

This circuit allows a Nintendo 64 con-
troller to be connected to the PC game
port (or a sound card), without requir-
ing any additional drivers to be
installed. The Nintendo 64 controller is
a widely-used unit that combines high
quality with a low price. With this
approach, you can run PC games with
the comfortable Nintendo 64 controller
instead of using the PC keyboard and
mouse.

What the Nintendo 64
controller offers…

In addition to a few membrane
switches, the controller contains a
precise analogue electro-optical joy-

stick module that works like a mouse.
On demand, the controller unit reports
the status of the switches and the
position of the joystick. Bidirectional
communication takes place over a
single line that has a High level in the
rest state. This line is used both to send
commands to the controller and to
receive the requested data from the
controller. A command byte must be
sent before data can be received
from the controller. If the line is free, as
indicated by a persistent High level,
the command byte can be trans-
ferred. The controller responds to the
command $01 with the status infor-
mation for all pushbuttons and the
position of the analogue joystick. The

transmission time for each bit is 4µs in
both send and receive modes. A Low
bit is indicated by a 3-µs Low phase
followed by a 1-µs High phase, while
a High bit is indicated by a 1-µs Low
phase followed by a 3-µs High phase.
In order to delay the response to a
command, the last transferred bit of
the command can be held Low. If the
line is returned High at the end of the
command transmission, the response
should occur within 2 to 3 microsec-
onds. The response time is not fixed,
since the controller and the N64C2PC
IC operate asynchronously, each with
its own clock.
The first experimental circuit, with a
8051 clocked at 12 MHz (correspond-
ing to a 1 µs cycle time), was obviously
too slow to meet the critical timing
requirements of the Nintendo 64 con-
troller. Reliable communication was
only possible after the microprocessor
was replaced by an AT89C2051-24PC
with a 24-MHz clock. Regarding the
hardware, you can see that two clock
sources are shown in Figure 1, in addi-
tion to the microcontroller and a pair of
current-limiting resistors. This is because
24-MHz crystals are normally only avail-
able for series-resonant operation. Such
‘overtone’ crystals are not suitable for
this application! If you cannot obtain a
fundamental-frequency crystal, you
can use a self-contained 24-MHz oscil-
lator (see the list of components).
Returning to the communications with
the controller, the answer to the com-
mand $01 is four bytes of controller sta-
tus information, transmitted MSB first, as
shown in Table 1.

2 - 2/2000 Elektor Electronics EXTRA —————————————— PC TOPICS

Awkward keyboard commands and uncomfortable
mouse control can spoil even the most attractive PC
game. The ideal solution would be simple operation,
as offered by the Nintendo 64, combined with the pro-
cessing power of a PC. This article describes how to
connect a Nintendo 64 controller to the PC game port.

design by K. Schuster

PC interface for
Nintendo joystick
using the Nintendo 64 to run PC games

…is not what the game port
expects
A simple PC game port does not need
any active circuitry. The two pushbut-
tons simply make connections to earth.
The PC game port, or a suitable sound
card, simply polls the switch levels to
see whether they are High or Low.
With the analogue joystick, the situation
is a bit more complicated. The joystick
contains two potentiometers (X and Y),
whose resistances are around 100 kΩ,
connected to the supply voltage.
Capacitors located on the card are
charged via these potentiometers.
These capacitors determine the time
constants of a pair of monostable mul-
tivibrators. The positions of the poten-
tiometers can thus be derived from the
lengths of the pulses produced by the
monostables. All analogue elements
are addressed or polled at the same
time. A normal PC game port provides
connections for two joysticks, which
means that it has four ‘digital’ and four
‘analogue’ inputs. Sometimes only one
joystick can be connected, but this is
very rare.

Two worlds join together

It is not difficult to see that these two
worlds do not really fit with each other.
Requesting and interpreting the status
data from the Nintendo 64 controller
should not be difficult, but how can
the expectations of the PC game port

be satisfied without a lot of compli-
cated circuitry? Handling the push-
buttons is relatively easy; the relevant
bits from the Nintendo 64 controller
can simply be periodically output on
the microcontroller leads. However,
what should be done with the digital
values for the analogue joystick? Here
we can use a trick: the interface
microcontroller waits for a short Low
level on one of the potentiometer
lines, which goes along with the cyclic
charging of the capacitors of the PC
game port card. Following this, the
microcontroller holds all of the poten-
tiometer lines Low, to prevent any fur-
ther charging of the capacitors, and
starts its timer. Each of the poten-
tiometer lines is subsequently allowed
to go High at a time that depends on
the data received from the Nintendo
64 controller. The corresponding
capacitors are charged briefly via the
microcontroller outputs, and the asso-
ciated monostables report what they
assume to be the potentiometer posi-
tions. If you observe the relevant out-
puts of the AT89C2051 with an oscillo-
scope, you will see pulse-width modu-
lated signals with a period of around
840µs and a duty cycle of 50% to
90%, depending on the potentiome-
ter position. When the potentiometer is
at the midrange position, the duty
cycle is 70%.

Details — the program
The software, including the source
code, is available from the Elektor Elec-
tronics web site (www.elektor-electron-
ics.co.uk). If you cannot program the
microcontroller yourself, you can obtain
a ready-programmed device from our
Readers Services under order code
006504-1.
The main loop of the program starts
after the stack and the two timers have
been initialized, the timers have been
started and their interrupts have been
enabled. First, the timing for the ana-
logue joystick modules A and B (B is the
control cross or C button) are estab-
lished by the routines prepajoyt and
prepbjoyt, respectively. Timers T0 and
T1 are responsible for the timing of joy-
stick A, with T0 used for the X axis and
T1 for the Y axis. Timer T0 also manages
the Timeout Mode, which prevents the
program from getting stuck in a polling
loop if the Nintendo 64 controller is
unexpectedly disconnected or there is
an intermittent contact. In such a situa-
tion, it would otherwise not be possible
to initialize the Nintendo 64 controller
once it was reconnected without first
manually resetting the microcontroller.
The entire program is synchronized with
the slowest and least-flexible element,
the PC game port. The instruction jnb
JPYAX,* waits for the capacitors to be
discharged. Once the game port has

PC TOPICS —————————————— Elektor Electronics EXTRA 3 - 2/2000

K1

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

AT89C2051
-24PC

P3.2

P3.3

P1.0

P1.1 P3.0

P3.1

P3.4

P3.5

IC1
P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

P3.7

RST

X1 X2

20

10

12

13

14

15

16

17

18

19

11

5 4

2

3

1

6

7

8

9

R11

4x 10k

1

5 4 3 2

R8

220Ω

R7

220Ω

R6

220Ω

R5

220Ω

R4

470Ω

R3

470Ω

R2

470Ω

R1

470Ω

C5

100µ 16V

X1

24MHzC4

27p

C3

27p

C2

100n

joyax

joyay

joybx

joyby

joyb2

joyb1

joya2

joya1

C1

10µ
16V

R9

1
0

k

R10

2
k

2

D1

XO1

EN
1 5

4

8

OSC

24MHz

5V*
see text*

002007 - 11

5V

front view

Figure 1. A microcontroller, a pair of resistors and an oscillator are all you need for the
adapter circuit.

Table 1. Nintendo 64
serial status information

Byte 1
Bit 7 button A
Bit 6 button B
Bit 5 button Z
Bit 4 start button
Bit 3 control cross up
Bit 2 control cross down
Bit 1 control cross left
Bit 0 control cross right

Byte 2
Bit 7 unknown, always 0
Bit 6 unknown, always 0
Bit 5 button L
Bit 4 button R
Bit 3 button C up
Bit 2 button C down
Bit 1 button C left
Bit 0 button C right

Byte 3
analogue stick x

Byte 4
analogue stick y

done this, the microcontroller sets the
four potentiometer lines JOYAX/Y and
JOYBX/Y Low and starts timers T0 and T1
for JOYAX/Y, since these are assigned to
the analogue joystick. The control cross
or C button is assigned to JOYBX/Y. Ana-
logue values are also expected here,
so the timing is handled by the routine
joybtiming, due to the lack of addi-
tional timers in the microcontroller. With
the help of a few NOPs and nested
loops, the game port receives what it
expects here as well, and the JOYBX/Y
lines are set high again after appropri-
ate delays. The rate of advance in the
Y direction can be set to one of three
different levels by simple ‘switch-on,
switch-off’ logic. If the control cross or
the C button is used during a game for
forward or reverse motion, the L button
can be used to switch between ‘creep-
ing’, ‘walking’ and ‘running’. The duty
cycle range is thereby switched from its
default range of 58%–78% to either
48%–88% or 40%–97%.
After both software timers have timed
out, the program waits until the hard-
ware timers T0 and T1 have completed
their jobs and generated interrupts.
Once they have timed out, the JOYAX/Y
outputs are again set to High. Since the
program can easily get hung in the
subsequent time-critical portion, the
timer T0 interrupt is used as an ‘emer-
gency brake’ timeout in the routine Init-
tom. If the Nintendo 64 controller does
not respond within a predefined inter-
val, the program is restarted from the
beginning. The routine sendbyteA
sends the command $01 (Status Infor-
mation), and the following routine get-
bytes reads the four status bytes from
the Nintendo 64 controller. Bytes 1
through 4 land in registers R4 through
R7 for further processing. Before each

byte is read, precise bit synchronization
is established, following which the Time-
out Mode of Timer 0 is again deacti-
vated and the values that have just
been read in are interpreted in the rou-
tine handlebuttons. This works accord-
ing to the arrangement shown in
Table 2.
Repeatedly pressing the L button
changes the advance rate of the con-
trol cross up/down buttons or C button
in three steps.
Once the switch states have been eval-
uated and their status has been passed
on to the PC game port, the loop starts
from the beginning with the evaluation
of the analogue values that have been
read in. The routine calctiming normal-
izes and scales these values in terms of

processor cycles, and the resulting
data form the inputs for the next round,
which begins with the discharging of
the capacitors.

Playing around

In order for the new joystick to be used
with the PC under Windows 95/98, it
must be made known to the operating
system. You should find a joystick or
game controller icon under

4 - 2/2000 Elektor Electronics EXTRA —————————————— PC TOPICS

0
0
2
0
0
7
-1

C
1

C
2

C
3 C
4

C
5

D
1

F
3F4

IC1

K
1

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R10

R
11

X
1 XO

1

T

+
0

0
2

0
0

7
-1

0
0

2
0

0
7

-1

Figure 2. The printed circuit board for the Nintendo-64/PC adapter.

COMPONENTS LIST

Resistors:
R1-R4 = 470Ω
R5-R8 = 220Ω
R9 = 10kΩ
R10 = 2kΩ2
R11 = SIL-resistor array 4x10kΩ

Capacitors:
C1 = 10µF 16V radial
C2 = 100nF
C3,C4 = 27pF (*)
C5 = 100µF 16V radial

Semiconductors:
D1 = LED, low current
IC1 = AT89C2051-24PC (order code
006504-1)

Miscellaneous:
K1 = 15-way sub-D plug fr board edge
mounting
X1 or XO1 = quartz crystal, 24MHz,
fundametal resonance or 24MHz-
oscillator module (Seiko-Epson SG531P-
24MHz) (*)

(*) = see text

Figure 3. How to prevent an incorrect connection.

Settings/Control Panel. If you do not, the
necessary software must first be
installed. After this, the best approach
is to configure a new joystick with four
axes and four pushbuttons. During the
subsequent calibration, make sure that
the up/down buttons of the control
cross, or the C button, have been set to
the highest speed using the L button
(recognizable by the largest displace-
ment on the screen). The settings can
be saved with the name ‘N64’, for
example. This name may be needed
later to configure certain games. Older
(DOS) games only require calibration.
Some games (such as Unreal) offer an
extensive range of joystick settings,
which you will have to carefully study
and try out. In some cases, such as with
Half-Life, you will need a small joystick
configuration file that contains the con-
figuration data. The game looks for this
file in a particular folder when it is
started (for example,
c:\Sierra\HalfLife\valve). You can usually
find tips in the ReadMe files of the
games as well. Table 3 shows two typi-
cal configuration files.

Construction hints

Constructing the circuit, using the
printed circuit board shown in Figure 2,
should not present any difficulties. This
PCB is unfortunately not available
ready-made through our Readers Ser-
vices. Mount the microcontroller in a
good-quality socket. The choice
between a quartz crystal and an oscil-
lator module has already been dis-
cussed. If an oscillator module is used,
omit capacitors C3 and C4 (and of
course X1). Difficulties may arise with
the (various) controller plugs, since
matching sockets are hard to come by.
There are three possible solutions: (a)
cannibalize an old Nintendo 64 con-
sole, (b) cut off the plug and make up
an adapter cable with a three-way DIN
or Mini-XLR plug (with a mating con-
nector on the end of the cable), or (c)
improvise a solution using 1.3-mm
diameter solder pins to which short
lengths of wire are soldered, which in
turn can be soldered to the inputs of
the AT89C2051 (see Figure 3). To pro-
tect against a reverse-polarity connec-
tion, you should solder the pins to a
piece of prototyping board with a hole
spacing of 3.75 mm, and then use an
additional part (for example, a piece
of 3/4-inch plastic pipe, as shown) to
prevent the plug from being con-
nected incorrectly.

(002007)

PC TOPICS —————————————— Elektor Electronics EXTRA 5 - 2/2000

Table 2. Arrangement of the Nintendo-64/PC game
port signals

N64 Controller PC Gameport Line

button A Joy A button 1 JOYAB1
button B Joy A button 2 JOYAB2
button Z Joy B button 1 JOYBB1

button Start/R Joy B button 2 JOYBB2
analogue X-axis Joy A analogue x JOYAAX
analogue Y-axis Joy A analogue y JOYAAY

K/C left/right Joy B analogue x JOYBAX
K/C up/down Joy B analogue y JOYBAY

K=control cross, C=buttons

Table 3. Two typical joystick configuration files

// name joystick.cfg
// analog turn and look version
//
// x analog turn left/right
// y analog look up/down
// C move left/right
// C move forward/backward
// configure in game: A alternate fire, B duck, Z fire, R/Start jump
//
joyname ”N64”
joyadvanced 1
joyadvaxisx 4
joyadvaxisy 2
joyadvaxisz 1
joyadvaxisr 3
joyadvaxisu 0
joyadvaxisv 0
joyforwardsensitivity -1.0
joysidesensitivity 1.0
joypitchsensitivity -1.0
joyyawsensitivity -1.0
joyforwardthreshold 0.1
joysidethreshold 0.1
joypitchthreshold 0.1
joyyawthreshold 0.1
joyadvancedupdate

Alternative version:

// name joystick.cfg
// analog turn and move version
//
// x analog turn left/right
// y analog move forward/backward
// C look up/down
// C move left/right
// configure in game: A jump, B alternate fire, Z fire, R/Start duck
//
joyname ”N64”
joyadvanced 1
joyadvaxisx 4
joyadvaxisy 1
joyadvaxisz 2
joyadvaxisr 3
joyadvaxisu 0
joyadvaxisv 0
joyforwardsensitivity -1.0
joysidesensitivity 1.0
joypitchsensitivity 1.0
joyyawsensitivity -1.0
joyforwardthreshold 0.1
joysidethreshold 0.1
joypitchthreshold 0.1
joyyawthreshold 0.1
joyadvancedupdate

The objective of the running text display
project was to develop a simple, inex-
pensive design that would not be too
difficult to build and would be easy to
use. We intentionally decided not to
make the display as large as possible
or to implement a lot of different dis-
play modes, since these would require
a powerful microcontroller or a single-
board computer. The result is a circuit
that is controlled by an inexpensive
National Semiconductor microcon-
troller with 4 kB of ROM, and which can
be built using readily obtainable com-
ponents.

