

It’s difficult to believe that the first PC sys-
tems came without a hard disk drive. How
did we ever manage? It was only when hard
drives appeared that the real convenience of
a PC was realised, we didn’t mind that these
drives could only store a few Mbytes and
were about the same size and weight as a
common house brick, it was certainly an

improvement on reloading MS-DOS
from a boot disk at every start-up.

Modern Hard Disk Drives (HDDs)
are by comparison vastly improved,
slim jewels of precision engineering.
Floppy disks used to be sufficient to
store and transfer complete pro-
grams but nowadays with ever-

increasing program size a removable
HDD seems a better alternative.
Standard non-removable internal
HDDs offer the highest storage
capacity at the lowest cost but plug
directly into the Integrated Disk
Electronic (IDE) interface on the
motherboard. The PC has no external

COMPUTER

12 Elektor Electronics 1/2002

Hard Disk Interface
for the Printer Port
IDE2LPT – removable storage via the printer port

Design by Andrew Buckin (from an idea by Leonid Slobodchikov) AndrewBuckin@aol.com

Can’t even give away that hard disk drive on your redundant PC system?
Why not use it as a portable drive? This interface adapter allows a
standard low-cost internal hard drive to be used as a convenient mobile

plug-in unit, great for storing or transferring large
files from PC to PC or notebook. A pre-
programmed Altera EPLD chip ensures a neat unit
with a minimum of external circuitry.

IDE connector as standard. If we are
to use such an HDD as a portable
unit plugging into any PC, it will be
necessary to adapt an existing exter-
nal PC port.

PC’s have always had a parallel
printer port so it seemed like a good
idea to develop an interface adapter
(implemented as an Altera CPLD)
along with some software that would
allow data to be transferred to and
from a hard disk via a printer port.

LPT to IDE
In the March 2001 edition of Elektor
Electronics the article ‘IDE hard disk
interface for 8-bit controllers’
described an adapter that enabled 8-
bit controllers to use a hard disk
with an IDE interface. That article
described in detail the IDE interface
(also known as the ATA interface)

and its history so we will not repeat
all the information here but just look
at some of the important signals that
are used in this design (a complete
specification is available at
www.t13.org). An overview of the
signals on this 40-pin connector is
given in Table 1.
The LPT2IDE interface makes use of
the following signals:

HD15 to HD0 Data lines (8 or 16
bit wide bus, bi-directional).

CS1FX/Chip Select 0 this
selects the command register
blocks.

CS3FX/Chip Select 1 this
selects the status register blocks.

HRD / I/O-read Read signal for
I/O port address. Data is put onto
the bus (HD0 to HD7 or HD0 to
HD15) by the hard disk when this
signal is low and latched into the

COMPUTER

131/2002 Elektor Electronics

70 ns 20 ns

010047 - 12

A2..A0
-CS1FX,

-CS3FX

 data, write

-HRD/
-HWR

data, read

165 ns for 16 Bit

290 ns for 8 Bit

600 ns

5 ns

30 ns

50 ns

60 ns

Figure 1. IDE bus read and write timing diagram.

Pin no. Label Description

1 -HRESET RESET

2 GND GND

3 HD7 Data bus bit 7

4 HD8 Data bus bit 8

5 HD6 Data bus bit 6

6 HD9 Data bus bit 9

7 HD5 Data bus bit 5

8 HD10 Data bus bit 10

9 HD4 Data bus bit 4

10 HD11 Data bus bit 11

11 HD3 Data bus bit 3

12 HD12 Data bus bit 12

13 HD2 Data bus bit 2

14 HD13 Data bus bit 13

15 HD1 Data bus bit 1

16 HD14 Data bus bit 14

17 HD0 Data bus bit 0

18 HD15 Data bus bit 15

19 GND GND

20 N/C key pin

21 DMARQ DMA request

22 GND GND

23 -HWR I/O WRITE

24 GND GND

25 -HRD I/O READ

26 GND GND

27 IORDY I/O CHANNEL READY

28 SPSYNC:CSEL SPINDLE SYNC or CABLE SELECT

29 -DMACK DMA ACKNOWLEDGE

30 GND GND

31 INTRQ Interrupt request

32 -IOCS16 16 BIT I/O

33 HA1 ADDRESS BUS BIT 1

34 -PDIAG PASSED DIAGNOSTICS

35 HA0 ADDRESS BUS BIT 0

36 HA2 ADDRESS BUS BIT 2

37 -CS1FX CHIP SELECT 0

38 -CS3FX CHIP SELECT 1

39 -DASP DRIVE ACTIVE/DRIVE 1 PRESENT

40 GND GND

Table 1. ATA Interface Pinning

HDD

Reg In

Di Dio

16

Do

010047- 13

Di

Reg Out

Reg Com

8

8
Control

4

LPT

Figure 2. Block diagram of the LPT/IDE adapter.

Adapter
Specification:
Maximum size of hard disk drive: Unlimited.
Maximum number of hard disk drives: 1
Data transfer rate: up to 100 kByte/s
Power requirements: 5 V / < 10 mA

(from an external 12 V supply)

host system on the rising edge.
HWR / I/O-write write signal for the I/O

port address. The falling edge of this sig-
nal will latch the bus data (HD0 to HD7 or
HD0 to HD15) into the hard disk register.

HA0, HA1, HA2 / Address bus Bit 0 to Bit 2.
Registers or ports in the hard disk are
selected with these address lines.

HRESET /Reset A low-level here will ini-
tialise the hard disk.

The diagram in Figure 1 shows the timing for
read and write cycles on the IDE bus. On the
other side of the interface we have the paral-
lel printer port using a standard 25-pin sub-
D connector. The printer port has an 8-bit
wide data bus together with six printer control
signals (from PC to printer) and five printer
status signals (from printer to the PC). Data
to the LPT1 is sent by writing to address 378h
(write only), the control register is (again
write only) at address 37Ah and the status
register is at address 379h (read only). A fuller
description of the printer port addressing for
both LPT1 and LPT2 is given in Table 2.

The printer port data transfer rate is less
than 150 kBytes/s, but has the advantage
that all the signal lines can be software con-
trolled, this simplifies the design of both the
control software and hardware.

COMPUTER

14 Elektor Electronics 1/2002

Figure 3. The chip circuit defined in AHDL and programmed into a CPLD.

Addresses
LPT1/LPT2

Description

378h/278h Data Registers DATA7..DATA0 (write-only)

Status-Register (read-only)

Bit LPT Name IDE2LPT Name Status Read Status Function

379h/279h

7 BUSY LI3 1 0 DATA3 from converter

6 SLCT LI2 1 1 DATA2 from converter

5 PE LI1 1 1 DATA1 from converter

4 ACK LI0 1 1 DATA0 from converter

3 ERROR — 1 1 —

2 — — — 0 —

1 — — — 0 —

0 — — — 0 —

Control Register

Bit LPT Name IDE2LPT Name Status Read Status Function

37ah/27ah

7 — — — 0

6 — — — 0

5 — — — 0

4 — — — 0

3 SLCT_IN RCWR 0 1 Write signal for Reg_COM

2 INIT RLWR 0 0
Write signal for Reg_IN from
DATA7 - DATA0 to HD7 - HD0

1 AUTO_FD RHWR 0 1
Write signal for Reg_IN from
DATA7 - DATA0 to HD15 - HD8

0 STROBE HRESET 0 1 Reset HDD

Table 2. Signals and registers: LPT interface and LPT/IDE converter

computer. Controlling the data transfer is per-
formed by instructions sent to the command
register (Reg Com) and are listed in Table 3.
Additional control logic is used to prevent
prohibited conditions on the IDE bus. (see
Table 4).
The majority of the LPT/IDE adapter circuitry
has been implemented in a CPLD. This
entails defining the entire circuit of registers
and logic in the Hardware Description Lan-
guage AHDL. A pre-programmed Altera logic
chip of the EPM 7064 family from Altera is
available from the Elektor Electronics Read-
ers Services and the source file for the chip is
also available as a Free Download from the
Elektor Electronics website. Figure 3 is the
chip internal circuit diagram produced by this
program. Figure 4 shows the circuit diagram of
the adapter card where IC1 is the CPLD chip.
In addition to this chip is IC2 which is a
74HCT14 inverting buffer with input hystere-
sis giving improved immunity to noise on the
RHWR, RLWR, RCWR und HRESET inputs.

The adapter circuit
In the world of hard disk interfaces
the data transfer rate of the printer
port is not especially fast. It is there-
fore pointless to use all the features
and speed enhancing techniques
that are available on the IDE inter-
face such as Direct Memory Access
(DMA), 16 bit data transfer, standby
and diagnostics. The IDE to LPT
interface adapter is basically just a

buffer between the two interfaces.
Figure 2 shows a block diagram of
the circuit. Writing to the HDD is per-
formed in two, eight bit wide bytes
that are stored in the input register
(Reg In) and sent to the HDD as 16
bit words. In the read direction the
16 bit wide data is stored in the out-
put register (Reg Out) and read out
in 4 bit wide nibbles to the LPT sta-
tus register where it is read by the

COMPUTER

151/2002 Elektor Electronics

EPM7064-J84

IO32/TMS

IO8/TDI

GCLK1

IC1

IO33

IO10

IO11

IO12

IO13

IO14

IO15

IO16

IO17

IO18

IO19

IO20

IO21

IO22

IO23

IO24

IO25

IO26

IO27

IO28

IO29

IO30

IO31

GCLR

IO34

IO35

IO36

IO37

IO38

IO39

IO40

IO41

IO42

IO43

IO44

IO45

IO46

IO47

IO48

IO49

IO50

IO51

IO52

IO53

IO54

IO55

IO56

IO62

IO57

IO58

IO59

IO60

IO61

IO64

IO63

IO1

IO2

IO3

IO4

IO5

IO6

IO7

IO9

OE2 OE1

4422

21

20

18

17

16

15

14

12

11

10

41

40

39

37

36

35

34

33

31

30

29

28

27

25

24

23

43 13 26 5338 66 78

IO IO IO IO IO IO

45

46

48

49

50

51

52

54

55

56

57

58

60

61

62

63

64

65

67

68

69

70

71

79

73

74

75

76

77

81

80

84

83

19 32 42 47 59 72 82

2

7

3

9

8

6

5

4

1

+5V

C5

100n

C4

100n

C7

100n

C6

100n

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33 34

K3

35 36

37 38

39 40

K1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1

2

3

4

5

6

7

8

9

HD0

HD1

HD2

HD3

HD4

HD5

HD6

HD7

HD8

HD9

HD10

HD11

HD12

HD13

HD14

HD15

HD0

HD1

HD2

HD3

HD4

HD5

HD6

HD7 HD8

HD9

HD10

HD11

HD12

HD13

HD14

HD15

HA0

HA2

HA1

HA0

HA1

HA2

9 8
1

IC2.D

1 2
1

IC2.A

5 6
1

IC2.C

3 4
1

IC2.B

8x 1k1

2 3 4 5 6 7 8 9

R1

R2 4x 470Ω1

2 3 4 5

DATA0

DATA1

DATA2

DATA3

DATA4

DATA5

DATA6

DATA7

DATA0

DATA1

DATA2

DATA3

DATA4

DATA5

DATA6

DATA7

D
A

TA
0

D
A

TA
1

D
A

TA
2

D
A

TA
3

D
A

TA
4

D
A

TA
5

D
A

TA
6

D
A

TA
7

+5V

+5V

LI0

LI1

LI3

LI2

LI0

LI1

LI2

LI3

7805

IC3

C2

100µ
16V

C1

100n

C3

100n

+5V

1 2

3 4

5 6

7 8

9 10

K2
JTAG

+5V
JP3

JP2

JP1

+5V

HRESET

RHWR

RLWR

RCWR

HRESET

RHWR

RLWR

RCWR

TDI

TMS

CS1FX

CS3FX

HRD

HWR

RESET

TDO

TCK

RESET

TMS

TDI

TCK

TDO

IC2

14

7

C8

100n

+5V

010047 - 11

IC2 = 74HCT14

HRD

HWR

C
S

1F
X

C
S

3F
X

Figure 4.Circuit diagram of the LPT/IDE adapter. The JTAG connector allows in-circuit programming of the CPLD.

Bit Name Function

7 — —

6 TRW Write signal -HWR on IDE Bus. Active level: 1.

5 RCW Read signal -HRD on IDE Bus. Active level: 1.

4 -CS1FX CHIP SELECT 0. Active level: 0.

3 -CS3FX CHIP SELECT 1. Active level: 0.

2..0 HA2 - HA0 ADDRESS BUS

Table 3. Control Register signals in LPT/IDE converter

IC3 produces 5 V necessary for the adapter
card from an external 12 V power source. (see
‘plugging it all together’). Connecter K2
(JTAG) is used by IC1 and allows the chip to
be re-programmed and de-bugged. The chip
software ‘MAX2plus’ is available free of
charge from the Altera website
(www.altera.com) and the chip programming
software (called ‘BitBlaster’) is also available
from Altera but this time for a small fee. It is
not necessary to purchase BitBlaster or use
the socket K2 because IC1 is available
pre-programmed from the Elektor Electronics
(see Readers Services). The JTAG socket is
used by any of the Altera CPLD 7000 family
with the S suffix (here the EPM7064S). The
three programming input signals to IC1 (TCK,
TMS and TDI) should be jumpered to earth at
JP1, JP2 and JP3 in normal circuit operation
but for de-bugging and re-reprogramming the
jumpers must be moved to connect these sig-
nals through to K2.
The double-sided PCB shown in Figure 5 can
be ordered from Elektor Electronics. If you
have the means to produce your own PCB
then the necessary files are freely available
from the Elektor Electronics website at
www.elektor-electronics.co.uk.

COMPUTER

16 Elektor Electronics 1/2002

010047-1
(C) ELEKTOR

C1
C2

C3

C4

C5

C6

C7 C8

HOEK1

H
O

E
K

2

HOEK3

H
O

E
K

4

IC1

IC2

IC3

JP1 JP2 JP3

K1

K2

K3

R1

R2

010047-1

0 +

010047-1
(C) ELEKTOR

Figure 5. Layout of the double-sided PCB.

COMPONENTS LIST

Resistors:
R1 = SIL array 8 x 1kΩ
R2 = SIL array 4 x 470Ω

Capacitors:
C1,C3-C8 = 100nF
C2 = 100µF 16V radial

Semiconductors:
IC1 = 7064LC84-15 (Altera), programmed,

order code 010047-31
IC2 = 74HCT14N
IC3 = 7805

Miscellaneous:
JP1,JP2,JP3 = 3-way pinheader with jumper
K1 = 25-way sub-D-plug (male), PCB

mount
K2 = 10-way boxheader
K3 = 40-way boxheader
2 solder pins
Extension cable for PC PSU (see text)
Printer extension cable (1:1)
IDE cable
PCB, order code 010047-1

Plugging it all together

Figure 6 shows all the interconnections
between the parts of the complete adapter. A
standard printer cable can be used to connect
the portable hard disk unit to the LPT port of
the PC. Alternatively a cable can be made-up
using flat ribbon cable with crimp-on (IDC)
D-type connectors. Ideally the cable length
should be less than 30 cm. If you suspect that
sources of radio frequency interference (RFI)
are causing problems then the eight data
lines DATA0 to DATA7 may benefit by con-
necting decoupling capacitors of between 12
to 22 pF from each data line down to earth at
the adapter connector K1.

Power for the hard disk drive and adapter
PCB is best provided by a separate PC Power
Supply Unit (PSU). These units provide the
necessary supply voltages with bags of cur-
rent to spare. There should be no problem in
finding such a unit especially if you are can-
nibalising a redundant PC system. Alterna-
tively a new unit can be purchased quite
cheaply. Power connections between the
HDD and the PSU can be made with a stan-
dard computer internal power expansion
cable with two wire taps taken off to provide
+12 V and 0 V to the adapter card. These two
wires should be soldered to the pins labelled
+ and 0 next to C1 on the PCB.

Gigabytes to go
Whether you are purchasing a new hard disk
drive for this project or recycling a unit from a
redundant PC system, this design gives even
low-spec PCs (those without CD or CD-RW
drives) the ability to store, back-up or trans-
fer large files to and from other PC systems.

(010047-1)

Software
As with any PC port a driver pro-
gram is necessary to pass informa-
tion in and out of the LPT/IDE
adapter. Two versions of the
‘LPT2IDE’ driver program are avail-
able, one runs in DOS while the
other runs in Windows. Firstly the
program ‘ide2lpt.exe’ runs under MS-
DOS from version 3.3 upwards. It is
not unlike standard IDE driver rou-
tines, in fact we have adapted an
existing IDE driver to read and write
via the printer port. Additional test
and search features have also been
included and thanks go to Ewgenij
Kuleschow for the driver source
code. To install the driver a line must
be added to the config.sys file:

device=[path]\ide2lpt.exe [options]

normally:

device=c:\lpt2ide\i2l4.exe

For different settings or tests the
options can be added to the program
name at the DOS command prompt
e.g. the option /T (I2L4.EXE/T) for
test.
Other options available are:

/H Help
/L:LPT The LPT port Address (378h

for LPT1 and 278h for LPT2)
/G:SEC:HEAD Defines the HDD

parameters (used for fixed drives
operating in LBA mode): SEC indi-
cates the number of sectors and

HEAD the number of heads. The
format is in decimal.

/LLBA mode
/V Request hard disk parameters.

The DOS driver uses FAT12, FAT16,
BIG and Extended Partition while
FAT32 is supported by the second
driver that runs under Windows 9x.

Installation of the Windows driver
in Win95 begins by first ensuring
that you have the drivers stored on a
floppy disk. From the Windows start
up select ‘Start’ then ‘settings’, ’con-
trol panel’ and ‘Add new Hardware‘.
Now in the Hardware Wizard click
‘Next’ and select ‘No’ from ‘Do you
want Windows to search for new
hardware?’ now click ‘Next’, scroll
down the list of controllers in ‘Hard-
ware types’ and click-on SCSI con-
trollers. Click ‘Next’ and select ‘Have
disk’ now choose ‘Browse’ and find
the folder on the floppy where the
drivers are stored, select ide2lpt.inf
and ide2lpt.mpd. Now click ‘OK’. Dri-
ver installation will take place auto-
matically but before you can use
them it will be necessary to restart
the computer.

If other Windows applications
access the printer port while data is
transferring to and from the hard disk
it can cause a problem. It is therefore
recommended that no other Win-
dows programs are allowed to
access the printer port while the
IDE2LPT program is running.

COMPUTER

171/2002 Elektor Electronics

Figure 6. Wiring of the unit together with a PC power supply.

Postscript:
The interface described in this article was
built on a prototype board (see photos) and
tested with a number of PCs and hard disk
drives. These test runs were completed
without problems.
Just before the closing date of this issue, we
received information from the author
regarding possible timing problems with a
number of older PCs. According to the
author, such problems occur in rare cases,
only on motherboards containing a Pentium
1 processor, and depending on the I/O chip
set fitted.

