_HANDLE_VALUE)) then
begin
Open:=true;
CheckBox1Click(Self);
CheckBox2Click(Self);
UpdateClick (Self);
Button1.Enabled:=false; { Open-button disabled }
Button2.Enabled:=true; { Close-button enabled }

end;
end;

procedure TForm1.Button2Click(Sender: TObject);
begin
CloseHandle (hPort); { Close the FileHandle }
Button2.Enabled:=false; { Close-button disabled }
Button1.Enabled:=True; { Open-button enabled }

end;

procedure TForm1.RadioButtonComPort(Sender: TObject);
begin
if (Open=true) then Button2Click(Self); { Close Handle }

these scripting languages only had
a limited functionality. After the
introduction of ActiveX components
by Microsoft it became possible to
create nicer applications through the
use of JavaScript or VBScript in a
web page.

A very interesting ActiveX com-
ponent is the Microsoft ‘Communica-
tions Control’. This takes care of the
control of a serial port. Since Internet
Explorer supports ActiveX compo-
nents, it becomes possible to control
the serial ports from a web page!

To use this component on a web
page, the following declaration has
to be included:

<OBJECT
classid=clsid:648A5600-
2C6E-101B-82B6-
000000000014 id=MSComm1>
</OBJECT>

This includes the ActiveX compo-
nent in the web page. You obviously
won’t be able to see it on the web
page because it isn’t a graphical
component. The properties of this
component are set via a PARAM
command or directly in the script.

The settings made with PARAM
commands become active when the
component is placed on the web
page by the browser. These PARAM
commands aren’t compulsory, how-
ever. When the properties aren’t set
by PARAM commands, the default
values will apply. The only problem
is that it is not always clear what
these default properties are.

Using JavaScript we can read
and/or change these properties from
within a script. Especially program-
mers with some experience in OOP
programming will appreciate these
properties. In the HTML application
of Example 1 both these methods
are used.

Other
programming languages
and environments
The Delphi program described in this
article could just as well have in
written in C++ Builder, Visual Basic,
etc. When writing a program in
these languages, which uses the ser-
ial port, the same functions can be
used as for Delphi.

It is remarkable that in Delphi the

GENERALINTEREST

24 Elektor Electronics 4/2002

with Sender as TRadioButton do
begin
ComPort:=(Sender as TRadioButton).Tag;

end;
end;

procedure TForm1.RadioButtonBaudRate(Sender: TObject);
begin
if (Open=true) then Button2Click(Self); {Close handle }
with Sender as TRadioButton do
begin
BaudRate:=(Sender as TRadioButton).Tag;

end;
end;

procedure TForm1.CheckBox1Click(Sender: TObject);
var command : integer;
begin

if CheckBox1.Checked=true then
command:=SETDTR

else
command:=CLRDTR;

if (EscapeCommFunction (hPort,command)=false) then
MessageDlg (‘Error changing signal : ‘+
#13+#10+SysErrorMessage(GetLastError), mtError,[mbOk],0);

end;

procedure TForm1.CheckBox2Click(Sender: TObject);
var command : integer;
begin

if CheckBox2.Checked=true then
command:=SETRTS

else
command:=CLRRTS;

if (EscapeCommFunction (hPort,command)=false) then
MessageDlg (‘Error changing signal : ‘+
#13+#10+SysErrorMessage(GetLastError), mtError,[mbOk],0);

end;

procedure TForm1.UpdateClick(Sender: TObject);
var State : Cardinal;

State2 : TCOMSTAT;
Error : DWord;
chRead : DWord;
avail : DWord;

begin
ReadBuffer:=’’;
if (GetCommModemStatus (hPort,State)=false) then

MessageDlg (‘Error retreiving ModemStatus : ‘+
#13+#10+SysErrorMessage(GetLastError), mtError,[mbOk],0)

else
begin
if ((state and MS_CTS_ON)0) then
CheckBox3.Checked:=True

else
CheckBox3.Checked:=false;

if ((state and MS_DSR_ON)0) then
CheckBox4.Checked:=True

else
CheckBox4.Checked:=false;

if ((state and MS_RLSD_ON)0) then
CheckBox5.Checked:=True

else
CheckBox5.Checked:=false;

if ((state and MS_RING_ON)0) then
CheckBox6.Checked:=True

else
CheckBox6.Checked:=false;

end;
ClearCommError (hPort,Error,@State2);
if (Error 0) then

MessageDlg (‘Error retreiving CommError : ‘+
#13+#10+SysErrorMessage(GetLastError), mtError,[mbOk],0);

Avail:=State2.cbInQue;

Windows API can be used directly,
even though it isn’t described in the
help pages. So even when your (Win-
dows) programming environment
doesn’t have a description of these
routines in its help pages, there is
still a good chance that the Windows
API can be used directly, as long as
the routines’ names are known. It is
also possible to use the ActiveX
component, which was used in the
example of the HTML page.

(020001-1)

Useful links:
www.codeguru.com
www.programmersheaven.com
www.microsoft.com

Useful literature:
‘Advanced Windows’,
by Jeffrey Richter, ISBN 1572315842.

GENERALINTEREST

254/2002 Elektor Electronics

chRead:=0;
if (avail>20) then avail:=20;
begin
setLength (ReadBuffer,avail+1);
ReadFile (hPort,PChar (ReadBuffer)^,avail,chRead,nil);
Edit2.Text:=ReadBuffer;

end;
end;

procedure TForm1.ComboBox1KeyPress(Sender: TObject; var Key: Char);
begin
Key:=Chr(0);

end;

procedure TForm1.RadioButtonParityClick(Sender: TObject);
begin
if (Open=true) then Button2Click(Self); {Close handle }
case (Sender as TRadiobutton).Tag of
1 : Parity:=NOPARITY;
2 : Parity:=EVENPARITY;
3 : Parity:=ODDPARITY;
else
end;

end;

procedure TForm1.RadioButtonStopBitsClick(Sender: TObject);
begin
if (Open=true) then Button2Click(Self); {Close handle }
case (Sender as TRadioButton).Tag of
1 : StopBits := ONESTOPBIT;
2 : StopBits := ONE5STOPBITS;
3 : StopBits := TWOSTOPBITS;
end;

end;

procedure TForm1.Button4Click(Sender: TObject);
var Written : DWord;
begin
Writefile(hPort, PChar (Edit1.Text)^, Length (Edit1.Text), Written, nil);
if (WrittenLength(Edit1.Text)) then

MessageDlg (‘Error writing : ‘+#13+#10+SysErrorMessage(GetLastError),
mtError,[mbOk],0);

end;

procedure TForm1.Edit2KeyPress(Sender: TObject; var Key: Char);
begin
Key:=#0;

end;

end.

TEST&MEASUREMENT

26 Elektor Electronics 4/2002

Given the information on remote controls that
appeared in the March and April 2001 issues of
Elektor Electronics, the final remaining step is
to build a genuinely universal multi-standard
infrared receiver. Using this, a remote controlled
system can be constructed using practically
any readily-available transmitter, and remote
controls that would otherwise be scrapped can
be given a new lease of life. Also, the infre-
quently-used buttons (such as the automatic
programming buttons on a TV remote control),
can have a new function and be used for exam-
ple to control the room lighting. Unfortunately,
remote controls that transmit using ‘flash’ mode
cannot be used, owing to the way the infrared
receiver works internally.

The block diagram of the receiver is shown
in Figure 1. Any desired key on the remote
control can be used to operate the circuit:
pressing the button causes the selected out-
put to turn on or off. Built into a multi-way
extension lead, up to eight channels could be
controlled independently.

Model railway enthusiasts will appreciate
the ability to easily control lights or other spe-
cial functions using infrared light, avoiding
messy wiring. You might even already have a
suitable transmitter. If required, several
receivers can be connected in parallel in order
to decode all the functions available from a
single transmitter. The number of code com-
binations is practically unlimited, allowing a
vast range of remote control applications.

The circuit
The circuit in Figure 2 is very simple, and
should present no constructional difficulties. It
is recommended to fit IC1 and IC2 in sockets.

Infrared reception
Receiver IC3 is a highly integrated
device that can decode infrared sig-
nals with a set carrier frequency. It
includes a highly sensitive infrared
receiver which operates using a car-
rier frequency of 36 kHz. A photodi-
ode with daylight filter, amplifier
stages, filter and demodulator are all
built in, so that no external circuitry
worth mentioning is called for. R1
and C1 form a low-pass filter to elim-
inate supply-borne interference. Sev-
eral alternatives for this IC are given
in the parts list: be careful to note
the pinouts!

LED D1 indicates operation of the
circuit, flashing rhythmically on
reception of data.

Microcontroller
The microcontroller has already been
used in several constructional pro-
jects in Elektor Electronics, such as
the Infrared Code Analyser in the
October 2001 issue. It has the fol-
lowing characteristics:

– 4 kbytes ROM
– 128 bytes RAM
– 32 bytes customer code EEPROM
– 2.7 V to 6 V supply voltage
– two 16-bit counter/timers
– internal reset
– internal RC oscillator selectable
– 20 mA driver on all port pins
– maximum of 18 I/O pins, when

internal reset and RC oscillator are
selected.

Multi-Standard
Infrared Receiver
compatible with (almost) all remote control transmitters

This circuit complements the remote controls with which practically all
consumer electronics devices are equipped: a receiver which can oper-
ate with a wide range of infrared transmitters.

TEST&MEASUREMENT

274/2002 Elektor Electronics

supply voltage of 5 V, as required by the
receiver IC3. The input voltage to the regula-
tor must be at least 9 V, since the regulator
drops about 3 V. In applications where a 5 V
supply is already available, IC4 can be dis-
pensed with. Observe that cooling is required
if the regulator is used at 1 A, but not at
100 mA or below. An input voltage of 12 V is
recommended if 12 V relays are to be used.

The software
The software is based on the Infrared Code
Analyser, extended so that the received
codes are stored and operate the output
switches. Rather than simply sampling the
signal and storing the samples, the actual
code is read: for example the individual pulse
lengths are compared against certain given
reference values. This operation is rather less
memory-intensive, but has the disadvantage
that only known formats can be recognised.
‘Learning’ remote controls generally operate
by simply storing samples of the signal and
require a large static memory to store the
quantity of data.

The software continuously samples the
signal (rather more frequently than shown
in Figure 3) by polling the logical state of
input pin P1.4. This occurs at a rate deter-
mined by the software cycle time. During
the polling process, a software counter
counts the number of samples for which the
input remains in each logical state. The
count is a digital measure of the pulse
length. Short interruptions or spikes in the
signal can be ignored by only accepting a
logic level when it has been stable for a cer-
tain minimum number of samples. If this
minimum threshold is not reached, interfer-
ence is assumed and the current counter
value is discarded, counting continuing from
the previous value.

As with all things, this procedure has its
advantages and its disadvantages. On the
one hand, it is easy to program, it is resilient
(interference between samples is ignored
when delay loops are used) and it is
portable to other types of microcontroller,
since no hardware resources are used. On
the other hand, it places a great burden on
the processor: the software is exclusively
processing the samples and cannot get on
with other tasks while a message is being
received. Also, interrupts occurring during
the measurement can lead to highly inaccu-
rate readings, depending on the time it
takes to service them.

The received codes are stored in hexadec-
imal form in the microcontroller’s internal
RAM and in the EEPROM. There is no dis-
tinction made between address and com-

– 2 analogue comparators
– I2C interface
– full-duplex UART
– serial in-circuit programming

Using a clock frequency of 6 MHz
and the internal divider (with a divi-
sion ration of six) we have a cycle
time of 1 ms. This allows accurate
measurement of pulse widths, which
is essential when deciding between
the various codes. The pulse width
is measured using one of the two
internal timers and compared
against preset threshold values.

EEPROM
The serial EEPROM IC2 has a stor-
age capacity of 1024 bits, organised
in a 64 by 16 matrix. All read and
write operations take place over a
Microwire-compatible interface in
blocks of 16 bits. Once written, data
are retained for at least 40 years,
according to the manufacturer.
Switching stage
The microcontroller has drivers capa-
ble of delivering up to 20 mA per out-
put pin, when switching to ground.

At a high level only about 1 mA can
be delivered, and so a transistor is
required to switch the load. Two
options are shown in the circuit dia-
gram:

Option 1
The port pin drives the output stage
via a BUZ11 MOSFET. With its
RDSON of 0.04 W, this transistor can
easily handle continuous loads of
5 A. The diode protects the transis-
tor against voltage spikes, if for
example an inductive load is used.
The diode can be dispensed with in
the case of a resistive load. This
option can only be used if direct cur-
rents are to be switched.

Option 2
In this variation a 12 V relay with a
coil resistance of 400 W (that is, with
a coil current of 30 mA) is switched
via a BC548 transistor. The desired
load can be switched using a small
power relay. The flywheel diode is
essential here.

Power supply
Voltage regulator IC4 produces the

Technical characteristics
– supply voltage: 5 V
– capable of learning the following infrared codes: ‘Japanese’, NEC, RC5,

RECS80, SIRCS, Denon and Motorola, as well as ‘far east’ (as used by Daewoo
for example)

– 8 freely programmable outputs
– all data stored in EEPROM
– optimised for 36 kHz carrier frequency
– visual programming confirmation
– visual indication of output states

microcontroller

any infra-red remote control

NEC code
Japan code
RC5 code
..................

Eeprom

infra-red
receiver 8x

switch

012018 - 12

Figure 1. Block diagram of the multi-standard receiver

mand bits, and so the entire received mes-
sage is compared with the stored one. ‘Tog-
gle’ bits, such are used in the RC5 code,
which change their state each time a button is
pressed, are ignored by the software, since
these would otherwise give rise to two dif-
ferent hexadecimal values for the code.

In use
Constructing the receiver circuit on
the printed circuit board shown in
Figure 4 should present no prob-
lems. The pinouts of several suitable
infrared receiver devices are shown.

Before the unit is installed it must

be programmed, so that the micro-
controller can learn which command
is to be used to control which output.
Programming is started by briefly
pressing button S1. LED D2 immedi-
ately begins to flash. Each command
now received using one of the codes
understood by the microcontroller is
stored and assigned to that port pin.
This port pin is now programmed in,
and the programming process for the
next begins automatically: LED D3
starts to flash. This port pin can now
be associated with a command in
exactly the same way. It therefore
does not matter if a different remote
control transmitter, employing a dif-
ferent code, is used for each output.