Conventional running text displays
normally have keyboards that are
directly cabled to the display units.
These keyboards are usually not laid
out the same as standard keyboards,
so programming is awkward and time
consuming. The keyboard matrix also
requires a relatively large printed circuit
board with expensive keys, which
makes it unsuitable for a DIY project.
The basic idea of this project is to use a
standard PC keyboard with an infrared
data link to the display unit. The running
text can then be conveniently pro-
grammed, with all the advantages of
using a standardised PC keyboard —
and this can be done up to 10 metres
away from the display.

The transmitter, with its attached key-
board, can also be employed as a
general-purpose unit for other (future)
projects, in order to simplify the con-

6 - 2/2000 Elektor Electronics EXTRA —————————————— PC TOPICS

It’s hard to keep track of how many running text dis-
plays you run across nowadays. You can find them
used as decorations in shop windows, as program-
mable signboards and as simple eye-catchers. If you
buy one ready-made, however, it’s fairly expensive,
and they are usually too complex for DIY construc-
tion. The running text display project in this article
combines a simple and inexpensive design with
repeatable construction and ease of use.

Design by K. Wohlrabe

running
text display
controlled by a COP-8 microcontroller

Technical specifications
Stored text: 508 characters maximumDisplayed text:

6 characters visibleusing 5 x 7 matrix elementsTransmitter range: approximately 10 mOperating voltage: 12 V (transmitter and receiver)

struction and operation of the equip-
ment. Only one port pin of the micro-
controller on the receiver side is
needed for decoding the information
from up to 128 keys.

The transmitter

The microcontroller in the transmitter
unit, whose schematic diagram is
shown in Figure 1, receives the serial
digital signals from the PC keyboard
and converts them into a protocol that
is sent to the display unit via infrared
light. The decoding of PC keyboard sig-
nals is described in another article,
elsewhere in this issue. The microcon-
troller in the transmitter unit selects scan
code set 3 after it has been reset,
switches on the Scroll LED of the key-
board as an indication that it is active,
suppresses the Break code for the
upper-case (shifted) keys and transfers
key codes to the display unit. The data
transfer employs a modulated 36 kHz
carrier, in order to provide noise immu-

PC TOPICS —————————————— Elektor Electronics EXTRA 7 - 2/2000

R4

1M

X1

10MHz

C1

33p

C2

33p

C4

220µ
16V

7805

IC2

5V

R2

1
0

0
k

R1

1
0
Ω

R3

4
7

0
Ω

T1

ZTX603

D1

TSUS
5201

IC3

ZSM560

DATA

5V

9V

9V

C3

100n

990090 - 12

2

3

1

5

4

K1

CLK

GND

+5V

43

1 2

65

DIN 5

1 DATA

3 GND

4 +5V

5 CLK

PS-2

COP8782

G7/CKO

G3/T10

G0/INT

RESET

G5/SK

G4/SO

G6/SI

IC1

CKI

19

L0

L7
14

15

L1

L2

L3
10

L4
11

L6
13

16

20

G1
18

G2

17

L5
12

6

7

54

8

9

2

1

3

JP1

*

see text*

rear view

rear view

KEYBOARD

KEYBOARD

990090 - 13

start bit 6 ms H,
6 ms L

data bit "1"
2 ms H, 4 ms L

data bit "0"
2 ms H, 1 ms L

stop bit
2 ms H

Figure 1. The input data transmitter contains only a COP-8 microcontroller and an
infrared transmitter module.

Figure 2. Timing diagram of the transmitter signal that modulates the 36-kHz carrier (this example is for the code 88H).

The microcontroller
The same type of microcontroller is used in the transmitter and the receiver. The specifica-
tions of this National Semiconductor IC make it an outstanding choice for this project:

➧ 4096 x 8 OTP EPROM
➧ 128 bytes of RAM
➧ 1 µs cycle time at 10 MHz
➧ 16-bit timer with the following operating modes:
➧ auto reload
➧ external event counter
➧ timer with capture function
➧ 16 I/O leads, of which 14 can individually be programmed as inputs or outputs
•➧ selectable pin configuration: tri-state, push-pull or pull-up
➧ Microwire interface
➧ interrupt sources: external with selectable edge, timer or software

The COP8782 microcontroller now has a successor, with the type designation COP8SAC7.
This has improved characteristics, but it is essentially pin-compatible and functionally com-
patible with the older version. There is a starter kit available, which unfortunately does not
allow real-time emulation, but which does allow OTP devices to be programmed. It also pro-
vides comprehensive insight into the possibilities of this inexpensive and technically inter-
esting microcontroller family. For somewhat more demanding projects that require the real-
time behaviour of the microcontroller to be tested, you have no other choice than to buy
an emulator if you do not want your projects to turn into endless trial-and-error sessions.

COMPONENTS LIST
(transmitter)

Resistors:

R1 = 10Ω

R2 = 100kΩ

R3 = 470Ω

R4 = 1MΩ

Capacitors:
C1,C2 = 33pF
C3 = 100nF

C4 = 220µF 16V

Semiconductors:
D1 = TSUB8201
T1 = ZTX603
IC1 = COP8782 (order code 996527-1)
IC2 = 7805
IC3 = ZSM560

Miscellaneous:
K1 = 5-way DIN socket 180° or PS2-

socket
X1 = 10MHz quartz crystal

nity. One start bit, eight data bits, one
parity bit and one stop bit are transmit-
ted. The microcontroller is clocked at
the relatively high rate of 10 MHz. This
enables it to correctly decode the ser-
ial data stream from the keyboard, and
to generate the 36 kHz carrier fre-
quency for the infrared diode, using
only software.

Figure 2 shows the timing diagram
of a sample character (with the code
88H) before modulation. The infrared
diode D1 is driven by the Darlington
transistor T1. In order to give the trans-
mitter a wide range, the value of the
current-limiting resistor R1 is intentionally
chosen to be on the low side, and a
high-efficiency LED is used. However, in
principle any type of infrared LED can
be used.

The short data packets, and the

resulting short ‘on’ times, prevent the
transistor from becoming overheated.
The reset IC (IC3) ensures that the
microcontroller always starts up prop-
erly. The current consumption of the
transmitter, including the connected
keyboard, is around 110mA. Since it is
used only infrequently, it can be pow-
ered from a 9 V battery, although a
mains adapter can also be used.

The receiver

The transmitted information is demodu-
lated by the infrared receiver IC4,
shown in Figure 3. This very sensitive IC,
which is specially tuned to work at the
36 kHz carrier frequency, contains a
photodiode, an amplifier stage, a filter
and a demodulator. Resistor R17 and
capacitor C5 form a supplementary

8 - 2/2000 Elektor Electronics EXTRA —————————————— PC TOPICS

TFMS5360

IC34
2

3

1

MATRIX 3

IC14

14

1013

2

7

1

5

8

9

643

MATRIX 3

IC20

14

1013

2

7

1

5

8

9

643

MATRIX 3

IC17

14

1013

2

7

1

5

8

9

643

MATRIX 3

IC16

14

1013

2

7

1

5

8

9

643

MATRIX 3

IC15

14

1013

2

7

1

5

8

9

643

MATRIX 3

IC19

14

1013

2

7

1

5

8

9

643

MATRIX 3

IC18

14

1013

2

7

1

5

8

9

643

74164
IC21

CLK CLR

121110 13

Q
A

Q
B

Q
C

Q
D

Q
E

Q
F

Q
G

Q
H

14

1

6543

2

A B

8 9

7 74164
IC22

CLK CLR

121110 13

Q
A

Q
B

Q
C

Q
D

Q
E

Q
F

Q
G

Q
H

14

1

6543

2

A B

8 9

7 74164
IC23

CLK CLR

121110 13
Q

A

Q
B

Q
C

Q
D

Q
E

Q
F

Q
G

Q
H

14

1

6543

2

A B

8 9

7 74164
IC24

CLK CLR

121110 13

Q
A

Q
B

Q
C

Q
D

Q
E

Q
F

Q
G

Q
H

14

1

6543

2

A B

8 9

7 74164
IC25

CLK CLR

121110 13

Q
A

Q
B

Q
C

Q
D

Q
E

Q
F

Q
G

Q
H

14

1

6543

2

A B

8 9

7

93C66CB1

IC33

DO

DI

CS

SK

X

X
2

1

4

8

5

3 6

7

R8

1M

X1

10MHz

C1

33p

C2

33p

T1
R10

750Ω

R2

47Ω

T2
R11

750Ω

R3

47Ω

T3
R12

750Ω

R5

47Ω

T4
R13

750Ω

R6

47Ω

T5
R14

750Ω

R1

47Ω

T6
R15

750Ω

R7

47Ω

T7
R16

750Ω

R4

47Ω

R9

1
0

0
k

R17

1
0

0
Ω

C4

100n

C5

10µ

B1

C6

2000µ

C7

2000µ

8x BC557

5V5V5V

5V

5V

5V5V5V5V5V

990090 - 11

1A

IC35

7805

IC27

ZSM560

COP8782C

G7/CKO

G3/T10

G0/INTRESET

G5/SK

G4/SO

G6/SI

IC26

CKI

19

L0

L7
14

15

L1

L2

L3
10

L4
11

L6
13

16

20

G1
18

G2

17

L5
12

6

7

54

8

9 2

1

3

ULN2803

IC28

1112131415161718

I1 I2 I3 I4 I5 I6 I7 I8

O1 O2 O3 O4 O5 O6 O7 O8

10

1 2 3 6 7 84 5

9 ULN2803

IC29

1112131415161718

I1 I2 I3 I4 I5 I6 I7 I8

O1 O2 O3 O4 O5 O6 O7 O8

10

1 2 3 6 7 84 5

9 ULN2803

IC30

1112131415161718

I1 I2 I3 I4 I5 I6 I7 I8

O1 O2 O3 O4 O5 O6 O7 O8

10

1 2 3 6 7 84 5

9 ULN2803

IC31

1112131415161718

I1 I2 I3 I4 I5 I6 I7 I8

O1 O2 O3 O4 O5 O6 O7 O8

10

1 2 3 6 7 84 5

9 ULN2803

IC32

1112131415161718

I1 I2 I3 I4 I5 I6 I7 I8

O1 O2 O3 O4 O5 O6 O7 O8

10

1 2 3 6 7 84 5

9

Figure 3. Circuit diagram of the receiver and seven-position LED display matrix.

pin L6

pin L5

pin L4

pin L3

pin L2

pin L1

pin L0

42
h

41
h

49
h

49
h

66
h

990090 - 14

Figure 4. How the numeral ‘3’ is represent-
ed on a 5 x 7 matrix display element.

low-pass filter, which guarantees error-
free reception. The microcontroller
(IC26) samples the signal every 400 µs.
Any transient interference that might be
present is suppressed by a special soft-
ware algorithm, which evaluates the
lengths of both the pulses and the inter-
vening gaps and compares them to
reference values. Finally, the software
computes the parity of the received
data and compares this to the state of
the received parity bit.

LED matrix display devices with a
5×7 matrix are used for representing
the characters. Although a LED matrix
display costs marginally more than a
set of 35 separate LEDs, it is significantly
easier to handle. Since not all of the
matrix diodes can be driven at the
same time, they must be switched on
sequentially using a multiplexing
process, which is not noticeable to the
user. Seven LEDs at most in one matrix
column, are illuminated at any one
time. Since the eye cannot respond as
fast as the individual segments are
switched on and off, it sees an image
consisting of 245 points (7×35).

Each display cycle starts with a high
level on the data input of the first shift
register (IC21). This high level lasts for
one clock period. The five cascaded
shift registers are clocked simultane-
ously every 400 µs under interrupt con-
trol, so that the active column moves
stepwise from QA of IC21 through to QH
of IC25. IC28 through IC32 are simple
driver ICs, which provide sufficient cur-
rent for the matrices. Every column of
the matrix is assigned to a RAM location
in the microcontroller. The information
to be displayed appears for 400µs on
the microcontroller outputs L0 through
L6, according to which column is being
driven. Transistors T1 through T7 are
used here as drivers. Due to the use of
multiplexing, the LEDs must be driven at
higher than usual current levels in order
to make them bright enough to be
seen in daylight. To obtain sufficient
brightness, you should use matrix dis-
plays with an optical efficiency of at
least 3 mcd at 20 mA.

The information for the running text
display is stored in a non-volatile 512-
byte serial EEPROM (IC33). In order to
allow the data to be quickly recalled,
the EEPROM is addressed via the
Microwire interface of the microcon-
troller at a clock frequency of 500kHz.
The PC keyboard delivers the scan
code of each key via the infrared inter-
face, for example the code 26H for the
numeral ‘3’. In order to display this
numeral on a 5×7 matrix, as shown in
Figure 4, the scan code is converted
using a look-up table, which in this
case yields the values 42H, 41H, 49H,
59H and 66H. These are applied to
each column in turn to display a ‘3’.
IC36 is a ZSM560, which produces the
power-on reset pulse for the microcon-
troller. The same type of IC is used in the
transmitter circuit.

The current consumption of the
receiver is around 25 mA when all dis-
plays are dark, and around 100 mA
(average) to 200 mA (peak) when the
display is operating. Here the use of a
small battery is not such a good idea.
A 12-V mains adaptor is a suitable

power source, or a small 12-V sealed
lead-acid battery (or a car battery)
can be used if the display must be
independent of the mains.

Operation

When the power is switched on, the
running text that was last entered is
automatically displayed. If no text has
yet been programmed, ‘ELEKTOR’
appears on the display. Connect the
transmitter to a PC keyboard and then
apply power to it. If the transmitter is
working properly, the Scroll LED should
be illuminated on the keyboard. Press
the F2 key to clear the display and
cause a cursor to appear. You can
now enter the desired text. Press the
Shift key briefly to switch between
lower-case and upper-case charac-
ters. This will cause the appearance of
the cursor to change. Incorrectly
entered characters can be deleted
using the Backspace key, up to the first
character entered. It is not possible to
erase previously entered characters; if
this is necessary, press the Esc key to
end the current entry session and then
press F2 to start anew. Press Enter when
you have finished entering the text.
After this, the running text display will
start automatically.

After each text display cycle, the
time of day is automatically displayed
for about 15 seconds. The time can be
set using the F1 key. If you do not want
this alternating display mode, you can
use the F3 and F4 keys to select a dif-
ferent mode. The meanings of the key-
board keys are explained in the ‘Key-
board Input’ box. Since the microcon-
troller does not have a real-time clock
with a separate 32-kHz crystal, the
clock keeps relatively poor time, due to
the high clock frequency and the tol-
erance of the crystal. A small trimmer
capacitor in place of C1 can help to
improve the situation.