Knowledge-based quizzes of the ‘University
Challenge’ variety are extremely popular, and
have spawned many derivates that can be
seen on TV every day. Where many people
would be perfectly capable of organizing a
quiz, persuading players and a quizmaster to
participate, drawing up a list of questions
(geared to the contestants’ specific interest
or level of education) and arrange a suitable

venue, alas, building a ‘machine’ to
detect the first key press, display
the score, etc. often poses insur-
mountable problems. The present
design should be easy to build by
anyone with reasonable skills in DIY
electronics.

One of the major problems in
mimicking a quiz ‘studio’ is the

cabling. The Quizmaster project dis-
cussed here overcomes that difficulty
by means of a wireless link between
the contestant desks and the quiz-
master desk.

Here’s how the system works.
Immediately after the quizmaster
asks the question he/she presses the
start timer button. The player who

GENERALINTEREST

20 Elektor Electronics 1/2002

Quizmaster
radio-linked!

By Andy & Rose Morrell

The Quizmaster described here is a four-player version with an extra
player to operate the ‘box’ and to ask the questions etc. No wiring
required between the player and quizmaster desks!

will produce a timeout after about 10 sec-
onds. The PIC will then flash all four LEDs
labelled Player A-D (D3-D6) until the quiz-
master presses the WRONG/RESET button.

When the correct answer is produced
within the available time slot of about 10 sec-
onds, the quizmaster will press the COR-
RECT button. The siren chip, IC6, fits in per-
fectly for the sound. PIC pin port line RD7 is
pulled low, and via the BC327 PNP transistor
(T5) turns on the UM3561 siren chip. A BC548
transistor at the UM3561 output enables a
small 64-Ω loudspeaker to be driven so that
the siren sound is clearly heard. Three popu-
lar siren sound types are available and may
be selected by switch S4.

As already mentioned, communication
between the player’s desk(s) and the quiz-
masters desk is wireless. Here, a low-cost
licence-exempt transmitter/receiver pair from
RF Solutions is used. The units originally
used by the authors operate in the 418 MHz
band. Licence-exempt means that the trans-
mitter can be used freely by anyone as long
as it is not modified or connected to a direc-
tional antenna. The transmitter and receiver
may also be 433-MHz versions since in the UK
433.92 MHz is also allocated for short-range
licence-exempt communications. The use
433.92 MHz band has been harmonized
across Europe, and it is expected that the

hits his/her button first will instantly
lock out the other three so further
presses of the buttons by any of the
other contestants will have no effect.
To indicate which player was first,
that player’s LED flashes and a siren
is heard.

If none of the players press their
button, a timeout will be reached in
approximately 10 seconds. The four
LEDs will then start to flash simul-
taneously until the quizmaster
presses the button labelled ‘reset
timer’.

If the correct answer is produced
by one of the players, all the quiz-
master has to do is press the ‘cor-
rect’ button to add 1 to their score, or
the ‘wrong’ button, which obviously
leaves the score unaltered. Then, the
next question is asked.

The Quizmaster project offers
ease of use for players as well as the
quizmaster, which allows everybody
to concentrate on the questions,
which is essential for the overall suc-
cess of the quiz if an audience is
present. The quiz night at the local
pub is another, hopefully hilarious,
matter.

How it works
Just as the transmitter and receiver
unit discussed further on, two other
components in the circuit are always
encountered as a ‘pair’. The HT12D
and HT12E integrated circuits from
Holtek have been used in a previous
Elektor Electronics project, see
‘Radio-Linked Caller ID’ System in
the January 2001 issue. Datasheets
may be found at the manufacturers’
website [1]. The circuit diagram of
the transmitter does not amount to
much, see Figure 1.

The HT12E encoder chip, IC1, has
its four inputs D0-D3 connected to
four pushbuttons in small individual
boxes via 2.5-mm jack sockets and
leads. The HT12E has its transmit
enable (TE) pin wired to ground so it
is constantly transmitting when the
power is on (this will not affect the
receiver). The whole
transmitter/encoder circuit runs off
two AAA or AA batteries. The out-
put of the encoder chip is wired to
the 418 (or 433) MHz transmitter
which operates a good range on the
same 3-V battery set. A 17-cm
(7 inch) length of wire is used for a

quarter-wave aerial.
The (one-way) communication

between the HT12E and HT12D is
encoded. The same 8-bit code (word)
has to be set on the DIP switch
blocks (S5, S6) for the receiver to rec-
ognize the transmitter.

All of the intelligence required to
control the Quizmaster circuitry is
crammed into a single microcon-
troller of the PIC variety. As you can
see from the receiver circuit diagram
in Figure 2, not much is needed to
enable the PIC to handle all
input/output functions, where ‘input’
really means reading data from the
433-MHz receiver and scanning the
quizmaster’s desk buttons, while
‘output’ boils down to enabling the
siren and driving the LED indicators
and displays. A run-of-the-mill 5-volt
power supply completes the circuit.

Pressing the START button allows
the PIC to recognise if the HT12D
receiver chip receives a signal from
player A to D. The PIC chip updates
a software counter by interrupt
every millisecond or so. If no data is
received from the central transmitter,
(i.e., none of the players knows the
answer to the question) the counter

GENERALINTEREST

211/2002 Elektor Electronics

+3V

R2

100k

R3

1M

HT12E

IC1

OSC2

OSC1

DOUT

18

A0

A1

A2

A3

A4

A5

A6

A7

10
D0

11
D1

12
D2

13
D3

14
TE

15

16

171

2

3

6

7

8

4

5

9

010030 - 11

K1

K2

K3

K4

R4

1
0

k

R5

1
0

k

R6

1
0

k

R7

1
0

k

+3V

Transmitter

ANT

ANT

S1

S2

S3

S4

BT1

3V

S5 +3V

AM-RT4-418

IC2

EAIN

1

43

2

R1 8x 10k 1

23456789

S6

Figure 1. Circuit diagram of the Quizmaster central transmitter to be fitted in or near the
players’ desk.

418 MHz allocation will be gradually phased
out in the UK. Datasheets of the AM-RT4-
418/433 and AM-HRR3-418/433 may be found
on the Internet [1].

Returning to the main unit installed in the
quizmaster’s desk, the PIC17C44 chip drives
the display units in multiplex mode via two
driver ICs, a ULN2803 for the common-cath-
ode (CC) lines and a 74LS245 for the digit
(anode) lines. There are four 2-digit 7-seg-
ment displays. Four BC48 transistors (T1-T4)
drive the 5-mm ‘Player’ indicator LEDs.

To close off the discussion of the circuit
operation, the power supply is conventionally
based on a 7805 3-pin voltage regulator that
steps down the unregulated DC input voltage
(max. 9 V) at K1 to 5 V as required by the
receiver circuitry. LED D2 acts as the on/off

indicator. In view of electrical safety
we recommend the use of a mains
adaptor with an output current rat-
ing of about 300 mA or better.

The control program
Since the source code file for the pro-
gram that runs inside the PIC is far
too large to print in this article, it
available either on floppy disk, order
code 010030-11 (at a nominal
charge), or as a free download from
the Elektor Electronics website at
www.elektor-electronics.co.uk. If you
have a suitable PIC assembler, you
may decide to use the assembly
code file to generate your own object

code and burn your own PIC17C44
for this project. The commented lines
should be easy to understand, and
represent educational value even if
you do not intend to build the Quiz-
master. A ready-programmed PIC is
also available from the Publishers,
the order code is 010030-41.

Construction
The transmitter and the main unit
are built on printed circuit boards of
which the layout is shown in Fig-
ure 3. Note that the two boards have
to be separated by cutting. The pho-
tographs in Figures 4, 5 and 6 give a
good idea of how the boards should

GENERALINTEREST

22 Elektor Electronics 1/2002

R2

6
8

k

C4

100n

R3

1
0

k

R19

1
0

0
k

R4

1
0

k

+5V

S1 S2 S3

R6

1
0

k

R7

1
0

k

R5

1
0

k

HT12D

ADOUT

IC1

OSC2

OSC1

18

A0

A1

A2

A3

A4

A5

A6

A7

10
D0

11
D1

12
D2

13
D3

14
TE

15

16

171

2

3

6

7

8

4

5

9

+5V

+5V

T1

BC548

R8

5k6

T2
R9

5k6

T3
R10

5k6

T4
R11

5k6

+5V

+5V

4x

LD4

DC56

16

15

18

17

14 13

CC CC

11

10

12

dp dpa

b
3

c
2

d
1

e

f

g

4

a

b
8

c
6

d
5

e

f
7

g

9

LD3

DC56

16

15

18

17

14 13

CC CC

11

10

12

dp dpa

b
3

c
2

d
1

e

f

g

4

a

b
8

c
6

d
5

e

f
7

g

9

LD1

DC56

16

15

18

17

14 13

CC CC

11

10

12

dp dpa

b
3

c
2

d
1

e

f

g

4

a

b
8

c
6

d
5

e

f
7

g

9

LD2

DC56

16

15

18

17

14 13

CC CC

11

10

12

dp dpa

b
3

c
2

d
1

e

f

g

4

a

b
8

c
6

d
5

e

f
7

g

9

R12
150Ω

R13
150Ω

R14
150Ω

R15
150Ω

R16
150Ω

R17
150Ω

R18
150Ω

A

B

C

D

E

F

G

A

A

A

A A

A

A

A

B

B

B

B B

B

B

B

C

C

C

C C

C

C

C

D

D

D

D D

D

D

D

E

E

E

E E

E

E

E

F

F

F

F

F

F

F

F

G

G

G

G G

G

G

G

CD1

AD1 AD2

BD1 BD2

CD2

DD1 DD2

PLAYER
A

PLAYER

PLAYER

B

C

PLAYER
D

D1
1N4001

C1

10µ
25V

C2

10µ
25V

C3

100n

R20

4
7

0
Ω

7805

IC5

D2

+5V

74LS245
IC3

3EN1

3EN2

11

12

13

14

15

16

17

18

19
G3

2

3

4

7

8

9

5

6

1

1

2

R21

2
2

0
Ω

T5

BC327

T6

BC548

R22

10k

+5V

R23

4
7

Ω

64Ω

LS1

+5V

R24

2
4

0
k

S4

1

3

2

+5V

010030 - 12

UM3561

IC6

7

8 3

5

2

6

1 4

S4 = SET SOUND 1: FIRE

2: POLICE

3: AMBULANCE

START
TIMER

WRONG/
RESET

CORRECT

AM-HRR3-418

IC7

OUT

EA

10

11

12

13

14

15

1

3

2

7

+5V

PLAYER
A 9V

DC

PLAYER PLAYER
B C

PLAYER
D

C5

100n

ANT

IC3

20

10

+5V

ANT

Receiver

C6

100n

ULN2803

IC4

VEE

+VS

11

12

13

14

15

16

17

18
I1

I2

I3

I4

I5

I6

I7

I8

O1

O2

O3

O4

O5

O6

O7

O8

10

1

2

3

6

7

8

4

5

9

AD1

AD2

BD1

BD2

CD1

CD2

DD1

DD2

R25

4
7

0
Ω

D3

R26

4
7

0
Ω

D4

R27

4
7

0
Ω

D5

R28
4

7
0

Ω

D6

R1 8x 10k 1

23456789

S5

PIC17C44-16/P

OSC2/CLKOUT

RB4/TCLK12

OSC1/CLKINRA4/RX/DT

RA5/TX/CK

RB5/TCLK3

RA1/T0CKI
RB0/CAP1

RD2/AD10

RD3/AD11

RD4/AD12

RD5/AD13

RD6/AD14

RD7/AD15

MCLR/VPP

RB1/CAP2

RB2/PWM1

RB3/PWM2

RC0/AD0

RC1/AD1

RC2/AD2

RC3/AD3

RC4/AD4

RC5/AD5

RC6/AD6

RC7/AD7

RD0/AD8

RD1/AD9

RE0/ALE

RA0/INT

RE1/OE

RE2/WR

IC2

TEST

RA2

RA3

RB6

RB7

19

20

40

39

38

37

36

35

34

33

30

29

28

32

27

26

25

24

23

22

21

11

12

13

14

15

16

17

18

10 31

1

2

3

4

5

6

7

8

9

K1

Figure 2. Circuit diagram of the Quizmaster central receiver. With a PIC in control, hardware is down to a minimum!

(receiver) should not be enclosed in a metal
case.

Voltage regulator IC3 will not run exces-
sively hot but to remain on the safe side you
may still decide to fit it with a small heatsink.

The 64-Ω loudspeaker may be mounted in
an external box or, space allowing, in the cen-
tral receiver case.

Any code word you like may be used to

be stuffed.
The receiver board contains all

components including the displays,
and may have to be mounted in a
position where the readout (score
displays and Player LEDs) can be
clearly seen by everyone. This may
necessitate fitting the quizmaster’s
control buttons off the board and on a

separate little panel.
We recommend using sockets for

all ICs on the boards. In particular
the programmed PIC represents con-
siderable value!

The transmitter and receiver
antenna are both 17-cm long pieces
of straight wire which for optimum
radiation (transmitter) and reception

GENERALINTEREST

231/2002 Elektor Electronics

Figure 3. Copper track layout and component mounting plan of the combined receiver & transmitter board (separate by cutting, before
populating). This board is available ready-made.

010030-1
(C) ELEKTOR

C1

C2

C3

C
4

C5

C6

D
1

D2

D3

D4

D5

D6

H1

H
2H3

H
4

IC1

IC
1

IC2

IC
2

IC
3

IC
4

IC
5

IC
6

IC
7

K1

K2

K3

K4

LD1

LD2

LD3

LD4

R1

R1

R
2

R2

R
3

R3

R
4

R4

R
5

R5

R
6

R6

R
7

R
7

R8

R9

R10

R11

R12

R13

R14

R15

R16
R17

R18

R19

R20

R
21

R
22

R23

R
24

R25

R26

R27

R28

S1 S2 S3

S4

S5

S5

S6

T1

T2

T3

T4

T5

T6

010030-1

+

0

18

1

8

LS

T
- +3V

ANT

ANT

010030-1
(C) ELEKTOR

encode the transmitter, as long as you (1) set
the same word on the receiver and (2) the
code word is exclusive to other transmitters
in an area of about 300 m.

(010030-1)

Web Addresses
[1] HT12E/HT12D datasheets:

www.holtek.com.tw
[2] AM-HRR3-418/433 and AM-TR-418/433

datasheets: www.rfsolutions.co.uk

GENERALINTEREST

24 Elektor Electronics 1/2002

COMPONENTS LIST
Transmitter

Resistors:
R1 = 8-way 10kΩ SIL array
R2 = 100kΩ
R4..R7 = 10kΩ
R3 = 1MΩ

Semiconductors:
IC1 = HT12E (Farnell # 562415)
IC2 = AM-RT4-433 (RF Solutions)*

Miscellaneous:
K1-K4= jack socket, 2.5mm, mono,

PCB mount
S1-S4 = pushbutton (external), 1

make contact
S5 = on/off switch
S6 = 8-way DIP switch
BT1 = 3-V battery with holder (or 2

off AA/AAA battery)

Receiver

Resistors:
R1 = 8-way 10kΩ SIL array
R2 = 68kΩ
R3-R7,R22 = 10kΩ
R8-R11= 5kΩ6
R21 = 220Ω
R12-R18 = 150Ω
R19 = 100kΩ
R20 = 470Ω
R23 = 47Ω
R24 = 240kΩ
R25-R28=470Ω

Capacitors:
C1,C2 = 10µF 16V
C3-C6 = 100nF

Semiconductors:
D1 = 1N4001
D2-D6 = LED, green, 5mm dia.
IC1 = HT12D (Farnell # 563250)
IC2 = PIC17C44-16/P, programmed,

order code 010030-41
IC3 = 74LS245
IC4 = ULN2803AP (Farnell #

3187032)
IC5 = 7805
IC6 = UM3561 (UMC) (Rapid Elec-

tronics # 82-0704, tel. 01206
751166)

IC7 = AM-HRR3-433 (RF Solutions) *
LD1-LD4= 2-digit 7-segment LED

display, common cathode, e.g., King-
bright DC56-11EWA

T1-T4,T6 = BC548
T5=BC327

Miscellaneous:
K1 = mains adaptor socket, PCB

mount
S1,S2,S3= pushbutton, 1 make con-

tact, type CTL3 (Multimec) or DR-6
S4 = 3-way 1-pole switch
S5 = 8-way DIP switch
LS1 = 64Ω loudspeaker
PCB, order code 010030-1 (com-

bined board for receiver and trans-
mitter)

* 433 MHz transmitter/receiver mod-
ules available as a pair from Maplin,
order code VY48C.

Figure 4. Completed transmitter board.

Figure 5. Completed receiver board. �

Figure 6. Close-up of the RF Solutions
AM-HRR3-433 radio receiver module
fitted on to the main board. �

Before we present the individual example
applications, a few initial remarks are in order
regarding the example programs and their
use.
– The applications and demonstration pro-

grams are written in C51 code in such a
way that (with one exception) they can be
used with the restricted version of µVision2
(maximum code size of 2 Kbytes, no float-
ing-point arithmetic). For larger application
programs the full version of µVision2, or
another 8051 tool, must be resorted to.

– In order that something ‘visible’ is pro-
duced, all the programs guide the user via,
and produce output on, the PC’s monitor.
That means that you will need to run a ter-
minal program on your PC. We have
assumed that you will be using HyperTer-
minal, since this program is included with
Windows. You can, however, use any other
terminal program: the required communi-
cations parameters are 9600 baud, 8 data
bits, no parity, 1 stop bit.

– Before starting a program on the ISAC cube,
you should start up your chosen terminal
program and then press the reset button on
the cube.

– Very important: if you have been using
HyperTerminal and then want to download
a new program into the ISAC cube using
the serial downloader, you must first clear
the existing connection with HyperTermi-
nal (using ‘Disconnect’ on HyperTerminal).
Otherwise HyperTerminal will keep control
of the COM port and the serial downloader
will not be able to access it. An apparently
meaningless error message will appear if

the serial downloader is unable to
find the ADuC812. In this case you
will have to cancel the error mes-
sage, release the connection in
HyperTerminal, and then relaunch
the downloader.

– Communication between the
microcontroller core and the on-
chip peripherals uses the 8051-
style Special Function Register
(SFR) (Figure 1). Further informa-
tion on the meaning of the individ-

ual bits within the SFR can be
found in the ADuC812 data sheet
or in specialist 8051 books.