The process continues until all
eight outputs have been pro-
grammed, after which the LEDs stop
flashing. If, at a later date, it is
desired to change the command
associated with just one channel,

TEST&MEASUREMENT

28 Elektor Electronics 4/2002

P87LPC764

IC1
P0.0

P0.1

P0.2

P0.3

P0.4

P0.5

P0.6

P0.7P1.7

P1.6

P1.5

P1.4

P1.3

P1.2

P1.1

P1.0

X1 X2

15

20

19

18

17

16

14

13

10

11

12

6 75

1

2

3

4

8

9

X1

6MHz

C3 C4

R11
1

0
0

k

S1

PROG

D2

D1

R2

3k
3

R1

1
0

0
Ω

D3

D4

D5

D6

D7

D8

D9

R3

1k

R4

1k

R5

1k

R6

1k

R7

1k

R8

1k

R9

1k

R10

1k

TSOP1736 NJL61H380

21 3

SFH505A

IC3

C1

100µ

+5V

R13

10
k

R12

10
k

+5V

7805

IC4

C7

100n

C6

100µ

+5V

S

D

G

BUZ11

1N4148

+U

10k

BC548C

12V

+U

1N4148

012018 - 11

Q1 ... Q8

Q1 ... Q8

+12V

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

K1
25V

SFH506 SFH5110

TSOP1736
SFH505A

SFH506

SFH5110
IS1U60

C8

100µ
25V 25V

C2

100n

C5

100n

*

93C46B

IC2

PRE

CS SK

DI DO

PE
1

8

5

2

3 4

67

15p 15p

TFMS5360

TFMS5360

IS1U60PIC12043S

PIC12043S

NJL61H380

TSOP1836

TSOP1836

or

see text*

Figure 2. The circuit consists of just an infrared receiver module, a microcontroller, and an EEPROM

sampling instants

spikes 012018- 13

code

Figure 3. Sampling by polling

Internet addresses

EEPROM:
www.fairchildsemi.com/pf/FM/FM93C46.html

Microcontroller:
www.semiconductors.philips.com/pip/p87lpc764bd

Infrared receiver IC:
www.infineon.com/cmc_upload/0/000/008/562/

sfh5110.pdf
www.vishay.com/products/optoelectronics/IRMall.html

the pins for which programming is
not required can be skipped with a
brief press of the button.

Note that while the LED is flash-
ing, any connected piece of equip-
ment will be switched on and off. All
settings are stored permanently in
EEPROM IC2, so that when the
microcontroller is reset the most
recently programmed configuration
is still in force.

When a previously-stored code is
received, the corresponding output
changes state. Since many remote
control transmitters send the same
message repeatedly when a button
is held down, a software monostable
is provided to ensure clean opera-
tion. Only after a delay of around one
second after the last valid message

can the state of an output pin be
changed again.

Because the software can only
interpret the code formats it knows,
the user can use the fact that the
flashing LED advances as each out-
put is programmed as confirmation
that the code has been correctly
read. If it is not read, the flashing
LED will not advance.

Since we have used an infrared
receiver IC3 optimised for a carrier
frequency of 36 kHz, we can obtain
the greatest range by employing a
transmitter that operates on this fre-
quency. If adequate range is not
achieved, it is most likely because
the transmitter uses a different car-
rier frequency.

(012018-1)

TEST&MEASUREMENT

294/2002 Elektor Electronics

(C
) E
LE
K
TO
R

0
1
2
0
1
8
-1

C1

C2

C3
C4

C5

C6

C7
C8

D1 D2
D3
D4
D5
D6
D7
D8
D9

H
1 H2

H
3H4

IC
1

IC
2

IC3

IC4

K1

R
1

R
2

R3
R4
R5
R6
R7
R8
R9

R10

R11
R12
R13

S1

X1

0 +

0
1

2
0

1
8

-1

(C
) E

LE
K

TO
R

0
1

2
0

1
8

-1

Figure 4. Printed circuit board layout.

COMPONENTS LIST

Resistors:
R1 = 100Ω
R2 = 3kΩ3
R3-R10 = 1kΩ
R11 = 100kΩ
R12,R13 = 10kΩ

Capacitors:
C1,C2,C8 = 100µF 10V
C2,C5,C7 = 100nF ceramic
C3,C4 = 15pF

Semiconductors:
IC1 =P87LPC764BN (Philips),

programmed,
order code 012018-41.

IC2 = 93C46 (Microchip 93C46B/P)
IC3 = TSOP1736 (alternatives:

SFH5110-36, IS1U60, TFMS5360,
PIC26043SM,TSOP1836)

IC4 = 7805
D1 = LED red, high efficiency
D2-D9 = LED, red, rectangular case

Miscellaneous:
X1 = 6 MHz quartz crystal
S1 = pushbutton (make contact)
20-way IC socket
8- way IC socket
K1 = 9-way SIL pinheader
Project software, on disk, order

code 012018-11, or free
download from
www.elektor-electronics.co.uk

Carrier frequency
From Figure A we can clearly see that even
with a transmitter that operates on 34 kHz or
38 kHz, we already have a loss of sensitivity by
a factor of 2. If this presents a problem, it may
help to use a different infrared receiver. The
ICs are available for practically all centre fre-
quencies in 2 kHz steps from 30 kHz to
40 kHz.
A simple way to determine the transmitter
carrier frequency is to use an oscilloscope. An
ordinary infrared photodiode such as a BPW75
can be connected to 5 V via a resistor as
shown in Figure B. If a remote control is held
close to the photodiode, the signal on the
oscilloscope can be analysed and the carrier
frequency measured.

1
0

k

BPW75

+5V

probe

012018 - 16

e.g.

A B

COMPUTER

30 Elektor Electronics 4/2002

The 1-Wire series from Dallas already has
received attention on earlier occasions in this
magazine, such as the E-key project in
November 2000 and the 1-Wire Spy in Febru-
ary 2001. In those projects the communication
between the 1-wire bus and the PC was con-
trolled by a microcontroller which was specif-
ically programmed for this purpose. Dallas
itself also manufactures ICs that deal with

interfacing to microcontrollers or
PCs. Drivers, evaluation and devel-
opment software are available for
free and may be downloaded from
the Dallas web site. This clears most
of the obstacles in making a begin-
ning with these devices. This 1-Wire
Software Developers Kit (SDK) for
Windows Me, 2000, 98, 95, NT 4.00

en NT 3.51 contains programming
examples in C, C++, Pascal (Borland
Delphi), Microsoft Access and
Microsoft Visual Basic. Development
tools for 16-bit applications (Win-
dows 3.1 and DOS) are also still
available.

New components
The number of different 1-Wire com-
ponents is quite extensive. In previ-
ous issues of Elektor Electronics most
of the attention was directed
towards the so-called iButtons.
These are components that are
housed in what resembles a sizeable
button cell. But there are also com-
ponents in that range, such as digi-
tal potentiometers, temperature sen-
sors, clocks, switches, A/D convert-
ers, electronic IDs and memories that
are available in a TO-92 package or
SMD version. Every device has its
own family code (depending on the
type of device) and a unique serial
number, which enables each device
that is connected to the bus to be
identified and addressed. Table 1
shows an overview of the 1-Wire
devices that are currently available.

Serial Interface
for Dallas 1-Wire Bus
simple to operate from within Windows

By Luc Lemmens

The 1-Wire devices from Dallas Semiconductor are components that via
a simple serial connection can be connected to each other, a circuit or a
computer. The RS232-interface described here makes the connection to
a PC very straightforward. In addition, Dallas supplies the necessary soft-
ware free of charge.

COMPUTER

314/2002 Elektor Electronics

The 1-Wire bus makes it very easy to build
a small network that, for example, can mea-
sure the temperature in different rooms in a
building, or operate switches or light dim-
mers, etc.

The hardware is very simple: two wires
provide power and communications. And Dal-
las has made available a complete software
package on the Internet so that anyone can
get started easily. Of course, the 1-Wire bus
has to be connected to a PC somehow, but
this is not an insurmountable problem, given
the interface ICs that have been designed for
this bus. In this article we present a serial
RS232 interface, a USB interface is to follow
soon.

The heart of the interface:
the DS2480B
This IC is small with respect to its dimen-
sions (SO-8 package), but large with refer-
ence to its capabilities and options. This

K1

1

2

3

4

5

6

7

8

9

DS2480B
IC1

VDD VPP

1-WRXD

TXD

POL

NC

4

1

8 2

7 3

5

6

R1

4k7

+5V +12V

D1 D2

BAT85

D3

4V7

78L05

IC2

C2

100n

C3

100n

C1

10µ
25V

+5V

RTS

DTR

2x

020022 - 11

+12V

DS9503

D4

1

2

6

5

DS9503

D5

1

2

6

5

D

+12V

Figure 1. The interface circuit consists almost entirely of two Dallas ICs.

1-Wire-Device Function Memory

DS1820 Digital Thermometer 16 Bits EEPROM
DS18B20 Programmable Resolution Digital Thermometer 16 Bits EEPROM
DS18S20 High-Precision Digital Thermometer 16 Bits EEPROM
DS1821 Stand-alone Thermostat 2 bytes NV
DS1822 Programmable Resolution Digital Thermometer No NV
DS2401 Silicon Serial Number No additional memory
DS2404 EconoRAM Time Chip 4096 bits RAM
DS2404S-C01 Dual-Port Memory Plus Time 4096 bits RAM
DS2405 Addressable Switch No additional memory
DS2406 Dual Addressable Switch 1024 Bits EPROM
DS2409 MicroLAN Coupler No additional memory
DS2417 Time Chip with Interrupt 32-bit Real Time Clock Counter
DS2423 1-Wire RAM with Counters 4096 bits RAM
DS2430A 1-Wire EEPROM 256+64 bits EEPROM
DS2433 1-Wire EEPROM 4096 bits EEPROM
DS2434 Thermometer 32 byte EEPROM, 32 bytes SRAM
DS2435 Thermometer/Time-Temperature Histogram 32 bytes EEPROM, 32 bytes SRAM
DS2436 Thermometer, Voltage A/D 32 bytes EEPROM, 8 bytes SRAM
DS2437 Fuel Gauge, Voltage A/D, RealTime Clock, Temperature 40 bytes EEPROM
DS2438 Fuel Gauge, Voltage A/D, Elapsed Time, Temperature 40 bytes EEPROM
DS2450 1-Wire Quad A/D Converter Status Control Memory Only
DS2480B 1-Wire Line Driver Status Control Memory Only
DS2490 USB to 1-Wire Bridge Chip Mode Control and I/O FIFOs
DS2502 Add-only Memory 1024 Bits EPROM
DS2502-UNW UniqueWare 1024 Bits EPROM
DS2502-E64 IEEE EUI-64 Node Address Chip 256 bits pre-programmed, 768 bits user-programmable
DS2505 Add-only Memory 16,384 Bits EPROM
DS2505-UNW UniqueWare 16,384 Bits EPROM
DS2506 Add-only Memory 65,536 Bits EPROM
DS2506-UNW UniqueWare 65,536 Bits EPROM
DS2890 1-Wire Digital Potentiometer Feature and Control Memory
DS9502 ESD Protection Diode –
DS9503 ESD Protection Diode with Resistors –

Table 1. Overview of al 1-Wire devices currently available.

makes it quite a complicated component,
but because of the software made available
by Dallas we need not concern ourselves too
much about the inner workings of this IC.
Readers who would like to know exactly
what happens inside the DS2480B can study
the 30-page datasheet. In this article we
make grateful use of the fact that we can
treat this IC as a black box. We only need to
concern ourselves with the 1-wire devices
that are connected to the bus; how they
communicate with the PC is of secondary
interest.

Hardware
The serial interface between the PC and the
1-Wire bus does not require much, the
DS2480B does all the work in co-operation
with the driver that is part of the software.
The entire schematic is shown in Figure 1,
and this version is about as complex as pos-
sible. For more basic applications a number
of parts can even be omitted.

Serial interface
The interface-IC communicates via the RxD
and TxD lines of the RS232 port of the PC. As
is well-know, according to the standard, a
logic one corresponds to –12 V and a logic
zero to +12 V, while the serial protocol at the
microcontroller is usually +5 V and 0 V
respectively. When pin 6 of the IC (POLarity)
is connected to ground, the serial signals are
inverted inside the DS2480B. The RS232-inter-
face is as simple as passively clamping (R1
and D3) the signal on pin 7 (TxD). The resis-
tor and zener diode ensure that the voltage
on this pin is limited to the range of 0 to 4.7 V.

Most (but not all!) modern RS232 ports are
quite happy to accept 0 V as a ‘1’ and +5 V
as ‘0’. For this reason no additional hardware
was added to make this signal conform to the
standard (-12 V and +12 V respectively).

1-Wire bus
As the name implies, there is just one ‘wire’
from the DS2480B that deals with the com-
munications on the bus. Most 1-Wire ICs may
be powered directly from this bus. In addi-
tion, there are devices with a programmable
memory (EPROM, Electrically Programmable
ROM; note that these are OTP because they
do not have windows) that require 12V pro-
gramming pulses in order to store data. This
programming voltage is available at the inter-
face on the VPP-pin (pin 5) of the DS2480B
and is automatically applied to the bus when
a programming command has been issued.

Dallas Semiconductor explicitly warns
users that, when programming, only a single
EPROM device must be connected to the

interface, with only a short length of
wire. In addition, never execute pro-
gramming commands on the bus if
there are devices connected to it that
do not contain an EEPROM. This
could cause damage to the device or
the DS2480B!

D4 and D5 provide ESD-protec-

tion (ElectroStatic Discharge) for the
interface so that it cannot be dam-
aged by electrostatic discharges
from the 1-Wire bus. The DS9503 has
a very fast internal diode with a
zener voltage of about 7.5 V. The
effect of the built-in 5 Ω resistors
may be ignored during normal com-

COMPUTER

32 Elektor Electronics 4/2002

0
2
0
0
2
2
-1

(C
) E
LE
K
TO
R C1 C2

C
3

D1

D2

D3

IC
2

K1

R
1

0
2

0
0

2
2

-1

D

T

+

0

D
4

D
5

IC
1

0
2

0
0

2
2

-1
(C

) E
LE

K
TO

R

Figure 2. The PCB is not large since the ICs are in SMD packages.
Be careful when soldering!