(990090-1)

Design editing: K. Walraven

PC TOPICS —————————————— Elektor Electronics EXTRA 9 - 2/2000

Keyboard input
Esc: Cancel input

F1: Enter the time of day

F2: Enter the running text

F3: Running text only (on/off)

F4: Time of day only (on/off)

Shift: Switch between upper and lower case

Return: End the entry session and start the running text display

Delete: Erase the character in the input window

COMPONENTS LIST
(receiver)

Resistors:

R1-R7 = 47Ω

R8 = 1MΩ

R9 = 100kΩ

R10-R16 = 750Ω

R17 = 100Ω

Capacitors:
C1,C2 = 33pF
C4 = 100nF

C5 = 10µF 16V
C6 = 2000µF 25V (or 2200µF 25V)
C7 = 2000µF 16 V (or 2200µF 16V)

Semiconductors:
B1 = bridge rectifier B80C1000 (80V piv,

1A)
T1-T7 = BC557
IC14-IC20 = see text
IC21-IC25 = 74164
IC26 = COP8782C

(order code 996527-2)
IC27 = ZSM560
IC28-IC32 = ULN2803 (Sprague)
IC33 = 93C66CB1 (ST-Microelectronics)
IC34 = TFMS5360
IC35 = 7805

Miscellaneous:
Mains adaptor socket
Small heatsink for IC35
X1 = 10MHz quartz crystal
Disk. source code file, order code

996032-1

In the circuit diagram, Figure 1, SW1 is
a 16-pin 8-way DIL switch and is fitted
into a 16 way DIL socket (more about
this later). The common side of the
switch is grounded and the switched
side is pulled up to +5V via a 4.7 kΩ SIL
resistor network (R1). This is then con-
nected to K1 (which is a doubled up
10-way SIL header or 20-way IDC
header), and from there to the inputs of
IC1, a 74LS245 which is configured as
a buffer. The outputs of IC1 are con-
nected to both K2 and the inputs of

IC2. IC2 is a ULN2801A, which is an
octal Darlington driver chip with open
collector outputs. The outputs of IC2 are
available on K3.
Operation of SW1 will result in a TTL out-
put on K2, or an open collector output
on K3. As can be seen from Table 1,
the pin-out for K2 and K3 are virtually
the same with the exception of the
extra terminal (pin 11) on K3. The
ULN2801A (IC2) incorporates internal
protection diodes for driving inductive
loads — like relays. These internal

diodes are commoned together on pin
10 of IC2 and should be connected to
the voltage supply of the load. This will
‘shunt’ any inductive kicks created by
switching the load, back into the load’s
power supply away from the circuit
itself.
The circuit can be powered via pins 1
(+5 V) and 2 (0 V) of K2 or K3 and pin
11 of K3 as required, depending upon
the application.
The main circuit also includes a simple
logic indicator. If the circuit to be mon-

10 - 2/2000 Elektor Electronics EXTRA —————————————— PC TOPICS

This design was originally ‘knocked together’ to test
out a prototype DAC circuit to allow the digital codes
to be entered manually. The circuit was later modi-
fied to test an opto-isolated low side switch which
required an open collector transistor driver. The final
circuit combines the virtues of both designs.

Hardware design: Adrian Grace

74LS245

IC1

3EN2

3EN1

11

12

13

14

15

16

17

18

19
G3

2

3

4

7

8

9

5

6

1

1

2

2801A

IC2

VEE

+VS

ULN

11

12

13

14

15

16

17

18
I1

I2

I3

I4

I5

I6

I7

I8

O1

O2

O3

O4

O5

O6

O7

O8

10

1

2

3

6

7

8

4

5

9

12345678

K2

910

K3

10 111 2 3 4 5 6 7 8 9

D1 D2 D3 D4 D5 D6 D7 D8

K1

10

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

R1 8x 4k7 1

2 3 4 5 6 7 8 9

SW1

K4

1

2

3

R2 8x 470Ω

1

2 3 4 5 6 7 8 9

16 15 14 13 12 11 10 9

1 2 3 4 5 6 7 8

002005 - 11

byte generator
for testing DACs and digital controls

Figure 1. Circuit diagram of the byte generator.

itored is connected to K1, a series of
eight LEDs connected to the open-col-
lector outputs of IC2 shows the circuit’s
status. Connector K4 allows the LED
supply voltage to be selected. A link
between pins 2 & 3 for +5 V operation,
and between pins 1 & 2 for an external
voltage source.

Extensions

With a simple extension, this circuit can
be modified to include an external
clock source — see Figure 2.
If the 8-way switch is removed (or
ensured that all switches are open) and
a daughter board is plugged into K1,
the main circuit can be driven by a
clock source, rather than manually.
The external clock source is connected
to the main board via a 20-way ribbon
cable. I found it easier to use a 20-way
IDC ribbon cable connection (2 × 10)
even though the 10 signal lines are
doubled-up, than attempt to use a 10
way crimp connector version (1 × 10).
The cable is terminated at the clock
source board by a 20-way transition,
and at the main board end in a stan-
dard 20-way IDC connector.
The clock source itself is based around
IC1, a 74HCT4040. This is a +5 V TTL
output version of the standard CMOS
4040 chip. Eight sequential outputs, Q0
through Q7 (CT0 through CT7) are fed
to the ribbon cable connection whilst
Q8 through Q11 (CT8 through CT11) are
not connected. IC1 is reset on power-
up via R1-C1, and D9 discharges C1
on power down.
The (TTL-level) clock source is con-
nected to GND and CLOCK. Depend-
ing on the frequency required, con-
necting a length of wire to CLOCK may
be used as a simple clock source by
relying on mains pick-up.

(002005-1)

Article editing: Jan Buiting

PC TOPICS ————————————— Elektor Electronics EXTRA 11 - 2/2000

Table 1. Connector pin functions

K1 pin # Function K2 pin # Function K3 pin # Function
1,2 + 5 V 1 + 5 V 1 + 5 V
3,4 DI-1 2 0 V 2 0 V
5,6 DI-2 3 D0-1 3 D0-1
7,8 DI-3 4 D0-2 4 D0-2
9,10 DI-4 5 D0-3 5 D0-3
11,12 DI-5 6 D0-4 6 D0-4
13,14 DI-6 7 D0-5 7 D0-5
15,16 DI-7 8 D0-6 8 D0-6
17,18 DI-8 9 D0-7 9 D0-7
19,20 0 V 10 D0-8 10 D0-8

11 V+

CTR12

IC1

CT=0

4040
HCT

10

11

13

15

14

12

11

10

CT
74

16

4

2

3

5

6

7

9

1

+ 9

8

7

6

5

4

3

2

1

0

8

K5

10

11

12

13

14

15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

C2

100n

C1

100n

D9

1N4148

R1

4
k

7

CLOCK

002005 - 12

Figure 2. Optional clock extension circuit for connecting to K1 of the byte generator circuit.

COMPONENTS LIST

Resistors:
R1 = 8 × 4K7Ω SIL resistor pack
R2 = 8 × 470Ω SIL resistor pack

Integrated Circuits:
IC1 = 74LS245 or 74HCT245
IC2 = ULN2801A

Miscellaneous:
D1-D8 = 5 mm ↔ 2mm wide LED, high
efficiency
K1 = 20 way IDC connector
K2 = 10 way SIL pin header
K3 = 11 way SIL pin header
K4 = 3 way SIL connector with jumper
16 way turned pin DIL socket

COMPONENTS LIST
Clock divider extension

Resistor:
R1 = 4k7Ω

Capacitor:
C1 = 100nF

Semiconductor:
D9 = 1N4148

Integrated Circuit:
IC1 = 74HCT4040

Miscellaneous:
K4 = 20 way DIL transition
K5 = 20 way IDC
20 way ribbon cable

In addition to the ready availability, low
cost and accustomed manner of use
of a PC keyboard, connecting a PC
keyboard directly to a microcontroller
system has the advantage that it
makes valuable port pins available that
otherwise would be used for polling a
keyboard built from individual compo-
nents. A PC keyboard, by contrast, pro-
duces a serial signal, and is thus an

ideal complement to a microcontroller
project. Of course, the manner in which
the signal from the PC keyboard is con-
structed has a few special features.
Two lines are used for the serial data
transfer. One of these, labelled data,
transfers the data, while the second
one transfers the clock. The serial data
transfer protocol, which is fairly com-
plex, is explained below.

Key codes
The most widely-used type of keyboard
is the MF2 model (‘multi-functional ver-
sion 2’). It was originally developed by
IBM for computers in the XT, AT and PS/2
series. This model has become an
industry standard in the meantime, and
almost all PCs are equipped with it. The
keyboard itself contains a ‘keyboard
controller’, which generates the key

12 - 2/2000 Elektor Electronics EXTRA —————————————— PC TOPICS

…and couldn’t find anywhere, you will find in this Elektor arti-
cle (and where else would you find it?). It’s a natural idea to
use a PC keyboard for developing microcomputer applica-
tions, for example, in order to send commands or respond to
specific actions. Why go to the trouble of building your own
keyboard when you can use a ready-made (and inexpen-
sive) PC keyboard? The only problem is that you first have to
know exactly what signals a PC keyboard supplies.

By F. Wohlrabe

PC keyboard encoding
Everything you ever wanted to know about
the signals from a PC keyboard…

codes and provides for communication
with the keyboard interface of the PC.
The keyboard controller is usually a
mask-programmed microcontroller.
Data are sent and received according
to the IBM protocol. Commands can
be used to control the LEDs, specify the
delay and rate for key repetition, and
select the scan code set. The MF2 key-
board has three different scan code
sets. Set 1 is used by XT/PC and PS/2-30
compatible computers, while set 2 is
used by AT computers and all other
PS/2-compatible computers. Set 3 sup-
ports workstations and terminal emula-
tion on the PC. Country-specific key-
board drivers in the operating system
translate each key press into the
desired character.
When a key is pressed, the keyboard
produces a Make code. This code cor-
responds to the scan code for that key.
The repeat function causes the Make
code to be continuously repeated if
the key is held down long enough. The
delay time and repetition rate of the
repeat function are programmable.
When a key is released, the keyboard
produces a Break code. However, if
scan code set 3 is selected, no Break
code is generated and the repeat
function is disabled. After a reset, the
keyboard selects scan code set 2 as a
default.

You should bear in mind that a PC/XT
keyboard cannot be programmed,
since its internal controller cannot
accept data. Only with the introduction
of the AT computer did the keyboard
become more user-friendly, since the
behaviour of an AT keyboard can be
adapted to the needs of the user via
software. The following information
relates to a keyboard that is set to oper-
ate in the AT mode.

Sending and receiving

Figure 1 shows the pin assignments of
the two commonly-used keyboard
plugs (the 5-pin DIN plug and the 6-pin
PS/2 plug). The keyboard is powered
with 5 V from the PC. Its maximum cur-
rent consumption is around 200 mA.
In general, the clock rate is set by the
keyboard. It lies in the range of 10 to
16.7 kHz. Data are sent using a start bit
(always 0), eight data bits with bit 0 first,
an odd-parity bit and a stop bit (always
1). Figure 2 shows the data transfer tim-
ing diagram.
If an external device or system (which
is normally a PC) wants to send data to
the keyboard, the keyboard recognizes
this by the fact that the data line is
pulled to earth by the external device

(the PC). The keyboard responds by
sending the clock signal, and it expects
the data to be sent synchronized to the
clock signal. After the data transfer, the
data line must exhibit a High level,
which acts as the stop bit. The key-
board will continue to send the clock
until this condition is satisfied. Following
this, the command FEH is sent to request
a new data packet. Data are
accepted on the rising edge of the
clock signal. After the stop bit has been
detected, the keyboard controller
holds the data line Low for the duration
of one bit period. The keyboard
answers every command that it
receives, within at most 20 ms, by send-
ing the byte FAH (ACK), except for the
ECHO and RESET commands.
The keyboard sends data in the AT for-
mat to an external device using the fol-
lowing process.
Before sending data, the keyboard
controller first tests whether the clock or

data line is at earth level. Communi-
cations can be blocked by holding the
clock line Low. In this case, the key-
board holds the data to be sent in an
internal buffer. The keyboard can send
data only if both the clock and data
lines are at a High level. It then sets the
data line Low (for the start bit) and
generates the clock signal. The data
are valid on the falling edge of the
clock signal and change after the ris-
ing edge.

In order to implement a MF2 keyboard
connection in a microcomputer sys-
tem, you will also need to know certain
information regarding the most impor-
tant commands and return codes for
an AT keyboard. These are described in
the following section. The key codes,
which are the codes that the keyboard
produces according to the selected
scan-code set when keys are pressed,
are listed in Table 1.

PC TOPICS ————————————— Elektor Electronics EXTRA 13 - 2/2000

DATA

CLK

GND +5V

DIN 5

DATA

GND+5V

CLK

PS-2

4 3

12

6 5

2

31

54

002008 - 11

keyboard keyboard

1keyboard clock

keyboard data

external data

2 3 4 5 6 7 8 9 10 11

Start
Bit Stop

Bit
LSB MSB Parity

Start
Bit LSB MSB Parity Stop

Bit

keyboard pulling low 002008 - 12

Figure 1. Pin assignments of the standard PC keyboard connectors (viewed from the front).

Figure 2. Timing diagram for serial data transfers between the keyboard and a PC.

The most important commands
SET/RESET MODE INDICATORS → code EDH
This two-byte command controls the behaviour of the LEDs.
Command: EDH
Command: 0000 0xxx
Bit 0: Scroll lock
Bit 1: Num lock
Bit 2: Caps lock
1 = LED on, 0 = LED off

Programming example
In conclusion, the manner in which a
(microcontroller) system should address
an AT keyboard can be illustrated with
a simple programming example.
When the 5-V supply voltage is
switched on, +5 V is applied to the key-
board. The keyboard controller in the
keyboard then executes a self-test. If
this is completed successfully, the key-
board sends the byte AAH.

Next comes the selection of the scan
code set. In this example, scan code
set 3 is selected using the SCAN CODES
SELECT command, as follows:

1 Pull the data line to earth.
2 Send the command code F0H, syn-
chronous to the clock.
3 The keyboard sends the code FAH
(ACK) as confirmation.
4 Pull the data line to earth.
5 Send the command code 03H, syn-
chronous to the clock.
6 The keyboard sends the code FAH
(ACK) as confirmation.

Now a key can be pressed, and the
key code from the scan code 3 set
(see Table 1) will be received:

7 Press ‘G’ on the keyboard.

8 The keyboard sends the code 34H.
A practical application example of the
use of a PC keyboard with a microcon-
troller system is “Text Running Line Dis-
play” elsewhere in this Supplement. In
this example, a common or variety PC
keyboard is used for entering text to be
displayed on an LED running-line dis-
play. Keyboard decoding is handled
by a COP-8 microcontroller, and the
data transfer to the running-line display
uses an infrared link. The photo at the
head of this article shows a small circuit
board holding the keyboard decoder
and IR transmitter.

(002008-1)

ECHO → code EEH
The keyboard answers this command with EEH. It can be
used to confirm the presence of a keyboard.