D/A converter application
Outputting different signals:
With the aid of program dac_1.c two
different signals (a sawtooth and a
squarewave) can be output using
the D/A converter at two different
resolutions (8 bits and 12 bits). Con-

MICROPROCESSOR

28 Elektor Electronics 1/2002

ISAC (4)
part 4: basic applications

By Prof. B. vom Berg, P. Groppe and M. Müller-Aulmann

In this fourth instalment of the series we will look at our first applications
of the ISAC cube and the simple motherboard, which will give a good
introduction to the possibilities of the device. Complete example pro-
grams developed for these applications, along with extra information, are
available for download from the Elektor Electronics website.

temperature dependence is –3 mV/°C. If the
temperature rises by 1°C the temperature-
dependent voltage will drop by 3 mV and
vice versa. But there is a very important
point to note here: these figures are only typ-
ical values and vary from device to device. If
you compare ADuC812s from different pro-
duction batches, you will find rather different
values. Analog Devices do guarantee, how-
ever, that the temperature-dependent voltage
is highly linear in die temperature.

This relationship is characterised by a (lin-
ear) equation Uϑ=f1(ϑ) (or ϑ=f2(Uϑ)) (Fig-
ure 2). For the user, this means that two cali-
bration readings have to be taken to estab-
lish the parameters of the linear equation
before meaningful temperature values can
then be obtained. If you then have an
ADuC812 from the same production batch
(which is usually the case if they come from
the same tube), nothing needs to be changed.
If, however, you buy ADuC812s from different
batches, this calibration will have to be
repeated several times over. In the worst case
a different set of parameters for the linear
relationship will have to be obtained for each

nect an oscilloscope to the relevant
outputs to verify the results.

The reference voltage used here is
the digital power supply voltage VDD
(=+5 V), and so the output voltages
produced lie in the range 0 to +5 V.

A/D converter application
Reading the voltages on the input
channels:
On starting up program adc_1.c you
will be asked to supply the number
of the channel to be read, where you
have the following possibilities:
– number 0-7: external measurement

channels ADC 0 to ADC 7.

– number 8: channel connected to
the on-chip temperature sensor
(see next example).

When you have entered a number,
the voltage present at the selected
input channel is converted once per
second and the result displayed as a
decimal and as a hexadecimal value
on the PC’s monitor. Readings are
stopped by pressing the reset but-
ton, and a new input channel can
then be chosen.

Note: The A/D converter has a
resolution of 12 bits and can operate
with two different reference volt-
ages:

1. Using the internal 2.5 V reference
voltage. In this case 1 LSB corre-
sponds to a voltage step of
610 µV.

2. Using an external reference volt-
age in the range +2.3 V to +5.0 V,
connected to the VRef pin. In view
of the 12 bit resolution, this volt-
age should be specially filtered
and regulated. If, for example,
VRef is connected to AVDD supply
(+5 V), 1 LSB will correspond to a
voltage step of 1.2 mV.

The input voltage to be measured
must always lie between 0 V and
the reference voltage used (whether
internal or external), i.e. in the range

0 to +2.5 V when using the internal
reference voltage or in the range 0 to
+5 V if an external 5 V reference is
used.

Measuring the internal die temper-
ature and the ambient tempera-
ture:
The ADuC812 includes an on-chip
temperature sensor that produces a
temperature dependent voltage that
is connected to the ninth channel
(i.e., channel number 8) of the A/D
converter. The datasheet gives the
following information about this sen-
sor: the output voltage is 600 mV at
a temperature ϑ = 25°C, and the

MICROPROCESSOR

291/2002 Elektor Electronics

640 byte
Internal Flash / EE

Data Memory

8K bytes
Internal Flash / EE
Program Memory

External
Program Memory
(up to 64K bytes)

256 bytes
Internal RAM

8052
compatible

core

multichannel
ADC

DAC (s)

SFRs

ADuC8x

Watchdog Timer

Power Supply

010048 - 4 - 11

Digital I / O

External RAM
Data Memory

(up to 16 M bytes)

Figure 1. The SFR register.

υ

υb

∆υ

∆Uυ

Uυ
010048 - 4 - 12

Figure 2. The linear relationship between volt-
age Uϑ and temperature ϑ .

Figure 3. Voltage divider at the input to the A/D
converter switched by push-buttons.

Analogue input

(A / D converter)

ADuC812

+5V
(= AVDD)

+

R0

R1

S0Uin S1

010048- 4 - 13

ADuC812. The program temp812.c has been
developed to help in the calculation. When
the program is downloaded you will also find
instructions on how to determine the para-
meters of the linear relationship, on measur-
ing the ambient temperature, and on deriv-
ing the settings programmed into temp812.c.
Observe the instructions given on how to use
the program.

Push-buttons connected to an analogue
input:
The basis for this method of connecting push-
buttons, which allows an entire keyboard to
be connected to one analogue input pin of the
A/D converter, is a ‘multiply switched voltage
divider’. We start with a simple voltage
divider (Figure 3).

With this circuit we have:
No button pressed: Uin=5 V
Button 0 pressed: Uin=0 V
Button 1 pressed: Uin=5 [R1/(R0+R1)] V

If the two resistors R1 and R0 have the same
value, for example 1 kΩ, we have Uin=2.5 V.

For each button pressed, a different and
distinguishable voltage appears on the ana-
logue input and is converted by the A/D con-
verter. In this way, for each button that might
be pressed we obtain a different digital value
and hence we can identify uniquely the button
pressed. There is a further advantage to this
circuit: if more than one button is pressed
simultaneously, only the button nearest the
analogue input will be recognised. In other

words, we can build a keyboard in
which the individual keys are priori-
tised. If, for example, button 1 is
already pressed and subsequently
button 0 is pressed, Uin will immedi-
ately be pulled to the voltage corre-
sponding to button 0 (0 V). Thus but-
ton 1 is overridden and will no
longer be recognised, while button 0
has the highest priority and will

always be recognised. When but-
ton 0 is subsequently released, the
other buttons can then be read.

In order to use a large number of
buttons close-tolerance resistors are
required, as well as a well-regulated
power supply to the voltage divider.
Figure 4 shows a practical circuit for
a keyboard with ten push buttons.

A small disadvantage of this idea

MICROPROCESSOR

30 Elektor Electronics 1/2002

10k
S0

1k1

ADC7

S1

1k3
S2

1k8
S3

2k4
S4

3k3
S5

5k1
S6

3k2
S7

16k
S8

51k

010048 - 4 - 14

S9

+5V
(= AVDD)

+

ADuC 812
ISAC Cube

on
motherboard,

Type 1

all resistors
+ / – 2% tolerance!

Reference voltage:
VREF = AVDD = +5V
connected to VREF by wire link

Figure 4. Series of push-buttons connected to
an analogue input pin.

ADuC 812
ISAC-Cube

on
motherboard,

type 1

optoelectronic
encoder

MRTC 25

 R1
10KΩ

P2.0

P2.1

010048 - 4 - 15

P2.2switch

channel B

channel A

+5V

GND

+5V

GND

Figure 5. Connecting an opto-electronic shaft encoder.

Figure 6. Timing diagram for the two directions of rotation.

Table 1
Characteristics of the MRTC25 opto-electronic shaft encoder

Electrical characteristics:

Resolution (pulses/360°) 25
Channels 2 (A and B; 90° phase offset)
Supply voltage 5 V DC ±0.5 V
Current consumption 20 mA
Output signals TTL-level squarewave; internal 10 kΩ
pull-up
Push-button 5 V, 10 mA (non-inductive load)
Operating life > 1,000,000 cycles

channel A

t

trigger instants

direction: CCW

channel B

t

channel A

t

trigger instants

direction: CW

channel B

t
010048 - 4 - 16

Figure 6. Electrical characteristics of the
shaft encoder are given in Table 1. Program
drehge_1.c shows how to interface to this
interesting input device.

Control of eight servos:
Using the eight digital outputs of port 2 and
a little software, in this case written in
assembler, it is easy to control eight servos.
For each servo a control pulse of between
0.9 ms and 2.1 ms must be generated every
20 ms (Figure 7). The simplest approach is to
divide the 20 ms period into eight subinter-
vals and then drive each servo in turn from
the appropriate output on port 2 to the
desired position. Program servo.asm gener-
ates the 2.5 ms intervals using Timer 2 in
auto-reload mode and generates the required
servo pulse durations using Timer 0 as a
16 bit timer.

Interval: 20 ms / 8 = 2.5 ms (Timer 2)
Servo pulse width: 0.9 ms to 2.1 ms (Timer 0)

In the Timer 2 interrupt service routine
Timer 0 is started with the pulse width
required for the servo, and the appropriate
pin of port 2 is set. In the Timer 0 interrupt
service routine all port 2 pins are cleared and
the timer stopped.
In order to achieve exact timing in the main
program, an extra software delay is employed
in the Timer 2 interrupt service routine. This
short program is readily tested using the
ADuC812 simulator (Figure 8).

Of course, applications for the ADuC812 are
limited only by your imagination. With a little
effort on the software side up to 24 servos
could be controlled using the 24 digital out-
puts. When used in combination with the I2C
interface we can even construct a replace-
ment ‘I2C Servo Interface’ (Elektor Electron-
ics, September 2001) — and our replacement
offers a resolution of more than 1000 steps.

The servos could also be controlled by sen-
sors via the eight analogue inputs — which
is exactly what this series (ISAC — Intelli-
gent Sensor/Actuator Controller) is about.

(010048-4)

should not be ignored: the buttons
can of course only be read while they
are pressed: there is no automatic
keyboard buffer. This omission can,
however, be rectified by dedicated
software. A suitable program for
reading a 10-key keyboard con-
nected to analogue input pin ADC7
of the ADuC812 is provided in pro-
gram ana_tast.c. When downloading
this program you will also find a
table showing the relationship
between the button pressed, the
input voltage Uin and the converted
digital value, safe push button read-
ing interval and button priority level
(0=highest priority).

Digital I/O port application
Use of an opto-electronic shaft
encoder:
An opto-electronic shaft encoder
makes a simple and elegant input
device. Here we use a type MRTC25
from Megatron, which offers two out-
put channels (A and B) for count and
direction indication (clockwise/coun-
terclockwise). It also provides a con-
tact that closes when the shaft is
pressed down.

Connection to the ISAC cube or to
the simple (type 1) motherboard pro-
ceeds as shown in Figure 5. The tim-
ing diagram for clockwise and coun-
terclockwise rotation is shown in

MICROPROCESSOR

311/2002 Elektor Electronics

Figure 7. Timing diagram for controlling a servo.

Figure 8. servo.hex in the ADuC812 simulator (pulses output for servo 5 on
pin P2.5).

servo no.

t / ms

7

6

5

4

3

2

1

2,
20

010048 - 4 - 17

0

Component source:
MEGATRON Bauelemente,
Hermann-Oberth-Strasse 7,
D-85640 Putzbrunn, Munich, Germany.
Tel.: +49 89 46094 146

Figure 1 shows the flowchart of the program
in the microcontroller. At start-up a brief ini-
tialisation sequence runs, which resets the
set values to zero and configures some of the
microcontroller’s pins. The next step, the
measurement of the actual voltage and cur-
rent values, already forms part of the main
program loop. All the remaining parts of the
program follow sequentially in this loop. One
branch that can occur is when the push-but-
tons are being read. The procedure for read-
ing the buttons is indeed as cumbersome as it
(unavoidably) appears from the flowchart.
The idea is to read each button in turn and,
when one is found that is pressed, the micro-
controller stores the corresponding key code.
Finally, under `button pressed?’ the micro-
controller checks whether any button was in
fact pressed. If so, a branch is taken to code
which increases or decreases the appropriate
set value, as long as the value remains within
the permitted range. The new set point is
then displayed. A half-second delay follows,
before the push-buttons are scanned again.
This provides an auto-repeat function. If no
button is being pressed, the program
branches back to the top of the main loop to
measure the voltage and current again.

BASIC Program
The source code listing for the microcontroller
appears in Figure 2. The microcontroller pro-
gram, written in PIC BASIC 1.3, can be down-
loaded from www.pic-basic.de.

PIC BASIC allows microcontroller pro-
grams to be written quickly and easily. It also

POWERSUPPLY

32 Elektor 1/2002

Digital Benchtop
Power Supply (3)
part 3: the software

Design by R. Pagel

start

initialisation

500 ms
pause

measure voltage
and current

output measured
values via RS232

output target
values via DAC

if possible read
target values

via RS232

format
measured

values

scan
buttons

button 1

set target
value again

display
measured

values

display
target value

button 2

button 3

button 4

button 5

button 6

button 7

button 8

button
pressed

yes

no

mark
button

yes

no

mark
button

yes

no

mark
button

yes

no

mark
button

yes

no

mark
button

yes

no

mark
button

yes

yes

ja

no

mark
button

000166- 3 - 11

no

no

mark
button

Figure 1. Flowchart for the microcontroller software.

The digital benchtop power supply is controlled by a microcontroller
programmed in PIC BASIC, while a Visual BASIC program is responsible
for producing the control panel display on a PC.

POWERSUPPLY

331/2002 Elektor

‘D-PSU 25V, 2.5A or 20V, 1A

‘attention: modifications to the program require that register
numbers

‘in the assembler subroutines are checked for changes!!!

‘———————————————————————————-
‘declaring the variables
VarB Lh1, Lh2, Lh3, Lh5, Lh6, Lh7, Uvalue, Ivalue, y
VarB Buttonnumber, Accu, Callcounter, Bitpattern
VarW Meas_Voltage, Meas_Current

‘———————————————————————————-
‘Main program
Init:
CV Uvalue, Ivalue ‘set to 0 on each start’
Low A3 ‘ADC output at 0
High B2 ‘CTS: not ready to receive

Start:
‘Measure voltage and current
‘Using value 5??? allows ADC scale factor to be adjusted
‘ + - 20 equals approx. 1 digit
Low A4 ‘Mux to U
ADW A2, 5380, 0, Meas_Voltage ‘Voltage measurement
Meas_Voltage = Meas_Voltage Shr 1 ‘equals / 2
High A4 ‘Mux to I
ADW A2, 5380, 0, Meas_Current ‘Current measurement
Meas_Current = Meas_Current Shr 1 ‘ equals / 2 ‘line for

2.5A
‘Meas_Current = Meas_Current Shr 2 ‘ equals / 4 ‘line for

1A

‘Format measured values
Call Format

‘Display measured values on LCD
LCD B5, “ “, Lh1, Lh2, “,”, Lh3, “V “, Lh5, “,”, Lh6, Lh7,

“A “

‘Send measured values over RS232
SerOut B3, 9600, “D”, #Meas_Voltage, #Meas_Current, 13

‘Allows a new target value to be received over RS232
Call RS232E

‘Send target values over DAC
PWM A1, Uvalue, 64 ‘Set voltage (200 = 20V)
PWM A0, Ivalue, 64 ‘Set current (200 = 2A or 200 = 1A)

‘Scan buttons

Entry:

Accu = %00010000 ‘Bit 4 High (reset by pressed button)
CV Callcounter, Buttonnumber
Call ButtonScan
Call ButtonScan
Call ButtonScan
Call ButtonScan
Call ButtonScan
Call ButtonScan
Call ButtonScan
Call ButtonScan
Branch Buttonnumber, Start, Button1, Button2, Button3, Button4,

Button5, Button6, Button7, Button8

Button1:
If Uvalue > 240 Then Skip ‘Line for 2.5A
‘If Uvalue > 190 Then Skip ‘Line for 1A
Uvalue = Uvalue + 10
Goto Display_Uvalue

Button2:
If Ivalue > 240 Then Skip ‘Line for 2,5A
‘If Ivalue > 190 Then Skip ‘Line for 1A
Ivalue = Ivalue + 10
Goto Display_Ivalue

Button3:
If Uvalue < 10 Then Skip
Uvalue = Uvalue - 10
Goto Display_Uvalue

Button4:
If Ivalue < 10 Then Skip
Ivalue = Ivalue - 10
Goto Display_Ivalue

Button5:
If Uvalue > 249 Then Skip ‘Line for 2,5A
‘If Uvalue > 199 Then Skip ‘Line for 1A
Inc Uvalue
Goto Display_Uvalue

Button6:
If Ivalue > 249 Then Skip ‘Line for 2.5A
‘If Ivalue > 198 Then Skip 2 ‘Line for 1A
Inc Ivalue
‘Inc Ivalue ‘Line for 1A (omit for 2.5A version)
Goto Display_Ivalue

Button7:
If Uvalue < 1 Then Skip
Dec Uvalue
Goto Display_Uvalue

Button8:
If Ivalue < 1 Then Skip ‘Line for 2.5A
‘If Ivalue < 2 Then Skip 2 ‘Line for 1A
Dec Ivalue
‘Dec Ivalue ‘Line for 1A (omit for 2.5A version)

Display_Ivalue:
‘y = Ivalue Shr 1 ‘equals / 2 ‘Line for 1A (omit for 2.5A ver-

sion)
LCD B5, “ “, #Ivalue, “0mA” ‘Line for 2.5A
‘LCD B5, “ “, #y, “0mA” ‘Line for 1A
Pause 500
Goto Entry

Display_Uvalue:
LCD B5, “ “, #Uvalue, “00mV”
Pause 500
Goto Entry

‘———————————————————————————-

‘Subroutines

‘Depending on value in Callcounter, ButtonScan shifts one of
‘eight bitpatterns to the pins of the HC164.
‘Only the button at the pin with the 0 on it
‘can pull PB4 Low. PB4 then indicates if a button was pressed

or not,
‘while Callcounter reveals the button identity

Sub ButtonScan
LookUp Callcounter, %11101111, %11011111, %10111111,

%01111111, %11111011, %11110111, %11111110, %11111101,
Bitpattern

EXPo B5, Bitpattern, 0 ‘only Button 0 of bit pattern can
pull B4 Low

Inc Callcounter
PBI %00010000 = Accu ‘read only bit 4 of Port B
If Accu <> 0 then Skip ‘skip when no button pressed
Buttonnumber = Callcounter ‘mark Button number

EndSub

‘The Basic subroutine Read is called from
‘assembler subroutine RS232E

Sub Read
SerIn B0, 9600, #Uvalue, #Ivalue
Uvalue = Uvalue Min 250 ‘limit to 25 Volt ‘Line

Figure 2. Listing in PIC BASIC.

makes compiling the program and program-
ming it into a chip easy. Further information
on PIC BASIC, as well as the most up-to-date
version of the program, can be found on the
Internet at www.pic-basic.de. At the time
of writing this article, the information on PIC
Basic is only available in German. We hope
that Mr. Pagel will eventually produce Eng-
lish translations.

Figure 3 shows in-system programming of
the 1 A power supply using the PIC BASIC
programmer.