COMPONENTS LIST

Resistors:
R1 = 4kΩ7

Capacitors:
C1 = 10µF 25V radial
C2,C3 = 100nF

Semiconductors:
D1,D2 = BAT85
D3 = zener diode 4.7V 400 mW

D4,D5 = DS9503 (6-pin TSOC)
IC1 = DS2480BS (8-pin SOIC)
IC2 = 78L05

Miscellaneous:
K1 = 9-way sub-D- socket (female),

angled pins, PCB mount
PCB, order code 020022-1 (see

Readers Services pages)

Figure 3. The main window of the iButton Viewer.

check your soldering, the orientation of the
ICs, electrolytic capacitors and diodes.

If everything goes as desired, the software
will indicate a DS9097U adapter attached to
the COM port; this is the interface that is
built with a DS2480. At this point the com-
munication between the PC and the interface
is working properly. We can now proceed to
the 1-wire bus, which is what started all of
this in the first place.

Devices on the 1-Wire bus
Now that we have a fully functioning inter-
face it is time to connect one or more devices
to the 1-Wire bus. Read the corresponding
data sheets thoroughly. Some devices can be
directly connected with two wires to K2 of
the interface, but others may require external
components (a crystal, for example, with

clock-IC DS2417) or their own stabilised
power supply.

Those of you who don’t like programming
can get started immediately with the iButton
Viewer. This program automatically shows
which devices are present on the 1-Wire bus.
Figure 3 shows the main window of the
viewer. In the left column are the unique
identification numbers of the five devices that
have been found on the bus. On the right is a
brief description of the device that has been
highlighted on the left, in this case a DS2450
(a 4-channel A/D converter).

Clicking the button ‘Click Here for Viewer’

munications but form a high imped-
ance with respect to the zener diode
if a discharge occurs on the bus. This
ensures that the discharge current
flows through the diodes and not
pin 2 of the interface IC. If the inter-
face is not going to be used with
EPROMs (which require 12 V pro-
gramming pulses), the normal oper-
ating voltage on the bus will not
exceed 5 V and D5 can be omitted.
Pin 5 of D4 is then directly connected
to the ground plane on the PCB and
the ground connection of K2 to the
anode (pin 2 of D4).

Power supply
The power supply can be obtained
from the RS232 port, but that won’t
be sufficient for the memory devices
in the 1-Wire bus that require a 12-V
programming voltage. In order to
program memories, an external reg-
ulated 12-V power supply is con-
nected to K3. Just to be sure: take
note of the warnings with respect to
the programming of these memories
mentioned earlier!

Under normal circumstances, the
DTR and RTS can provide the power
for the interface. When one of the
lines is high (+12 V), there is suffi-
cient current available for IC2 to pro-
vide a nicely regulated +5-V supply.

Construction and test
Figure 2 shows the printed circuit
board layout that was designed for
this interface.
The DS2480B and DS9503 are SMD-
components and it is recommended
that these parts are fitted first, on
the copper side of the PCB. Pay close
attention to the marking of pin 1 (a
notch). Put a small amount of solder
on one corner pad, then place the IC
correctly on its footprint and solder
this pin first. Proceed to solder the
corner pin diagonally opposite. Now
carefully check that all the other pins
are properly aligned with their cor-
responding solder pads, before sol-
dering the remaining pins. Excessive
solder can be removed with solder
wick.

Continue by fitting the resistors
and diodes vertically on the compo-
nent side of the PCB and, last but
not least, the voltage regulator IC2,
the capacitors and the connectors.

When you are finished, carefully

inspect your work. Pay particular
attention to possible short-circuits
between the pins of the SMD
devices.

Before we test the hardware we first
download the iButton Viewer and
TMEX-drivers from

www.ibutton.com/software/tmex/
index.html

Currently version 3.20 is the most
recent. The file TM320_32.EXE
installs the drivers and the software,
and when completed, immediately
starts up the iButton Viewer. This
program will first go looking for the
1-wire interface.

Connect the circuit with a normal
9-wire serial cable (NOT a null

modem cable!) to an available COM
port on the PC. The external power
supply on K3 is not required and no
devices are connected to the 1-Wire
bus yet. If everything is correct, our
interface will be found after clicking
the Auto-Detect button. The setup
program will close and the iButton
viewer has to be restarted. An error
message will appear immediately if
the program is unable to communi-
cate with the interface. If this is the
case, the fault is almost certainly
with the hardware. Once again

COMPUTER

334/2002 Elektor Electronics

opens a window which displays the four
measurement values and various settings for
this IC (refer to Figure 4). The settings can be
altered. For example, the time interval
between two measurements can be changed,
one or more channels can be turned on or off
or the measuring range of a channel can be
adjusted, etc.

It is also possible to open multiple views
at once, so that several devices are displayed
on the screen at the same time. In this way,
it is easy to obtain an overview of the net-
work and makes experimenting easy. One
way is to interconnect different 1-Wire
devices. For example, we can connect a 1-
Wire potentiometer to one channel of the
A/D-converter and observe the changing
measurement result of this channel.

This is all very nice, and very entertaining
to play with, and it may even be sufficient for
simple applications, but the iButton Viewer
does not allow several devices to be inter-
connected in software. If you would like to do
more, such as automatically operate a switch
connected to the bus when the measurement
result on channel A of the A/D-converter
exceeds a certain value, then you will have to
program this yourself. The 1-Wire Software
Developer’s Kit (SDK), available from the Dal-
las web site, facilitates this.

1-Wire SDK
This software package can be downloaded
from the same page as the iButton Viewer. At
the moment the most recent version is SDK
V4.0 ALPHA. This contains, among other
things, the documentation for the TMEX API
(application program interface) and descrip-
tions of the functions that can be called from
within you own software to communicate
with devices that are connected to the 1-Wire
bus. It also contains drivers for the serial
interface and USB on a PC and programming
examples in Pascal, Delphi, C and Visual
Basic. There is more than enough information

and reading material to get you
started with your own programming.

The 1-Wire bus in practice
Unfortunately, we cannot connect an
unlimited number of 1-Wire devices
to the interface that has been
described in this article. Also, the
physical layout of the total network,
such as cable lengths and topology
of the bus is limited in practice. As
long as the interface and the devices
connected to it are spread out over a
workbench and the bus length is
less than 1 meter or so, there will be
no problems. But before you ran-
domly start drilling holes and run
wires through a house or other build-
ing, it is recommended that you first

read application note AN148, ‘Guide-
lines for Reliable 1-Wire Networks’.
This contains a clear and thorough
description of the rules that you have
to adhere to, and which steps you
can take, to ensure reliable commu-
nications across the network. This
application note, which also contains
additional information about the
DS2480B, can be found with the
other 1-Wire application notes.

(020022-1)

COMPUTER

34 Elektor Electronics 4/2002

Internet
addresses:
1-Wire SDK:

www.ibutton.com/software/tmex/

1-Wire application notes:

http://dbserv.maxim-ic.com/

an_prodline2.cfm?prodline=21

Figure 4. This window shows the four measurement results and various settings of
the 4-channel A/D converter DS2450.

GENERALINTEREST

38 Elektor Electronics 4/2002

The RCX, the ‘intelligent’ component of the
Lego Robotics Invention System, which forms
part of the Lego Mindstorms program, is emi-

nently suitable to serve a as the
basis of various automation applica-
tions. Apart from the programming

that is still required, it is very easy to
assemble, for example, a small robot
together with ‘normal’ Lego parts.
However powerful or modular the
design of the RCX-module may be,
when more things have to be con-
trolled or measured than are possible
with the three inputs and the three
outputs, you’re out of luck…

This is not the first time that this
‘shortcoming’ in the design has been
noted. In a series of five articles,
which commenced in April 2000, we
presented the Lego Robotics Inven-
tion System. Even then, attempts
were made to connect multiple sen-
sors to one input. The Summer Cir-
cuits issue of the same year also con-
tained a trick that enabled multiple
switches to be connected to one
input.

Naturally, the design staff and
editors of Elektor Electronics where
not the only ones to notice that the
I/O capabilities of the RCX module
are rather limited. Various enthusi-
asts have invented circuits that,

I2C Interface for
Lego RCX ‘Brick’
makes unprecedented extensions possible!

Design by W. Huiskamp

It has, by now, become well known that the Lego RCX-module is emi-
nently suitable for experimenting with such things as robotics. But once the
designs grow beyond simple experimentation it quickly becomes obvious
that the number of inputs and outputs that this control module provides,
are rather insufficient. That’s why Elektor Electronics presents the I2C-
interface for this Lego brick. An entirely new world is opened up: in prin-
ciple, no fewer than 128 I2C-devices may be connected to the bus!

GENERALINTEREST

394/2002 Elektor Electronics

possible to generate a signal from the RCX to
the I2C bus. In addition, it remains possible
to read the signals originating on the bus via
the same sensor input.

Circuit
The actual interface for both the SDA and
SCL signals is identical. Consequently, the
same circuit can be recognised twice in Fig-
ure 1. We will only discuss the operation for
one signal. The circuit is split into two parts
because of the optocoupler. This prevents
damage to either the RCX module or the
attached devices in the event the voltage is
too high somewhere (for example, when only
one of the two power supplies is connected).
This is because the section of the circuit at
the I2C side is powered separately. IC5 takes
care of this. D27 protects against damage
from reverse polarity if the power supply is
connected incorrectly. LED D28 is the power
supply indicator.

The RCX part of the circuit is powered via
D7 to D10. The diodes are connected as a
bridge rectifier, so there is no need to con-
sider the polarity when connecting to the
RCX module. C1 buffers the power supply
during those periods when the measurement
takes place. This is necessary because in the

using multiplexing techniques,
enable more peripherals to be con-
nected. Some of these are very inge-
nious indeed, and will certainly be
sufficient in certain circumstances.
The circuit presented here, however,
is probably a fraction smarter still.
Because, with this extension, the
RCX module can communicate with
(theoretically) up to 128 devices on
the I2C bus!

Operation of the interface
The Inter-IC bus (I2C) is a 2-wire bus
with a bi-directional data line (SDA)
and a clock signal (SCL). The bus is
subject to a number of rules. Data
transfer takes place between the so-
called master and one or more
slaves. The master is the device that
initiates the communications and
also generates the clock signal. In
addition, the devices are not permit-
ted to pull the connections to the bus
active high. A high level is obtained
by making that connection high
impedance, a resistor with a value of
3k3, connected to the power supply
rail, providing the logic High level on

the bus. Pulling the Low to produce
a zero is permitted. The 3k3-resistor
is then pulled to ground.

The RCX module has to be able to
generate both ones and zeros on the
bus, but also has to be able to read
ones and zeros. This can be realised
with a single sensor input by utilis-
ing a well-known trick. Under soft-
ware control, a sensor input can be
configured as either active or pas-
sive. In passive mode, the measured
value (= the voltage at the input) is
determined by the internal resistor
and the resistance of the attached
sensor. The voltage of this potential
divider can vary between 0 and 5 V.
When the sensor input is set to
active mode however, the battery
voltage (7 to 9 V) is applied to the
sensor connections between mea-
surements. This voltage is periodi-
cally, approximately every 3 ms,
switched off and the value at the
input is determined in the usual way.
A measurement takes about 0.1 ms
to carry out.

In this way, by switching
between active and passive sensors
under software control, it becomes

Figure 1. The I2C-interface for the Lego-RCX consists of two identical parts for the SCL- en SDA-signal.

1

2

3

4

5

6

7

8

9

10

K4

D9

D7

D10

D8

C1

22µ 16V

CNY17-2
IC1

5

4

1

2

6

D6

D5

1N4148

CNY17-2
IC2

5

4

1

2

6

T1

BC547

D1

4V7

C2

1µ
16V

R1

1k

D2

D3

D4

1N4148

R6

1k

R2

3k
3

R3

1
0

0
Ω

+5V

T2

BC547

R4

4k7

R5

1
0

0
Ω

D11

D12

D13

D22

D20

D23

D21

C3

22µ 16V

D19

D18

1N4148

T3

BC547

D14

4V7

C4

1µ
16V

R7

1k

D15

D16

D17

1N4148

R12

1k

R8

3k
3

R9

1
0

0
Ω

+5V

T4

BC547

R10

4k7

R11

1
0

0
Ω

D24

D25

D26

+5V

7805

IC5
D27

1N4001

C5

220µ
25V

C7

100µ
16V

C6

100n

+5V

R13

1k
D28

+5V

CNY17-2
IC4

5

4

1

2

6

CNY17-2
IC3

5

4

1

2

6

2x 2x

4x 1N41484x 1N4148

3x 1N4148 3x 1N4148

SCL SDA

SCL SDA

S
en

so
r

1

S
en

so
r

2

3x3x 010089 - 12

K1

K3

K2

active mode the battery is periodically dis-
connected.

The voltage at the sensor connection is
also applied to the circuit via D5 and D6
(together they ensure that the polarity is
immaterial). The combination of zener D1,
and D2, D3 and D4 make it possible to make
a distinction between passive and active
mode. The zener does not conduct in passive
mode. Once the battery voltage is switched
on, C2 will charge and cause a voltage drop
of up to 1.8 V across D2, D3 and D4. In this
case C2 also takes care of riding through the
periodic measurements. When this 1.8 V is
present, transistor T1 will conduct and a cur-
rent will flow through the LED in the opto-
coupler. R1 makes sure that the capacitor is
discharged quickly enough, when the input
is switched back to passive mode. This
method, with separate power supply and
switching circuit, provides an accurately
defined ‘1’ or ‘0’ on the bus.

The circuit in the other side of IC1 is very
simple and actually consists only of R2. This
resistor provides the high-level signal when
the line is at high impedance. When
the LED is on, the transistor part of the opto-
coupler conducts and the output level on the
bus is low. The circuit, therefore, acts as an
inverter. This is something we have to take
into account in the software.