SCAN CODES SELECT → code F0H
This two-byte command selects the scan code set. Scan
code set 2 is selected by default after a reset. However,
scan code set 3 recommends itself for microcontroller
applications, due to its simplicity. With scan code set 3, no
Break code is sent for almost all keys and the repeat func-
tion is disabled.
Command: FOH
Command: 0000 00xx
01 = scan code set 1
10 = scan code set 2
11 = scan code set 3

READING ID CODE → code F2H
In response to this command, the keyboard sends three
bytes which contain a manufacturer-specific code.
1st byte = FAH (ACK)
2nd byte = xxxx xxxx
3rd byte = xxxx xxxx

SET TYPEMATIC RATE/DELAY → code F3H
This two-byte command controls the key repeat rate and
the delay for starting key repetition.
Command: F3H
Command: 0xxx xxxx
Bits 5 and 6 control the delay, which ranges from 150 ms to
1 s.
Bit 6 Bit 5 Delay (± 20%)
0 0 150 ms
0 1 500 ms
1 0 750 ms
1 1 1 s
Bits 0 through 4 control the repetition rate, which ranges
from 2 to 30 Hz. In the following table, only three values are
shown as examples.
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Frequency (± 20%)
0 0 0 0 0 30 Hz
0 1 1 1 1 8 Hz
1 1 1 1 1 2 Hz

SET ALL KEYS → codes F7H, F8H, F9H, FAH
These commands assign attributes to the keys, as follows:
• F7H: all keys have the repeat function
• F8H: all keys produce Make and Break codes
• F9H: all keys produce only a Make code
• FAH: all keys have the repeat function and produce
Make and Break codes

RESET → code FFH
This command restores all keyboard settings to their default
values.

The most important return codes

BAT COMPLETION → code AAH
This byte is sent to the external system after the supply volt-
age has been applied or a reset command (FFH) has been
recognized. In indicates correct execution of the keyboard
self-test.

RESEND NAK → code FEH
This byte is sent in response to a data transfer error.

ACK → code FAH
This byte is sent to the external device in response to each
received command.

OVERRUN → code 00H/FFH
All key presses are stored internally in the keyboard until
their codes can be serially transferred to the external
device. If the storage buffer overflows, the byte 00H is sent
for scan code sets 2 and 3, while the byte FFH is sent for
scan code set 1.

BREAK CODE PREFIX → code F0H
With scan code set 2, the byte F0H is sent before the Break
code.

14 - 2/2000 Elektor Electronics EXTRA —————————————— PC TOPICS

PC TOPICS ————————————— Elektor Electronics EXTRA 15 - 2/2000

Table 1.
The key codes produced when keys are pressed, for each of the three scan code sets.

Symbol Scan code set 1 Scan code set 2 Scan code set 3

Make Break Make Break Code Type

^ 29 A9 0E F0-0E 0E T

1 02 82 16 F0-16 16 T

2 03 83 1E F0-1E 1E T

3 04 84 26 F0-26 26 T

4 05 85 25 F0-25 25 T

5 06 86 2E F0-2E 2E T

6 07 87 36 F0-36 36 T

7 08 88 3D F0-3D 3D T

8 09 89 3E F0-3E 3E T

9 0A 8A 46 F0-46 46 T

0 0B 8B 45 F0-45 45 T

ß 0C 8C 4E F0-4E 4E T

‘ 0D 8D 55 F0-55 55 T

← Back 0E 8E 66 F0-66 66 T

|← →| Tab 0F 8F 0D F0-0D 0D T

Q 10 90 15 F0-15 15 T

W 11 91 1D F0-1D 1D T

E 12 92 24 F0-24 24 T

R 13 93 2D F0-2D 2D T

T 14 94 2C F0-2C 2C T

Z 15 95 35 F0-35 35 T

U 16 96 3C F0-3C 3C T

I 17 97 43 F0-43 43 T

O 18 98 44 F0-44 44 T

P 19 99 4D F0-4D 4D T

Ü 1A 9A 54 F0-54 54 T

+ 1B 9B 5B F0-5B 5B T

CapsLock 3A BA 58 F0-58 14 M,B

A 1E 9E 1C F0-1C 1C T

S 1F 9F 1B F0-1B 1B T

D 20 A0 23 F0-23 23 T

F 21 A1 2B F0-2B 2B T

G 22 A2 34 F0-34 34 T

H 23 A3 33 F0-33 33 T

J 24 A4 3B F0-3B 3B T

K 25 A5 42 F0-42 42 T

L 26 A6 4B F0-4B 4B T

Ö 27 A7 4C F0-4C 4C T

Ä 28 A8 52 F0-52 52 T

2B AB 5D F0-5D 53 T

Return 1C 9C 5A F0-5A 5A T

Shift l. 2A AA 12 F0-12 12 M,B

< 56 D6 61 F0-61 13 T

Y 2C AC 1A F0-1A 1A T

X 2D AD 22 F0-22 22 T

C 2E AE 21 F0-21 21 T

V 2F AF 2A F0-2A 2A T

B 30 B0 32 F0-32 32 T

N 31 B1 31 F0-31 31 T

M 32 B2 3A F0-3A 3A T

, 33 B3 41 F0-41 41 T

. 34 B4 49 F0-49 49 T

- 35 B5 4A F0-4A 4A T

Shift r. 36 B6 59 F0-59 59 M,B

Ctrl l. 1D 9D 14 F0-14 11 M,B

Alt l. 38 B8 11 F0-11 19 M,B

Space 39 B9 29 F0-29 29 T

Num 45 C5 77 F0-77 76 M

7 Nb 47 C7 6C F0-6C 6C M

4 Nb 4B CB 6B F0-6B 6B M

1 Nb 4F CF 69 F0-69 69 M

/ Nb E0-35 E0-B5 E0-4A E0-F0-4A 77 M

8 Nb 48 C8 75 F0-75 75 M

5 Nb 4C CC 73 F0-73 73 M

2 Nb 50 D0 72 F0-72 72 M

0 Nb 52 D2 70 F0-70 70 M

* Nb 37 B7 7C F0-7C 7E M

9 Nb 49 C9 7D F0-7D 7D M

6 Nb 4D CD 74 F0-74 74 M

3 Nb 51 D1 7A F0-7A 7A M

Del Nb 53 D3 71 F0-71 71 M

- Nb 4A CA 7B F0-7B 84 M

+ Nb 4E CE 79 F0-79 7C M

Enter E0-1C E0-9C E0-5A E0-F0-5A 79 T

Esc 01 01 76 F0-76 08 M

F1 3B BB 05 F0-05 07 M

F2 3C BC 06 F0-06 0F M

F3 3D BD 04 F0-04 17 M

F4 3E BE 0C F0-0C 1F M

F5 3F BF 03 F0-03 27 M

F6 40 C0 0B F0-0B 2F M

F7 41 C1 83 F0-83 37 M

F8 42 C2 0A F0-0A 3F M

F9 43 C3 01 F0-01 47 M

F10 44 C4 09 F0-09 AF M

F11 57 D7 78 F0-78 56 M

F12 58 D8 07 F0-07 5E M

PrtSc
E0-2A-E0-
37

E0-B7-E0-
AA

E0-12-E0-
7C

E0-F0-7C-
E0-F0-12

57 M

Scroll Lock 46 C6 7E F0-7E 5F M

Pause
E1-1D-45-
E1-9D-C5

no
break code

E1-12-77-
E1-F0-14-F0-
77

no
break code 62 M

Insert E0-52 E0-D2 E0-70 E0-F0-70 67 M

Del E0-53 E0-D3 E0-71 E0-F0-71 64 T

← E0-4B E0-CB E0-6B E0-F0-6B 61 T

Home E0-47 E0-C7 E0-6C E0-F0-6C 6E M

End E0-4F E0-CF E0-69 E0-F0-69 65 M

↑ E0-48 E0-C8 E0-75 E0-F0-75 63 T

↓ E0-50 E0-D0 E0-72 E0-F0-72 60 T

PgUp E0-49 E0-C9 E0-7D E0-F0-7D 6F M

PgDn E0-51 E0-D1 E0-7A E0-F0-7A 6D M

→ E0-4D E0-CD E0-74 E0-F0-74 6A T

Nb = numeric block
M = Make code when key pressed
B = Break code when key released
T = Typematic repeat function with delay & make

Symbol Scan code set 1 Scan code set 2 Scan code set 3

Make Break Make Break Code Type

11Elektor Electronics 2/2000

We can only answer questions or remarks of general interest to our readers, concerning projects not older than

two years and published in Elektor Electronics. In view of the amount of post received, it is not possible to

answer all letters, and we are unable to respond to individual wishes and requests for modifications to, or addi-

tional information about, Elektor Electronics projects.

P.O. Box

190

When Electronics was
Young (9)
Dear Editor — in the Novem-
ber 1999 issue of Elektor the
above interesting series has a
brief note on Guglielmo Mar-
coni that is misleading.
Marconi’s early experiments
were carried out in Italy not
England. He established that
communication using electro-
magnetic waves was possible
at the age of 20 experimenting
at his parent’s estate near
Bologna. He moved to England
as the Italian government
showed no interest in his
invention and his English moth-
er felt he would be more likely
to achieve success in her
mother country. At the time,
this country was a leading mar-
itime nation and there was no
means of communicating with
ships once they were out of
sight of land.
It was in England that Marconi
filed his patent applications,
supported by the chief engineer
of the Post office, Sir William
Preece.
To call Marconi a ‘physicist’ is
a gross insult. If he had been a
physicist, he would be unlike-
ly to have achieved transat-
lantic communication. The
physicists of the day held the
view that electromagnetic
waves travelled in straight lines
and were absorbed by land and
water. The curvature of the
ear th created a 50 mile high
mountain of water across the
Atlantic Ocean so no waves
coild possibly reach the New
World. Marconi with no formal
education ignored the ‘experts’
and was successful. Neither
the physicists nor Marconi
knew about the existence of the
ionosphere which convenient-
ly reflected his waves from
Poldhu to St. Johns.
Beware of exper ts!
Guy Selby-Lowndes

Our contributor replies as fol-
lows.
”Interpretation of certain aspects
of history can be contentious. In

the Encyclopaedia
Britannica, Marconi’s entry
reads ‘Italian physicist and
inventor of successful sys-
tem of radio telegraphy.
Received Nobel Prize for
Physics in 1909’. Similarly,
Chambers Dictionary of
Scientists lists Marconi as
‘Marconi, (Marquis),
Guglielmo, 1874-1937,
Italian physicist and engi-
neer, pioneer of radioteleg-
raphy’. In line with these
two renowned publica-
tions, I, too, have called
Marconi a physicist.”
”Owing to the shortness of
the article, I could not
include the fact that
Marconi had started his
experiments in Italy.
However, his main experiments
were carried out in England.
While still a physics student at
Leghorn technical school,
Marconi in 1894 demonstrated
the possibility of sending wire-
less signals over a distance of a
distance of some 150 metres at
his father’s estate near Bologna.
However, since he found nobody
in Italy interested in his experi-
ments, he and his Irish mother
travelled to England a year later.
There, in 1896, he demonstrated
a transmission of wireless sig-
nals over a distance of three
miles between Flatholm Island in
the Bristol Channel and Penarth.
He filed his first patent applica-
tion for wireless telegraphy at the
London Patent Office on 2nd
June 1896. In 1897, he transmit-
ted wireless signals over a dis-
tance of eight miles across the
Bristol Channel. This experiment
drew the attention of Sir William
Preece, the chief engineer of the
post office, as well as of the
Press. In 1899, he transmitted
Morse code across the English
Channel, which attracted atten-
tion from the Admiralty, resulting
in the installation of radio wire-
less equipment on Royal Naval
ships. In 1901, he transmitted
across the Atlantic from Cornwall
to Newfoundland. His pioneering
work was rewarded by the award

(shared) of the Nobel Prize for
Physics in 1909.”
”It is a debatable point whether
or not Marconi or his fellow
physicists and engineers knew
about the ionosphere. Michael
Faraday’s experiments in the
1840s and 1850s demonstrated
a clear connection between
magnetism and electricity.
Faraday’s friend and colleague,
James Clark Maxwell, confirmed
and explained Faraday’s experi-
mental results by a mathematical
theory. Maxwell’s calculations
showed that magnetic and elec-
tric fields affect each other, and
that light is a form of electro-
magnetic waves. Some tradition-
al physicists adhered to the
belief that light was a mechanical
phenomenon.”
”The conflict caused by
Maxwell’s hypothesis that elec-
tromagnetic waves are propagat-
ed at the speed of light lasted for
many years, until in 1888
Heinrich Hertz, Professor at the
Technical College in Karlsruhe,
finally closed the debate on the
wave character of light. He
demonstrated that the electric
sparks produced by him caused
electrical vibrations which were
propagated into space at the
speed of light.”
”During a cross-Atlantic trip,
Marconi had already noticed that
telegraph messages could be

received over distances of
up to 700 miles by day, but
at up to 2000 miles by
night. This discovery
prompted Oliver Heaviside,
an English physicist, and
Arthur Edwin Kennelly, an
American electrical engi-
neer, independently and
simultaneously to publish
their prediction of the exis-
tence of an electrically
conductive layer in the
upper atmosphere that
allows radio waves to fol-
low the earth’s curvature
instead of travelling in a
straight line as predicted
by a number of mathemati-
cians. The predictions of
Heaviside and Kennelly
were demonstrated in

1925 by Sir Edward Victor
Appleton, an English physicist
who, in 1947, was awarded the
Nobel Prize for Physics for his
contribution in the exploration of
the ionosphere”.
”Today, we know that the ionos-
phere is a region of the earth’s
atmosphere at a height of 30-
300 miles where short-wave
radiation from the sun partly ion-
izes gas molecules and atoms,
leaving them positively charged.
The ionized layers reflect short-
wavelength radiowaves, which
makes long-distance radio com-
munication possible. The ionos-
phere is layered according to the
concentration of free electrons,
called D and E layers (also called
the Heaviside or Kennelly layers,
depending on which side of the
Atlantic the term is used), which
result from molecular ionization,
and the upper layer, termed F
layer or Appleton layer, which
results from atomic ionization.
The thicknesses of the layers
vary with latitude, season, time
of day, and solar activity”.
”Since much of the research into
propagation was going on and
published while Marconi, Braun,
Slaby, and Arco, were conduct-
ing their experiments in England
and Germany, it is extremely like-
ly that they read about it.”

Elektor Electronics 2/2000

The 2-metre radio amateur band is still
the most popular band worldwide. It
extends from 144 to 146 MHz in most
European countries, and from 144 to
148 MHz is some other countries like
the U.S.A. and Australia. Traditionally,
the band is associated with short-range
communication over distances of up to
50 miles or so using narrow-band fre-
quency modulation (NBFM) and
power levels up to about 50 watts. This
is also called ‘local traffic’ by some
radio amateurs. Thanks to the rela-
tively short antenna lengths and gen-
eral profusion of cheap Japanese high-
tech rigs and converted PMR kit, the 2-

m band is also the place to be for
mobile and portable communication,
witness the presence of amateur-built
and operated repeater stations in many
countries and areas.

The lower part of the 2-metre
band is reserved for narrow-band
modes like CW (Morse) and SSB (sin-
gle-sideband). Mainly because of the
smaller bandwidth and resultant bet-
ter signal-to-noise ratio for weak sig-
nals, these modes offer far greater
ranges than NBFM. The ‘sound’ of
the band section between say
144.000 MHz and 144.400 MHz is
therefore not unlike that of a short-

If you have a gen-
eral coverage

shortwave receiver
available and
would like to

extend its fre-
quency range with

the two-metre
amateur radio

band, the present
design is for you.

Easy to build from
low-cost parts, the

converter should
make an excellent
entry-level project
for budding radio
enthusiasts. The

converter is also a
prefect companion
to the general-cov-

erage multi-mode SW
receiver described last
year in this magazine.