First all the variables used in the program
are declared. There are 13 byte-wide vari-
ables and two word-wide variables, occupying
a total of 17 bytes of the microcontroller’s
RAM (and a further twelve bytes are reserved
by PIC BASIC as a scratch area). Then follows
the first part of the program: this is the part
indicated in the flowchart by `initialisation’.
The label Start marks the entry point for the
main loop. The program is so thoroughly com-
mented that a detailed description is not nec-
essary here. A few remarks are, however, in
order:

POWERSUPPLY

34 Elektor Electronics 1/2002

for 2.5A
‘Uvalue = Uvalue Min 200 ‘limit to 20 Volt ‘Line

for 1A
Ivalue = Ivalue Min 250 ‘limit to 2.5 Ampere

‘Line for 2,5A
‘Ivalue = Ivalue Min 200 ‘limit to 1 Ampere ‘Line

for 1A
Y = 1 ‘Leave loop immediately

Endsub

‘Assembler sub-routine Format employs the already available
‘Resources for PB. It load the number registers Lh1-Lh8 with

the
‘ASCII values for Numbers 0-9 according to the values in the
‘variables Meas_Voltage and Meas_Current.

‘The auxiliary subroutine called Packer saves 8 bytes of pro-
gram memory

‘Packer calls machine code program SOSS°, which is contained in
the

‘PB compiler output, when the commands SerOut - #WordVar
‘or LCD - #WordVar” was employed.
‘It returns the decimal number equivalent of a wörd variable.
‘It divides te value contained in HWERT2/R21 by the value from

the
‘jump table SOTT° (also contained in compiler output).
‘The value(!) in the FSR has to be the ADD value
‘of the jump table (Pos. 5 = 0, 4 = 2, 3 = 4, 2 = 6, 1 = Rest

in R21).
‘LWERT1 contains the ASCII code (characters 0-9) as the result.

Ass Format
;format voltage

MOVF 24,W
MOVWF HWERT2
MOVF 23,W
MOVWF 21
MOVLW 2
Call Packer
MOVWF 27
MOVLW 4
Call Packer
MOVWF 28
MOVLW 6
Call Packer

MOVWF 29
;format current

MOVF 26,W
MOVWF HWERT2
MOVF 25,W
MOVWF 21
MOVLW 2
Call Packer
MOVWF 30
MOVLW 4
Call Packer
MOVWF 31
MOVLW 6
Call Packer
MOVWF 32
Return

Packer: ;no repeating of lines; saves 8 bytes of program
memory

MOVWF FSR
CALL SOSS°
MOVF LWERT1,W

EndAss

‘RS232E controls data reception at the interface. Each time it
it called, the CTS line is pulled High for 1.5ms.

‘If a character arrives via RxD within this period, the D-PSU
goes into Receive mode i.e.

‘subroutine Read is called. Next, 2 values with terminating CRs
‘have to arrive at the interface before the controller is

allowed
‘to leave the subroutine

Ass RS232E
CLRF 35 ;Clrf Y (= R35)

RS232:
BCF PB,2 ; CTS: ready to receive
BTFSS PB,0 ; RxT pin test
Call Read
DECFSZ 35,F ;
GOTO RS232 ; repaet loop 256 times
BSF PB,2 ; CTS: not ready to receive

EndAss

Figure 3. In-system programming of the power supply microcontroller.

plest place to put the CLRWDT instruction is

A/D converter
The command
ADW A2, 5380, 0, Meas_Voltage
carries out an analogue-to-digital
conversion and writes the measured
value into the variable Meas_Volt-
age (measured voltage). The scale
factor can be adjusted by changing
the value 5380 above. The circuit is,
however, designed so that this will
not normally be necessary.

Assembly code subroutines
Under Format measured values
the assembly code subroutine For-
mat is called. This subroutine is
30 bytes long and uses some (PIC
BASIC) subroutines, provided for the
use of other BASIC commands, to
format the measured values for dis-
play. Using this trick a large amount
of precious program memory can be
saved.

The eight-byte subroutine RS232E
is also written in assembler. It sets
the CTS signal high and waits for a
period to check if data are being sent
from the PC. If so, the assembler
subroutine calls the BASIC subrou-
tine Read which is responsible for
actually reading the data in.

All the remaining parts of the pro-
gram are written entirely in BASIC.
The compiled code size for the com-
plete program is either 1009 bytes or
1021 bytes (for the 2.5 A and 1 A ver-
sions respectively), and so just fits
into the program memory of the
PIC16F84. The program lines that
need to be changed between the
two versions of the power supply are
marked in the BASIC program list-
ing.

If it is desired to enable the watch-
dog timer in the microcontroller, the
configuration word in the assembly
output must be changed as follows:

CONFIG B’11111111110101’

Also, a CLRWDT instruction must be
inserted at one point in the code, in
the main loop and in the push-button
scanning loop. The latter loop runs
in just over 500 ms and the main
loop runs in about 780 ms. With the
values set in the Option register on
power-up, a watchdog reset will
occur after 2.3 s. This is enough time
for both loops (indeed, even half the
time would be adequate). The sim-

POWERSUPPLY

351/2002 Elektor Electronics

power supply (Figure 4). Just as in reality, the
voltage and current set values can be
adjusted using the eight buttons. When the
mouse button is released the values are sent
to the power supply. The set and actual val-
ues are shown on a simulated LCD panel. If
you click in a region of the main program win-
dow other than on the buttons, a settings
window appears. Here the version of the
power supply (2.5 A or 1 A) and the COM
port (1 to 4) used for data communication can
be configured. If a mouse is connected to
COM1 it can happen that the program does
not work correctly with COM3, but this is a
common problem with PCs.

In the right-hand part of the settings win-
dow the names of a log file and of a control
file can be specified. A click of the mouse on
the adjacent `Start’ button and a file is either
read or written: the file contains the dis-
played readings along with a time stamp
indicating when they changed (in the case of
a log file), or when they are to be changed (in
the case of a ready-prepared control file). In
the simplest case the control file can be cre-
ated from a log file by modifying the time
stamps.

The following example one-line data
record shows the format used for the log and
control files:

#2000-08-20
14:35:53#,”04.9V”,”0.97A”

Between the two hash symbols (‘#’) we have
the date (in international format) and the time
when the indicated change occurred or is to
occur. Within the record the time stamp and
the two electrical values are separated from
one another by commas. This allows for the
processing and, for example, the graphical
presentation of the contents of the file using
a spreadsheet program.

(000166-3)

immediately after the label Entry.
The following code is then shifted
down by one location, which makes
no difference in this case.

The interface protocol
The data packet that the power sup-
ply sends out over its interface is
structured as follows:

Duuuuuiiiii↵

First a D is sent, followed by five-
digit values for voltage and current,
and finally a carriage return charac-
ter. The least-significant digit of the
voltage value represents 10 mV, and
that of the current value 1 mA. The
two values are thus given to a reso-
lution ten times higher than that
shown on the LCD panel. The lead-
ing digit of the voltage and current
values is always zero.

When set values are sent to the
power supply, both voltage and cur-
rent settings must be sent, one
immediately after the other. In both
cases up to 3 digits can be sent.

uuu↵ iii↵

After each value a non-digit charac-
ter (for example a carriage return
character) must be sent. For either
version of the power supply a volt-
age value of 20 V must be sent as
200. For a current of 1 A, a value of
100 should be sent in the case of the
larger model, 200 in the case of the
smaller model.

Visual BASIC program
The control program, written espe-
cially for this project, runs under
Windows 95 or 98. Its control inter-
face resembles the front panel of the

Figure 4. Power supply display on the PC’s monitor.

This kit contains a complete development
environment allowing applications to be pro-
grammed using VE-C, a high-level language
very similar to ANSI-C. As you would expect
this language gives a great boost to pro-
grammer productivity compared with Assem-
bler based software environments and allows
the development of speech-controlled appli-
cations in a Windows environment. The resul-
tant code is compiled and downloaded to the
Voice Extreme module flash memory. The
module can then be run in the development
board or removed and plugged into the target
system. The kit is distributed in the UK by:

Milford Instruments
Leeds. LS25 5AQ
Tel:01977 683665
www.milinst.com

The development kit contains a versatile
hardware development card containing the
speech module together with a software Inte-
grated Development Environment (IDE)
including an editor with source code debug
and the Quick Synthesis™ program which
allows any sound files with the .wav exten-
sion to be used in any of the Sensory RSC
applications.

One board – many possibilities
The development kit hardware includes all
the electronics, a microphone, speaker and
sockets for connection to external equip-
ment. An RS232 cable and mains adapter is
also included. On the card there are five
pushbuttons, one is for system reset another
for program download/program starting
while the remaining three, along with three
status LEDs are free to be used by your

application software.
A prototyping area is also avail-

able on the board to mount addi-
tional application specific hardware.
All the I/O signals of the module are
available along with the supply

voltage rails. A connector is also
included if you prefer to build the
additional hardware on an external
card.

The heart of the development kit is
the Voice Extreme module. It includes

DEVELOPMENTKIT

36 Elektor Electronics 1/2002

Voice Extreme
Toolkit
When it comes to speech recognition products the California based com-
pany Sensory (www.sensoryinc.com) have been at the forefront for some
time now. Their latest offering is the Voice Extreme™ speech recogni-
tion kit.

ferent situations and is an ideal starting point for
you to begin writing your own applications.

In addition to the speech recognition
examples there are also interesting music
generation demos and compression of tone
samples that work with the library supplied.

The kit is ideal for anyone interested in the
field of speech recognition and especially if
you already have an application in mind. All
you need is a PC running Windows (95+)
with 16 Mbytes RAM, 15 Mbytes free hard
disk space, an unused RS232 port together
with a little C programming experience and
of course the purchase price of the kit
£109+VAT.

(010086-1)

the RSC-300/364 microcontroller, crys-
tal oscillator, firmware ROM and a
2 Mbyte flash memory to store your
own application software. This mod-
ule plugs into the development board
(and eventually into your target appli-
cation) via a 34 pin header. For pro-
duction purposes the Voice Extreme
module is available in a QFP package
or in die form. In-circuit reprogram-
ming is also supported.

Software
The bundled software includes an
Integrated Development Environ-
ment (IDE). This program suite con-
tains all the tools necessary to write
application specific software and
includes a C editor, compiler, linker
together with help functions and
downloader. The editor supports C-
Highlighting which improves pro-
gram readability.

The IDE is supplied on a CD ROM
together with the Quick Synthesis™
program that converts and com-
presses .wav files into a compatible
file format used by the hardware.
Also included on the CD are exam-
ples and extensive documentation.

In order to write speech recogni-
tion programs easily, it is of course
necessary to make use of the library
routines provided. Thanks to the
numerous examples included on the
CD together with the on-line help
facility we found it a simple process
to understand and make use of these
library functions.

In the software documentation a
distinction is made between
‘speaker independent’ and ‘speaker
dependent’ speech recognition
technology. In the first case the
software will simply recognise a
signal but in the second case it will
recognise that signal only from a
particular speaker. The difference
between the two is a question of
the accuracy with which the soft-
ware evaluates the signal. The
higher the accuracy then the more
speaker specific the result will be.
The software allows the recognition
accuracy to be adjusted in steps.
As well as the speech recognition
routines are also software sound
routines that can be used to gener-
ate synthetic music and allow you
to play with samples and sound
fragments.

In practice
All of the included example pro-
grams were tested in the Elektor
Electronics laboratory. The speech
recognition functioned outstandingly
well despite the low quality micro-
phone fitted to the card. The manu-
facturer suggests substituting a high
quality microphone to further
increase software recognition per-
formance.

The examples demonstrate just
some of the possibilities of this pow-
erful tool. The accompanying source
code gives you a good insight as to
how the card can be used in many dif-

DEVELOPMENTKIT

371/2002 Elektor Electronics

MICROCONTROLLER

38 Elektor Electronics 1/2002

Remote Process Control
using a Mobile Phone
for ‘35’ series Siemens mobiles

Design by Prof. B. vom Berg and P. Groppe (Georg Agricola Technical University)

The Short Message System (SMS) of a standard mobile phone can be used
for much more than just exchanging cryptic messages. This application
finds the humble mobile working in a remote site monitoring and con-
trolling external equipment.

allows connection of an external computer or
process controller at the remote site. This
facility gives a higher level of control and
monitoring allowing measured values, vari-
ables and process status information to be
exchanged. With this setup the interface
board will initialise the mobile as before but
it will pass SMS messages unaltered through
to the external computer. This gives the sys-
tem a much greater flexibility with SMS mes-
sages being decoded and generated in the
external computer.

The SMS-Chip
The microcontroller used in this design is the
AT89S8252 or AT89LS8252 from Atmel. It is
based on the 8051 processor and has an
8 kByte Flash program memory together with
a 2 kByte Flash data memory. It is pro-
grammed to act as an SMS chip and essen-
tially performs three basic tasks:

– Re-program the mobile and handle commu-
nications with the mobile over the serial
interface.

This design is the result of collabo-
ration between a technical univer-
sity (TFH Georg Agricola) and the
company of Engelmann & Schrader.
Together they have produced a flexi-
ble, professional remote process con-
troller in the form of an experimenta-
tion card (The TFH SMS ExBo). This
card connects between the process
to be controlled and a mobile phone
and allows the process to be con-
trolled and monitored remotely using
SMS messages.

Controlling the process
using SMS
The SMS interface board offers two
levels of control sophistication. At
the basic level it will interpret SMS
messages, check the incoming pass-
word and directly control output
relays or indicators. In the other
direction the SMS chip on the inter-
face card inserts information into an
SMS message which is then sent

over the serial interface connector to
the mobile where it will be sent to
any SMS-capable phone worldwide.
Control information in the SMS mes-
sage will for example be set10 this
will have the effect of setting output
10 on the interface card and switch-
ing on any LED, motor or relay con-
nected to this output. Similarly in the
other direction the SMS chip reads
inputs to the interface card from the
controlled process and generates an
appropriate SMS message that will
then be passed over the serial inter-
face to the remote mobile where it
will be sent out to any SMS-capable
mobile worldwide. The message
may convey information such as
‘Over-pressure detected in tank 3’ or
‘Intruder alert door 5’ or even ‘Holi-
day cottage central heating boiler
on’ the possibilities are endless.

The TFH SMS ExBo (‘Experimen-
tal Board’) interface board is
equipped with a second asynchro-
nous serial interface port and this

MICROCONTROLLER

391/2002 Elektor Electronics

Process
8 digital OUT
 8 digital IN

SMS
ExBo

– Digital I/O,
– Analogue I/O,
– Commands,
 etc.

µC
system

Process

serial
asynchronous

interface

SMS
ExBo

serial
asynchronous

interface

PC:
 Internet-based Free SMS

 - Documentation
 - Archiving
 - etc.

SMS:

“Pressure: 100 bar”
 “Excessive”

 “Boiler 5 just exploded”

SMS:

“Close valve 5”
 “Target value 50 bar”

010087 - 12

Figure 1. Remote process control using a mobile and SMS.

MICROCONTROLLER

40 Elektor Electronics 1/2002

MAX207

T1OUT

T2OUT

R1OUT

R2OUT

T4OUT

T3OUT

T5OUT

R3OUT

R1IN

IC7

T1IN

T2IN

R2IN

T3IN

T4IN

T5IN

R3IN

C1–

C1+

C2+

C2–

22

12

10

13

14

11

15

16

V+

V-

23

18

1924

2120

17

72

8

5

6

4

9

3

1

K4

DB9

1

2

3

4

5

6

7

8

9

K3

DB9

1

2

3

4

5

6

7

8

9

IC5

16V8
GAL

19

20

10

I0

I1

I2

I3

I4

I5

I6

I7

I8

F7

11
I9

12
F0

13
F1

14
F2

15
F3

16
F4

17
F5

18
F6

1

2

3

6

7

8

4

5

9

X1

11,0592MHz

C7

27p

C8

27p

74HCT573
IC2

12

13

14

15

16

17

18

19

EN

11
C1

1D
2

3

4

7

8

9

5

6

1

74ACT240

IC3

12

13

14

15

16

17

18

11

EN

1D

EN
19

2

3

4

7

8

9

5

6

1

74ACT240

IC4

12

13

14

15

16

17

18

11

EN

1D

EN
19

2

3

4

7

8

9

5

6

1

C14

1µ
16V

C12

1µ
16V

C11

1µ
16V

C15
1µ

16V

C13

1µ
16V

+5V

D0

D1

D2

D3

D4

D5

D6

D7

D0

D1

D2

D3

D4

D5

D6

D7

P2.0

P2.1

P2.2

P2.3

P2.4

P2.5

P2.6

P2.7

P2.0

P2.1

P2.2

P2.3

P2.4

P2.5

P2.6

P2.7

JP3

JP5

JP4

R1

8x 330Ω
1

2

3

4

5

6

7

8

9

R2

8x 330Ω
1

2

3

4

5

6

7

8

9

+5V

JP1 JP2

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

+5V

S1 S2

P1.0

P1.1

D1

1

2

3

4

5

6

7

16

15

14

13

12

11

10

9 8

8x LED

D2

1

2

3

4

5

6

7

16

15

14

13

12

11

10

98

8x LED

AT89S8252

EA/VP

ALE/P

RESET

INT0

INT1

P0.0

P0.1

P0.2

P0.3

P0.4

P0.5

P0.6

P0.7

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

P2.0

P2.1

P2.2

P2.4

P2.5

P2.6

P2.7PSEN

IC1

P2.3

TXD

RXD

39

38

37

36

35

34

33

32

21

22

29

23

RD

WR

T0

T1

25

26

27

28

31

19

X1

18

X2

20

40

17

16

30

11

10

12

13

14

15

24

9

1

2

3

4

5

6

7

8

R4

1
k

8

D4

POWER
+5V

R5
4

k
7

S3

RESET

C9

10µ
63V

+5V

+5V

A1

A2

A3

A4

A5

A6

A7

A1

A2

A3

A4

A5

A6

A7

K5

10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

1 2

3 4

5 6

7 8

9

+5V

D0

D1

D2

D3

D4

D5

D6

D7

A1

A2

A3

A4

A5

A6

A7

CS0 CS1

CS2 CS3

CS4 CS5

CS0

CS1

CS2

CS3

CS4

CS5

1 2

3 4

5 6

7 8

9 10

11 12

13 14

K6

+5V

10k

P1

+5V

A1

A2

A3

A
1

D0

D1

D2

D3

D0 D1

D2 D3

D4 D5

D6 D7

A1

A0

D7

1N4148

D6

BAT48

BT1

CR2032

+5V

C5

100n

C6

100n

C2

100n

K2

K3

K4

K5

OUT6

OUT7

K2

K3

K4

K5

OUT6

OUT7

K
3

K
2

K
4

K
5

+5V

RE2

14

1

6

7

8

9

2

RE3

14

1

6

7

8

9

2

RE4

14

1

6

7

8

9

2

RE5

14

1

6

7

8

9

2

O
U

T
6

O
U

T
7

O
U

T
6

O
U

T
7

K8

K7

K2

K1

IC8

7805

C16

10µ
10V

C10

100µ
25V

S4 D5

1N4002 1A

F1

C1

100n

R3

1
k

5

D3

+5V

IC2

20

10

IC3

20

10

IC4

20

10

C3

100n

C4

100n

+5V

+5V

010087 - 11

RTC72421

IC6

STDP

CS0

ALECS1

18

A0

A1

A3

D0
14

D1
13

D2
12

D3
11

RD

WR
10

15

A2

2

9

3

4

5

7

8

1

6

+5V

RTC RD

WR

RD

WR

RD

WR

LCD

A
0

A0

A0

A0A0

LCD

RTC

LED0

LED1

2A 2B 3A 3B 4A 4B 5A 5B

R
E

S
E

T

RD

WR

ALE

Figure 2. The circuit diagram.