The purpose of R4, D11, D12, D13, T2 and
R5, together with IC2 and R6 is to be able to
read the signal originating on the bus at the
RCX-module. The logic level on the SCL or
SDA line is applied via R4 to the base of T2
and the diode string D11, D12 and D13. The

diodes limit the voltage at the base
of T2 to 1.8 V. When the level on the
bus is high, T2 will conduct and the
LED in opto-coupler IC2 will be on.
The LED obtains its power from the
separate power supply for the I2C
section.

On the RCX side of IC2, the tran-
sistor in the optocoupler ensures
that, via R6, the input voltage at the
sensor input will be low when the
LED is on. D5 and D6 ensure that,
once again, the polarity is not impor-
tant when making the connection.

Your first device
In order to be able to test the inter-
face, it is necessary of course, to con-
nect a device to the bus. We sum-
mon the circuit of Figure 2 for this
purpose. At the centre of the circuit
is IC1, a so-called I2C port expander.
This ‘device’ is programmed via the
bus with an 8-bit value that is pre-
sented in binary value at the out-
puts. If you send the number 1, for
example, then P0 will go High; the
value 17 will cause P4 and P0 to be
High. The outputs of IC1 are con-
nected via IC2, an octal driver IC, to
eight LEDs. In an actual application
these may of course be any other
arbitrary indicators or actuators,
such as buzzers or (via buffer stages)
relays. Also note that the port
expander can read an 8-bit value via

P0 to P7 as well. For this purpose,
the master first has to set all outputs
high, individual connections can
then be pulled low. A read command
will provide the value for each pin.
Up to eight different port-expanders
may be connected to the bus. This is
because the address for the IC has
the form 0100xxx0, where xxx may
be set with DIP switch S1.

Building
The construction of either circuit
should not cause you any difficulties,
particularly if you etch your own cir-
cuit boards according to the layouts
of Figures 3 and 4. We would like to
remind you of the things to consider
during assembly. Take note of the
polarity of diodes, capacitors, tran-
sistors and ICs. You may decide to
use sockets for the optocouplers. As
can be seen from the parts list, a
low-current LED was selected for
D28 on the interface PCB. This is
important because the LED is pow-
ered directly from the RCX brick.
And every little bit helps, of course,
when it comes to saving battery
power.

PCB pins and box headers pro-
vide the connections to the outside
world. Standard Lego-wires can be
soldered to K1 and K2. An external 9-
V battery eliminator is connected to
K3. Box header K4 leads the I2C bus
to the outside world. Not only the
SCL and SDA signals are available
(pins 1 and 3 respectively), but also
the power supply (pin 9) and ground
(pins 2, 4, 6, 8 and 10). By making the
power supply available on this con-
nector, the test PCB can be con-
nected without requiring its own
power supply, provided the load is
within reason. The 8 LEDs shown
here are not a problem. The test PCB
is fitted with the same 10-way con-
nector and can be connected with a
short piece of ribbon cable.

Software
The accompanying software is an
essential part of the interface, of
course. A number of functions are
implemented that make data com-
munications with the I2C devices
possible at a higher level. These
functions have been written in NQC
2.2 (Not Quite C). RCX firmware ver-

GENERALINTEREST

40 Elektor Electronics 4/2002

Figure 2. Test circuit with I2C port-expander and driver-IC with eight LEDs.

74HCT245

IC2

3EN2

3EN1

11

12

13

14

15

16

17

18

19
G3

2

3

4

7

8

9

5

6

1

1

2

+5V

D1 D2 D3 D4 D5 D6 D7 D8

R1

5
6

0
Ω

R2

5
6

0
Ω

R3

5
6

0
Ω

R4

5
6

0
Ω

R5

5
6

0
Ω

R6

5
6

0
Ω

R7

5
6

0
Ω

R8

5
6

0
Ω

R11

1
0

k

R10

1
0

k

R9

1
0

k

S1

1 2 3 4

8 567

PCF8574

IC1

SDA

SCL

INT

P0

15

16

P1

P2

P3

P4

P5
10

P6
11

P7
12

14

13

A0

A1

A2

4

8

5

6

7

9

1

2

3

12

34

56

78

910

K1
C1

100n

C2

100n

C3

10µ 16V

IC2

20

10

+5V

SDA

SCL

+5V

010089 - 11

sion 2.0 has been used to interface with the
hardware (previous versions do not work!). If
your RCX module is not up to this revision,
and you would like to make use of the I2C-
functions shown here, you will need to
upgrade the module first. This is done as fol-
lows: First download the firmware V2.0 (the
‘system software’) for the RCX module (refer to
the link at the end of this article). The new
firmware is then downloaded to the RCX. The
program BricxCC can be used for this, for
example. You first have to set BricxCC to
RCX2, nor RCX. The program will ask for this
the first time it starts up. Afterwards you can
reach this setting by going to Edit � Prefer-
ences under the tab Start Up.

Also note that BricxCC is not only used for
downloading new firmware, but also pro-
vides communication between a PC and the
RCX when sending NQC programs. NQC is a
compiler, which can translate C-like programs
into code for the RCX module.

The functions that provide communica-
tions with the bus are best illustrated with
the help of two example programs.

First we look at i2c_test_wr.nqc, which
can be found with the other examples on the
floppy disk that belongs with this project

GENERALINTEREST

414/2002 Elektor Electronics

010089-2 (C) ELEKTOR

C1
C2

C3

D1
D2
D3
D4
D5
D6
D7
D8

H1

H
2 H3

H
4

IC
1 IC

2

K1

R1
R2
R3
R4
R5
R6
R7
R8

R
9

R
10

R
11S1 010089-2

A0
A1
A2

010089-2(C) ELEKTOR

010089-1
(C) ELEKTOR

C1

C2

C3

C4

C
5

C6

C7

D
1

D
2

D
3 D
4

D
5

D
6

D
7 D
8

D
9

D
10

D
11

D
12 D
13

D
14

D
15

D
16 D
17

D
18

D
19

D
20 D
21

D
22

D
23

D
24

D
25 D
26

D27

D
28

H1

H
2H3

H
4

IC1

IC2

IC3

IC4IC5

K4

R
1

R
2

R
3

R
4

R
5

R6

R
7

R
8

R
9

R
10

R
11

R12

R13

T1

T2

T3

T4

010089-1

SDA
Sensor 2Sensor 1

SCL+ 0

010089-1
(C) ELEKTOR

Figure 3. The printed circuit board layout for the I2C-interface.

Figure 4. The printed circuit board layout for the test circuit.

COMPONENTS LIST
(interface board)

Resistors:
R1,R6,R7,R12,R13 = 1kΩ
R2,R8 =3kΩ3
R3,R5,R9,R11 = 100Ω
R4,R10 = 4kΩ7

Capacitors:
C1,C3 = 22µF 16V radial
C2,C4 = 1µF 16V radial
C5 = 220µF 25V radial
C6 = 100nF
C7 = 1000µF 16V radial

Semiconductors:
D1, D14 = zender diode 4.7V

400mW
D2-D13,D15-D26 = 1N4148
D27 = low-current LED
T1-T4 = BC547
IC1-IC4 =CNY17-2
IC5 = 7805

Miscellaneous:
K1,K2,K3 = 6 PCB solder pins
K4 = 10-way boxheader
Disk, project software, order code

010089-11 (see Readers Services
page) or free download from
www.elektor-electronics.co.uk

COMPONENTS LIST
(test board)

Resistors:
R1-R8 = 560Ω
R9,R10,R11 = 10kΩ

Capacitors:
C1,C2 = 100nF
C3 = 10µF 16V radial

Semiconductors:
D1-D8 = rectangular LED
IC1 = PCF8574
IC2 = 74HCT245

Miscellaneous:
K1 = 10-way boxheader
S1 = 3-way DIP switch (4-way will

also fit)

(refer to service pages, EPS 010089-11) or on
the Elektor Electronics web site. The test pro-
gram increments a counter in steps of one,
until a value of 255 is reached. Every new
value is sent via the bus to the test PCB. We
encounter the following lines of code:

i2c_init();
i2c_start();
i2c_data = PCF8574_0;
i2c_send();
i2c_data = test;
i2c_send();
i2c_stop();

i2c_start() initiates the I2C-message. This is
followed by sending the address of the device
that we’re talking to. That is the port
expander in this case. After this the actual
data is sent, via the variable i2c_data. And
finally the communication session is closed.

In the example program, this is followed
by incrementing the counter and executing
the loop once more. This works well, but in
principle it is not necessary to stop the com-
munication as long as the same device is
addressed. Initialisation, starting, sending of
the address and stopping can take place out-
side the loop in this case. This is certainly a
lot faster.

In the second example program,
i2c_test_rd.nqc, the port-expander is read
back. Before this can happen, the communi-
cation has to be initialised in the usual man-
ner:

i2c_init();
i2c_start();
i2c_data = PCF8574_0;
i2c_send();

In order to function as an input, all connec-
tions have to be set high. To achieve this, a
value of 0xFF (255) is sent to the device:

i2c_data = 0xFF;
i2c_send();

Now the actual read operation of the
port can be carried out:

i2c_recv();
test= i2c_data;

Finally, the communication is
stopped:

i2c_stop();

The example program is slightly dif-
ferent because it also contains a
loop. Also, both programs do not
bother with the acknowledge bit
i2c_ackn. The master can receive
this bit from a slave device, once all
the data to the slave has been sent.
The reverse is also true, an acknowl-
edge bit can be sent to the slave
once all its data has been read. This
may be of use in some applications,
but it is not necessary here.

It appears that with this soft-
ware, RCX brick and interface a
speed of about 2 complete I2C mes-
sages per second are achievable.
This is not particularly fast, and will
have to be taken into account for cer-
tain applications.

The actual implementation of the
user functions is in the file i2c_mas-
ter.nqc. When these functions are

called from within a program, this
file has to included with the compiler
directive #INCLUDE. We con-
sciously avoid a discussion of the
low-level functions. Those of
you who are nevertheless interested
can examine the source code for
yourselves. The only thing that we
could mention is that the inverting
operation of the interface has been
compensated for at this level.
In this file can also be indicated
which sensor input ultimately repre-
sents which signal on the bus. The
default is SCL for sensor 1 and SDA
for sensor 2. There are also different
addresses possible for the PCF8574
(the port expander IC in the test cir-
cuit). They are already provided as
PCF8574_0 through PCF8574_7
(0x40h through 0x4E).

This definitely does not mean that
the software is limited to this device.
Other I2C devices can also be used,
such as A/D or D/A converters
(PCF8591 for example), LED- and
relay-drivers (SAA1064 for example)
or even a real-time clock with the
Lego RCX module!

(010089-1)

GENERALINTEREST

42 Elektor Electronics 4/2002

Figure 5. After starting BricxCC it is important that you select RCX2.

Useful websites
Bricx Command Center 3.3:
http://hometown.aol.com/johnbinder/bricxcc.htm
Not Quite C:
www.cs.uu.nl/people/markov/lego
Official NQC download site:
www.enteract.com/~dbaum/nqc/doc
RCX firmware 2.0:
http://mindstorms.lego.com/sdk2/

GENERALINTEREST

44 Elektor Electronics 4/2002

LPT/DMX Interface
480 DMX channels via the parallel port

Design: B. Bouchez bbouchez@netcourrier.com

The DMX/MIDI interface described in the September 2001 issue is
extremely flexible and suitable for nearly all applications, but it is a
rather complex circuit. By contrast, the interface described here is the
height of simplicity with regard to both construction and programming,
even under Windows.

GENERALINTEREST

454/2002 Elektor Electronics

least two bits, which allows the receivers to
synchronise themselves.

Why this interface?
The DMX signal can be generated by a sim-
ple serial port (which, by the way, was also
what the developers of this standard had in
mind). However, the serial port of a PC is
totally unsuitable for this, for two reasons.
First, PC ports are designed to meet the
RS232 standard (although an RS232/RS485
converter might provide a solution here), and
second, the clock rate of serial PC ports
makes it impossible to generate a 250-kbaud
signal.

To make a long story short, if you want to
use DMX in combination with a PC, a sepa-
rate interface is necessary. The approach that
has been taken here is basically very simple.

The DMX protocol has already been
the subject of several articles in
Elektor Electronics. Consequently,
here we will describe only the essen-
tial points in order to refresh your
memory. Readers who are interested
in the technical details of the proto-
col are referred to the article in
which it is described (‘DMX512
Revealed’ in the May 2001 issue) and
to various DMX designs that have
subsequently appeared in Elektor
Electronics (‘MIDI/DMX Interface’
and ‘DMX Demultiplexer’).

The DMX512 protocol
The protocol was defined in 1986 by
the USITT. This American organisa-
tion is responsible for the standardi-

sation of all technical matters in the
‘show biz’ area, such as exchanging
digital information between control
panels and devices such as dimmers
and automated lighting equipment.

The DMX protocol is based on a
unidirectional serial link meeting the
specifications of the RS485 standard.
The commands that are intended to
be received by the ‘slaves’ are sent
in the form of a series of bytes, each
of which controls one DMX channel.
The link works at a speed of
250 kbaud with the format ‘8 bits, no
parity and 2 stop bits’. In order to
allow the start of each data frame
(which can be as large as 512 bytes
plus the start byte) to be deter-
mined, communications are inter-
rupted (‘Break’) for the duration of at

K1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1

2

3

4

5

6

7

8

9

DB25

X1

8MHzC2

33p

C1

33p

C4

47n

+5V

R6

1
k

5

D3

+5V

1

2

3

4

5

6

7

8

9

10

K2

K3

R2

1
0

0
k

C3

1µ
16V

D1

1N4148

+5V

1

2
3

IC2.A

&

4

5
6

IC2.B

&

9

10
8

IC2.C

&

12

13
11

IC2.D

&

R1

4
k

7

+5V

90S8515P

RESET

EA/VPALE/P

P1.2

P1.5

P1.6

P1.7

P1.0

P1.1

P1.4

P0.0

P0.1

P0.2

P0.3

P0.4

P0.5

P0.6

P0.7

P2.2

P2.4

P2.5

P2.6

P2.7

P2.3

P2.0

P2.1

INT0

INT1

IC1

P1.3

PSEN

RXD

TXD

RD

WR

T0

T1

39

38

37

36

35

34

33

32

21

22

23

25

26

27

28

19

X1

18

X2

20

40

17

16

31

11

10

12

13

14

15

24

30

299

1

2

3

4

5

6

7

8

ACK

PE

SEL

LF

ERR

RESET

SELIN

LF

D0

ERR

RESET

SELIN

D1

D2

D3

D4

D5

D6

D7

ACK

PE

SEL

D0

D1

D2

D3

D4

D5

D6

D7

C5

47n

+5V

K4

K5

LTC490

IC3

6

5
3

2

D

R7

8

1

4

R3

4
k

7

R4

4
k

7

K6 K7

+5V

NC1

CLK

NC2

DATA

STR

BUSY

RXD

TXD

DMX
IN

DMX
OUT

IC2

14

7

C6

47n

+5V

C7

10µ
16V

R5

1
k

5

D2

+5V

010212 - 11

IC2 = 74HCT00

1 = SHIELD

2 = DMX –

3 = DMX +

5V

M
IS

O

M
O

S
I

S
C

K

Figure 1. The electronics of the LPT/DMX interface are concentrated in an Atmel AT90S8515 IC.