16

Design by G. Baars

2-metre band
converter

capture 144 MHz DX signals

RADIO, TELEVISION & VIDEO

wave band like 10 metres (28 MHz).
Provided you use a good directional
antenna (like a yagi) you should be
able to pick up the CW idents of low-
power beacons as well as CW and
SSB signals from stations far beyond
the range of NBFM.

W H Y A C O N V E R T E R ?
Many beginners to the radio hobby
start will start out with a second-hand
shortwave receiver. This will typically
be a general-coverage type for
CW/USB/LSB/AM/RTTY reception
between 150 kHz and 30 MHz. The
Yaesu FRG-7 is an excellent example of
such a receiver, and although its design
is 25 years old, it is still in popular
demand in the radio amateur trade.
The same beginners will also lack the

funds (and a licence) to buy an
all-mode VHF transceiver, so
why not add 2-metre band
reception to the available short-
wave receiver? With some luck,
this has an NBFM mode, too, so
you can also listen to ‘local’ traf-
fic and get to know the hams in
your area.

It should be noted that recep-
tion of DX (long-distance) sig-
nals in the 2-metre band
requires a good directional
antenna with a gain of at least
10 dB and low-loss coax cable to
the receiver (or converter)
input. Whatever low-noise pre-
amplifier you may have in
mind, experience shows that it
is beaten hands down by a
good antenna in an elevated
position.

Following a well-established
tradition in ham radio, the pre-
sent converter mixes the 2-
metre band signals down to the
10-metre band (28.0-29.7 MHz).

H O W I T W O R K S
The circuit diagram of the 2-
metre band converter is given
in Figure 1. As you can see it
employs only five active com-
ponents, and these are all of the
common or garden variety.

The design consists of four sections,
a local oscillator, a mixer, an input
stage, and an output stage which will
be discussed separately below.

Local oscillator (LO)
Transistor T1 and quartz crystal X1 are
configured as an oscillator with an out-
put frequency of 38.667 MHz. The crys-
tal operates in third-overtone mode.
Trimmer C1 is available to net the oscil-
lator. The oscillator output signal is fed
to frequency tripler T2 whose collector
circuit is tuned to 116 MHz by L3 in
combination with trimmer C7. The
local oscillator signal has a level of
about 100 mV peak to peak and is

inductively coupled
(via L4) to the mixer.

Mixer
The mixer in the converter is a type
BF961 dual-gate MOSFET, T4. The local
oscillator signal is applied to gate 2 (G2)
and the RF input signal, to gate 1 (G1).
Note that G2 is held at a fixed potential
of about 2.9 V by R6-R7, while G1 is dc-
wise at ground potential. This is the
traditional configuration, with the G2
resistors determining the conversion
gain. The mixer products are available
at the drain of the BF961. These prod-
ucts are, in principle: 144+116 =
260 MHz, 144–116 = 28 MHz and the
LO signal residue at 116 MHz. The
combination L8/C16/C17 is tuned to
28.8 MHz and serves to suppress the
116 MHz LO component — given the
frequency difference between these
components sufficient suppression is
not hard to achieve.

Input stage
The signal from the 2-metre antenna
is inductively coupled to the base of
T3, a low-noise VHF/UHF transistor
type BFR91. The input inductor pair
L5-L6 is accurately tuned to 144 MHz
by trimmers C10 and C11. The input
bandfilter serves to suppress image

frequencies at 116–28
= 88 MHz and at the
same time match the

transistor to the cable impedance of
50 Ω. The amplified signal is capaci-
tively coupled to gate 1 of the mixer
via C13.

Output stage
The main function of the driver stage
around T5 is to provide a good match
to the receiver input (50 Ω). The gain of
this stage is made adjustable with pre-
set P1 to ensure that no overdriving
occurs with sensitive shortwave
receivers.

The converter is powered by a regu-
lated and well decoupled supply with
an output of between 9 and 12 volts.
Current consumption will be of the
order of 20 mA.

C O N S T R U C T I O N
The converter is built on a single-sided
printed circuit board of which the
design is shown in Figure 2. This board
is available ready-made through the
Elektor Electronics Readers Services.

Before you start soldering away we
recommend you make inductors L3-
L7. This is not at all difficult. Take a pen
or a drill bit with a diameter of 4.5 mm

17Elektor Electronics 2/2000

T1

BF494

T2

BF494

T3

BFR91

T5

BFR91T4

BF961

R1

1
5

0
k

R3

1
8

0
k

R2

2
k

2

R4
1

5
0

k

R7

1
0

0
k

R6

4
7

k

R8

1k

R5

5
6

0
Ω

R11

5
6
Ω

R10

1
5

0
k

R9

2
k

2

1k

P1

C3

10p

C2

27p

C20

100n

C22

100n

C4

15p

C13

4p7

C15

1n

C17

22p

C23

100n

C24

100n

C25

100n

C1

22p C5

40p

C7

22p

C8

22p

C11

22p

C10

22p

C14

22p

C16

40p

X1

X1 = 38.667MHz

C21

10µ
63V

C9

10p

C12

10p

C6

10p

C18

10p

C19

1n

L1

0µH22

L2

0µH33

L3 L4

L5 L6

L7

L8

0µH56

+9...12V

* *

*

*

000013 - 11

9V

9VBF494

BC
E

BF961

G2

G1

D

S

*
(3)

(2)

BFR91
B C

E

zie tekst*
see text*
siehe Text*
voir texte*

6V0

9V0

7V3

0V7

9
V

2

100mV

0V7

7V8

0V

2V9

0V6

9V

3V4

8
V

9
2

V
7

50Ω

20mA

t t

50Ω

1

Figure 1. Circuit dia-
gram of the 2-to-10-m
converter.

and wind 5 turns of SWG20 (approx.
0.8 mm dia.) silver-plated wire around
it. Then stretch the turns evenly until
the coil has a length of about 10 mm.
Only on L5 you ‘tap’ the inductor at 2
turns from the side you want to con-
nect to ground (look at the component
overlay). The tap is made by means of a
small piece of bare wire. Make sure it
does not short-circuit the adjacent
turns! Coupled inductors L5-L6 and
L3-L4 should be spaced 1 mm apart.

Next, fit all the parts on to the
board, except transistors T3, T4 and T5.
Remember, careful and accurate sol-
dering work will be rewarded with a

circuit that works spot-on.
To keep parasitic capacitance as

small as possible, the BFR91 and BF961
transistors are fitted at the solder side
of the board. This is indicated by their
dashed outlines on the component
overlay. Look very carefully at the ori-
entation aids on these transistors to
make sure they are mounted the right
way around. On the BFR91, the collec-
tor is the longest pin; on the BF961, the
source has a small tab and the drain is
the longest pin.

The completed board has to be fit-
ted in a metal case. For our prototype,
we used a small diecast case from

Hammond. The converter RF input
and output may be BNC or SO239
style sockets, depending on what you
have available. The connections
between the sockets and the relevant
PCB pins should be made in coax
cable, for example, RG174 or RG58.

A N A D J U S T M E N T T O O L
We are sure that the simple RF probe
shown in Figure 3 will pay dividends
in adjusting RF circuits. Build it and
you will wonder how you ever did
without it.

The probe consists of an aluminium
pen case (a felt pen, cleaned out, of

18 Elektor Electronics 2/2000

000013-1
(C) ELEKTOR

C1
C2

C3

C4

C5

C6

C7

C8

C9
C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21C22

C23
C24 C25

H
1 H2

H
3H4 H5

H6H7

H8

L
1

L2

L3
L4

L5

L6

L7

L8

P1

R
1

R2 R3

R4 R5 R6

R7

R8

R9 R
10

R
11

T1

T2

X1

000013-1

+9..12V

0

T

T

T3

T4

T5

000013-1
(C) ELEKTOR

Figure 2. Copper track layout
and component mounting
plan of the single-sided PCB.
Three transistors are
mounted at the solder side!

COMPONENTS LIST

Resistors:
R1,R4,R10 = 150kΩ
R2,R9 = 2kΩ2
R3 = 180kΩ
R5 = 560Ω
R6 = 47kΩ
R7 = 100kΩ
R8 = 1kΩ
R11 = 56Ω
P1 = 1kΩ preset H

Capacitors:
C1,C7,C8,C10,C11,C14 = 22pF

trimmer
C2 = 27pF
C3,C6,C9,C12,C18 = 10pF
C4 = 15pF
C5,C16 = 40pF trimmer
C13 = 4pF7
C15,C19 = 1nF, raster 5mm
C17 = 22pF
C20,C22-C25 = 100nF ceramic
C21 = 10µF 63V radial

Inductors:
L1 = 0.22µH miniature choke
L2 = 0.33µH miniature choke
L3-L7 = 5 turns silver-plated wire,

dia. 0.8mm (SWG20), internal
diameter 4.5mm, length 10mm

Distance between coupled inductors:
1mm, tap at 2 turns from ground
side

L8 = 0.56µH miniature choke

Semiconductors:
T1,T2 = BF494
T3,T5 = BFR91
T4 = BF961

Miscellaneous:
X1 = quartz crystal 38.667MHz (3rd

overtone) (Mainline, tel. 0870
2410810)

PCB, order code 000013-1 (see
Readers Services page)

Case: e.g. Hammond 1590B
56×107×25 (inside dimensions)

course) in which a small
diode detector is
housed. The end of the
copper or welding wire
is carefully filed down to give a sharp
tip. The choice of diode is not critical.
While SHF diodes like the 1S99 will
enable measurements well into the
GHz range, the run-of-the-mill BAT82
will be fine for VHF circuits like the
present converter.

The probe is only intended to give
relative indications, providing an easy
means to ‘peak’ inductors on their res-
onance frequency. It will only lightly
load the tuned circuit and does not
require a ground connection. The out-
put voltage is fed to the inputs of a
voltmeter — preferably analogue so
you can see the ‘trend’. In this case,
needle movement on an antique mov-
ing-coil meter is rather more useful
than rolling digits on a DVM.

A D J U S T M E N T
Start by setting all trimmers on the
board to full mesh, except C1, which is
set to mid-travel. Connect the con-
verter to the receiver and switch on
the power supply. Set P1 to the centre
of its travel. Measure the current con-
sumption. If it as expected, proceed
with the adjustment procedure
described below. “Hot” means carry-
ing RF, “Cold” means not carrying RF,
i.e., ground or positive supply. “Peak”
means adjust for maximum reading
on the voltmeter connected to the
probe, or for maximum S-meter read-
ing on the receiver. In case of the
probe, the absolute value you measure
is irrelevant, it’s the peak you should
be looking for.

1. Put the probe tip on the hot side of
C5 and adjust this trimmer for max-
imum reading on the voltmeter.

2. Connect the probe to about 1 turn
from the cold side of L3 and peak
C7. You want the first peak starting
from fully meshed. If not, you tune
to fosc × 4 instead of fosc × 3.

3. Connect the probe to 1 turn from

the cold side of L4 and
peak C8. Use the first
peak starting from fully
meshed. If not, you

tune to fosc × 4 instead of fosc × 3.
4. Set C10, C11 and C14 to half mesh.
5. Tune the receiver to 28.800 MHz

and adjust C16 for maximum noise.
6. Ensure that a relatively strong input

signal is available on a frequency
between 144.800 and 145.000 MHz
(RF generator or ask a local radio

amateur). Peak C10, C11 and C14
for best reception. Reduce the input
signal as required to ensure you can
always find a peak.

7. Adjust C1 so that the frequency
readout on the receiver matches the
signal frequency, for example,
144.800 MHz = 28.800 MHz.

8. Remove the input signal and adjust
P1 so that the S meter on the
receiver just starts to deflect.

9. Tune to a weak signal in the 2-m
band and carefully adjust C10, C11
and C14 for highest S-meter indica-
tion.

That concludes the adjustment of the
converter.

W E A T H E R - S A T E L L I T E
B A N D
By changing the LO injection fre-
quency to 109 MHz, it should be possi-
ble to use the converter for reception of
low-orbiting weather satellites in the
137 MHz band. A quartz crystal of
36.333 MHz (again, 3rd overtone) is
then required, as well as readjustment
of all trimmers for the slightly lower
frequencies.

(000013-1)

19Elektor Electronics 2/2000

Figure 3. Build this
simple RF probe and
adjusting the con-
verter will be a breeze.

Band plan for 144–146 MHz
(IARU recommendation)
144.000 – 144.500 MHz
Reserved for DX traffic. Some important sub-bands:
144.000 – 144.025: EME (earth-moon-earth or ‘moonbounce’)
144.050: CW calling
144.100: Meteor scatter in CW
144.150: CW DX
144.300: SSB calling
144.400 – 144.490: Beacons
144.490 – 144.500: Beacon guard band, no transmissions

144.500 – 144.800 MHz
All modes, including
144.500 SSTV calling
144.600 RTTY calling
144.700:FAX calling
144.750:ATV calling

144.800 – 144.990 MHz
Digital modes (Packet Radio)

145.0000 – 145.1875 MHz
Repeater input frequencies (12.5 kHz raster, shift 600 kHz)

145.2000 – 145.5875 MHz
Simplex channels, FM, 12.5kHz raster.

145.6000 – 145.7875 MHz
Repeater output frequencies (12.5 kHz, shift 600 kHz)

145.8000 – 146.0000 MHz
Satellite services

6p8

6p8

10nBAT82

to
multimeter

to
multimeter

2x

10n

000013 - 12

BAT82

BAT82

large felt pen3mm
welding wire

3

Elektor Electronics 2/2000

Rather than starting straightaway with
the technical description of the project
it may be interesting to tell you some of
the design history.

I found the website “The Minidisk
Community Pages” on http://www.amu-
lation.com/minidisc very helpful with
information on how the Sony MZ-R30
remote functions are controlled by dif-
ferent resistance values across a pair of
wires.

Initially a 173-MHz licence-free
“HomeCall “type transmitter and a
suitable receiver was obtained, and the
receiver mounted in a control box with
some CMOS logic. This RF system

The MZ-R30 MD
recorder comes

with its own
cable-operated
remote control,

which is primar-
ily designed for

Walkman-ish operation. However, Brian
Houghton’s own application for recording

choral rehearsals needed to have a means of
controlling the stop/start function from a loca-

tion that made cable control impossible. Here’s
how Brian solved the problem — elegantly and

without breaking the bank.

22

Design by Brian Houghton G4BCO

AUDIO & HI-FI

a useful add-on for a popular player

infrared remote control
for Sony MZ-R30 MiniDisc Walkman

works well up to 100ft, but is slow to
respond (5 seconds) and only allows
for the one function, in this case
“pause”. The details of this remote con-
trol can be found on :
http://www.amulation.com/minidisc/mzr30_
remote_radio/index.html.

Several emails from people regard-
ing that design, were received and one
in particular from someone who
wanted some help with a college pro-
ject to build a full function IR remote
control within a budget of £50. This
spurred the author to have a go.

D E S I G N
This design logically splits into two
parts:

➧ The hand held transmitter contain-
ing the function select push button
switches, encoder and infrared trans-
mitter.

➧ The receiver/decoder containing the
infrared receiver, decoder and resis-
tance ladder selector analogue
switches.

The remote control connector on the
Sony MD Walkman is unique and
unfortunately is not obtainable as a
spare item, and since the whole remote
cable is £50 to purchase separately, it
was decided to perform minor surgery
on the existing cable.

R E M O T E C A B L E
M O D I F I C A T I O N S
The remote control pod was opened
and the existing cable disconnected. A
mini XLR 5-way socket was fitted to
the free end of the old cable. This cable
is then suitable to connect the IR Con-
trol Unit to the Sony Walkman. The
modification is illustrated in Figure 1.