The two remaining inputs on P1.0 and P1.1
are used for switches S1 and S2.

Digital outputs (P2.0 - P2.7)
Outputs P2.0 to P2.7 are buffered by IC3. Four
of the outputs are used to drive relays RE2 to
RE5 and these provide four switched outputs
at connector K2. Two TTL level outputs OUT6
and OUT7 are also available at this connec-
tor. The state of these outputs is displayed by
LED array D2 and again if this feature is not
required jumper J2 need not be fitted.

The Serial Interfaces
There are two serial interfaces supplied on
the interface. K3 connects to the mobile
phone while K4 connects to the serial port of
an external computer.

IC7 (MAX207) converts the voltage level of
the signals on both interfaces (V24) to TTL
levels used on the interface card. A voltage of
approximately 10 V is also produced by the
outputs of T1OUT, T2OUT and T3OUT for the
data cable. Removing jumper J3 will discon-
nect this voltage from the interface (see Table
2). Current to charge the battery in the mobile
is supplied from pin 9 of connector K3 when
jumper J5 is fitted. Sub-D connector K4 is
used to connect to an external computer or
process controller where SMS messages can
be sent and received.

SMS Chip peripheral circuits
The SMS chip, like all other 8051 processor
derivatives requires a little bit of external
peripheral circuitry. Firstly the address and
data bus need to be demultiplexed at port P0
and this is performed by an octal D type flip
flop (IC2) using the ALE signal. These
address lines are now decoded by GAL IC5
to generate chip select signals for the rest of
the components on the interface card. The
address lines together with RD/WR, chip
select (CS) along with the supply voltage are
available on pin-strip K5.

The circuit also includes a real-time-clock
and a connector for an LCD both of which are
controlled by the SMS chip.

The RTC (Real Time Clock)
An accurate time reference is essential for
some applications so a Real-Time-Clock (IC6)
is included in the circuit. This chip maintains
the correct time of day for the whole TFH-
SMS-ExBo-System. A keep-alive battery (BT1)
is charged via D7 and ensures that the RTC
chip does not lose time if the main power
from connector K8 fails.

The alphanumeric LCD
An LCD can be attached to connector K6. The
picture at the beginning of this article shows

– Receive and decode SMS mes-
sages: monitor and control inputs
and outputs of the board. Generate
SMS messages.

– Pass messages to and from the
mobile and external computer sys-
tem.

Two 8-bit ports (port 1 and port 2)
are available on this chip giving 16
programmable digital input/output
lines. The chip also has a built-in
Universal Asynchronous
Receiver/Transmitter (UART) that
handles serial communication and in
this application it will pass serial
data including SMS messages to and
from the mobile. A second serial
interface is implemented in software
to communicate with the external
PC or process controller at
9600 Baud.

The interface board also contains
a real-time clock chip with battery
back-up and a connector to fit a dot
matrix LCD to display SMS messages.

Serial commands are sent to the
mobile using standard Hayes
modem (AT commands) sequences.
For more on Hayes modem control
see accompanying text box.

SMS Chip Hardware

The SMS chip together with some
additional peripherals will produce a
very basic SMS message handling
design but if you look at the circuit
diagram in Figure 2 you will see that
the TFH SMS ExBo interface card
has been designed to be the basis of
a very flexible platform for SMS mes-
sage development allowing many
connection possibilities. The (DIL)
SMS chip IC1 is clocked by a stan-
dard crystal oscillator configuration
(X1, C7 and C8) and a reset circuit is
provided by R5, S3 and C9. A low
power LED (D4) is driven by output
pin P3.5 indicates that the GSM
phone is ready. Table 1 shows the
I/O pin assignments.

Digital inputs (P1.2 - P1.7)
The connector block K1 allows con-
nection of up to six input signals. All
of these inputs connect directly to
the microcontroller port P1. The state
of these signals is displayed on LED
array D1 via buffer IC4. If your appli-
cation does not need this feature or
you want to keep current consump-
tion as low as possible then jumper
J1 need not be fitted and these LEDs
will remain off.

MICROCONTROLLER

411/2002 Elektor Electronics

Port Pin No. Function

P1.0 0 INPUT : connection for switch S1

P1.1 1 INPUT : connection for switch S2

P1.2 2 INPUT : TTL level, unprotected

P1.3 3 INPUT : TTL level, unprotected

P1.4 4 INPUT : TTL level, unprotected

P1.5 5 INPUT : TTL level, unprotected

P1.6 6 INPUT : TTL level, unprotected

P1.7 7 INPUT : TTL level, unprotected

P2.0 8 OUTPUT: connection LED0 of LED array D2

P2.1 9 OUTPUT: connection LED1 of LED array D2

P2.2 10 OUTPUT: Relay Re2; max. 200 VDC, max. 1 A, max. 15 W

P2.3 11 OUTPUT: Relay Re3; max. 200 VDC, max. 1 A, max. 15 W

P2.4 12 OUTPUT: Relay Re4; max. 200 VDC, max. 1 A, max. 15 W

P2.5 13 OUTPUT: Relay Re5; max. 200 VDC, max. 1 A, max. 15 W

P2.6 14 OUTPUT: TTL level from 74AC/HCT240 driver chip

P2.7 15 OUTPUT: TTL level from 74AC/HCT240 driver chip

Table 1. Input/output port specifications

a four line by 20 character display but most
alphanumeric displays can be substituted
provided that are compatible with the Hitachi
HD44780 controller. Preset P1 allows the dis-
play contrast to be adjusted.

The GAL chip
Chip select signals on the circuit are gener-
ated by IC5, a 16V8 Gate Array Logic (GAL)
chip. The GAL chip simply reads the
addresses at its input and generates chip
select signals for the peripheral chips. The six
chip selects CS0 to CS5 are also available on
the pin strip K5.

The power supply
IC8 is a fixed voltage regulator that supplies
+5 V for the complete interface board and
charging current for the mobile. The mains
adapter unit should supply a voltage in the
range of 9 to 12 V with a current of 800 mA,
(including the mobiles charging current) con-
nected to K7 or K8. D5 protects the circuit
from accidental reversal of the power input
leads and LED D3 is the power-on indicator.
S4 is the on/off switch.

Jumpers
The finished PCB has several jumper options
and their purpose is outlined in Table 2.

(010087-1)

In the second part of this article we
will look closer at the connection
between the mobile and this inter-
face board, the basic configuration

and command sequences of the SMS
chip. We also look at the layout for
the circuit.

MICROCONTROLLER

42 Elektor Electronics 1/2002

Chatting to the mobile
The SMS chip used in this interface card communicates with the
mobile phone using Hayes compatible command sequences over
its serial interface connection port. Back in the 70’s modems were
curious computer peripherals that just hung around whistling,
waiting for the Internet to be invented. There were many
modems on the market each model offering similar performance
but with incompatible control commands. The pioneering US
company Hayes came up with a set of commands that could be
used to control the modem and it wasn’t long before a modem
was not worth considering unless it was ‘Hayes compatible’. Even
today the command sequences are still implemented in all
modems and mobile phones.

The commands begin with the ASCII characters AT and the actual
standardised commands start with the character string AT+C, all
ending with the ASCII code for Carriage Return. These com-
mands are also known as the ‘AT’ or ‘AT+C’ commands. These
commands have more recently been adopted by the mobile
phone industry and are defined in sections GSM07.07 and
GSM07.05 of the GSM mobile phone specification for the control
of phones over a serial interface. The interface can use V24 signal
levels via a cable or IrDa infrared link. Altogether there are 55 AT
commands listed which all of today’s GSM phones must under-

stand. These allow for example access to the telephone book in
the mobile, managing SMS messages, adjusting ring tones and
speaker volume etc.

Connecting a data link cable (Data cable) or using an infrared link
between the mobile and the serial port of a computer means that
it is now possible to control the mobile from a computer key-
board rather than the phone keypad. This is much easier on the
fingers when sending text messages.

In addition to the standard commands each manufacturer has
defined extra commands that will only be understood by their
own mobiles. With the Siemens ‘35’ series (S35i, C35i, M35i)
there are 25 additional commands all prefixed with AT^S. This
diversity creates problems for anyone considering building a uni-
versal SMS interface. It is necessary to study the phone specifica-
tion closely to guarantee success. In this design all of these com-
mands are pre-programmed into the SMS chip so that it can be
directly connected to the Siemens ‘35’ series of mobiles. Hardly
any programming is necessary to develop a remote control appli-
cation and even a second interface is provided at the remote site
so that an external PC can be connected to provide more com-
plex control possibilities. It is of course only necessary to specify
this type of phone at the remote site, communication will occur
over the air with any SMS-capable phone anywhere in the world!

J1 Fit this jumper to activate LED-Array D1 (Displays the input status)

J2 Fit this jumper to activate LED-Array D2 (Displays the output status)

J3

Positive supply potential for the Data Link cable:

This jumper should be fitted when using an off-the-shelf Data Link cable, otherwise
do not fit this jumper.

J4

Controls the charging current to the battery in the mobile (not used on Siemens S35):

Fitted (Low level): Standard charge with 5 V at 150 mA

J5

Positive charging potential for the battery in the mobile (not used on Siemens S35):

Fitted:
Allows mobile battery to be charged when using a cus-
tom-made Data Link cable (see part 2 of this article).

Not fitted: In all other cases.

Table 2. Jumper assignment

Not fitted (High Z):
Fast charge with 5 V at 400 mA. Only fit this if using a
custom made Data Link cable with charging function.
(See part 2 of this article).

Nowadays, we all take working with
computers for granted, and not only
that, we often work with quite pow-
erful equipment. The heart of a com-
puter is its processor, such as a Pen-
tium III. Relatively speaking, a micro-
controller is both much less and
much more than the processor of a
typical PC. It is less because it
processes smaller programs, uses
less memory and is usually much
slower. However, it is also more
because it already has many ele-
ments on a single chip that are
spread out over the complete moth-
erboard of a PC, namely working
memory, timers, interfaces and port
connections. What makes microcon-
trollers attractive is that is in the lim-
iting case, a complex problem can be
solved using only a single IC. Using
programming alone, anyone can pro-
duce a special IC that does exactly
what he or she wants — and at a rel-
atively low cost.

A microcontroller is thus some-

MICROCONTROLLER

44 Elektor Electronics 1/2002

Microcontroller
Basics Course
part 1: the TASM assembler

By B. Kainka

This course is for everyone who always wanted to how microcontrollers
work and how to use them, but was always afraid to ask. It is intended
to explain the fundamentals, starting from scratch. The Elektor Electron-
ics 89S8252 Flash Microcontroller Board (presented in last month’s issue)
is used as the hardware platform.

Figure 1. The 89S8252 Flash Board,
which is used in this course, is a general-
purpose microcontroller system.

troller reads the numbers from the memory,
one after the other, and it then knows what it
has to do. In normal language, we can
express this as follows:

74: So, I’m supposed to transfer a numerical
value to the accumulator
(that’s my memory) — but which one?

0F: Here it is: OF —– good, I’ve made a note
of it.

F5: OK, now I have to write the value to a
register — but can you please tell me
which one?

90: I see, the register for Port 1 is located at
address 90. There you are.

80: And now I have to make a short jump —
but to where?

FE: Two bytes back from the location that
would have been the next one. OK, I’m
jumping!

80: The same jump again — OK, I guess I’ll
just have to keep on running around in a
circle.

This is how the microcontroller ‘thinks’ and
acts, since clever engineers have trained it to
behave this way. Ultimately, a microcontroller
is nothing more than a very complex circuit
made up of logic gates. This circuit responds
to the states of its input lines, which in this
case are the data lines connecting the pro-
gram memory to the central processing unit.

If we wanted to know what goes on inside
a microprocessor in detail, we would have a
lot of work on our hands. However, it is suffi-
cient for us to know the machine instructions
of a processor and be able to use them. This
means that the microcontroller itself remains
a sort of ‘black box’, whose inner functions

thing like a logical circuit with many
possible inputs and outputs. What
this circuit does is determined by a
program. Perhaps you want to build a
digital counter, or would you rather
have a stopwatch? Do you want to
create a special logical gate, or per-
haps a universal clock generator? Do
you need to decode a complicated
digital signal or control a digital cir-
cuit? In all of these cases, a micro-
controller can help you. There are
many examples of problems whose
solutions previously required an
enormous board full of ICs and now
can be solved quite elegantly by a
single IC, namely a microcontroller.
Consequently, some knowledge of
programming is worth having. There
are many different approaches that
can be taken to achieve this goal.

The hardware basis for this
course is the 89S8252 Flash Micro-
controller Board described in last
month’s issue of Elektor Electronics
(see Figure 1). As already
announced, for programming soft-
ware we will use the following three
programming languages: assembler,
Basic and C. Our first experiments
will be carried out in assembler. Why
should we use assembler in particu-
lar? Isn’t it rather difficult, perhaps
too difficult for beginners? The
answer is no, since the initial exam-
ples will be very small and easy to
understand. The advantage or using
assembler is that it allows us to
work very close to the hardware, so
we can see exactly what is happen-
ing. High-level languages (such as
BASIC), by contrast, hide much of
what actually takes place.

In our first experiment, all we

want to do is to switch the levels on
one of the microcontroller’s output
ports. After all, operating a switch is
the first step in automation. Also, the
results can be observed using a volt-
meter connected to lead P1.4 via
connector K4 (see Figure 2).

In order to change the level on
this lead, we will use a small assem-
bler program. Put briefly, assembler
is a notation used to write instruc-
tions for a processor or microcon-
troller. Every microcontroller has an
instruction set, which ultimately con-
sists of numerical values and associ-
ated functions. The following series
of six numbers represents a small,
complete program for an 89S8252
microcontroller — in fact, it is what is
called a machine-language program:

116,15,245,144,128,254

It is generally customary to write
computer programs using hexadeci-
mal numbers instead of decimal
numbers, since the former are easier
to read. In hexadecimal notation, the
above program looks like this:

74 0F F5 90 80 FE

We have to write this sequence of
numbers into the microcontroller’s
program memory. We can use a pro-
gram called MicroFlash for this pur-
pose. Ultimately, the program num-
bers end up in the program memory
of the microcontroller. The microcon-

MICROCONTROLLER

451/2002 Elektor Electronics

P1.7

P1.6

P1.5

P1.4

P1.3

P1.2

P1.1

P1.0

V

010208 - 2 - 11

Figure 2. The results of the first exper-
iment can be checked using a volt-
meter.

Figure 3. The first sample program in TASMedit.exe.

we do not fully know but whose behaviour is
easy to understand. That’s how it is with
modern technology — it has become nearly
impossible to regard everything at all possi-
ble levels of understanding.

So, now we know that a microcontroller
has its own language, which actually con-
sists of nothing but numbers. However, there
is an obvious problem: the language that a
microcontroller can read easily and fluently is
not exactly suitable for people. We are not
made to work with numbers, but rather with
words. Consequently, words (which are easier
to remember) have been devised to represent
the individual machine-language instruc-
tions. The programmer writes these words in
a text file, and a special program then trans-
lates them into the language of the micro-
controller. This program is called an assem-
bler, and the programming language is also
called assembler (or assembly language).
Assembler is thus a notation that you and I
can use to tell a microcontroller what it
should do, as in:

main mov a,#0Fh
mov 090H,a

loop sjmp loop

This is already much more readable. Actually,
here we only need to know two special
words: ‘mov’ and ‘sjmp’. Both of these words
are called mnemonics, which means markers
used in place of the actual machine-language
instructions. The word ‘mov’ (move) means
‘move’, ‘shift’ or ‘load’. Following it comes
first the location where something is to be
loaded and then what is to be loaded. In the

first line, the numerical value
0Fh (= 15), which is identified by the
‘#’ symbol, is loaded into the accu-
mulator a. The accumulator is a reg-
ister or memory with a size of eight
bits, so it can hold numerical values
between 0 and 255.

In the second line, the value in
the accumulator is then copied to
address 90h (= 144). At this address
there is a register whose leads are
routed to the exterior of the IC,
namely to the Port 1 pins. The word
‘sjmp’ (short jump) causes a jump in
program execution, in this case to
the location ‘loop’. The word ‘loop’
has been chosen completely arbi-
trarily and simply represents an
address, in this case a position in the
series of instructions. The assembler
treats such words, which are called
labels, as addresses and replaces
them with the appropriate numerical
values. The sjmp instruction can
cause a jump of up to 127 bytes
backwards or 128 bytes forwards. A
single byte is thus sufficient to spec-
ify the jump destination. Here the
jump is calculated relative to the cur-
rent position in the program.

The word ‘main’ at the beginning
of the program is also arbitrarily cho-
sen. The only actual assembler key-
words here are thus ‘mov’ and
‘sjmp’. We humans can easily
remember such words without the
aid of an electronic brain.

However, there is still a problem.

Is it really necessary for us to
remember that a particular register
for Port 1 is located at position 90h?
After all, it would be nicer if we
could also write this as text. This is
easily done; we simply have to
define a certain bit of text as being
equivalent to a numerical value. The
assembler will then replace this text
with the corresponding numerical
value at every location where the
text is found. To make such a defini-
tion, we use the assembler directive
‘.equ’ (equate). An assembler direc-
tive always begins with a full stop,
which informs the assembler that it
is not an assembly-language instruc-
tion. In the following example, the
word ‘P1’ is assigned the value 90h.
In the actual program, the value 90h
is thus replaced by ‘P1’:

; flash1.asm port output

P1 .equ 090H ;Port 1

main mov a,#0Fh
mov P1,a

loop sjmp loop
.end

This listing also shows us something
else: the jump labels and newly
defined words are all located at the
beginning of the line, and all assem-
bler instructions are located some-
what indented. Furthermore, there is
also a comment, which plays
absolutely no part in the translation.
A comment starts with a semicolon
(;).

The specific notation varies some-
what from one assembler to the
next. Here we are using the share-
ware assembler TASM (Table-Driven
Assembler, a program written by
Thomas N. Anderson). TASM is very
simple and can translate programs
for many different types of microcon-
trollers, as long as it has the appro-
priate instruction table.