We just use the parallel port, which is sup-
ported by most operating systems (DOS, Win-
dows 3.x/95/98/ME etc. and LINUX). Fur-
thermore, the PC is far from being the only
type of computer with a parallel port. It is
thus possible to use this interface with
machines such as the (former) Atari, Amiga
and so on, as long as the proper software is
available.

In order to keep this interface as universal
as possible and thus avoid limiting its use to
modern PCs, it employs only the Centronics
protocol instead of any of the PC-specific pro-
tocols (Nibble, Reverse, EPP and ECP).

This approach also has a significant
advantage when the interface is used with
Windows. With this operating system, it is
normally necessary to develop drivers in
order to be able to use specific interfaces,
which is rather complicated. Since this inter-
face uses the Centronics protocol, Windows
simply considers it to be a printer and thus
installs the standard drivers.

This means that even under Windows,
programming the interface amounts to noth-
ing more than ‘printing’ control commands.
This interface can thus be controlled using
any desired programming language (Delphi,
Visual Basic, Visual C, C++ Builder etc.) that
supports printing under Windows.

Furthermore, the designer of the interface
has written a special Windows module that
allows you to control it without having to
know how to program the parallel port under
Windows. There is also a special program for
testing the interface. Finally, we should note
that the interface is supported by the Soft
Controller programs (more about this later on).

The hardware
As can be seen from Figure 1, the schematic
diagram of the interface is rather simple,
since IC1 (an Atmel AT90S8515 RISC micro-
processor) looks after practically everything.
It contains just about all that we need: RAM,
a serial port and EEPROM for the program. A
few years ago, around ten chips would have
easily been necessary for such a circuit.

The only other semiconductors we need
are IC2 (which is used to implement a flip-
flop) and IC3 (a Linear Technology
LTC490CN8 RS485 transceiver). By the
way, the LTC490 may be replaced by its
equivalent, the SN75179 (which may be
easier to find).

In our first prototypes, the Strobe line of
the parallel interface was connected directly
to one of the microprocessor interrupt inputs.
The width of the pulse on this line varied so
much that sometimes things didn’t work
properly. This is why the flip-flop formed by

IC2a/b was added. With this change,
even very short pulses are regis-
tered.

The pin assignments of K1 match
those of the parallel port connector
on the PC. The interface can thus be
connected to the Centronics connec-
tor using a standard cable.

IC3 is a RS485 transceiver. It con-
verts the TTL signals from the micro-
processor’s serial port to the RS485
signals required by the DMX stan-
dard. To keep things simple, we
have not provided electrical isolation
between the microprocessor and the
transceiver. If you are worried about
excessive voltages due to earth
loops, you should fit Transil protec-
tors between the DMX+ and DMX–
lines on K4 and K5 (pins 2 and 3).

You may have already noticed
that the DMX interface has a
DMX IN input, but this input is not
used! It has been included for possi-
ble future extensions.

LED D2 indicates whether the
interface has power. The job of LED
D3, which is driven by the micro-
processor, is to report any errors that
may occur in the commands send by
the computer.

Since this interface can be pow-
ered from the PC to which it is con-
nected, the values of R4 and R5 are
chosen for use with low-power, high-
efficiency LEDs. If you decide to use
standard LEDs, a value of 220 or
330 Ω is suitable for these resistors.

Thanks to its low current con-
sumption (less than 10 mA), the
interface can be powered directly
from the PC to which it is connected.
A voltage regulator is thus not nec-
essary.

To obtain power from the PC, we
make use of the connection from the
PC to the keyboard, which is pow-
ered from the 5-V supply. Connectors
K6 and K7 are connected to a simple
keyboard cable (PS/2 or AT), and the
necessary voltage can be tapped off
from this cable.

Connector K2 is only used for pro-
gramming the microcontroller. The
Atmel programming cable can be fit-
ted directly to this connector (see the
Atmel site at www.atmel.com for the
schematic diagram). If you order a
pre-programmed microprocessor
from Readers Services (order number
010212-41), K2 may be omitted.

Finally, the triplet R2/C3/D1 gen-
erates the reset pulse for the micro-
processor. This pulse runs via K3,
where you can select the source for
the reset (connector K2 or the reset
circuit). It should be clear that the K3
jumper should not be fitted if you
want to program the microprocessor
yourself. During normal operation,
the jumper must be present on K3 to
provide a link to R2/C3. If you pur-
chase a pre-programmed micro-
processor, you can simply replace K3
with a wire bridge fitted between
the connections for pins 2 and 3.

GENERALINTEREST

46 Elektor Electronics 4/2002

COMPONENTS LIST

Resistors:
R1,R3,R4 = 4kΩ7
R2 = 100kΩ
R5,R6 = 1kΩ5

Capacitors:
C1, C2 = 33pF
C3 = 1µF 16V radial
C4,C5,C6 = 47nF
C7 = 10µF 16V radial

Semiconductors:
D1 = 1N4148
D2 = LED, red, high efficiency
D3 = LED, yellow, high efficiency
IC1 = AT90S8515-8PC, programmed,

order code 010212-41
IC2 = 74HCT00
IC3 = LTC490 CN8

(Linear Technology)

Miscellaneous:
K1 =DB25 plug (male), PCB mount,

angled pins
K2 = 10-way boxheader
K3,K4,K5 = 3-way SIL pinheader
K6 = 6-way mini-DIN socket, PCB

mount
K7 = 6-way SIL pinheader
X1 = 8MHz quartz crystal
PCB, order code 010212-1 (see

Readers Services page)
Disk, source code and programs,

order code 010212-11

Project software and PCB layout also
available as free downloads from
www.elektor-electronics.co.uk

sion of the Atmel microprocessor). Use good-
quality sockets for the three ICs. If you want to
connect K1 of the interface directly to the
DB25 connector on a PC, be sure to use a con-
nector without integrated securing screws for
K1, since otherwise the connector cannot be

Here comes
the soldering iron
Thanks to the small number of com-
ponents, assembling the interface is
relatively simple. Figure 2 shows the

track and component layouts for the
circuit board. In spite of its small
dimensions, this is still a single-
sided circuit board (the author has
made a circuit board that was only
half as large by using the PLCC ver-

GENERALINTEREST

474/2002 Elektor Electronics

(C) ELEKTOR
010212-1

C1 C2

C3

C4

C5

C6

C7

D1

D2

D3
H1 H

2

H3H
4

IC
1

IC2

IC
3

ININ
1

K1

K2

K3

K4

K5

K6

K7

R
1

R2
R

3
R

4

R5

R6

X1

T

+

010212-1
(C) ELEKTOR
010212-1

Figure 2. The design of the single-sided printed circuit board is quite simple, so there’s not much that can go wrong during assembly.

plugged into the PC.
As far as the power supply is concerned,

there are various options. The simplest solu-
tion is to draw power from the mouse or key-
board cable present on every PC. You can also
power the interface from an external supply
with a 5-V regulator, but that is more expen-
sive.

If the interface is to be powered from the
mouse or keyboard cable, the simplest solu-
tion is to take a DIN/DIN extension cable and
cut it in half. The wires from the two halves
of the cable can then be soldered to the

proper pins of connectors K6 and K7.
Figure 3 shows the pin assignments
of the PS/2 and DMX cable and chas-
sis connectors.

On the circuit board, K6 is imple-
mented as a PS/2 bus connector. If
you fit such a connector to the circuit
board, all you have to do is to solder
a length of cable with a PS/2 or DIN
plug to K7. The original mouse or
keyboard plug can then be inserted
into the PS/2 bus connector on the
circuit board.

The enclosure

The final subject is fitting the circuit
into an enclosure. Given the small
dimensions of the circuit board, that
should not present any difficulties.

You can fit the circuit board into a
separate enclosure that is connected
to the parallel port of the PC by a
suitable cable (see the photo at the
head of the article), or you can fit the
circuit board into a small enclosure
that can be attached directly to the
parallel port connector of the PC.

Bear in mind that the latter solu-
tion is not always the most conve-
nient, due to the size of the circuit
board. With an office computer, there
is usually enough free room at the
back, but with a laptop the other
connectors are usually so close to
the printer connector that your little
DMX box will make it more or less
impossible to use the other connec-
tors.

The circuit board is not particu-
larly sensitive to external noise, but
it is still recommended to use a
screened plastic enclosure (i.e., one
with an internal graphite coating
connected to ground).

The DMX output is implemented
in an especially simple manner,
namely using a short length of cable
fitted with a 3-pin or 5-pin XLR con-
nector. This cable is soldered to K5.

Centronics language
As soon as the circuit is connected,
you can start testing and program-
ming.

Thanks to the simple design, it is
most likely that everything will work
properly from the start. However, a
special program has been written to
make it easier to test the circuit
board. This program is very easy to
use, but nevertheless we have sum-
marised the various commands in a
separate file on the floppy disk.

Besides providing special func-
tions for testing the interface (such
as switching on Error LED D3), this
program is also suitable for testing
spotlights.

It is obviously our intention to
have this interface be used with pro-
grams other than just this test aid. If
you want to make things easy, you
can use the Soft Controller I and II
programs developed by the author.

GENERALINTEREST

48 Elektor Electronics 4/2002

Table 1: Interface commands.
Command ‘D’ Change a group of values for a series of DMX channels.
syntax: ESC D hi lo nn dd dd dd...
parameters: hi: high byte of the first DMX channel to be changed

lo: low byte of the first DMX channel to be changed
nn: number of DMX channels to be changed (1–255)
dd: DMX value for the first channel to be changed
dd: DMX value for the second channel to be changed
dd: DMX value for the third channel to be changed
etc. …
The number of values (dd) must match the parameter nn.

Command ‘d’ Change the value of one DMX channel (number 1–256).
syntax: ESC d nn dd
parameters: nn: DMX channel number (0–255 for channels 1–256)

dd: the value to be sent

Command ‘e’ Change the value of one DMX channel (number 257–480).
syntax: ESC e nn dd
parameters: nn: DMX channel number (0–224 for channels 257–480)

dd: the value to be sent

Command ‘F’ Set the standard parameters
(Start Code = 0 and Break Time = 100 µs).

syntax: ESC F

Command ‘I’ Initialise the interface (also occurs when the power is switched on).
syntax: ESC I

Command ‘S’ Change the Start Code
syntax: ESC S ss

Command ‘Z’ Completely reset of the DMX memory (all channels set to 0).
syntax: ESC Z

Command ‘T’ Change the Break Time setting.
syntax: ESC T tt

tt: Break Time setting (in steps of approximately 50 µs; standard value
is ‘2’ for 100 µs)

These have already been briefly dis-
cussed in the article describing the
MIDI/DMX interface, with which
they are also compatible. For more
information, you can send an e-mail
to the author. Still, as already men-
tioned at the beginning of this arti-
cle, the main advantage of this cir-
cuit is that it can be easily pro-
grammed, even under Windows.

While most commercially avail-
able DMX interfaces for PCs cannot
be used without a lot of control pro-
grams and drivers, our interface uses
a protocol that is available on every
PC: the Centronics protocol.

The interface acts like a printer
by emulating the appropriate com-
mands. This means that in order to
have the interface execute a com-
mand, all you have to do is to
instruct the PC to print a series of
characters. Printing functionality is
included in various flavours of pro-
gramming languages, such as Del-
phi, C++ Builder, Visual Basic and
the like, which means that the
biggest problem is already solved.

If you program under DOS, you
can simply use the Basic LPRINT
instructions to communicate with
the interface.

As already noted, this interface is
not limited to use with PCs. Any
device with a Centronics port is by
definition compatible with the inter-
face.

With regards to programming,
here we limit ourselves to describing
the method that must be used to
send commands to the interface. For
readers who program under Win-
dows, we have developed a small
DLL library that can be found on the
floppy disk (as well as on our Inter-
net site for free downloading). This
means that you do not have to trou-
ble yourself with learning how to use
the Windows API (Application Pro-
gramming Interface).

Programming the interface is
actually very simple. The interface
recognises a certain number of com-
mands, each of which consists of a
letter that may be followed one or
more parameters, depending on the
particular command. To allow the
interface to recognise the start of a
command, the ESC code (‘27’ in
ASCII or ‘1B’ in hexadecimal) is used
as an identification code.

As an example, let’s see which

GENERALINTEREST

494/2002 Elektor Electronics

Disk contents (010212-11)
8515def.inc file containing the definitions of the 8515 registers

defio.inc file containing the descriptions of the input and output pins

Lptdmx.asm assembler file for the LPT/DMX interface (in French)

Lptdmx.hex hex file for the LPT/DMX interface

LPT_DMX_LIB folder containing the DLL library for controlling the interface

under Windows, along with the file ‘readme’ (English)

LPTDMX_TESTER.EXE test program for the interface

LPTDMX_TESTER_E.DOC English-language user’s guide for the test program

LPTDMX_TESTER_F.DOC French-language user’s guide for the test program

bytes you have to send to the ‘printer’
to set DMX channel 18 to a value of
155. For this purpose we use the com-
mand ‘d’, followed by the channel
number (which can range from 1 to
256, but here we use 0 to 255 to allow
it to fit into a single byte), and then
followed by the DMX value to be sent.