A new cable was made up using 5
fairly thin wires, stripped from some
multicore cable, and a length of 3 mm
heatshrink sleeving, with a mini XLR 5
pin plug at one end and the old remote
control pod on the other. This enables
normal cable remote functions to be
made via this ‘adapter cable’. The con-
struction is illustrated in Figure 2.

H A N D H E L D
T R A N S M I T T E R
The circuit diagram of the hand held
control box is given in Figure 3. The
key component is a Holtek HT12A
remote control encoder chip. The (con-
densed) datasheets of this interesting
and versatile chip appear elsewhere in

this magazine.
Any button press

will place 0 volts on
the selected diode(s)
to pull down the data inputs of the
encoder IC1. Any data input going low
will ‘wake up’ the encoder chip, start
the 455 kHz oscillator and the encoded
data stream will be output from pin 17
(Dout) driving the two transistors and
subsequently the two infrared sender
diodes. A low value series resistor
(2.2 Ω) enables the IR diodes to be dri-
ven with high current pulses, although
the average current is only 10 mA per
transistor. The large electrolytic capaci-
tor C1 is essential to overcome the rel-
atively high internal resistance of the
two AA or AAA batteries.

The relation between pushbutton
number, transmitted
code and the associ-
ated MD recorder

function is shown in
tabular form in the
circuit diagram. Note
that pushbuttons S10

and S11 have to be pressed simultane-
ously to transmit a RECORD com-
mand. This is done to prevent inad-
vertent selection of the RECORD
mode.

R E C E I V E R / D E C O D E R
U N I T
The Sony MZ-R30 requires a number
of specific resistance values to recog-
nize certain functions selected via its
remote input socket: The resistance
values and associated functions are
shown in Table 1. The code in the third
row is the decimal value of the 4-bit
data used by the IR encoder/decoders.

The use of type
4016 analogue
switches (IC3, IC5,

23Elektor Electronics 2/2000

3 2

54 1

XLR Free
Socket (Rear)

2 3

51 4

XLR Free
Plug (Rear)

M
D

Remote Pod connections:
1 wht Right Channel

990075 - 11

2 yel Ctl Pin 4
3 gry Ctl Pin 2
4 red Left Channel
5 brn Common

4 1

53 2

Mini
Socket

1Figure 1. Modification to
the remote control cable
supplied with the Sony
MD MiniDisc walkman.

R5

10M

X1

455kHz

C2

100p

C3

100p

R1

10k

R2

10k

R3

2
Ω

2

R4

2
Ω

2

D26 D27

T1

T2

BC550

C4

100n

D4

D3

D2

D1

S1 S2

D7

D6

D5

S3

D10

D9

D8

S4

D12

D11

S5

D16

D14

D13

S6

D18

D15

S7

D19

D17

S8

D20

S9

D23

D22

D21

S11

D25

D24

S10

Bt1

3V

C1

100µ
16V

"0" "1" "2" "3" "4" "5" "6" "7" "8" "9"

"Shift"

2x

"0"
"1"
"2"
"3"
"4"
"5"
"6"
"7"
"8"
"9"

Spare

Prev/Back

PAUSE

STOP

Volume –

Volume +

MARK (Rec)

MODE (Play)

RECORD
(in stop or pause)

CODE FUNCTION

Next/FWD

990075 - 13

HT12A

ADOUT

IC1

AD11

AD10

OSC2 OSC1

AD9

AD8

17

18

13

15 16

12

11

10

14
TE

A0

A1

A2

A3

A4

A5

A6

A7

9

8

7

6

5

1

2

3

4

D1 ... D25 = 1N4148

D26, D27 = LD271

Figure 2. The remote pod
can still be used if you
give it a connector again.

Figure 3. Circuit diagram
of the hand held control.

2

3

24 Elektor Electronics 2/2000

HT12D

ADOUT

IC1

OSC2 OSC1

D3

D2

D1

D0

17

18

13

15 16

12

11

10

14
TE

A0

A1

A2

A3

A4

A5

A6

A7

9

8

7

6

5

1

2

3

4

4028

IC2

X/Y

14

11

12

13

10
15

8

3

2

6

7

4

5

9

1

0

1

2

3

4

5

6

7

8

9

1

4

2

R1

56k

R3

10k

R4

4k7

R5

2
k

2

R2

1
0

k

R7

2
7
Ω

R8

1
k

5

R9

1
k

3

R10

1
k

3

R11

5
6
Ω

R12

1
k

8

R14

1
5

0
Ω

R13

1
k

5

R15

1
k

5

R16

2k

R17

2k

R18

1
0

0
Ω

R19

5
k

6 R20

4
k

7

R21

6
8

0
Ω

1k

P1

IC3b

5

3

4

IC6a

13

2

1

IC3c

12

10

11

IC5a

13

2

1

IC6b

5

3

4

IC6d

6

9

8

IC6c

12

10

11

IC3d

6

9

8

IC5d

6

9

8

IC3a

13

1

2

JP2

JP2

T2

BC547

T1

BC550

D1

JP1

C3

100n

LP2950CZ5.0

IC4

C2

4µ7
16V

C1

2µ2
25V

R6

2
k

2
D3

K3

D2
1N4001

IC5b

5

3

4

IC5c

12

10

11

IC3

14

7

IC5

14

7

IC6

14

7

C7

100n

C6

100n
IC2

16

8

C7

100n

TEST

SFH506SFH505A

IS1U60

5V

5V

5V

990075 - 14

5V IC3, IC5, IC6 = 4016

CV

K2
32

1 4
5

XLR-Socket

4

Figure 4. Circuit dia-
gram of the remote con-
trol receiver/decoder.

IC6) in conjunction with a resistor net-
work (R7-R20) offers a simple and
cheap method of selecting the required
resistance value.

A Sharp IS1U60 IR receiver IC
detects the IR carrier and its output is
inverted by T1 and fed to the HT12D

25Elektor Electronics 2/2000

(C
) E
LE
K
TO
R

990075a

C1C2

C3

C4C5
C6C7

D
1

D2

D3

H
1 H2

H
3H4

IC1

IC
2IC

3

IC4

IC
5

IC
6

JP1

JP
2

P1 R1 R2

R3
R

4

R
5

R
6

R7R8 R9

R10

R
11

R12

R13
R14

R15R16R17
R18 R19

R
20R

21

T1

T2

V2

0
+

te
s

t

+ T

990075a

+

(C
) E

LE
K

TO
R

99
00

75
a

5

(C
) E
LE
K
TO
R

99
00
75
b

C
1

C2

C3

C
4

D
1

D2
D3

D4

D
5

D
6 D

7

D
8

D9
D10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

D23

D
24 D

25 D
26

D
27

H1

H
2H3

H
4

IC1

R
1

R
2

R
3

R
4

R5

S
1S2 S3

S4S5S6 S7

S8S9S10

S11

T
1

T
2

X
1

+
-

990075b

(C
) E

LE
K

TO
R

99
00

75
b

COMPONENTS LIST

Receiver/decoder
(Board section 990075a)

Resistors:
R1 = 56kΩ
R2,R3 = 10kΩ
R4,R20 = 4kΩ7
R5,R6 = 2kΩ2
R7 = 27Ω
R8,R13,R15 = 1kΩ5
R9,R10 = 1kΩ3
R11 = 56Ω
R12 = 1kΩ8
R14 = 150Ω
R16,R17 = 2kΩ
R18 = 100Ω
R19 = 5kΩ6
R21 = 680Ω
P1 = 1kΩ preset H

Capacitors:
C1 = 2µF2 25V radial
C2 = 4µF7 16V radial
C3-C7 = 100nF

Semiconductors:
D1,D3 = low-current LED
D2 = 1N4001
T1,T2 = BC550
IC1 = HT12D (Holtek) (Maplin)
IC2 = 4028
IC3,IC5,IC6 = 4016
IC4 = LP2950-CZ5.0

Miscellaneous:
JP1 = SFH506-36

Transmitter
(Board section 990075b)

Resistors:
R1,R2 = 10kΩ
R3,R4 = 2Ω2
R5 = 10MΩ

Capacitors:
C1 = 100µF 16V radial
C2,C3 = 100pF
C4 = 100nF

Semiconductors:
D1-D25 = 1N4148
D26,D27 = LD271 or similar IR LED
T1,T2 = BC550
IC1 = HT12A (Holtek) (Maplin,

Farnell)

Miscellaneous:
S1-S11 = pushbutton, PCB mount,

Multimec or D6-R-RD
BT1 = 2 off AA or AAA penlight

battery
X1 = ceramic resonator, 455kHz

(e.g., SB455E) (Mainline, 0870 241
0810)

decoder IC which latches the original
4 bits of data. This data is then pre-
sented to a BCD/Decimal decoder
(IC2, 4028) which selects one of nine
a n a l o g u e
switches. These
in turn select the

appropriate point on a resistor ladder
to be used by the MZ-R30 for the
selected function. The condensed
datasheet of the HT12D IR decoder

Figure 5. PCB copper track layouts and component over-
lays. Cut the board to separate the transmitter (below)
and receiver (top) section.

appears elsewhere in this issue.
A common analogue switch (IC3a)

controlled from the IR decoder (VT)
pin is used to gate the output, since the
4-bit data is latched by the decoder and
always selects the last switch that was
used. The minimum selectable resis-
tance (function “Preview/Back”) is
1000 Ω and to achieve this, a 1kΩ pre-
set potentiometer, P1, is used to add
approximately 700Ω in series with the
300Ω total resistance of the two ana-
logue switches. A bright LED, D1, is
also switched on at the same time to
indicate correct operation.

The resistance value associated with
a control code appears across JP2, the
output of the circuit. A suggested con-
nection to a mini-DIN socket is shown

in the circuit diagram. Alternatively,
you may want to use a mini XLR chas-
sis plug. The pinout is then as follows:

Pin 1: audio left
Pin 2: pin 1 of IC3a
Pin 3: preset P1
Pin 4: audio right
Pin 5: audio common

Alternatives to the IS1U60 include the
Siemens SFH505A and SFH506. Their
pin functions being different from the
IS1U60, you have to pay attention to
the way they are connected to the
board.

The output of the remote control
receiver is wired to a suitable miniature
socket which is then connected to the

remote control input of the MD30-RZ
via a short cable.

The function of the test jumper, JP2,
is discussed further on.

The receiver/decoder may be pow-
ered by just about any wall adaptor
capable of supplying 8-12 V DC at
about 100 mA.

C O N S T R U C T I O N
The printed circuit board you will need
to build this project is shown in Fig-
ure 5. The first thing to do is separate
the receiver and transmitter sections
with a jigsaw.

To keep cost as low as possible,
these are single-sided circuit boards.
They contain a few wire links which
should be fitted before anything else.

The PCBs are easily stuffed using
the parts list and the component over-
lay. Be sure to fit all polarized compo-
nents the right way around, that is,
diodes, LEDs, transistors, electrolytic
capacitors and ICs. Although they are
neither expensive nor hard to get
(Maplin), the HT12 ICs are best fitted
in IC sockets.

The transmitter board has a number
of diodes fitted at the solder side of the
board. The IR sender diodes may be
fitted with reflector caps to boost their
directivity.

The author fitted his version of the
handheld control in a type HH1 plain
box from Maplin. This had enough
space to incorporate a holder for two
alkaline rechargeable AAA cells.

S E T T I N G U P
The only setting up required is to
adjust the 1 kΩ preset to compensate
for the resistance of the analogue
switches. This is done as follows:

a) Install jumper JP2. This links R20,
the 4.7 kΩ resistor from the com-
mon rail of the network, to 0 V.

b) Connect a DMM on a suitable resis-
tance range to be able to measure
7,050 Ω, across the output pins 2
and 3 on the XLR connector.

c) Power up the receiver/decoder and
select code 4 “Stop” on the remote
hand held control.

d) Adjust preset P1 to give 7,050 Ω on
the DVM.

e) Remove power, pull JP2 and dis-
connect the DVM.

f) Connect the receiver/decoder to the
MZ-R30 and test all functions.

(990050-1)

Design editing: L. Lemmens
Article editing: J. Buiting

26 Elektor Electronics 2/2000

Table 1. MiniDisc Walkman remote control codes

Function: Resistance: Code:

Preview/Back 1,000 Ω 1
Next/Forward 3,627 Ω 2
Pause 5,156 Ω 3
Stop 7,050 Ω 4
Volume (–) 8,400 Ω 5
Volume (+) 9,900 Ω 6
Mark 11,900 Ω 7
Mode 14,000 Ω 8
Record 19,500 Ω 9

Elektor Electronics 2/2000

Almost every PC these days has a
sound card. However, most PC users
employ it only to reproduce operating
system sounds, music from audio CDs
and sound effects for games and pre-
sentations. They thus use only the
standard features of the software for
the sound card, even though there are
outstanding programs available that
allow even non-musicians to exploit
the manifold features of modern
sound cards. These are sound synthe-
sizer programs.

Such synthesizers are sometimes
even included in the software pack-
ages that come with the better quality
sound cards. However, there are also
separate programs, such as Generator
from Native Instruments or Rebirth
from Propellerhead. These programs
simulate the functions and operations
of a real synthesizer using a screen full
of sliders and knobs that are controlled
by the mouse. They represent a sort of
Gordian knot for anyone who wants to
do more than adjust a single slider.

The circuit described in this article

makes working with a software syn-
thesizer considerably easier. It utilises
the ability of a software synthesizer to
receive MIDI codes and to use these
codes to drive certain controllers. The
hardware of the MIDI parameter box
can thus be kept very simple. A micro-
controller reads the positions of eight
standard potentiometers in turn, via an
8-channel A/D converter. If one or more
of the potentiometer positions is
changed, the microcontroller sends this
information in MIDI format to the
MIDI input of the sound card. The soft-
ware synthesizer translates the MIDI
codes into new settings for the con-
troller in question.

L A Y E R S
A N D S U P E R - L A Y E R S
The somewhat nebulous term ‘layer’
often crops up in connection with
MIDI. Layers are actually nothing more
than groups of eight synthesizer func-
tions, which correspond to the eight
potentiometers of the MIDI parameter
box using a sort of multiple allocation.

Using a key-
board and

mouse to
operate the
innumerable

knobs and slid-
ers of a PC mix-

ing board can turn
playing around with a

sound synthesizer
into an agonizing

experience. With the
MIDI parameter box
it’s a different story!

28

Design by T. Klose

convenient software synthesizer operation

GENERAL INTEREST

parameter box for
MIDI software

The parameter box has pushbutton
switches that can select one of six lay-
ers. The MIDI codes sent by each
potentiometer (or the controller) thus
vary according to the layer that is
selected.

The assignment of layers to specific
functions is not the same for all con-
trollers. Instead, controllers can be
divided into different groups. The var-
ious types of assignments are referred
to as super-layers. The MIDI parame-
ter box knows the three most com-
monly used groups and adapts the
MIDI codes to their specific needs.
Table 1 summarises the contents of the
six layers within the three super-layers.

H A R D W A R E
The most important elements of the
hardware, which have already been
mentioned, can easily be recognised in
the schematic diagram shown in Fig-
ure 1. The eight potentiometers are
connected to channels 0 through 7 of
the A/D converter IC1. The MAX186
IC, which has already been used in a

number of Elektor projects, has an
interface to the microcontroller (IC2).
This interface carries the output data
from the D/A converter (DOUT) and
the clock (SCLK), as well as the settings
for the multiplexer (DIN). The con-
verter is controlled via the SSRB and
CS leads, synchronous to SCLK.