At the end of the program there is
a loop, in which a jump to the desti-
nation ‘loop’ takes place, always and
forever. In other programming lan-
guages, such a situation would be
called a fatal endless loop, which is
practically equivalent to a crash. In
such a loop, the processor is in a
state that it cannot exit under its
own power. In general, it should
always be clear what should be

MICROCONTROLLER

46 Elektor Electronics 1/2002

Figure 4. TASM in the DOS window.

done once the current task has been
completed. However, in this case
this loop is very important. There is
only one task, namely changing the
state of the port. If we were to leave
the processor to its own devices, it
would execute commands that just
happen to be in the program mem-
ory and perhaps belong to a com-
pletely different program. Conse-
quently, a limit must be set by
means of an endless loop: this far
and no further! In fact, the processor
is trapped in this loop, with the only
means of escape being a reset. After
that, the same program could be
started again, or we could load a
new program and then run it. Load-
ing a program also takes place in the
reset state; the program memory is
thus not filled by the processor itself,
but by special functional blocks in
the microcontroller that program the
flash ROM. Each time the board is
switched on, a short reset is auto-
matically executed. Following this,
the microcontroller finds the most
recently loaded program and runs it.

Using
the TASM assembler
Now it’s time to get down to busi-
ness! What we want to do is to write
this first program, translate it and
send it to the microcontroller. For
this, we need some software. We
will use the well-known shareware
assembler TASM, which is located
on the working diskette for the
course in the form of a zip file; it can
also be downloaded from the Elektor
Electronics website. The file
TASM.ZIP must be unpacked into a
working directory on the hard disk
that will contain the program
TASMedit and the sample programs.

The special feature of TASM is
that is can be used for different
types of microcontrollers. For each
type there is a table of available
machine instructions, which must be
identified when the program is
started. This is done using a com-
mand line; in this case we use

TASM -51 -b flash1.asm
flash1.bin

to specify our particular example
program, the instruction table
TASM51.tab and binary output for-

MICROCONTROLLER

471/2002 Elektor Electronics

Software
To load a program into the microcontroller on the 89S8252 Flash Board, you will need the
Windows program MicroFlash.exe, which can be found on the Elektor Electronics website
(www.elektor-electronics.co.uk) on the Free Downloads page, see the list for the Decem-
ber 2001 issue.

For the programming course, the TASM assembler is all you need to get started, but
later on you will need the Rigel READ51 C compiler and the BASIC-52 Basic compiler. The
TASM assembler is a popular program, which can be obtained together with TASMedit
from the download list for this issue on the Elektor Electronics website. Please register the
software and pay the programmer (T.N. Anderson) his well-earned fee. No payment is
required for the C compiler, which Rigel make available free of charge for private and edu-
cational use. This compiler can be obtained from www.rigelcorp.com. BASIC-52 is a Basic
interpreter created by Intel, which was mask-programmed in the program memory of an
80C52 microcontroller that received the designation 80C52-AH-BASIC. This microcon-
troller was used for nearly two decades by electronic engineers and programmers and
became internationally famous, mainly as a result of articles in Elektor Electronics.. Several
years ago, Intel ceased production of this IC, but they released the programming language
as open source for general use. The language has been further developed and also adapted
for use with other microcontrollers. Probably the most advanced version, V1.3, was pre-
sented in the February 2001 issue of Elektor Electronics and is available from Readers Ser-
vices on diskette (order number 000121-11).

The diskette for this course (Readers Services order number 010208-11) contains the
TASM assembler, TASMedit and the first sample programs, along with BASIC-52, Micr-
Flash.exe and a small Basic terminal emulator program with its own sample programs.

Number formats
The fact that we use a decimal number system is probably due to the fact that we happen
to have ten fingers. The ‘natural’ number system for a computer is the binary system. The
hexadecimal system represents a compromise, in which the range of numerals runs from 0
to 15, with the understanding that the numerals above 9 are represented by the letters A,
B, C, D E and F.

Decimal Hexadecimal Binary
0 00h 00000000b
1 01h 00000001b
2 02h 00000010b
3 03h 00000011b
...
10 0Ah 00001010b
11 0Bh 00001011b
12 0Ch 00001100b
13 0Dh 00001101b
14 0Eh 00001110b
15 0Fh 00001111b
16 10h 00010000b
17 11h 00010001b
...
253 FDh 11111101b
254 FEh 11111110b
255 FFh 11111111b

In assembler programs, it is generally possible to choose which notation you want to use. If
you are describing how an 8-bit port is being driven, binary notation is particularly clear.
For example, the rightmost bit represents pin P1.0 and the leftmost bit represents pin P1.7.
Here eight leads require eight bits, or one byte.

When TASM translates a program, you can specify the format in which the results are to be
stored. In the binary format, only the bytes that represent the individual machine-language
instructions are written. A text editor cannot make any sense of such a file.

The Intel hex format uses text lines containing hexadecimal numbers. In addition to the
actual code, there is a start address and a checksum for each line. This format can also be
viewed as text.

mat. Naturally, not everyone likes to work
with command lines like this. Consequently,
they won’t be used at all in our course.

In general, we want to work only with
Windows, but TASM is still a pure DOS pro-
gram. For this reason, a Windows interface for
the program, called TASMedit.exe, has been
written. It includes its own editor and allows
the user to immediately see the result of the
translation, including possible error mes-
sages. The flash download tool for the Elek-
tor Electronics Flash Board is also integrated
into this program. No effort has been spared to
make things as easy as possible for course
participants!

The program has two text windows (see
Figure 3). On the left there is the assembler
source text editor. It can be used to manually
enter a program or load a program from the
hard disk. The TASM button starts the
assembler in the background. The window on
the right displays the assembler’s list file
along with any error messages that may be
present. Download progress when the pro-
gram is being sent to the microcontroller
board is also shown in this window.

Clicking on the TASM button first gener-
ates a file called Work.asm, which contains
the current content of the Editor window.
This working text is then translated. TASM is
called from the Windows interface using the
command line

TASM -51 -b -work.asm work.bin

This means that the binary format is always
used here. The result of the translation is
stored in a file called Work.bin. This is the file
that is read by the download module when
the RUN button is actuated. The assembler
also generates a file called Work.list contain-
ing the list file, which holds the translation in
a readable form. The fact that the same file
names are always used for the translation is
an advantage for experimental work with the
assembler, since the source text only has to
be saved after the latest attempt has been
successful. This means that we do not have
a whole collection of garbage data on the
hard disk from all the unsuccessful attempts,
but instead only the intentionally saved
source text and the work files for the most
recent attempt. If you forget to save the lat-
est version of the source text, or if the PC
crashes while you are working, you can
always use the Work.asm file to recover the
fruits of your hard work.

When TASM is automatically started from
the Windows interface, it appears in a DOS
window (see Figure 4). This window must be
closed before you can proceed. At first, it may
be very enlightening to see how TASM goes

about its work, but after the third
time or so it will only annoy pam-
pered Windows users. Consequently,
from now on we would like to have
the window be automatically closed.
This is no problem, since Windows
provides a solution. First click on the
TASM.EXE file with the right mouse
button and open the Properties
menu. Under Properties / Program
you will find the setting ‘Close when
done’. Enable this setting (see Fig-
ure 5). Windows then generates a
link in the form of a file called
TASM.PIF. From now on, the DOS
window will automatically close
after TASM has finished its job.

Once a program has been suc-
cessfully translated, the RUN button
can be used to transfer it to the
Flash Board system and start it. For
this, you have to select a PC COM
port and connect it to the board’s
programming connector (K2). If you
have also looked after the most
important prerequisite (applying the
supply voltage to the Flash Board),
you can then start to test the pro-
gram. In the case of our first exam-
ple, all you have to do is to observe
the states of the Port 1 outputs in
order to see whether the result is

successful. Using a high-impedance
meter, you should see almost exactly
5 V on port leads P1.0 through P1.3
and nearly 0 V on P1.4 through P1.7
(to be precise, around 30 mV flowing
into ground).

In the ground state without any
program running, or following a
processor reset, all of the port leads
take on the High state, with a volt-
age of 5 V on each pin. This can eas-
ily be checked using an oscilloscope
or multimeter. The newly loaded and
started program changes the states
of four lines. P1.4 through P1.7 should
now be Low, which means that they
have a voltage of around 0 V, while
P1.0 through P1.3 remain High. The
program has transferred the value 15
(= 0Fh) to Port 1. This bit pattern can
be seen on the port pins.

(010208-2)

This concludes our brief introduction
to working with the assembler. In the
next instalment of the course, we will
discuss small sample programs that
are primarily intended to help inves-
tigate the port properties of the
microcontroller. We will look at
inputs, outputs and achievable
speeds.

MICROCONTROLLER

48 Elektor Electronics 1/2002

Figure 5. Setting the property ‘close when done’.

GENERALINTEREST

50

Lighting and
Gearbox Control
for remote-control model lorries

Design by D. Dzida

The circuit described here uses a PIC microcontroller to take over the
complete control of the lighting and gearbox in a model lorry. It can also
be used with a fork-lift truck, excavator or similar type of vehicle.

Elektor Electronics 1/2002

The problem with these kinds of remotely
controlled vehicles is that they have a large
number of functions, which normally means
that an expensive remote-control unit must
be used. The project presented here consists
of a small printed circuit board, featuring a
microcontroller from the popular Microchip
PIC family, which looks after the extended
functions. This involves a combination of
automatic function control and the decoding of
supplementary functions.

The automatic functions are:
– turn indicators are automatically activated

when the vehicle is turned;
– the brake lights go on when the accelerator

is released;

GENERALINTEREST

511/2002 Elektor Electronics

Technical data
Supply voltage: 5V (from receiver)
Current consumption: less than 10 mA

(excluding lamp currents)
External supply voltage: 5–12V
Blinking rate: fixed, approx. 0.5 Hz
Gearbox servo travel: adjustable using a trimpot
Trailer coupling servo direction of rotation: selectable (left/right) using JP1
Maximum current per output: 0.3 A
Keyed output for control only (max. 10 mA)
Relays may be connected (only with flyback diodes!)

Note regarding the maximum lamp current:
If the lamps are powered from the internal supply voltage (see Figure 5) using the
receiver–speed controller BEC, the maximum output current of the speed con-
troller BEC must not be exceeded!

IC1

4051

MDX

11

10
12

15

14

13

G8

8x
9

6

3

4

2

5

1

0

1

2

3

4

5

6

7

0

1

2

0
7

C2

22p

C1

22p

X1

16MHz

R22

1
0

k

+5V

C3

100n

K12

PIC16C57

TOCKI

OSC2

IC2

OSC1

MCLR

RA0

RA1

RA2

RA3

RB0

RB1

RB2

RB3

RB4

RB5

RB6

RB7

RC7

RC6

RC5

RC4

RC3

RC2

RC1

RC0

17

16

15

14

27 26

25

24

23

22

21

20

19

18

13

12

11

10

28

6

7

2

8

1

9

4

K13

K14

K1

K2

K3

K4

K5

K6

K7

K8

K9

K10

K11

R10

100Ω

+5V
+5V

R12

100Ω

R13

1
0

k

R11

1
0

k

R14

1
0

k

R15

1
0

k

R16

1
0

k

R17

1
0

k

R18

1
0

k

T1

BC817

T2

T3

T4

T5

T6

R23

1k2

R24

1k2

R25

1k2

R26

1k2

R27

1k2

R28

1k2

R1

2
k

2

D6

R2

2
k

2

D5

R3

2
k

2

D4

R4

2
k

2

D3

R5

2
k

2

D9

R6

2
k

2

D8

+5V

T7

T8

BC817

T9

R7

2
k

2

D7

R8

2
k

2

D1

R9

2
k

2

D2

+5V

R29

1k2

R30

1k2

R31

1k2

R32

100Ω

R33

100Ω R34

2
k

2

D11

R35

2
k

2

D12

6x

3x

R19

1
0

k

JP1

+5V

010204 - 11

R21

1
0

0
Ω

10k

P1

MT

R20

2
k

2

D10C5

100n

C4

10µ
16V

+5V

IC1

16

8

SERVO

SERVO

SERVO

L / R

OUT

DRIVE

GEAR
(RECVR)

TRAILER

HEADLIGHTS

KEY /
SWITCH

CHANNEL

CONTROL

(RECVR)

(RECVR)

(RECVR)

(RECVR)

(RECVR)

STEERING

TO
MOTOR

CONTROL

(RECVR)
THROTTLE /

BRAKE
MOTOR

CONTROL

COUPLING

TRAILER
COUPLING

HAZARD
FLASHER

TURN
 INDICATOR

Figure 1. Schematic diagram of the lighting and gearbox controller. The microcontroller evaluates the pulse signals from the remote
control receiver and generates the additional control signals for the lights and gearbox.

– the back-up lights go on when the vehicle
moves in reverse.

Supplementary switches on the remote con-
trol unit can be used to switch on the dipped
beams, main beams, hazard flasher, flashing
lights on the driver’s cab, horn and additional
output channels.

Furthermore, the gearbox servo
can be sequentially shifted up or
down using a switch or the control

stick (just like a real Porsche, but
with only three gears…).

Finally, there is a trailer function,

GENERALINTEREST

52 Elektor Electronics 1/2002

BEC
The acronym ‘BEC’ simply stands for ‘bat-
tery eliminator circuit’. This is a circuit that
eliminates the need for a separate battery to
power the remote control by providing an
adequately processed (stabilised and decou-
pled) supply voltage from the motor battery
pack. In a model lorry, this BEC is built into
the speed controller (the motor controller
for the tractor). Such speed controllers
always include a BEC with a 5-V output volt-
age. In the case of special regulators for lor-
ries, this 5-V output can supply a heavier
load than a normal regulator for cars. The
amount of output current that can be sup-
plied by the regulator depends on the model
and ranges from 1 to 3 ampères.

Lamp current
The current consumption of the circuit with
no lamps connected is less than 10 mA. Each
of the nine outputs connected to the transis-
tors can switch a maximum of 300 mA,
which altogether yields (9 × 0.3 A) = 2.7 A!
This amount of current can only be provided
by an external power source (wired as
shown in Figure 6).
If the internal 5-V supply voltage is used
(wired as shown in Figure 5), the 5-V output
of the vehicle’s speed controller must supply
not only the current for the remote control
receiver and the servos, but also the total
lamp current. Consequently, if there are
many lamps, a speed controller that can pro-
vide 1.5 A or more should be used. The fol-
lowing is a suggestion for the lamp selection
(5 V / 40 mA lamps):

dipped beams: 6 × 40 mA = 240 mA
main beams: 2 × 80 mA = 160 mA
brake lights: 4 × 40 mA = 160 mA
back-up lights: 2 × 40 mA = 80 mA
blinkers: 6 × 40 mA = 240 mA
hazard flashers: 2 × 40 mA = 80 mA
switched channel: 1 × 80 mA = 80 mA
—————————————————–—————–
Total lamp current: 1.04 A

010204-1
(C) ELEKTORC1

C2C3

C4C5

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10
D11

D12

HOEK1

H
O

E
K

2

HOEK3

H
O

E
K

4

IC2

JP1

K1

K2

K3

K4

K5

K6

K7

K8

K9

K10

K11

K12

K13

K14

P1

X1

010204-1

IC1

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

R16

R17

R18

R
19

R
20

R
21

R22

R23
R24
R25
R26

R27
R28

R29
R30
R31

R32 R33

R34 R35

T1

T2
T3

T4

T5

T6

T7

T8

T9

010204-1
(C) ELEKTOR

Figure 2. Printed circuit board track layout and component layouts for the copper
and component sides of the single-sided circuit board.

Figure 3. Top view of the prototype circuit board.

K5, K6, K7, K9 and K11, respectively. From
there, they reach inputs X0–X6 of the multi-
plexer (IC1), and from the multiplexer they
arrive at port pins RA0–RA3 of the PIC micro-
controller (IC2). The 4051 CMOS multiplexer
could in principle be omitted, but then a
larger and more expensive PIC would be
needed.

The signals for the functions that are
directly controlled by the remote controller
(motor and steering) are not only passed on
to the microcontroller, but are also looped
directly through to output pin headers for
connection to the steering servo (K8) and the
motor speed controller (K10).

Port pin RB0 of the microcontroller is con-
nected to jumper JP1. This jumper selects the
direction of rotation of the servo for the trailer
coupling. The amount of travel of the gear
servo can be set using trimpot P1, which is
connected to port pin RB1.

By programmed processing of the various
input signals, the microcontroller generates
control signals for two servo outputs (K1:
gearbox servo and K3: trailer coupling servo)
and eleven switched outputs that are avail-
able on pin headers K12, K13 and K14. Nine
switched outputs are implemented as open-
collector outputs using external transistors
(T1–T9), while two output pins (of K14) are
directly connected to port pins RC3 and RC4.
Table 1 presents a summary of the connec-
tors with their designations and functions. If
you are interested in the software that
processes the signals in the PIC microcon-
troller, you can download it from the Free
Downloads page on the Elektor Electronics
website.

Each of the switched outputs is provided
with a LED that indicates the output state
(D1–D9 and D11). LED D10 has a special
function. After the supply voltage is
switched on, some of the signals from the
microcontroller are first calibrated (such as
the signals for the turn indicators, brake
lights and back-up lights). The control stick
must not be moved while this is happening.
LED D10 is illuminated only after the initial-
isation has been successfully completed
(which can take up to four seconds) in order
to indicate that the circuit is ready to be
used. LED D12 is connected to a switched
channel that is not currently used (K14/3)
and thus does not presently have any func-
tion. However, the author intends to use this
output to support an infrared link between
the tractor and the trailer.

Construction and use
Fitting the components to the printed circuit
board (Figure 2) requires some special atten-

in which a single servo operates the
coupling to the tractor and the asso-
ciated support legs on the trailer.
This double function is specially
designed to be used with a Tamiya
lorry trailer kit. If only the trailer cou-
pling is needed, this function can
naturally also be used with other
model lorries.

Circuit operation
The heart of the controller is a
Microchip PIC16C57 clocked at
16 MHz. The version in the DIL28
package is used, since this makes it
easier to carry out possible software

updates or extensions. The circuit,
which is shown in schematic form in
Figure 1, assumes the use of a bat-
tery eliminator circuit (BEC) provid-
ing a regulated supply voltage of 5 V.

The microcontroller evaluates the
signals from seven output channels
of the remote-control receiver. At
each of these outputs, the receiver
provides the well-known pulse-
width modulated signal whose pulse
width ranges from 1 to 2 ms (1.5 ms ±
0.5 ms). These signals, which control
the gearbox, dipped/high beam,
switched channel, hazard flasher,
steering and motor (‘gas’) functions,
are connected to pin headers K2, K4,

GENERALINTEREST

531/2002 Elektor Electronics

Figure 4. The SMD components are fitted on the bottom side of the circuit board.