The bytes to be sent to the paral-
lel port thus appear as follows (the
hexadecimal values are shown in
parentheses):

ESC (1Bh)
d (64h)
17(11h)

155 (9Bh)

Another example: to reinitialise the interface,
all you have to do is send the command ‘Z’.
The byte sequence is thus:

ESC (1Bh)
Z (5Ah)

Knowing this, all you have to do to create
your own ‘program of the century’ is to write
your own series of bytes and send it to the
interface.

Table 1 summarises all the commands
recognised by the interface.

(010202-1)

3

3

5 6

4

2

2

4

1

1

5

3 42

51

3

12

010212 - 12

3

2

input
(plug)

plug
(front view)

chassis socket
(front view)

input
(socket)

1

1

2

3

4

5

0V/ground

Data -

Data +

not used
(Data - optional)

not used
(Data + optional)

DMX

1
2
3
4
5
6

DATA
NC

GND
+5V
CLK
NC

PS/2

4

6 5

3
12

Figure 3. Using this connector information, you can ensure that the interconnecting cable is
properly attached to the circuit board.

MICROPROCESSOR

50 Elektor Electronics 4/2002

Up to now we have used assembler and
BASIC-52 as programming languages in the
Microprocessor Basics Course. Now it’s time
to work with C, using a compiler that can be
selected and downloaded from the following
Internet address:

http://www.rigelcorp.com/8051soft.htm

The relevant files to fetch are

SetupReads51.exe and Reads51.pdf.

A C complier translates a source text
into pure machine code, in contrast
to a Basic interpreter, which only
generates intermediate code that
must interpreted and executed at
run time. C is thus many times faster
than Basic.

The C language has been around
for a long time and is available for
many different systems. Its decisive
advantage is that C programs are
largely independent of the hardware

used. The results of laborious effort
can thus be relatively easily ported
to other systems. ANSI C was
defined as early as 1988 (ANSI
stands for ‘American National Stan-
dards Institute’) in order to create a
common standard. A smaller version
called ‘Small C’ has been specially
developed for microcontroller sys-
tems. Although it has certain limita-
tions compared with ANSI C, such
as the absence of ‘real’ variables, it
has the advantage that it can be use
with very small systems. Various
free compilers for Small C can be
found on the Internet. For this course
we have chosen READS51, since it is
particularly suited to novices and
has a convenient user interface.

READS51 was specially devel-
oped by Rigel for the educational
market and is intended to support
their microcontroller boards. The
company makes this product avail-
able to anyone using it for purely pri-
vate purposes or educational use.
Rigel have kindly given Elektor Elec-
tronics permission to use the com-
plier for the Microcontroller Basics
course. All interested readers should
therefore download READS51 from
Rigel’s Internet site and install it on
their systems. By the way, you can
also find many other equally inter-
esting help files at this site. All
examples for the Microprocessor
Basics course have English labels
and comments. We simply couldn’t

Microcontroller
Basics Course
part 4: the READS51 C compiler

Anyone who seriously intends to work with microcontrollers must sooner
or later use the C programming language. In this final instalment of the
Microcontroller Basics course, we use the READS51 C compiler from Rigel.

Figure 1. READS51 in action.

MICROPROCESSOR

514/2002 Elektor Electronics

#include <sfr51.h>
Links in a header file containing definitions.

main()
{
...
}
Forms the principal function main. All the
instructions for this function are contained in
a block of instructions enclosed by a pair of
curly brackets.

int n;
Declares a variable n of type integer, whose
allowed range of values is –32768 to +32767.
A semicolon (;) terminates the line.

InitSerialPort0
(DEF_SIO_MODE);

Calls a function with a passed parameter, in
this case a function in module Sio51.h that
initialises the serial interface.

// endless loop
A comment, which increases the readability
of the program but is not translated with the
actual program.

while(TRUE)
{
...
}

Forms a loop. In place of TRUE for an endless
loop, a different condition could be used here
to define the condition under which the loop is
to be traversed. All instructions that are to be
executed in the loop are again enclosed in
curly brackets.

P1_0=0;
An instruction. Here the bit variable P1_0 is
assigned the value ‘0’.

putc(‘+’);
Text output via the serial interface. The func-
tion putc is defined in Sio51.h. A text char-
acter, which is a variable or constant of the
type char (character = text character,
always one byte), is transferred.

for(n=0; n<10000; n++);
Forms a counting loop, which would be writ-
ten in Basic as ‘For n=1 to 10000: Next
n’. Here the loop does not contain any
instructions, as can be seen from the semi-
colon. A block of instructions enclosed by
curly brackets could also be located here.

Even if you haven’t yet fully grasped all the
subtleties of C programs, it’s interesting to
see whether this program will run on the

proceed any further without using
this international approach.

The best way to get started with
READS51 is to use one of the accom-
panying examples. The project
blink can be loaded from Pro-
ject/Open Project. If you double-click
on source text file for the main mod-
ule, a01.c, the source text will
appear in the Editor window (see
Listing 1).

A C program always has a main
function called main() that is exe-
cuted when the program is started.
At first glance, the sample program
blink appears to contain only this
function, but in fact some other func-
tions related to the serial interface of
the microcontroller are also used.

These functions are located in the
module Sio51.h. They open the ser-
ial interface at 9,600 baud (with a
crystal frequency of 11.0592 MHz),
which is exactly what the Elektor
Electronics Flash Board needs. Just
in case you did not know, the highly
successful 89S8252 Flash Board was
described in the December 2001
issue of Elektor Electronics.

For C beginners, the program
notation may at first seem a bit odd,
so explanations of some of the
details are in order:

#define TRUE 1
Defines a constant (TRUE will be
replaced by ‘1’ wherever it appears).

Listing 1. The first sample program.

// ——————- READS51 generated header ———————
// module : a01.c
// created : 19:51:27, Monday, October 09, 2000
// Example routines for the textbook
// Programming and Interfacing the 8051 in C and
Assembly
// by S. Yeralan and H. Emery
// (C) 2000, Rigel Press, www.rigelcorp.com
// ——————————————————————————-

#define TRUE 1
#define FALSE 0

#include <sfr51.h> // P1_0 is defined here
// prototypes
#include <Sio51.h>

main(){
int n;

// —- initialize serial port (9600 Baud) —-
InitSerialPort0(DEF_SIO_MODE);

//DEF_SIO_MODE is defined in
<Sio51.h>
putc(‘\n’);

// endless loop
while(TRUE)
{
P1_0=0; // LED on
putc(‘+’);
for(n=0; n<10000; n++); // waste some cycles
P1_0=1; // LED off
putc(‘0’);
for(n=0; n<10000; n++); // waste some cycles
}

}

MICROPROCESSOR

52 Elektor Electronics 4/2002

ATMELISP, a new download tool
The simple loader program MicroFlash.exe for downloading
programs to the 89S8252 board works only with COM1 or
COM2 and does not report back regarding the success of
the download, which has led to problems for some users.
However, Elektor Electronics readers do not sit idle in such
situations. Ulrich Bangert (DF6JB) has consequently devel-
oped a new and significantly more extensive program named
ATMELISP, which allows the Flash memory to be pro-
grammed using various types of systems. Besides the Atmel
Starter Kit and a proprietary board, the program also sup-
ports the Elektor Electronics system and the ModuleBus sys-
tem (EX52-Flash). The new software can be downloaded
from the Elektor Electronics home page.

When the zip archive has been unpacked, you will have
an .exe program and a comprehensive help file. The start-up
screen (Figure A) is small and can easily be placed on the
monitor next to other applications. Larger windows only
appear when program functions are executed. The first thing
you must do is to select the serial interface, the connected
device and other critical parameters. A click on the button
marked ‘DK7JD’ (which is B. Kainka’s amateur radio call
sign) configures the proper assignment of the programming
lines to the RS232 lines used for the Elektor Electronics circuit
board. Here you can also see that it is easily possible to use
ATMELISP to program any desired circuit board you have
developed yourself that uses the same processor, since three
lines are simply selected and appropriately assigned. In some
cases, it may be necessary to adjust the delay times. Our
experience shows that with a relatively slow PC the value of
Clock Delay must be increased from 0 to 0.01 ms. Fig-
ure B shows the window for selecting the configuration
parameters.

The rest of the procedure can be illustrated using a con-
crete example. The Flash ROM of the microcontroller is to
be loaded with the first sample program from the C com-
piler. This requires the code to first be read into the buffer.
ATMELISP can read files in binary and Intel hex formats.
Here the file Blink.hex is loaded. It has also proven to be
worthwhile to have a quick look at the built-in hex editor
after loading the file (Figure C), in order to see the content
and size of the file.

To program the microcon-
troller, select
Device/Write Buffer
to Code Memory. Here
you must be careful not to
confuse the Code Memory
with the Data Memory, which
is the 2-kbyte EEPROM data
region of the microcontroller.
Both of these memories can be
programmed and read. Besides
this, it is possible to load ‘lock
bits’ into the microcontroller in
order to prevent the loaded
software from being read (Fig-
ure D). But be careful with the
lock bits: if all three bits are
set, any further serial program-
ming of the chip is blocked! In
this case, it is also no longer
possible to erase the entire
chip using the program. Only a
parallel programming device

A

B

C

provided by READS51, including ones that
are not actually necessary here.

After the program has been successfully
downloaded, it’s time for testing. Connect a
LED and a series resistor between P1.0 and
Vcc and indeed, it blinks! Of course, people
who prefer traditional electronics might com-
ment that the same result could have been
achieved more easily using two transistors,
but this program does more. It also initialises
the serial interface, which now can be used.
In order to see that transfers are possible, we
need a terminal emulator program.

The simplest approach is to use the Basic
terminal program from the course, but the
communications parameters must be correct.
The C program uses 9600 baud, while
Basic.exe normally uses 19,200 baud. How-
ever, it is easy to change the transfer rate
used by this program. Just open the file
Basic.ini with a text editor and add the
line ‘Baud=9600’ (see Listing 2).

The terminal program will now show what
the C program sends, which is a series of ‘0’
and ‘+’ characters that alternate with each
change of state of the switched output P1.0
(see Figure 2). This is because the program
calls the function putc to output individual
text characters.

Flash Board. Before doing so, you
must first compile the program,
which means having it translated
into machine language. The program
can be translated using Com-
pile/build or by simply pressing
F9. The process is relatively compli-
cated, since the individual object
modules must first be translated, fol-
lowing which they are linked
together to form a complete pro-
gram. The final result is a file in Intel
hex format named Blink.hex. It is
located in the project directory

\work\blink and can also be seen
under ‘Generated files’ as .hex.

The project’s Intel hex file can
now be simply transferred to the
Flash Board using the MicroFlash
program. When downloading the
program into the Flash memory of
the microcontroller, you will notice
that in spite of the simplicity of the
source text, the translated version is
relatively large (4 kbytes). That is
primarily due to the module
C51.obj, which was linked in. This
module contains all the functions

MICROPROCESSOR

534/2002 Elektor Electronics

can get you out of this trap.
ATMELISP also includes a terminal function (Figure E)

that can be used to view the outputs from the first sample
program. This requires the interface cable to be connected
to the other interface socket on the board.

Figure 2. Text outputs in the Editor window.

D

E

Listing 2. Content of the

modified .ini file for the Basic terminal.

[AHBASIC]

COM=2

Baud=9600

Fast port outputs

Now that we’ve seen the first example, it’s
time to write our own C program. Let’s start
with a program that simply generates fast
port outputs, so that we can make some com-
parisons with the programming languages
we used before.

The first thing to do is to create a new pro-
ject. A new project name must be entered
under Project/New Project. Here we
choose the name Output. READS51 now cre-
ates a new directory with the name
Work\Output. Next, we open a new module
under Module/Create Module and give it
the name Output. The port output program
is shown in Listing 3.

The compiler has to know which project it
is supposed to translate. This is accom-
plished by running Project/Set Project
Active once. If you forget to do this, the last
project that was processed will be translated.
The newly generated program code Out-
put.hex can now be transferred to the pro-
gram memory of the processor using
MicroFlash. All that we need to verify this
function is an oscilloscope or a set of head-
phones. The highest-frequency signal will be
found on P1.0. It has a frequency of 4 kHz; the
period is 250 µs. The program needs 125 µs
for each new port output.

In contrast to Basic, C allows different
types of variables. The first sample program
uses a variable n of type int, which means
an integer variable with a value range of
–32768 to +32767, while the second example
uses a variable of type unsigned char,
which corresponds to a byte. However, exper-
iments have shown that this does not result
in any significant difference in execution
speed.

The effectiveness of the individual pro-
gramming languages can now easily be com-
pared (see Table 1). The most important cri-
teria are the amount of memory taken up by
the program, its speed and the ability to
implement a stand-alone program for the
Flash microcontroller. Although C programs
use the system RAM, the complete program
is located in the Flash ROM alone. This is
why a C program starts up again when the
voltage is switched on, in contrast to a
BASIC-52 program.

A frequency divider in C
In looking for a somewhat more complex task,
we remembered the divide-by-20 frequency
divider we already wrote in BASIC-52. A
direct comparison of the two programs can
help us recognise differences in the structure
and notation. This program has been given

MICROPROCESSOR

54 Elektor Electronics 4/2002

Listing 3. A program for fast port outputs.

// ——————- READS51 generated header ———————
// module : C:\Rigel\Reads51\Work\Output\Output.c
// created : 12:33:17, Friday, November 09, 2001
// ——————————————————————————-

#define TRUE 1
#define FALSE 0

#include <sfr51.h> // P1 is defined here

main(){
unsigned char n;
// endless loop
while(TRUE)
{
for(n=0; n<256; n++)
{
P1=n;
}
}

}

Listing 4. Divide-by-20 frequency divider.

// ——————- READS51 generated header ———————
// module : C:\Rigel\Reads51\Work\Count\count.c
// created : 18:26:23, Monday, November 12, 2001
// ——————————————————————————-

#include <sfr51.h>

void pulse(void){
while(P1_0);
while(!(P1_0));

}

main(){
int n;
n=0;
while(1)
{
while (n<10)
{
pulse();
n=n+1;

}
P1_1=1;
while (n<20)
{
pulse();
n=n+1;

}
P1_1=0;
n=0;
}

}

calls the function pulse at two places: once
for n = 0, 1, …, 9 and again for n = 10, 11, …,
19.