The microcontroller is a type
PIC16F84 IC that is clocked at 10 MHz.
In addition to the potentiometer posi-
tions, it also reads the layer selection
switches (S1–S6), the MIDI channel
switches ((S9–S12) and two other push-
button switches, MEMO and RESET.
Table 2 describes the meanings and
uses of all of the switches.

MIDI communication with the
sound card takes place via port lead
RB7. The MIDI signal can be visually
checked via the (blinking) LED D2.
There is a good reason why two con-
nection options are shown in the
drawing. Actually, the MIDI parameter
box should only be connected to the
sound card via a true, optically isolated
MIDI interface. Such an interface is

part of the AWE-64 package, for
instance, but it cannot be ordered sep-
arately. You can either buy one for
around £15 in a computer shop or copy
one of the numerous Elektor designs
(such as the MIDI interface in the 1995
Summer Circuits issue). A less elegant
option, but one that can conceivably be
used if no other MIDI devices are con-
nected, is to connect the MIDI para-
meter box directly to the 15-pin joystick
interface, which also has a MIDI input.
The 220Ω resistor in the data line pro-
tects against short circuits if this alter-
native is used. This type of connection
has one advantage, which is that the
operating power can be drawn from
the joystick port, so that D3, C17, C18
and IC3 are not needed.

This brings us to the power supply.
An external power supply is obligatory
with ‘real’ MIDI interfaces, in order to
ensure the electrical isolation of the PC
and the MIDI equipment. Only capac-
itors C17 through C19 and the voltage
regulator IC3 are needed to provide a
sufficiently stable +5 V. Power can be

29Elektor Electronics 2/2000

PIC16F84

OSC2

IC2

OSC1

MCLR

RA4

RA0

RA1

RA2

RA3

RB0

RB1

RB2

RB3

RB4

RB5

RB6

RB7

17

18

13

12

11

10

16 15

14

1

3

9

8

7

6

2

4

5

MAX186

REFADJ

SSTRBIC1

DGNDAGND

DOUT

SCLK

SHDN

VREF

VSS

CH0

CH1

CH2

CH3

CH4

CH5

CH6

CH7

DIN

20

13 14

17

15

19

16

18
CS

10

11

12

9

1

2

3

4

5

6

7

8

C15

33p

C16

33p

X1

10MHz

R3

1
0
Ω

C10

100n

C9

10µ
63V

C13

10µ
63V

C17

10µ
63V

C19

10µ
63V

C14

100n

C18

100n

C11

100n

C12

100n

K3

C8

K5

R4

1
0

k

K4

R1

1
k

5

7805

IC3

D1
R21k

470Ω

P9

R
15

1
0

k
R

14
1

0
k

R
13

1
0

k

R
16

1
0

k
R

11
1

0
k

R
10

1
0

k
R

9
1

0
k

R
12

1
0

k

D3
1N4001

8x 100n

C7 C6 C5 C4 C3 C2 C1

R6

2
2

0
Ω

R8

1
k

5

D2

R7

1
0

k

T1

BC547B
K1

R5

2
2

0
Ω

2

3

1

5

4

K2

K7

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

K6

P1 P2 P3 P4 P5 P6 P7 P8

K9

K10

S9 ... S12

3

S1 S2 S3 S4 S5 S6 S7 S8

1

2

4

8

5V

5V
5V

5V

INIT
VALUE

MIDI
DATA

MIDI CHANNEL

1

1 2 3 4 5 6 7 8

CV CV CV CV CV CV CV CV
2 3 4 5 6

LAYER

MEMORY RESET

+5V

P1...P8 = 8x 47k

-10/P

K10

K9

K6

K5

K3

*

*

see text*
zie tekst*
siehe Text*
voir texte*

990087 - 11

12V

CV

1 2 3 4

K4

1

Figure 1. The microcontroller reads the
status of the switches and of each of
the eight potentiometers in turn.

provided by a simple 12 V mains
adapter. Diode D2 provides protection
against a reverse-polarity connection.

A S S M A L L A S P O S S I B L E
To make the construction of the MIDI
parameter box as convenient as possi-
ble, we have designed a printed circuit

board that is the size of a pack of ciga-
rettes, as shown in Figure 2. It is avail-
able from Readers Services (order
number 990087-1). You shouldn’t expe-
rience any problems mounting all the
components, which takes around half
an hour. Pay attention to the orienta-
tion of the electrolytic capacitors, the

LEDs and the ICs, and don’t forget the
wire bridge next to K5. After this you
can prepare the control panel. The
potentiometers and switches can be
glued to the front panel in a reasonable
arrangement, such as that shown in
Figure 3, and wired using flatcable.
You can also mount these components

30 Elektor Electronics 2/2000

Table 1. Contents of the six layers within the three super-layers.

Layer P1 P2 P3 P4 P5 P6 P7 P8

super-layer 1 (AWE, EMU8000 and EMU10k-1 synthesizers)

layer 1 Controller 10 – 17

layer 2 Controller 18 – 1F

layer 3 volume pan expression modulation LP cutoff LP reson. chorus reverb

layer 4 LFO1 delay LFO1 freq. LFO1 pitch LFO1 vol. LFO2 delay LFO2 freq. LFO2 pitch LFO2 vol.

layer 5 env1 delay env1 attack env1 hold env1 decay env1 sustain env1 release env1 pitch env1 cutoff

layer 6 env2 delay env2 attack env2 hold env2 decay env2 sustain env2 release -, -

super-layer 2 (XG synthesizer)

layer 1 Controller 10 – 17

layer 2 Controller 18 – 1F

layer 3 volume pan expression modulation portamento reverb chorus variation

layer 4 attack decay release vib. delay vib. rate vib. depth cutoff resonance

layer 5 pitch init pitch attack pitch rel. p.r. time vel. lim. L vel. lim. H -, -

layer 6 pitch ben. filter ben.
amplitude

ben.
LFO PMOD

ben.
FMOD D

ben. AMOD

super-layer 3 (software synthesizer)

layer 1 Controller 00 – 07

layer 2 Controller 08 – 0F

layer 3 Controller 10 – 17

layer 4 Controller 18 – 1F

layer 5 Controller 20 – 27

layer 6 Controller 28 – 2F

Table 2. Meanings and uses of all switches.

Component Designation Meaning

LED D2 MIDI Message
Message Blinks when a MIDI message is sent via the MIDO OUT port.
Also blinks when a potentiometer is set exactly between two quantization levels.

LED D1 Init Value
Blinks after the power is switched on to indicate that one of the three
super-layers must be selected using switches S1 – S3.
Illuminated when the initial value is set for the potentiometer that was last rotated.

Switches S1 – S4 MIDI-Channel These four binary-coded switches select the MIDI channel.

Potentiometers P1 – P8 Fader These potentiometers are used to set the MIDI values.

Pushbuttons S1 – S6 Layer These switches select layers 1 through 6.

Pushbutton S7 Memo Save the last modified value in the current layer.

Pushbutton S8 Reset Overwrite the current value with the predefined initialization value.

on a piece of prototyping board and
wire them point-to-point. Of course,
you can also design a ‘real’ circuit
board. You should dress the flat cables
such that the unit can later be built into
an enclosure.

T E S T I N G
In order to thoroughly test the MIDI
parameter box, you absolutely need a
MIDI monitor with a MIDI-through
option for the PC, so that you can
observe the transmitted MIDI data on
the monitor and properly calibrate the
potentiometers. The text box contain
more information about suitable MIDI
monitors. After a visual inspection of
the soldering, connect the parts
together and cable the unit to the PC.
Then switch everything on and start
the MIDI monitor. All the stored values
in a virgin PIC are set to FFh, so they
must be set to valid MIDI protocol val-
ues by pressing the Reset button. Next
select super-layer 1 and layer 1 (the
default layer) by pressing S1 twice.

Now comes the moment of truth.
When the potentiometers are rotated,
LED D2 should flash and the MIDI

monitor should dis-
play control codes.
These will have values
ranging from 0 to 127.

If this does not hap-
pen, thoroughly check the circuit con-
struction, the cabling and the settings
of the MIDI monitor. If this doesn’t
help, you can curse Windows or the
sound card.

However, if the MIDI monitor dis-
plays the first MIDI events, then every-
thing is in order. Trimpot P9, by the
way, can also be used for calibration to
adjust actual range of the MIDI values
to 0 through 127.

Verify that the MIDI channel is

changed by S9–S12
(binary), and that
changing the layer
works properly.
When the layer is

changed, the last stored values for the
potentiometers are always output via
the MIDI interface. The advantage of
this is that the parameters of the syn-
thesizer or the sound card are reset to
their last stored values. If for example
you change the volume in layer 3,
change to a different layer and some
time later return to layer 3, the volume
will be restored to its original level. If
you want to avoid this, all you have to
do is to press the Memo button before

31Elektor Electronics 2/2000

990087-1(C) ELEKTOR

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C
11

C
12

C13

C14

C15 C16

C17

C
18C

19

D1 D2

D3

H
1 H2

H
3H4

IC
1

IC2

IC3

K1

K2

K3
K4

K5

P9

R1

R2
R3 R

4

R5

R6
R7

R8

R
9

R
10

R
11

R
12

R
13

R
14

R
15

R
16

T1

X1

3

1

990087-1

2

4

+

0

990087-1(C) ELEKTOR

2

Figure 2. The MIDI para-
meter box can be build
using this small printed
circuit board.

COMPONENTS LIST

Resistors:
R1,R8 = 1kΩ5
R2 = 1kΩ
R3 = 10Ω
R4,R7,R9-R16 = 10kΩ
R5,R6 = 220Ω
P1-P8 = 47kΩ linear potentiometer
P9 = 470Ω preset Hi

Capacitors:
C1-C8,C10,C11,C12,C14,C18 =

100nF
C9,C13,C17,C19 = 10µF 63V radial
C15,C16 = 33pF

Semiconductors:
D1,D2 = LED, high efficiency
D3 = 1N4001
T1 = BC547B
IC1 = MAX186BEPP
IC2 = PIC16F84-10/P (programmed,

order code 996521-1)
IC3 = 7805

Miscellaneous:
K1 = 4-way SIL connector
K2 = 2 PCB solder pins
K3,K6 = 10-way SIL connector
K4,K9 = 5-way SIL connector
K5,K10 = 6-way SIL connector
K7 = 15-way Sub-D plug, chassis

mount (see text)
K8 = 5-way DIN socket, chassis

mount, 180° (see text)
K11 = mains adaptor socket
S1-S8 = pushbutton, 1 make contact
S9-S12 = on/off switch
X1 = 10MHz quartz crystal
Enclosure, e.g. Teko 363

(216x130x77mm)
PCB, order code 990087-1

changing the layer. In this case only the
values that have changed since the last
layer change are stored.

(990087-1)

Text editing
(German original): R. Gerstendorf

Design editing: K. Walraven

32 Elektor Electronics 2/2000

 M R P C
MIDI REMOTE PARAMETER CONTROL

0 127
3

0 127
5

0 127
7

0 127
1

2

LAYER

MEMORY1

MIDI
DATA

INIT
VALUE

RESET2 3 4 5 6

CHANNEL

0 127
4

0 0 0127
6

127
8

127

990087 - F

+

-

MIDI monitors
There is a whole series of MIDI monitors that can be used with a
PC. An outstandingly suitable program is MIDI-OX, for which a beta
version is available for free on the Internet at
www.members.xoom.com/_XOOM/MIDIOX/moxbeta.htm. After
installing and starting the program, you must first select the MIDI
devices, either via the menu Options/MIDI Devices or by clicking
on the dark blue button with the five-pin DIN connector (see Figure
A). On this PC, the MIDI input and output of the SoundBlaster SB16
are active.
The MIDI Port Activity window shown in Figure B appears if you
press the bright green DIN icon in the second group of buttons.
Each MIDI input and output gets its own row of ‘LEDs’, so that it is
clear which channel is active.
The content of the transmitted data appears in the Monitors Output
window. The first column shows the time when the MIDI message
occurred (as noted by MIDI-OX), and the second column indicates
the MIDI port via which the message arrived (in this case, Port 1 via
SB16 MIDI). The following byte, 0BFh, consists of two parts: a Con-
trol Change (indicated by the ‘B’) and the MIDI channel number
(indicated by the ‘F’, which corresponds to MIDI channel 16).
DATA1 shows the controller number (0 – 127 in this case) and
DATA2 shows the assigned value. Just as with DATA1, only the
lower seven bits are used, so that the values range from 0 to 127.
CHAN shows the MIDI channel once again. Note that MIDI officially
uses channel numbers 1 through 16, but many programs display 0
through 15. When a different super-layer is active or the layer is
changed, the messages displayed on the monitor also change.
If you want to learn more background information regarding MIDI,
you can find an adequate amount of literature on the Internet. One
example is Eddies Home – MIDI-RPN and NRPN
(http://members.delosnet.com.tlc/nrpn.htm).
MIDI-OX is especially well suited to checking equipment functions. If you want to go deeper into the matter, you can try easy-to-
use and powerful programs such as Generator from Native Instruments or Rebirth from Propellerhead. Free demo versions of both
programs are available. These can be used for only a very short time and have no save functions, but they are an outstanding
choice for just playing around with the MIDI parameter box.

Figure 3. A reasonable
arrangement for the
control elements on
the front panel.

3

33Elektor Electronics 2/2000

is presented as a lively little ornament
consisting of red LEDs arranged in the
shape of a heart. Flashing all the time,
the LEDs beg for attention. Very deco-
rative, we’d say, and highly suitable as a
gift to someone close to your real heart.

Do not expect the latest design tech-
nology from this kit. As indicated by
the circuit diagram, the circuit consists
of little more than a bistable multivi-
brator built around two common or
garden transistors, with seven rows of
four LEDs each in their collector lines.
LEDs LD1-LD12 form the inner heart,
and LD13-LD25, the outer heart. Both
hearts flash in alternate fashion to
mimic the well-known pump action.

The high-efficiency LEDs operate
‘sparsely’ using series resistors R1-R7.
The result is a current consumption of
just 8 mA, enabling a 9-V PP3 battery
to last for about 24 hours.

If you want to personalise the cir-

cuit, you may decide to use different
colour LEDs for one of the hearts. Yel-
low LEDs, for example, do a fine job.
However, in that case the series resis-
tors may have to be decreased to about
820 Ω to compensate the higher voltage
drop of yellow LEDs. If you do not
change the resistors, the light intensity
from yellow LEDs will be too low.

We do not know if Velleman offers
any kind of warranty on this circuit.
Reproducibility will not be a problem,
we reckon, but a guarantee that the
flashing sweetheart will succeed in
actually conquering a heart will be
impossible to obtain! However, at a
price of just £4.99 it’s well worth the
effort.

The Maplin order code for this kit is
VX75S.

(000031-1)

Text (Dutch original): S. van Rooij.