COMPONENTS LIST

Resistors:
R1-R9,R20,R34,R35 = 2kΩ2
R10,R12,R21,R32,R33 = 100Ω
R11,R13-R19,R22 = 10kΩ
R23-R31 = 1kΩ2
P1 = 10-turn preset, horizontal

mounting

Capacitors:
C1,C2 = 22pF
C3,C5 = 100nF
C4 = 10µF 16V radial

Semiconductors:
D1-D9,D11,D12 = LED, 3mm, red,

high efficiency (low current)

D10 = LED, 3mm, green, high
efficiency (low current)

T1-T9 = BC817
IC1 = 4051 SMD
IC2 = PIC16C57, programmed,

order code 010204-41

Miscellaneous:
JP1 = 2-way pinheader with jumper
K2,K4-K7,K9,K11 = servo connection

cable
K1,K3,K8,K10 = 3-way pinheader
K12,K13,K14 = 5-way pinheader
X1 = 16MHz quartz crystal
PCB, order code 010204-1
Disk, project source code files, order

code 010204-11

tion. Although the circuit board is single-
sided, components are mounted on both
sides. IC1 (a 4051 in an SMD package) is sol-
dered to the copper side. Particular care is
necessary in fitting transistors T1–T9, which
are also mounted on the copper side. For fit-
ting the components on the component side,
it is best to start with the wire bridges.
Attentive readers will probably notice that

GENERALINTEREST

54 Elektor Electronics 1/2002

K12'

K13'

K14'

La2

La1

La3

La5

La4

La6

La7

La8

La9

010204 - 12

Figure 5. Lamp connections when using the
internal supply voltage.

K12'

K13'

K14'

La2

La1

La3

La5

La4

La6

La7

La8

La9

010204 - 13

BT1

Figure 6. Lamp connections when using an
external voltage source (5–12 V).

Table 1. Summary of connections
and functions
Gearbox: K1 & K2
K1: Gearbox servo connection (only for a 3-speed gearbox)
K2: Connection for the cable from the receiver ‘gearbox’ output.

Function on the remote control unit: rocker switch with three positions:
up / off / down

Function:
The amount of servo travel to the left or right of the middle position can be set
using P1. Any change in the setting of P1 becomes effective only after the power
is next switched on. When the power is switched on, the servo always moves to
the middle position (second gear).

• rocker switch ‘up’ once � servo moves forward
one position (e.g. from second gear to third
gear).

• rocker switch ‘down’ once � servo moves
backward one position (e.g. from second gear to
first gear).

Trailer coupling: K3 & K4
K3: Connection for the trailer coupling servo (for a Tamiya lorry with electrically

operated support legs – see text)
K4: Connection for the cable from the receiver ‘trailer coupling’ output.

Function on the remote control unit: rocker switch with three positions:
up / off / down

Function:
• rocker switch ‘up’ � servo moves to position 1 (in this position, the support

legs are lowered until a limit switch on the trailer is tripped).
• rocker switch ‘off’ � servo moves to position 3 (if the back-up light is not on,

the coupling cannot be opened!).
• rocker switch moved to ‘down’ AND back-up lights ON � servo moves to

position 2 (in this position, the support legs are lowered until a limit switch on
the trailer is tripped).
After the rocker switch has been released (it

returns automatically to the middle position),
the servo moves to position 4. The trailer
coupling is now open and the tractor can sep-
arate from the trailer. The trailer coupling
remains open until the switch is again moved
to the ‘up’ position (to raise the support legs
and close the trailer coupling).

Dipped beam / main beam: K5
K5: Connection for the cable from the receiver ‘dipped beam / main beam’ output.

Function on the remote control unit: toggle switch with three positions:
up / off / down

Function:
• toggle switch set to ‘up’ � all lights out (K12/3&4)
• toggle switch ‘off’ � dipped beam on (K12/3)
• toggle switch ‘down’ � dipped beam and main beam on (K12/3&4)

Switched / keyed channel: K6
K6: Connection for the cable from the receiver ‘switched/keyed channel’ output.

Function on the remote control unit: rocker switch with three positions:
up / off / down

1st gear

2nd gear

3rd gear

010204 - 14

Pos 4

Pos 3
Pos 2

Pos 1

010204 - 15

the arrangement of the components on the
circuit board does not completely match the
arrangement shown on the prototype board
in the photos (Figures 3 and 4). This is
because the final circuit board layout was
modified slightly from that of the prototype,
but the two circuit boards are electrically
identical.

All essential information regarding con-
nector pin assignments, wiring and use of the
circuit board is presented in Table 1, with one
exception: the connections for the lamps are
shown in Figures 5 and 6. Outputs RB5–RB7
and RC0–RC7 of the PIC directly control the
connected lights via the BC817 transistors.
Since these outputs are implemented as
open-collector outputs, the lamps can be con-
nected either directly to the circuit board (as
in Figure 5) or via an external supply voltage
(using a separate battery as shown in Fig-
ure 6). In the latter case, one lead of each
lamp is connected to the positive lead of the
external supply voltage, which may lie in the
range of 5–12 V. When connecting the lamps,
take particular care to avoid any possibility of
a short circuit between the +5-V supply volt-
age on pins 1 and 2 of K12 and the external
supply voltage. Such a short circuit could
destroy both the PIC and the remote control
receiver!

Note that if the lamps are connected
directly to the circuit board (as shown in Fig-
ure 5), the entire current for the lamps must
be provided by the speed controller. Special
lorry regulators can provide more current at
the BEC output (5 V) than normal regulators
for cars. In any case, the ratings of the lamps
must be chosen such that the BEC supply is
not overloaded (see the ‘Lamp Current’ side-
bar). Relays can also be connected to the
open-collector outputs, but only if they are fit-
ted with flyback diodes. The maximum relay
coil current is subject to the same considera-
tions as the maximum lamp current.

(010204-1)

GENERALINTEREST

551/2002 Elektor Electronics

Web addresses
www.robbe.de full range of products
www.multiplex-rc.de full range of products
www.schulze-elektronik.com/index_uk.htm regulators, chargers
www.kontronik.com/gate_engl.htm regulators, motors
www.hacker-motor.com/english/englisch.html motors
www.wedico.de/index_eng.html model lorries

Function:
• rocker switch ‘up’ once � keyed channel on (K14/1)
• rocker switch again ‘up’ � keyed channel off (K14/1)
• rocker switch ‘down’ � switched channel on (K14/2)
• rocker switch ‘off’ � switched channel off (K14/2)

Important note:
The switched channel is only suitable for control purposes (max. 10 mA) – do not
connect any lamps or relays without using suitable driver stages!

Hazard flasher: K7
K7: Connection for the cable from the receiver ‘signal / hazard flasher’ output.

Function on the remote control unit: rocker switch with three positions:
up / off / down

Function:
• rocker switch ‘up’ once � hazard flasher on (blinker R/L, K13/4&5)
• rocker switch again ‘up’ � hazard flasher off
• rocker switch ‘down’ once � flashing signal lights on (K13/2/3)
• rocker switch again ‘down’ � flashing signal lights off

L/R turn indicators and steering servo: K8/K9
K8: connection for steering servo
K9: Connection for the cable from the receiver ‘steering’ output.

Function on the remote control unit: steering control stick

Function:
After the supply voltage is applied, the neutral position of the control stick is
stored. Do not move the control stick until LED D10 is illuminated!

• control stick to the left � left turn indicator on (k13/5)
• control stick in the middle � all turn indicators off
• control stick to the right � right turn indicator on (K13/4)

Brake/back-up lights and speed controller: K10/K11
K10: connection for speed controller
K11: Connection for the cable from the receiver ‘speed controller’ output.

Function on the remote control unit: control stick forward / reverse

Function:
After the supply voltage is applied, the neutral position of the control stick is
stored. Do not move the control stick until LED D10 is illuminated!

• control stick in the middle position � brake lights on (k12/5)
• control stick forward � brake and back-up lights off
• control stick reverse � back-up lights on (k13/1)
• control stick moved from the reverse position to the middle position � brake

and back-up lights on.

The module USBuart.bas provides the sub-
routine Sub WrIsink Pin, Wert. The
parameter Pin may have a value of 0 through
7 for port pins P00 through P07 or 8 through
11 for port pins P10 through P13. Listing 1
shows a simple program for setting the sink
currents of all four Port 1 outputs, while Fig-
ure 1 shows the associated screen display.

The microcontroller contains a simple 4-bit
DAC for each port pin, consisting of four
weighted current sources. We can ask our-
selves if we can’t use this for something more
worthwhile than just controlling the bright-
ness of a few LEDs. In principle, a resistor is
all we need to convert the controlled current
into an output voltage. A 200-Ω resistor con-
nected to Port 1 (see Figure 2) yields a good
output voltage range for a sink current of up
to 15 mA.

To check the linearity of this arrangement,
the output voltage was measured for all 16
current settings. The results are shown in
Table 1. These results have also been evalu-
ated graphically using Excel. As can be seen
from Figure 3, the linearity is good.

The current output can be used to make a
simple programmable power supply. Figure 4
shows a sample circuit using an L272 power
opamp. The zero crossing and slope can be
independently adjusted. If necessary, the
adjustment range can be made smaller, for
example 3.5 to 5 V.

A simple A/D converter
We can also utilise the D/A settings of the
port pins to construct a simple A/D converter.
In this case, all we want to do is measure
resistance values. The resistor to be mea-
sured must be connected between a port pin
and Vcc. The method is based on the experi-
mentally determining the sink current setting
needed to have the voltage on the port pin in

question appear to be Low, given
the connected resistor value.

Figure 5 shows how a simple
analogue input function can be
obtained by connecting eight poten-
tiometers to Port 1. For Port 0, an
adjustment range of around 2 kΩ to
12 kΩ gives the best results. Lower
resistance values are needed for the
same arrangement on Port 1, since
this port has a greater sink current.

For each analogue conversion, the
sink current is increased stepwise
until the comparator switches
states. This means that each mea-
surement requires up to 16 output
transactions and 16 input transac-
tions. Since a control access via the
USB port requires 4 ms, each mea-
surement takes up to 256 ms. Con-
sequently, a set of measurements for

COMPUTER

56 Elektor 1/2002

USB UART (2)
part 2: setting the port currents
Although the Elektor Electronics USB interface described in the September
2000 issue allows the port current to be set for only one port, the port
IC allows the current to be set for each pin.

2
2

0
Ω

+5V

V

P1.3

010207 - 2 - 12

Figure 1. Screen display for the program LED.FRM.

Figure 2. Controlling an output voltage
via P1.3.

all eight channels will take around
two seconds.

Listing 2 shows a program for

COMPUTER

571/2002 Elektor

2
2

0
Ω

+5V

P1.3

010207 - 2

8 2

1

4

- 14

7

3k3

10k

10k

+12V

1/2 L272

0...10V
300mA

K2'
VCC

GND

P1.0

P1.1

P1.2

P1.3

P0.0

P0.1

P0.2

P0.3

P0.4

P0.5

P0.6

P0.7

010207 - 2 - 15

2k2

2k2

2k2

2k2

8x 10k

2k2

2k2

2k2

2k2

4,5

4

3.5

3

2.5

2

1.5

1

0.5

0
0 5 10

010207 - 2 - 13

15

vo
lt

ag
e

control byte

Figure 3. Output voltage vs. control byte value.

Figure 4. A programmable voltage source.

Figure 5. Connecting potentiometers for
analogue inputs.

Figure 6. An 8-channel analogue display.

Table 1.
Voltages measured on P1.3.

Current step Voltage

0 4.29 V
1 4.09 V
2 3.90 V
3 3.70 V
4 3.51 V
5 3.32 V
6 3.15 V
7 2.96 V
8 2.79 V
9 2.61 V
10 2.43 V
11 2.24 V
12 2.06 V
13 1.89 V
14 1.71 V
15 1.54 V

Listing 1.
USBuart2.vbp

Private Sub Form_Load()
WrPort0 Wert

End Sub

Private Sub HScroll1_Change()
Wert = HScroll1.Value
WrIsink 8, Wert
Label5.Caption = Str$(Wert)

End Sub

Private Sub HScroll2_Change()
Wert = HScroll2.Value
WrIsink 9, Wert
Label6.Caption = Str$(Wert)

End Sub

Private Sub HScroll3_Change()
Wert = HScroll3.Value
WrIsink 10, Wert
Label7.Caption = Str$(Wert)

End Sub

Private Sub HScroll4_Change()
Wert = HScroll4.Value
WrIsink 11, Wert
Label8.Caption = Str$(Wert)

End Sub

polling and displaying eight port settings. For
a change, here we use sliders as indicators

rather than control elements. The
sliders shown on the screen are

remotely controlled by the poten-
tiometers. (010207-2)

COMPUTER

58 Elektor Electronics 1/2002

Listing 2.
Using the USB-UART as an 8-channel A/D converter

Function ADCh0()
WrIsink 0, 0
Ain = 0
While ((RdPort0 And 1) > 0) And (Ain < 15)
Ain = Ain + 1
WrIsink 0, Ain

Wend
ADCh0 = Ain

End Function

Function ADCh1()
WrIsink 1, 0
Ain = 0
While ((RdPort0 And 2) > 0) And (Ain < 15)
Ain = Ain + 1
WrIsink 1, Ain

Wend
ADCh1 = Ain

End Function

Function ADCh2()
WrIsink 2, 0
Ain = 0
While ((RdPort0 And 4) > 0) And (Ain < 15)
Ain = Ain + 1
WrIsink 2, Ain

Wend
ADCh2 = Ain

End Function

Function ADCh3()
WrIsink 3, 0
Ain = 0
While ((RdPort0 And 8) > 0) And (Ain < 15)
Ain = Ain + 1
WrIsink 3, Ain

Wend
ADCh3 = Ain

End Function

Function ADCh4()
WrIsink 4, 0
Ain = 0
While ((RdPort0 And 16) > 0) And (Ain < 15)
Ain = Ain + 1
WrIsink 4, Ain

Wend
ADCh4 = Ain

End Function

Function ADCh5()
WrIsink 5, 0
Ain = 0
While ((RdPort0 And 32) > 0) And (Ain < 15)

Ain = Ain + 1
WrIsink 5, Ain

Wend
ADCh5 = Ain

End Function

Function ADCh6()
WrIsink 6, 0
Ain = 0
While ((RdPort0 And 64) > 0) And (Ain < 15)
Ain = Ain + 1
WrIsink 6, Ain

Wend
ADCh6 = Ain

End Function

Function ADCh7()
WrIsink 7, 0
Ain = 0
While ((RdPort0 And 128) > 0) And (Ain < 15)
Ain = Ain + 1
WrIsink 7, Ain

Wend
ADCh7 = Ain

End Function

Private Sub Form_Load()
WrPort0 Wert

End Sub

Private Sub Timer1_Timer()
Value = ADCh0()
HScroll1.Value = Value
Label9.Caption = Str$(Value)
Value = ADCh1()
HScroll2.Value = Value
Label10.Caption = Str$(Value)
Value = ADCh2()
HScroll3.Value = Value
Label11.Caption = Str$(Value)
Value = ADCh3()
HScroll4.Value = Value
Label12.Caption = Str$(Value)
Value = ADCh4()
HScroll5.Value = Value
Label13.Caption = Str$(Value)
Value = ADCh5()
HScroll6.Value = Value
Label14.Caption = Str$(Value)
Value = ADCh6()
HScroll7.Value = Value
Label15.Caption = Str$(Value)
Value = ADCh7()
HScroll8.Value = Value
Label16.Caption = Str$(Value)

End Sub

For years, the music industry has been com-
plaining about heavy losses from the illegal
copying of audio CDs. Most computer owners
these days have a CD burner in their system,
and with modern, fast CD recorders it only
takes a few minutes to make a copy of a CD
for a friend or neighbour. Naturally, this is not
how it’s supposed to be. Not only does the

producer / distributor loose income,
but the songwriters and musicians
who have done their best to put
something nice on the CD also lose
out. According to the law, you can
make a copy of a phonograph record
or CD for your own use, but you’re
not supposed to buy a CD and then

make ten copies (or let someone else
make ten copies) for all your friends.

In order to put an end to home
copying, various attempts have been
made to devise methods to protect
audio CDs against digital copying on
a computer. Several companies have
now come up with a number of dif-
ferent systems, and naturally they all
insist that their methods work per-
fectly. Various large music producers
also use these methods, but often
without making known which CDs
are affected.

The inventors of the various pro-
tection methods are naturally reluc-
tant to provide very much informa-
tion about the techniques used, but
all of them essentially amount to
modifying the data on the CD to
such a degree that a PC can no
longer make an exact copy of the CD
using a CD-ROM drive. The best-
known technique is that used by
Macrovision. In their ‘Safe Audio’
system, the audio data and error cor-
rection codes on the CD are inten-
tionally mutilated to the point that a
CD-ROM drive in a computer will
have trouble handling the data. As a
result, a file that is read in digitally
will produce all sorts of noise and

ELECTRONICSONLINE

60 Elektor Electronics 1/2002

Music Industry
Protecting Audio CDs
intentionally introducing errors to prevent copying

By Harry Baggen

The illegal copying of audio CDs costs the music industry a bundle every
year. A number of companies are now using sophisticated techniques to
try to protect their CDs against copying. However, it’s questionable
whether this actually helps and whether the consumer actually benefits.

using the normal audio output. The primary
disadvantage of this is that it takes so much
time, and in addition there is a fractional loss
of sound quality due to the extra D/A and
A/D conversions. The question is whether the
average consumer is really concerned – after
all, most consumers are happy with the dis-
tinctly lower audio quality of MP3 files down-
loaded from the Internet.

(025005-1)

interference on playback, so that it is
no longer worthwhile to copy it to a
CD-R. Normal audio CD players
prove to have no problems with such
data, since even though the error
correction system in such a player
gets hopelessly confused by the
bogus data, the player ‘invents’
intermediate values by means of
interpolation.

We do not find such methods par-
ticularly attractive. First the industry
does its best to devise a CD stan-
dard that provides the purest possi-
ble reproduction quality and a high
degree of error tolerance (to com-
pensate for scratches and the like),
only to turn around and intentionally
introduce gross errors.

Protests against this method are
becoming slowly but steadily
stronger and more numerous, partic-
ularly on the part of audiophiles,
who fear that the protection tech-
niques may have a negative effect on
sound quality – and we must say
that we agree! Among others, the
well-known British hi-fi expert Mar-
tin Colloms is absolutely opposed to
such methods. He compares them to
splashing paint all over pictures in
art galleries to prevent them from
being stolen. You can find more on
the subject in articles in New Scien-
tist [1] and New Media Music [2]. In
the US, a complaint has already been
lodged against a music company
that put protected CDs on the mar-
ket without a clear notice on the
packaging.

Which companies are involved in
protecting CDs? The best known
and largest is the already-mentioned
Macrovision [3], known among other
things for the video protection sys-
tem with the same name.