Here again the critical question is, what is
the highest input frequency that can be
applied without any counting errors? For this
test, we used a function generator connected
to P1.0 and an oscilloscope connected to P1.1.
The measurement yielded an upper fre-
quency limit of 3 kHz. To refresh your mem-
ory, BASIC-52 only managed a frequency of
50 Hz, while up to 100 kHz is possible using
assembler.

(010208-5)

the name Count (see Listing 4).
The listing shows a rather deci-

sive advantage of C as a program-
ming language: the programmer is
forced to use a structured style. This
makes the program easier to read.
Here we have the function pulse,
which suspends the progress of the
program while waiting for the next
positive edge on P1.0. When using a
function, it is common to pass in a
value and receive another value in
return. However, the function pulse
does not return any parameter (void
= empty), and no parameter is

passed to it. C does not make a dis-
tinction between functions and pro-
cedures, as is customary in Pascal
and Delphi; it has only functions.

The bit variable P1_0 yields
either ‘1’ or ‘0’. As long as the condi-
tion following while is true (= 1), a
loop is executed. The second loop
contains the actual condition in
negated form, which is expressed by
the exclamation mark ‘!’ (!(P1_0)).
The second loop is thus exited when
the input level changes from ‘0’ to
‘1’, which means when a positive
edge is detected. The main routine

MICROPROCESSOR

554/2002 Elektor Electronics

Literature:
Sencer Yeralan/Helen Emery
Programming and Interfacing The 8051
Microcontroller in C and Assembly
Rigel Press 2000

Table 1. Comparison of the three programming languages

Language Memory Loop time Autostart
Basic-52 8 K ROM, RAM 2500 µs Only with EEPROM
READS51 C >4 K ROM, RAM 125 µs yes
Assembler < 1 K ROM 3 µs yes

Contactless distance measurement finds
many practical applications: if the motion of
an object would be damped or otherwise
affected by coupled mass or the force exerted
by a measurement device; when sensitive
surfaces must not be damaged; or when
rapid motion must be tracked.

Such testing and measurement
tasks are commonplace in research
and development, automation, qual-
ity control and machine control
applications. For all these tasks a
large number of companies offer
numerous models of sensor employ-

ing various measurement principles.
Three methods of contactless dis-
tance measurement have become
dominant in the last few years: the
eddy current principle, the capaci-
tive principle and the optical trian-
gulation principle.

THE EDDY CURRENT

PRINCIPLE

The eddy current principle has spe-
cial status in the class of inductive
measurement methods. The effect is
based on the dissipation of energy
stored in a resonant circuit when
eddy currents are induced in a
nearby electrically conductive metal-
lic object.

If, as shown in Figure 1, a metal
plate is brought near to a coil fed
with a high frequency alternating
current, the electromagnetic field
will induce eddy currents in the
plate. By Lenz’s law, the field due to
the eddy current opposes the induc-
ing field. The consequent energy
loss changes the effective induc-
tance of the sensor coil. Hence the
amplitude of oscillations in the sen-
sor coil changes as a function of the

GENERALINTEREST

56 Elektor Electronics 4/2002

Contactless Distance
Measurement
Sensors and principles

By J. Häuser

Contactless distance measurement is becoming
more and more important in analysing vibration,
alignment, position or bending. This article
explains the most popular measurement methods
and discusses their applicability.

distance from the measured object
(the metal plate). This principle, also
known as the ‘eddy loss principle’,
requires an oscillator with stable
amplitude and frequency, usually
operated in the range 1 MHz to
2 MHz. An air-cored (rather than fer-
rite-cored) coil is used.

THE CAPACITIVE

PRINCIPLE

The capacitive contactless distance
measurement principle is based on
the theory of the ideal plate capaci-

tor (Figure 2). Changing the distance
between the two plates leads to a
change in its capacitance. In the
measurement system the sensor and
the measured object form the two
plates. An alternating current of con-
stant frequency is made to flow, and
the amplitude of the alternating volt-
age across the two plates is propor-
tional to the distance between the
sensor and the measured object. At
the same time an adjustable offset
voltage is generated in the control
electronics. After demodulation the
two voltages are passed to a differ-

GENERALINTEREST

574/2002 Elektor Electronics

010025 - 11

coil

el
ec

tr
o

m
ag

n
et

ic
 f

ie
ld

metal plate

d
is

ta
n

ce

eddy currents

Figure 1. The eddy current principle.

D

1 F

010025 - 12

XC =
jωC

 ; C = ε . ε0 . d

plate capacitor

distance D

Xc= constant . distance

Figure 2. The capacitive principle.

– Works with all electrically conductive
metals whether ferromagnetic or not

– Small sensor
– Insensitive to dirt, dust, moisture, oil,

dielectric substances in measurement
gap

– Usable in electromagnetically sensitive
applications

– Wide operating temperature range
– High accuracy

– Output signal and linearity dependent
on electrical and magnetic properties
of materials used

– Individual linearisation and calibration
required

– High oscillator frequency limits sensor
cable length to 12 to 18 m.

– Sensor diameter (and measurement
patch diameter) increase as maximum
range is increased.

– Independent of metal used in mea-
sured object: sensitivity and linearity
remain the same.

– High temperature stability, as conduc-
tivity changes due to temperature
have no effect.

– Also usable with non-conductive mea-
sured objects.

– Sensitive to dielectric materials in the
measurement gap, and hence only
usable in clean and dry environments.

– Sensor cable must be short, owing to
effect of cable capacitance on tuning of
resonant circuit.

– Sensor diameter (and measurement
patch diameter) increase as maximum
range is increased.

– Small measurement patch diameter.
– Sensor can be far from measured

object.
– Large measurement range possible.
– Independent of materials used.

– Limited usefulness with smooth sur-
faces (mirrors, glass, CDs, polished
metals) or surfaces with low reflectiv-
ity (matt black surfaces)

– Limited usefulness with transparent or
partially transparent surfaces (glass,
ceramics, plastics such as Teflon).

– Space through which beam passes
must be unobstructed and free of dust.

Table 1: Comparison of contactless
measurement principles
Eddy current principle

Advantages Limitations

Capacitive principle
Advantages Limitations

Optical triangulation principle
Advantages Limitations

ential amplifier to generate the output as an
analogue signal. By measuring the reactance
Xc of the plate capacitor we obtain, without
further linearisation, a directly proportional
relationship. In practice, the sensor is con-
structed as a guard-ring capacitor and linear-
ity is almost perfect, independent of the con-
ductivity of the metal in the measured object.

Capacitive sensors can also be used with
insulating materials. Extra circuitry is
required to obtain a linear output signal with
such objects, and a stable dielectric constant
is required to obtain a reliable characteristic.

THE OPTICAL TRIANGULATION

PRINCIPLE

This principle, in which a pulsed laser beam
is reflected off the surface of the measured

object, is based on similar triangles, see Fig-
ure 3. The first triangle is the ‘object triangle’,
between object and lens, and the second is
the ‘image triangle’, between lens and detec-
tor. The detector is either a lateral effect diode
or a CCD row sensor. A lens is required in the
path of the diffuse rays reflected from the
object to allow the angles of incidence and

reflection to be different. This is the
only way to resolve depth. Further,
the detector must be set at a known
angle. Here the Scheimpflug rule
should be observed, which states
that optimal focussing is obtained
when the object, lens and detector
planes intersect at a single point.
Hence we have the following rela-
tionship:

Manufacturers convert the physical
distance measured by the sensor
into a standardised voltage range
(for example 0 V to 10 V or 0 (4) mA
to 20 mA). Alternatively, the value is
digitised and transmitted over an
RS232 or RS485 interface to a PC.
With the aid of a suitable card for the
PC (see ‘PCI-Hosted Measurement
Cards’, Elektor Electronics, October
2000), and suitable software, an

∆
∆

d
B h

x
= ⋅ ⋅

cos()α
1

enormous range of test and mea-
surement problems can be solved.

(010025-1)

Literature
Technical note T01d produced by:

Micro-Epsilon Messtechnik
GmbH & Co. KG,
Postfach 1254
D-94493 Ortenburg
Germany

Further information
is available from:

MJH Software
Mr. J. Häuser
Am Stadion 28
D-07629 Hermsdorf
Germany
Tel./fax: +49 36601 82313
E-mail: jhaeuser@tridelta-hermsdorf.de

GENERALINTEREST

58 Elektor Electronics 4/2002

010025- 13

O

d
α

α

B
S

L

h
E

X'

Figure 3. The optical triangulation principle.

58 Elektor Electronics 4/2002

CORRECTIONS&UPDATES

Atmel Micro Programmer

September 2001,
(010005-1)
When a ‘narrow-DIL’ ZIF socket is
used in position K3, pin 10 is not
connected to ground. This is eas-
ily corrected by soldering a short
wire to pin 10 of the ‘wide’
socket.
The first version of the software
failed to program the last byte.
An updated version is available
from our website (Free Down-
loads page).

Digital Benchtop
Power Supply

November & December 2001
(000166-1/2)
The 10-µF electrolytics in this
circuit appear with different
voltage ratings in the parts list
and the schematic. The following
is offered as guidance: C3, C13-

17 and C20 should have a mini-
mum working voltage of 16 volts.
C19 has to be rated at 35 V or
higher. As usual, higher voltage
ratings are always possible.

Miniature PCM Model Control

October & November 2001,
010205-1/2
In the receiver circuit, p-channel
FET T4 is used in a wrong config-
uration, which causes an anti-
parallel connection of D2 and the
internal protection diode of the
FET. Consequently, the motor is
short-circuited. The problem
may be solved by using an n-
channel FET for T4 (for example,
an SUP75N03), and exchanging
the source and drain connections
on the board. The source is then
connected to the positive supply
voltage. This modification is easy
to implement on the PCB.

Instead of the p-channel FET
mentioned in the parts list, sim-
ply use an n-channel FET like the
SUP75N03 and mount it the
other way around as compared
with the PCB overlay indication.

Remote Process Control using
a Mobile Phone

January & March 2002,
010087-1/2
The numbers 0-15 in the second
column in Table 1 (Part1) indi-
cate the pins of the configuration
list for the SMS chip. The port
pins of ports 1 and 2 are simply
numbered 0-15, allowing the user
to select which individual pins
become inputs or outputs.
The printed circuit board layout
(Figure 1 on page 21) has a
short-circuit in the supply line
near K8. At the top side of the
board, one of the two pads near

the edge is connected to ground.
The four short connections to
ground have to be removed.
Ready-made PCBs obtained
through our Readers Services
have been repaired.

IR Code Analyser

October 2001, 010029-1
The schematic and the parts list
need to be corrected to read: R1
= 100Ω; R2 = 220Ω.
If the analyser fails to respond to
IR signals, IC2 is probably
unable to pull its output suffi-
ciently low. Not all IR receiver
ICs suggested for this circuit are
capable of sinking enough cur-
rent. In some cases, it may be
necessary to increase the value
of pull-up resistor R3 to 2.2 kΩ
or 2.7 kΩ, although that may
cause the LED to light less
brightly.

APPLICATIONNOTES

60 Elektor Electronics 4/2002

Audio enthusiasts are likely to have widely
varying opinions on many different subjects,
but they are also likely to agree on one thing.
If they had the choice, they would prefer an
amplifier that delivers perfect quality, is able

to deliver quite a bit of power, and is
physically as small as possible.

This combination of characteris-
tics is difficult to obtain in practice.
Quality and power can be simulta-

neously realised. But a quality ampli-
fier demands a sizeable power sup-
ply and a generous quiescent cur-
rent in a Class AB design, for exam-
ple (not to mention Class-A). This all

BASH® IC Amplifier
an entirely new concept
By utilising a special processor and a variable step-down converter, STMi-
croelectronics in partnership with Indigo Manufacturing have succeeded
in developing an integrated amplifier with remarkably high efficiency, with-
out sacrificing audio quality.

1

2

5

6

0 0

0

020013 - 11

������

���	
 ��

5

6

0

�������

�
��	���

��������� �	
���

������	��
�	
���

1

2

5

6

0

����

����	
�	

5

6

���	

����

AC

���	� �����

Figure 1. Block diagram of the BASH principle.

The content of this note is based on information received from manufacturers in the electrical and electronics industries or
their representatives and does not imply practical experience by Elektor Electronics or its consultants.

APPLICATIONNOTES

614/2002 Elektor Electronics

tude of the amplified audio signal, a constant
voltage drop has been achieved across the
output transistors, completely independent
of the output amplitude. This effect is shown
in Figure 2.

The result is that unnecessary dissipation
has been avoided even though a linear Class
AB design is used as the power stage. The
efficiency thus obtained is around 85% and is
comparable to a Class D amplifier, but the
amount of interference is considerably lower.
As a consequence, the designers claim that
the distortion of a BASH amplifier can be as

adds up to considerable heat gener-
ation that has to be disposed of
using an adequately sized heatsink.
Such an implementation is not par-
ticularly compact.

Power and compactness are two
characteristics that can be realised
at the same time relatively easily.
But this is only possible with frugal
quiescent currents (Class B for
example), and the subsequent trade-
off of reduced quality. This is not an
ideal compromise either.

The middle ground is taken by
the so-called Class D design which
is based on pulsewidth modulation.
The inherent disadvantage of Class
D is the extensive filtering required
at the output of the power switching
stage, as well as the strong interfer-
ence caused by the switching itself.
The total power loss is much
reduced. It is an excellent system,
but here, the weak point is that this
switching leads to interference,
which adversely influences the char-
acteristics of the amplifier.

It will have become obvious from
this discussion that the ideal combi-
nation of power, quality and effi-
ciency has not been achieved yet.
The engineers at ST have revisited
all these topics once more in order to
develop a new concept for the com-
pany Indigo Manufacturing. And
they have indeed succeeded in real-
ising a design with a significant
improvement in efficiency without
compromising the quality.

BASH
The only way to improve the effi-
ciency is to, one way or another, vary
the power supply voltage depending
on the output amplitude of the
amplifier. This way, unnecessary dis-
sipation can be avoided. The differ-
ence here is that the designers were
looking for a way to achieve this
without switching, because this
would inevitably lead to distortion.

Figure 1 shows the block dia-
gram of the design they arrived at.
We can see that besides the usual
power supply and power amplifier,
two additional blocks have been
added: a processor and a buck (step-
down) converter.
A reference signal is derived from
the power amplifier stage (the
‘BASH signal’) and applied to the

processor. The processor analyses
the signal and accurately calculates
the demands this signal places on
the power supply. This is the basis
for generating the gate-drive signal
for the step-down converter.

The converter, connected in
series with the unregulated power
supply, translates this gate signal
into an appropriate supply voltage
for the power amplifier stage. By
continually adjusting the power sup-
ply voltage, depending on the ampli-

020013 - 12

Audio Precision FFT SPECTRUM ANALYSIS

FFT r ight ch. 10W_100 Hz.at1

-140

+0

-120

-100

-80

-60

-40

-20

d

B

r

1k 90k2k 3k 4k 5k 6k 7k 8k 10k 20k 30k 40k 50k 60k

Hz

020013 - 13

Figure 2. With BASH, the voltage drop across the power stage transistors remains constant,
independent of the output amplitude.

Figure 3. In contrast to a Class D amplifier, no switching artefacts are visible in the output
spectrum of the BASH design.

low as that of any other arbitrary Class AB
amplifier.

The graph of Figure 3 shows the results of
an FFT spectrum analysis of the BASH output
signal. It is obvious that this spectrum con-
tains no recognisable switching artefacts.

Another advantage of this BASH system
that must not go unmentioned, is the fact that
in a multiple channel installation it is possi-
ble to have only one power supply and one
step-down converter, if that is desired.

Amplifier Modules
Three different BASH amplifier modules have
been announced: two stereo versions with
output powers of 2 × 50 W en 2 × 75 W (the
STA550 and STA575 respectively) and one
mono bridge amplifier that can deliver 150W
(the STA5150). They are all three identical in
design, so for the example we will limit our-
selves to the description of the STA575. Fig-
ure 4 shows the block diagram for the cir-
cuitry inside the IC amplifier.

Most blocks are powered by means of a
fixed positive and negative power supply
voltage. Only the power stages are supplied
by two external voltages that follow the audio
signal.

APPLICATIONNOTES

62 Elektor Electronics 4/2002

ABSOLUTE
VALUE
BLOCK

OUTPUT BRIDGE

PEAK/2
DETECTOR

VOLTAGE
PROTECTION

SOA
DETECTOR

TURN-
ON/OFF

SEQUENCE

THERMAL
PROTECTION

PEAK/2
DETECTOR

COMPRESSOR

COMPRESSOR

G

+2

-1

G

+

-

V/l

V/l

S1

Ict

Ict

ABSOLUTE
VALUE
BLOCK

+

-

S1

OUTPUT BRIDGE CD-2

CD+2

STBY/MUTE

PROT.

CD+

CD-1

OUT1-

OUT1+

CD+1

IN_PRE1

ATT_REL1

TRK_OUT

THRESH

ATT_REL2

IN_PRE2

PWR_INP1TRK_1OUT_ PRE1-VSGND+VS

PWR_INP2TRK_2OUT_ PRE2

OUT2-

OUT2++2

-1

020013 - 14

Figure 4. Block diagram for the internal circuitry of the amplifier module, in this
case the STA575 which is able to deliver 2 × 75 W.

Table 1. Connections to the STA550/575
Pin- Name Description
number

1 -Vs negative bias power supply
2 CD-1 channel 1, variable negative power supply
3 Att Rel1 attack/release channel 1
4 Out1+ channel 1, loudspeaker output positive
5 Out1- channel 1, loudspeaker output negative
6 CD+1 channel 1, positive power supply
7 Pwr Inp1 channel 1, power stage input
8 In pre1 channel 1, pre-amp input (virtual ground)
9 Out pre1 channel 1, pre-amp output

10 Trk 1 channel 1, absolute-value-block input
11 Stby/mute standby/mute-control voltage
12 Protection protection signal for STABP01 digital processor
13 Gnd analogue ground
14 +Vs positive bias power supply
15 CD+ variable positive power supply
16 Trk out reference output for STABP01 digital processor
17 Threshold compressor threshold input
18 Trk 2 channel 2, absolute-value-block input
19 Out pre2 channel 2, pre-amp output
20 In pre2 channel 2, pre-amp input (virtual ground)
21 Pwr Inp2 channel 2, power stage input
22 CD+2 channel 2, positive power supply
23 Out2- channel 2, loudspeaker output negative
24 Out2+ channel 2, loudspeaker output positive
25 Att Rel2 attack/release channel 2
26 CD-2 channel 2, variable negative power supply
27 -Vs negative bias power supply

P
IN

 C
O

N
N

E
C

TIO
N

CD-1

-VS

ATT-REL1

OUT1+

OUT1-

CD+1

PWR_INP1

IN_PRE1

OUT_PRE1

TRK_1

STBY/MUTE

PROTECTION

GND

+VS

CD+

TRK_OUT

THRESHOLD

TRK_2

OUT_PRE2

IN_PRE2

PWR_INP2

CD+2

OUT2-

OUT2+

ATT_REL2

CD-2

-Vs

1
27

020013 - 16

diagram for the internals of the STABP01. The
manufacturer is still reluctant to divulge too
many details. The details of its operation are
limited to the information that the processor
determines the characteristics of the audio
signal and because of this determines the dri-
ving signal for the step-down converter.
Exactly how this is achieved is not mentioned
in any of the documentation. There are a few
recognisable details in Figure 5, of course,
but not the entire approach. An additional
comment states that the converter changes
the pulse signal into a corresponding power
supply voltage for the power amplifier stage,
but we already knew that. We also knew
already that the processor forms an essential
part of the feedback system, where the
power supply level of the power amplifier is
continually adjusted, based on the instanta-
neous value of the audio signal. Detailed
information, as stated before, is not available
yet. Hopefully they will soon reveal some
more practical information and provide a
detailed application example, because if the
BASH system delivers what it promises, it is
interesting enough to be thoroughly exam-
ined in detail.

(020013-1)

Each channel has a compressor
circuit with a special transfer func-
tion. Its purpose is to avoid any
dynamic limitations that may be pre-
sent in the BASH-system. In order to
make the system as general-purpose
as possible, the attack and release
times of the threshold levels are
externally programmable. The track-
ing signal for the external digital
step-down converter is generated by
the ‘absolute value block’, which rec-
tifies the output from the compres-
sor. The outputs from these stages
are decoupled with a diode to sim-
plify the summing of these signals in
a multiple channel amplifier.

The power stages are fitted with
a special output pin in order to make
AC decoupling possible. This is done
so that any DC offset at the com-
pressor output can be eliminated.
The power stage has a voltage gain
of 4 (+12 dB).

An ingenious circuit functions as
the power sensor for the transistors
in the power stage and, together
with the external converter, provides

the intended reduction of the power
supply voltage. In addition, there is
also a current limit circuit and a tem-
perature sensor to protect the IC
itself. Moreover, with an external
voltage on the STBY/MUTE pin, both
amplifiers can be placed in mute
mode, which guarantees on- and off-
switching without spurious noises.

The power amplifier ICs are
housed in a 27-pin, so-called, Flexi-
watt27 package; Table 1 shows the
pin-out for both stereo versions. The
mono version is practically pin com-
patible, only in this case pins 18
through 21 and 25 are not connected.

Digital processor
The block ‘processor’ in Figure 1 is
implemented with the specially
designed STABP01. This is a digital
processor with the specific purpose
of driving the digital step-down con-
verter. So a BASH amplifier can only
be realised with this particular
processor.

Figure 5 shows a simplified block

APPLICATIONNOTES

634/2002 Elektor Electronics

+

-

+

+

-

-

-

-

+

+

+

-
R

1V

1V

10V

1V

OUTPUT

GROUND1

SOFT SW RESET

S

1V

10V

2R

R

1V

COMP/3

1V

1V

-

+

-

+

-

+

BUFFER

2200pF 50K 20K

R162

R17

C51

2200pF 1V

-
-

+
+

CURRENT SENSE
COMPARATOR

ONE SHOT
SIGNAL

OPEN DRAIN
OUTPUT

DISCHARGE
(RESET)

TRANSISTORFAST ATTACK
CONTROL

ERROR
AMP

COMP

CURRENT_SENSE

VFB

V+

POWER SUPPLY1

CLOCK

250Hz
1V

Q

Q

S

Q

R

Q

RESET

CLK

Q

D

Q

RESET

CLK

D

Q

Q

R

S

Q

Q

INTERNAL
CIRCUIT

ON

UVLO: 7V = on
 5V = off

SOFT SWITCH

PWM LATCH

VREF

BUFFER OUT

REC_OUT

BUFFER IN

FA IN

1V10V

10V

DEAD TIME

10V

OUTPUT

GROUND2

ONE
SHOT
DELAY

POWER_VS2

-

+

ONE SHOT DUTY ACCEL

1V

1V

R

020013 - 15

Figure 5. Block diagram of the digital BASH processor STABP01.

Clearly, the XP operating system is a much
more stable basis for Windows programs that
any of its predecessors. This is the result of a
lot of hard work ‘under the bonnet’. Also, sig-
nificant improvements have been achieved as
compared with the 9x and ME releases. How-
ever, if you’re new to XP, the first thing you
will notice is its desktop and icons rather that
any of its improved features. Clearly, the Win-
dows programmers have give en a lot of
attention to ‘cosmetics’ this time. It alls looks
a bit more ‘pop art’ with rounded icons, pas-
tel colours and coloured backgrounds.

The new ‘look’ seems to have been
received well by many Windows users, and
computer addicts will no doubt wonder if and
how the XP appearance can be applied to
Windows 95, 98 or ME. All without actually
buying an XP upgrade, of course, because
that to many is nothing short of being robbed
of hard earned money. Unfortunately, XP offers
a number of desktop options that are not
found in older versions of Windows. Unless, of
course, we call in the help of a fine selection
of software tools! More about these further on.

To start with, the simplest method. We
locate a set of cursors and icons that look like
those of XP. Next we add to these an XP wall-
paper. If desired, the blend can be completed
with an XP-ish screensaver and we’re in
business.

Although collections of XP icons float
around on the Internet, it is far more useful to
have a program available that adapts every-
thing in one go. XP Icons [1] is a shareware

program that replaces your existing
icons by XP-like equivalents (there
are more than 90). Furthermore, this
little program allows you to apply a
transparent background to the text
part of the icons. This will prove use-
ful if you like changing the desktop
appearance a lot.

A slightly less extensive alterna-

tive is XP Icon Raider [2] which
does roughly the same but comes
free of charge.

For a suitable background you
may want to visit one of the countless
wallpaper or XP websites. We came
across two that offer a really fine
selection of XP backgrounds and
associated photographs: Windows

ELECTRONICSONLINE

64 Elektor Electronics 4/2002

Mimic Windows XP
an ersatz version of the latest OS

By Harry Baggen

The latest operating system from Microsoft, called XP, contains a num-
ber of significant improvement over its predecessors. At a price, how-
ever, because an upgrade from 95/98/ME to XP is pretty expensive. If you
are not convinced of all the technical tweaks in XP, but still like its appear-
ance, there plenty of opportunity for ‘home improvement’ using the XP
wallpapers and icons that can be found on the Internet.

[6]. The fish swimming around in the aquar-
ium are so lifelike you’ll have to suppress a
tendency to start cleaning the inside of your
CRT every week. The full program costs just
$20 but the demo version (with a limited
number of fish) is too good to miss.

Unfortunately, all of the above ‘ersatz’
does not result in a perfect imitation of the XP
desktop. Where, you may ask, are the
extended Start menu, the restyled Taskbar or
the windows with rounded corners? To get all
this, you’ll need a bigger gun like Window-
blinds [7] from the Stardock company. This
program allows you to restyle almost all of
Window’s appearance. It is even possible to
transform your PC into a Macintosh computer,
complete with function buttons moved to the
appropriate locations in the windows (just as
with a real Mac). Windowblinds is not a low-
cost program. Fortunately, a demo version is
available which is certainly worth trying.
Although Windowblinds comes with two so-
called ‘skins’, many more of these are avail-
able on the net — just have a look at Skinz
and WinCustomize [8].

The same company also supplies a dedi-
cated program, Objectbar [9] for the Start
Menu.

After all this surfing and downloading,
your version of Windows will look totally dif-
ferent and computer illiterates and colleagues
may even think you’ve the very latest OS run-
ning on your PC. Without admirers around,
you may like the new look of your desktop so
much you’re won over to buying the real
thing after all.

(025026-1)

eXperience [3] and Win XP Wallpa-
per [4]. A background is simply
copied into the Windows folder,
whereupon it may be selected by
right-clicking on Desktop - Properties
- Background. The function ‘Stretch’
may be used to make the background
design cover the entire screen.

Thanks to the Themes in Win-
dows 98 and ME, icons, mouse
pointers, backgrounds and sounds
may be replaced in one go. Some
programs that employ this function

may be found on the Internet. An
attractive set of XP themes has been
designed by Peter Wilcox [5]. This
set is available for downloading from
Peter’s own website or one of the
many freeware and shareware sites.
After the installation process, you’ll
find three XP themes in the Theme
overview, and you may choose the
one you like best.

Of course, we should not forget to
install a matching screensaver. With-
out doubt, the finest is Serenescreen

ELECTRONICSONLINE

654/2002 Elektor Electronics

Internet addresses
[1] XP Icons:

http://camtech2000.net/Pages/XPIcons.html
[2] XP Icon Raider:

www.skylarkutilities.com/
program.pcs?xp-icon-raider

[3] Windows eXperience:
www.isenhower.com/XP/wallpaper.htm

[4] Win XP Wallpaper:
http://sardaukar.planetarrakis.net/
wallpaper.htm

[5] Windows XP Theme 2 van Peter Wilcox:
http://pages.prodigy.net/i-pedro2/

[6] SereneScreen:
www.serenescreen.com

[7] Windowblinds:
www.stardock.com/products/windowblinds
www.windowblinds.net/

[8] Skins voor Windowblinds:
www.skinz.org
www.wincustomize.com

[9] ObjectBar:
www.stardock.com/products/objectbar/
download.htm

	U020401.jpg
	e024012.pdf
	e024016.pdf
	e024020.pdf
	e024026.pdf
	e024030.pdf
	e024038.pdf
	e024044.pdf
	e024050.pdf
	e024056.pdf
	e024058.pdf
	e024060.pdf
	e024064.pdf