Macrovision’s ‘Safe Audio’ tech-
nique was originally developed by
the Israeli company TTR Technolo-
gies. Macrovision claim that they
carried out listening tests for several
months using both lay persons and
people with ‘golden ears’, with the
result that no-one was able to detect
any changes in the music signal
resulting from the copy protection.
However, they are not willing to
identify the CDs to which this tech-
nique has been applied, although
there are apparently a number of
well-known titles that have been
produced in large volumes and the

number of complaints (according to
Macrovision) is minimal.

Sony, which in addition to making
consumer products is also one of the
major players in the audio industry
and a maker of CDs (Sony DAC C),
use a technique of their own called
Key2Audio [4]. They claim that this
process does not corrupt the music
data, but that instead a sort of digi-
tal fingerprint is added when the
glass master for the CD is made,
with the result that digital copying
is no longer possible.

Cactus Data Shield is a technique
developed by Midbar [5] that is
presently widely used. Apparently,
at least one million CDs have
already been protected using this
system. Not much is known about
this system.

The MediaCloQ technique from
SunnComm [6] uses yet another
method. A CD that has been pro-
tected using this method can be
recognised by a clearly different
reflection from the region at the end
of the audio track on the CD.

The website of CD Media World
[7] provides a good summary of all
current protection systems, with a
brief explanation of each system.

With all this fuss about copy pro-
tection for audio CDs, you might
almost forget that it is still perfectly
easy to make a copy of a CD by just

ELECTRONICSONLINE

611/2002 Elektor Electronics

Internet addresses:
[1] NewScientist:

www.newscientist.com/news/
news.jsp?id=ns9999998

[2] New Media Music:
www.newmediamusic.com/articles/
NM01080292.html
www.newmediamusic.com/articles/
NM01100072.html

[3] Macrovision SafeAudio:
www.macrovision.com/solutions/
newtech/safeaudio.php3

[4] Sony DADC Key2Audio:
www.key2audio.com/key2audio/index.htm

[5] Midbar Cactus Data Shield
www.midbartech.com/cactus2.html

[6] SunnComm MediaCloq:
www.sunncomm.com/

[7] CD Media World:
www.cdmediaworld.com/hardware/cdrom/
cd_protections.shtml

Infrared data transfer is becoming increas-
ingly more important. Television remote con-
trols use infrared light, but so do PC mice,
keyboards, printers and other peripherals.
Infrared light is also used in fibre-optic

cables. In a sense, the PC infrared
transceiver presented here is a prac-
tical application that represents a
continuation of the series of articles
on PC interfaces and Visual Basic

that appeared in the ‘PC Serial
peripheral Design’ course (Elektor
Electronics 9/2000 through 3/2001).

Infrared remote controls for tele-
vision sets, video recorders and
other entertainment electronics
devices frequently use the Philips
RC5 standard. It is easy to determine
whether a particular remote control
employs RC5 by using the program
described in this article. This stan-
dard employs light signals modu-
lated at a frequency in the range of
30 to 40 kHz. The remote control unit
transmits ‘bursts’, which are indi-
vidual pulse packets. In our case,
these bursts have a duration of
either 0.888 ms or 1.776 ms. At a
modulation frequency of 36 kHz, a
short burst contains 32 individual
pulses, while a long burst contains
64 pulses. A complete data packet
has a duration of approximately
25 ms and is repeated every 100 ms
as long as a button is held
depressed.

An infrared remote control unit
can easily be used for other pur-
poses. For example, it can be used to
control certain functions of your own
program. A typical application is

COMPUTER

62 Elektor Electronics 1/2002

Infrared Transceiver
for the PC (1)
combined remote control and data link

Design by B. Kainka

This article does more than just describe an IR transceiver that you can
use with your PC for remote control and data transfer. Based on the suc-
cessful Elektor Electronics ‘PC Peripheral Design’ series, it also provides
information about the principles of the infrared transfer technique used
and interface technology, which you can use for your own projects.

These output pulses are connected directly to
the CTS lead, where they must be decoded
using software. A supplementary pull-up
resistor is necessary here, since the CTS lead
has a relatively low input resistance. The sig-
nal is also inverted by a transistor stage (T1)
and applied to the RxD input of the serial
interface. This lead serves for the reception of
fast data, for example from a data link
between two PCs.

The infrared transmitter consists of a mod-
ulation stage (IC2) and a pulse amplifier (T2
and T3) driving two infrared diodes (D4 and
D5). IC2 is a 555 timer IC wired as an oscilla-
tor, which generated narrow negative pulses
with a width of around 2 µs. The frequency
can be set between approximately 30 and
40 kHz using P1. Depending on the applica-
tion, the trimpot can be used to tune the cir-
cuit to the suitable frequency in order to
achieve the greatest possible range. The 555
receives its supply voltage from the TXD lead,
which modulates (‘keys’) the transmitter by
switching it on and off.

The energy for the two IR transmitter
diodes also comes from the serial interface.
The DTR and RTS leads charge a 1-µF elec-
trolytic capacitor (C5) via D6 and D7. The
brief pulses on the output of the timer IC (pin
3) force the driver stage consisting of T2 and
T3 into full conduction. This results in pulsed
currents of approximately 200–300 mA. The
range that is thus achieved is around 10 m.
Although the charging current from the ser-
ial interface is relatively small at 40 mA, there
is enough time between the pulses to allow
the capacitor to recharge.

This simple hardware can be constructed
using the printed circuit board shown in Fig-
ure 2. All that you need to watch out for
when fitting the components is to make sure
that the diodes, electrolytic capacitors and
ICs are soldered in or inserted the right way
around. You should also avoid the common

controlling a PC slide show. After
starting the program, you can sit
back and operate everything from
where you are sitting.

Transceiver hardware
Thanks to the availability of inte-
grated receivers, the reception of
standard infrared signals is relatively
simple. The well-known Siemens
SHF506 is available with fixed mod-
ulation frequencies of 30 kHz,
33 kHz, 36 kHz and so on. The filter
curve is relatively broad-band, so
deviations of a few kilohertz cause
only a relatively small reduction in
sensitivity. The Vishai/Telefunken
TSOP1836 is a similar IC. Both types
of IC need only a 5-V supply voltage
and draw less than 2 mA. They can
thus be powered directly from the
PC serial interface.

The IR transceiver described here
has a modulated IR transmitter in
addition to the receiver. This light
transmitter works with a carrier fre-

quency between 30 and 40 kHz. It
can be used for the remote control of
devices such as video recorders and
television sets, but it can also be
used for data transfer between two
PCs.

The schematic diagram shown in
Figure 1 reveals the receiver IC (IC3)
and a 78L05 voltage regulator (IC1).
The supply voltage is taken from the
DTR and RTS outputs of the RS232
interface, which are connected
together via the isolating diodes D1
and D2. A voltage of around 10 V can
be activated here using a program
running on the PC. These two leads
also power the transmitter portion of
the circuit via D6 and D7. Since high
pulse currents are needed for trans-
mitting, a relatively large electrolytic
capacitor (IC1, 4.7 µF) is used to
smooth the input voltage of the volt-
age regulator.

If the IR receiver IC receives an
infrared signal modulated at 36 kHz,
it produces an output signal on its
middle pin with an active-low level.

COMPUTER

631/2002 Elektor Electronics

K1

DB9

1

2

3

4

5

6

7

8

9

TSOP1836

21 3

IC3
3

1

2

R2

4k
7

R1

4k
7

R7

1k

R8

2
2

Ω

R5

4k
7

R4

470Ω

R3

100k

R6

27
k

D2

D1

1N4148
2x

C1

4µ7 25V

C5

1µ 25V

C2

100n

C3

10n

C4

22n

D7

D6

1N4148
2xD3

1N4148

2k5
P1

T2

BC547

T3

BC337

T1

BC547

D5

D4

78L05

IC1

RxD

RTS

TxD

CTS

DTR

GND

010052 - 11

IC1
DIS

THR

OUT

555
TR

CV

2

7

6

4

R

3

5

8

1

Figure 1. Schematic diagram of an IR transceiver for connection to the serial inter-
face of a PC.

IR Transceiver
Technical specifications
– Reception frequency: 30, 33 or 36 kHz,

depending on the IC version fitted
– Transmission frequency:

30–40 kHz, continuously adjustable
– Power supply: from the serial interface
– Range: approx. 10 m
– IR receiver: for remote control

per the RC5 standard
– IR transmitter: RC5 compatible
– IR data transceiver:

serial data, 2400 baud max.

mistake of using a sub-D socket (9 holes)
instead of a sub-D plug (9 pins).

RD5 software decoder
The data output of the receiver IC is con-
nected directly to the CTS lead. Signals from
a remote control unit that have been demod-
ulated by the receiver IC thus appear on this
lead. A program for decoding the signal only
has to evaluate the incoming pulses in order to
recognise which button has been pressed on
the remote control.

Figure 3 shows a signal received from a
RC5 remote control unit. The diagram was
captured using a logic analyser. A program
directly records the changes of the signal
level on the CTS lead. The RC5 protocol uses
what is called a ‘bi-phase’ signal, with the
actual information being contained in the
phase changes. The signal level changes at
least every 1.776 ms. The receiver can con-
tinuously resynchronise to the signal by
means of these changes.

The signal begins with a start sequence
that is always the same. Following this come
three data regions, in which level changes
spaced 1.776 ms apart represent the actual
data bits. Following each level change, the
receiver first waits for slightly longer than
0.888 ms and skips any level change that may
occur in this interval. The next following level
change is both a synchronisation signal and
a data bit. In principle, this technique can be
used to transfer data words of any desired
length. In the case of RC5 signals, the word
length is exactly 12 bits, composed a follows:
• The Control Bit (Ctl) changes between 0
and 1 each time a button is pressed. The
receiver can use this information to decide
whether a button has been pressed and held
only once or has been pressed several times
in succession.
• The Device Address (Addr) consists of five
bits, with the most significant bit being trans-
mitted first. Some standard device addresses
are ‘1’ for a television set and ‘5’ for a video
recorder. The Device Address allows several
different remote controls to be used in the
same room.
• The Data Region (Dat) consists of six bits
for up to 64 different buttons. The number
buttons (0–9) generate the codes ‘0’ through
‘9’. Here again the most significant bit is
transmitted first.
Listing 1 shows the actual software decoder
program in Visual Basic. The routine ‘RC5’
receives the data. Here the PORT.DLL from
the book PC Interfaces under Windows is
used for all accesses to the serial interface
and for timing control. (PORT.DLL can be
downloaded free of charge from the Elektor

COMPUTER

64 Elektor Electronics 1/2002

0
1
0
0
5
2
-1

(C
) E
LE
K
TO
R

C1

C2

C3

C4 C5

D1

D2

D3

D4

D5

D6

D7

G

G
1

IC1

IC
2

IC3

K1
P1

R1

R2

R3

R4R
5

R
6

R7

R
8

T1

T2T3 010052-1

0
1

0
0

5
2

-1
(C

) E
LE

K
TO

R

Figure 2. Printed circuit board layout and component layout for the IR transceiver
(board not available ready-made).

COMPONENTS LIST

Resistors:
R1,R2,R5 = 4kΩ7
R3 = 100kΩ
R4 = 470Ω
R6 = 27kΩ
R7 = 1kΩ
R8 = 22Ω
P1 = 2kΩ5 preset

Capacitors:
C1 = 4µF7 25V radial
C2 = 100nF
C3 = 10nF

C4 = 22nF
C5 = 1µF 25V radial

Semiconductors:
D1,D2,D3,D6,D7 = 1N4148
D4,D5 = IR-LED, e.g. LD271
T1,T2 = BC547
T3 = BC337
IC1 = 78L05
IC2 = 555
IC3 = TSOP1836, SFH506-36

Miscellaneous:
K1 = 9-way Sub-D socket (female),

angled pins, PCB mount

timeout condition is built in. If no signal has
been received after 500 ms, the program ter-
minates with an error message.

Infrared controls are always subject to

Electronics website; see the note at
the end of the article.) This task is
relatively time-critical and requires
the use of REALTIME=True. This

routine initially waits for a low level,
which acts as a start pulse. In order
to prevent the PC from hanging in an
infinite loop if no signal is present, a

COMPUTER

651/2002 Elektor Electronics

Listing 1
Receiving and displaying RC5 data

Dim Ctr
Dim Adr
Dim Dat

Sub RC5Error()
Ctr = -1
Adr = -1
Dat = -1

End Sub

Function RC5Bit() As Integer
TIMEINITUS
If CTS = 0 Then
While ((TIMEREADUS < 500) And (CTS = 0))
Wend
If TIMEREADUS > 499 Then RC5Error
DELAYUS 444
If CTS = 0 Then RC5Error
RC5Bit = 0

Else
While ((TIMEREADUS < 500) And (CTS = 1))
Wend
If TIMEREADUS > 499 Then RC5Error
DELAYUS 444
If CTS = 1 Then RC5Error
RC5Bit = 1

End If
End Function

Sub RC5()
Ctr = 0
Adr = 0
Dat = 0
Startbit = False
REALTIME True
TIMEINIT
While Not Startbit
While (CTS = 1) And (TIMEREAD < 500)
Wend

Startbit = True
DELAYUS 444
If CTS = 1 Then Startbit = False
DELAYUS 888
If CTS = 0 Then Startbit = False
DELAYUS 888
If CTS = 1 Then Startbit = False
Adr = Startbit
If TIMEREAD > 499 Then Startbit = True

Wend
DELAYUS 888
Ctr = RC5Bit
Adr = 0
For N = 1 To 5
DELAYUS 888
Adr = Adr * 2
Adr = Adr + RC5Bit

Next N
Dat = 0
For N = 1 To 6
DELAYUS 888
Dat = Dat * 2
Dat = Dat + RC5Bit
Next N

REALTIME (False)
End Sub

Private Sub Form_Load()
OPENCOM “COM2”
DTR 1
RTS 1

End Sub

Private Sub Form_Unload(Cancel As Integer)
CLOSECOM

End Sub

Private Sub Timer1_Timer()
RC5
Text1.Text = Str$(Ctr) + “ “ + Str$(Adr) + “ “ +

Str$(Dat)
End Sub

Listing 2
Loading pictures for a slide show

Private Sub Timer1_Timer()
RC5
If Dat <> Dat_old Then
If Dat = 1 Then Picture1.Picture = LoadPicture(“D:\Homepage\Bast11.jpg”)
If Dat = 2 Then Picture1.Picture = LoadPicture(“D:\Homepage\Bast21.jpg”)
If Dat = 3 Then Picture1.Picture = LoadPicture(“D:\Homepage\Bast31.jpg”)
If Dat = 4 Then Picture1.Picture = LoadPicture(“D:\Homepage\Bast41.jpg”)
If Dat = 5 Then Picture1.Picture = LoadPicture(“D:\Homepage\Bast51.jpg”)
If Dat = 6 Then Picture1.Picture = LoadPicture(“D:\Homepage\Bast61.jpg”)
If Dat = 7 Then Picture1.Picture = LoadPicture(“D:\Homepage\Bast71.jpg”)
If Dat = 8 Then Picture1.Picture = LoadPicture(“D:\Homepage\Bast81.jpg”)
If Dat = 9 Then Picture1.Picture = LoadPicture(“D:\Homepage\Bast91.jpg”)
End If
Dat_old = Dat

End Sub

interference from other light sources. Fluo-
rescent lamps, which generate rapidly flick-
ering light, are typical interference sources.
The RC5 reception routine thus checks the
start sequence of the received signal to ver-
ify that it is correct. If the signal departs from
the expected pulse sequence, an interference
pulse must be involved. In this case, the rou-
tine waits for the next start sequence. This
makes it possible to securely receive RC5 sig-
nals, even in an environment with a relatively
high level of interference.

After the start sequence, the individual
bits are read by the routine ‘RC5bit’. If a 0
level is read at the start of the routine, this
should represent a 0 bit. Next, the routine
waits for the signal level to change. After half
the pulse width (444 µs), a new query is
made to see whether the same level is still
present. If this is not the case, an error is
detected and all data read up to this point are

overwritten with the value –1. After slightly
more than 444 µs, the routine ‘RC5bit’ returns
the value of the bit that was read. The calling
routine (‘RC5’) evaluates this bit and waits
444 µs before again calling ‘RC5bit’. In this
manner, any subsequent level change that
may be present is skipped. This is proper,
since the next valid change is only expected to
take place after 1.776 ms.

Signal reception is controlled by a timer in
the VB program. All received data are dis-
played in a text window. Figure 4 shows the
screen output of the received data for a
remote control unit with device address ‘5’
(video recorder) and button ‘7’ pressed.

If no signal is received, a suitable error
message is displayed with Ctl = –1 and Addr
= –1. In an operational version of the pro-
gram, the error information would not be dis-
played but would instead be used to distin-

guish usable data from unusable
data.

You can use this program to famil-
iarise yourself with the individual
codes of your own remote control
unit. This can form the basis for later
control applications in which the PC
replaces a remote control unit. Com-
plete lists of the commonly used
codes can be found on the Internet.

PC remote control
Another useful application is remote
control of the PC. For example, you
could control your own slide show
using a remote control unit. Listing 2
shows a program segment with the
modified timer routine. Here nine dif-
ferent button codes are evaluated to

load pictures from the hard disk. The
fact that this program supports only
nine pictures may come as a relief to
those of you who have suffered
through seemingly endless slide
shows, but there is nothing to pre-
vent this number from being
increased. For example, you could
use the ‘+’ and ‘–‘ buttons to control
the slide sequence.

(010052-1)

In next month’s issue, the software
for a RC5 transmitter using a PC and
the IR transceiver circuit board will
be described. These can be used to
control a video recorder and other
devices using a PC and to transfer
serial data between two PCs via the
infrared link.

COMPUTER

66 Elektor Electronics 1/2002

1 0 0 1 0 1 0 0 0 1 1 1

Start Ctrl Address Data

010052- 12

Figure 3. Sample RC5 signal with address ‘5’ and button ‘7’ pressed.

Figure 4. Outputting RC5 data.

Figure 5. A slide show on the PC monitor.

Reference:
B. Kainka, PC Interfaces under Windows,
Elektor Electronics (Publishing), Dorchester (ISBN 0 905705 65 3

Download note
The PORT.DLL used in this article, as well as the program listings and the printed
circuit board layout, can be downloaded free of charge from the Elektor Elec-
tronics website at www.elektor-electronics.co.uk. On the home page, you can find
the download pages by clicking on the ‘Free Downloads’ button and then the
month in which the article in question was published.
The software files can also be obtained from the home page of the author:
http://home.t-online.de/home/B.Kainka

	U020101.jpg
	e021012.pdf
	e021020.pdf
	e021028.pdf
	e021032.pdf
	e021036.pdf
	e021038.pdf
	e021044.pdf
	e021050.pdf
	e021056.pdf
	e021060.pdf
	e021062.pdf