A small effort and an even smaller outlay is
required to throw an electronic gadget together
that’s sure to make a great gift for Valentine’s Day.
Belgium-based Velleman are suppliers of kits that
enable this type of circuit to be built by the
masses. We decided to try out one of their kits.

an original Valentine present

KIT DESCRIPTION

Most of you, we are convinced, would
avow to being pretty seriously
involved in electronics, be it as a
hobby or professionally. Sometimes,
too, you may get the feeling that it’s all
getting a bit too serious. Typically, our
readers are busy working on practical
applications of published circuits, or
tweaking the specs. They will rave on
about distortion, signal/noise ratios, or
memory capacity, painstakingly seek-
ing ways to achieve improvements no
better than tenths of a decibel or a few
parts per million.

Riveting stuff, of course, but it
makes you wonder sometimes if all
this activity captures any of the sheer
fun that can be had from the noble art
of soldering. That is why we can not
resist voicing a clear “start having fun
again” note to those of you with a ten-
dency of taking a high-brow look at
the hobby. Electronics, we feel, need
not always be useful, in fact there’s no
reason why it should not be amusing,
playful and without pretension. With
simple means, dozens of interesting
projects can be built. So, why not build
an original doorbell, a running lights
unit or a flashing brooch? Just for the
fun of it.

Quite possibly, people around you
may value simple gadgets more than
the latest high-spec complex devices,
probably because to them the latter will
forever remain big electronic mysteries.

A L O V E L Y F L A S H E R
Most Summer Circuits and December
issues of Elektor Electronics contain at
least a few ‘playful’ electronic circuits.
Some kit suppliers go one step further,
having discovered a market for such
products.

In the recent Maplin catalogue, we
came across a Flashing LED Sweet-
heart from kit supplier Velleman. This

T2

BC547B

T1

BC547B

R8

3
3

k

R9

3
3

k

C1

22µ

C2

22µ

LD12

LD11

R3

1
k

2

LD10

LD9

LD8

LD7

R2

1
k

2

LD6

LD5

LD1

LD2

R1

1
k

2

LD3

LD4

LD13

LD14

R4

1
k

2

LD15

LD16

LD20

LD19

R5

1
k

2

LD18

LD17

LD24

LD23

R6

1
k

2

LD22

LD21

LD25

LD26

R7

1
k

2

LD27

LD28

E1

9V

000031 - 11

flashing LED sweetheart

35Elektor Electronics 2/2000

Nick’s real name (we are informed) is Nicola Asuni and he
lives on Sardinia. The website he built contains data that
every electronics enthusiast or professional may need for
everyday work. Starting from the homepage:
(http://www.nickhardware.da.ru) you may choose between var-
ious departments (some of which having their own address):
• Circuits (www.circuits.da.ru)
This is a collection of small circuit diagrams for miscellaneous
applications, subdivided into these subjects: infrared, tele-
phone, sound, Smartcard and filters. The last subject is cov-
ered in great depth.
• Pinouts (www.pinouts.da.ru)
We reckon Nick has one of the largest overviews of connector
pinout (i.e., connection data) on the entire Internet. Even if
there are more massive sites, Nick’s list is pretty impressive to
say the least. A true galaxy of extremely common but also odd-
ball connectors, cable links and adaptors may be found here.
• Guides
This department contains a number of manuals covering sev-
eral aspects of home-brew electronics such as DIY circuit
board etching, a course in soldering, SI and derived units,
tables, passive component colour codes and a piece on elec-
trical safety.
• News
A section covering the latest in electronics, but heavily com-
puter-inclined. This page is frequently updated.
• Links
This section presents a list of other websites with useful infor-
mation. The list is divided in computer/electronics links and
links to various design standards.

On Nick’s website you may also find lots of software down-
loads including C++ programs and program manuals writ-
ten by Nick himself.

A search engine is available on the on this website if you are
after information on a certain subject.

As an aside, Nick is an active athlete and he is even a
member of the Italian sprinters’ team. Thic subject, too, is cov-
ered in some depth on his website.

Nick’s hardware area is a valuable asset for everyone
actively involved in electronics, both professionally and/or as

Electronics enthusiasts spend a
lot of time just looking for all sorts

of data: resistor colour codes,
schematics for various applica-
tions, connector pinouts or per-
haps a description of DIY circuit
board etching. Well, Nick’s web-

site has it all nicely bundled.
Practical and useful!

Nick’s hardware area
InfoDesk on electronics

a hobbyist. This address certainly deserves a prominent place
in your Favourites folder!

(005013-1)

Text (Dutch original): H. Baggen

electronics on lineelectronics on-line

Elektor Electronics 2/2000

routines that will be called many times
before their function is complete. In
order to do that, you will need to keep
track of where you are in your subrou-
tine so that you know where to start
up again when you return. One very
good way to do this is called the Finite
State Machine or FSM for short. Because
there are only a few different actions
you want your subroutine to execute,
and it does actually complete its job at
some point, it is a finite list. There are
several forms of FSMs, this type of
FSM is a hybrid we will use specifically
for robotic programming. This behav-
iour FSM is a type of a state machine
that returns no outputs, it merely
changes state based on input and the
current state. Each activity that the
FSM engages in, is a state, unique in
operation and distinct from all other
states by its definition.

If this is difficult to understand, lets
use a sort of real world application to
explain FSMs, the soda machine. In
order to keep our soda machine sim-

ple, we will create a pretty stupid
machine with these abilities:
➧ takes only quarters
➧ needs two quarters to get a soda
➧ will not give you your money back
➧ does not give change, nor return

money that isn’t a quarter
➧ has Coke, Barq’s Root Beer and Fanta

Orange soda
➧ has an infinite amount of soda and

never runs out

As you can see, we have eliminated all
of the exceptions or error conditions that
a normal soda machine could see in
order to simplify this explanation — it’s
artificial for a reason; we’re not design-
ing soda machines. However, do pay
attention to exceptions and error condi-
tions when you are designing your
own FSMs! Figure 21 shows a graphical
rendering of our soda machine FSM.
The underlined numbers in each of the
circles are the state number for that
state. A line with an arrow denotes a
transition from one state to another (the

36

Part 6: introducing the FSM concept

MICROPROCESSORS

BASIC Stamp
programming course (6)

By Dennis Clark

The Parallax Boe-Bot, or Board of Edu-
cation Robot is a simple robot made
from a Parallax Board of Education
(BoE) mounted on an aluminium
frame to which two Futaba hobby ser-
vos are mounted. These servos have
been modified to provide continuous
motion and have several speeds at
which they will turn.

The BoE has a small prototyping
area on which several experiments can
be done. In order to realize the fasci-
nating potential the BoE-Bot has to
demonstrate robotic behaviours, you
will need to know how to program it!
In this and the following instalments I
will explain how to
make the robot move
randomly, or pur-
posely, how to seek out
or avoid bright light
and how to avoid
objects. I will also explain how to pro-
gram your BoE-Bot in such a manner
that all of these functions seem to be
operating at the same time.

Further, I will show you can get
behaviours from your robot that you
didn’t even program in to it!

L I N E A R E X E C U T I O N V S .
C O N C U R R E N T E X E C U -
T I O N A N D T H E F I N I T E
S T A T E M A C H I N E
In a program, each statement is exe-
cuted in sequential order, the next
statement cannot start until the last one
is done. When there is only one thread
of logic running, this means that the
program proceeds in a linear fashion,
from start to finish. Concurrent execu-
tion is when there is more than one
thread of logic running at what
appears to be the same time. ”How do
I do that?”, you may ask. In the Paral-
lax Basic Stamp II processor you can do
this by using independent sections of
code, called modules or in our case, sub-

0 1

2

3

4

Get two
quarters

quarters = 2

select = none

select = Fanta

select = Barq's

990050 - 6 - 11

select = Coke

quarters < 2

Get selection

Deliver Fanta

Deliver Barq's

Deliver Coke

45

Figure 21. Finite State
Machine design for a
soda machine.

arrow points the direction). If a transi-
tion line is labelled, that label is the
result of the transition function and
defines the condition required for that
change of state. An unlabelled line is a
transition that will always occur as soon
as the function of that state is com-
pleted. The lines that loop back upon a
state show iteration, or that the FSM
remains in this state doing something
until a terminal condition is reached, at
which time a defined transition that is
labelled will occur. Here we see that our
soda machine FSM will remain in state
0 until two quarters have been given, at
which point our FSM will transition to
state 1. Here we will wait, looking at
buttons until a selection is made. When
a selection is made, our FSM will then
transition to state 2, 3 or 4 depending
on the selection made. From these ter-
minal states, our FSM will immediately
transition back to state 0 after complet-
ing. This is the general process of defi-
nition and representation for the FSMs
that we will be using to define our BoE-
Bot behaviours.

Remembering where you are in
your subroutine is called saving state
and is essential if you are to pick up
where you left off when last this sub-
routine ran. Each state in our behav-
iour FSM will be executed when its
subroutine is called and will exit the
subroutine when that state is com-
pleted. Subsequent calls of that sub-
routine will execute the next correct
state that is defined. Why is this useful?
Let’s look at two code snippets in List-
ing 9 that show why this can make
your whole program run faster. Both of
these pieces of code operate the hobby
servos that make your BoE robot
move, don’t worry about understand-
ing them exactly, what this code does
will be fully explained in due course.
The one thing you must know is that a
hobby servo requires that a pulse of
1 ms (millisecond) to 2 ms must be sent
to each servo every 20 to 30 ms or the
servo will not perform correctly. If you
send it too often (say every 7 ms) the
servo will jitter, if you send it too rarely
(say every 50 ms) then the servo will
stop. These pulses need to be repeated
continuously, and regularly in order to

operate correctly, a single pulse is not
very useful to a servo.

The code on the left looks very sim-
ple and fast, but looks can be deceiv-
ing. The pulsout instructions are used
to output a pulse of the needed width
to turn the servos. Remember, this
pulse needs to be repeated every 20 to
30 milliseconds (ms) in order for the
servo to respond properly. Also, it
needs to have several repetitions of this
pulse for the motor to turn and keep
running. The pause instruction will
cause the Stamp II to pause for 20 ms,
each of the pulses sent will be 2
microseconds * 750, or 1.5 ms. So, each
pass through this for/next loop will take
3 ms + 20 ms = 23 ms at least, 10 times
through the loop will take 230 ms!
That is almost 1/4 of a second when
nothing else can be done!

Now let’s look at the code on the
right that implements a two-state FSM
to move the servos. You can see that
our subroutine on the right does one of
two operations at any given time. The
first operation is to output the pulses to
the servos and set the aDur variable.
The second operation is to simply
decrement the aDur variable. In either
case, after the operation has been
accomplished we exit the subroutine.
Each of these operations will be
defined as a state for the act behaviour.

We will get into more details on
how to describe and design state
machines for our robotic behaviours
using examples and programs that you
will write for your BoE-Bot in later
instalments.

Returning to our code samples, let’s
figure the time spent in the subroutine
on the left now. Since the Stamp II exe-
cutes about 4000 lines of code a second
this means that each instruction will
take about 250 µs to execute. The pul-
sout instructions will obviously take
1.5 ms each to execute because that is
the length of the pulse that is being
sent. In state 1 it will take 3 ms for the
pulsout instructions + 750 µs for the
other three instructions, which equals
3.75 ms. In state two our second sub-
routine will take about 750 µs of
processor time each time it is executed.

Instead of the 230 ms of processor

time taken by the left subroutine, we
now will take 5*750 µs + 3.75 ms =
7.5 ms of processor time total (we are
taking 5 turns through it after the initial
pulse outputs remember?) to accom-
plish the same purpose. If we only
count a single 23 ms loop for each pass
through the first subroutine, we will
have saved 15.5 ms of processor time,
which, at 4000 instructions per second
amounts to 62 instructions that can be
executed elsewhere and give us the
exact same activity on our servo
motors. If we take into account the full
230 ms time for the left loop we save
over 226 ms which is a whopping 904
instructions!

But why is this important? A robot
does not just wander aimless around
in its environment, it usually has some
task to accomplish. Whether it is
searching for a fire to put out, trash to
pick up or for another robot to attack,
it is doing something else more impor-
tant than just running its motors.
When we use the motor driver routine
on the left above, the robot is doing
absolutely nothing but concentrating
on running the motors for 230 ms.
During this time it cannot look at a sen-
sor, pick up trash or put out a fire. If it
runs into something, it will just keep
running into it until it is finished with
that loop and can then do something
else. Each of the other behaviours that
we implement in our robot will be
some activity that the robot will need
to perform in a timely manner. It does
us no good to detect an object to avoid
after we have already run into it! Let’s
assume that our robot is running the
following behaviours, listed in lowest
priority to highest priority, to achieve
some objective:

➧ Go North until home is found
(chooses a direction to travel)

➧ Avoid hitting anything by using IR
proximity detection (if something is
a danger, choose another direction)

➧ If I hit something, back up and
turn left (chooses yet another direc-
tion to go)

➧ Stop and beep when I am home
(choose no direction at all, just stop)

➧ Select the highest priority direction

37Elektor Electronics 2/2000

Linear based servo controller subroutine

act:
for I = 1 to 10

pulsout LEFT,750
Pulsout RIGHT,750
pause 20

next
return

FSM based servo controller subroutine

act:
if aDur > 0 then aDec

aDur = 5
pulsout LEFT,750
pulsout RIGHT,750
goto aDone

aDec:
aDur = aDur - 1

aDone:
return

Listing 9. Linear vs FSM programming

to go and call act to implement it

Many of these behaviours will tell the
motors to perform some action; back-
ing up, turning left, whatever. Each of
these behaviours will need to refer to
sensors in order to perform their
actions. Each of these behaviours
(using the system I am suggesting) will
be Finite State Machines implemented
in subroutines that will be called from
within some main code loop (you will
see some of these behaviours defined
later on). In the motor driver routine
act shown as the right side code snip-
pet there is a variable aDur defined.
When the act FSM is first called aDur is
set to 5. This means that the pulsout
instructions will be executed once, then
the next 5 times the act subroutine is
called it will do nothing but decrement
aDur and exit. This means that it will
spend as little time in the subroutine as
possible. Why is this useful? It is useful
because act only needs to send those
pulsout actions once every 20 to 30 ms.
Our robot can be looking at sensors
and selecting the next motor action
while it is waiting to send that next
series of pulses out. In this way, we use
the time it takes to read sensors and
make decisions in those other four sub-
routines as the delay we must take
between pulses we send to the servo

motors instead of wasting that time
with a pause instruction! In effect, this
makes it look like everything is hap-
pening at the same time instead of one
thing after the other. If we were to use
a linear programming model instead of
Finite State Machines to implement all
of our behaviours and actions then we
would not be able to look at the com-
pass or check for an obstructing object
until all 230 ms in the code snippet on
the left had completed. In that time our
robot might miss seeing the chair in
front of it and collide with it before it
gets a chance to change direction.
There is nothing special about the
number 5 chosen for aDur either, I used
that number as a suggested starting
point. In reality this number is chosen
by trial-and-error to achieve the
smoothest timing. I started with this
number in my own robot and as I
added behaviours I reduced it. For
example, with four behaviours active I
have my act routine set aDur to only 2.

When we implement all of our
behaviours as FSMs this has the effect
of interleaving the code that needs to
be executed in each subroutine so that
no one behaviour needs to wait until
the prior behaviour completes in order
to do at least some of the work that
needs to be done in its own routine.
This improves our robot’s response

time to its environment. In the case of
the act subroutine above, this results in
a smoother motor response and
quicker reaction to obstacles and objec-
tives.

Before using the Finite State
Machine method of behaviour imple-
mentation I would notice that my
robot would appear to hesitate longer
and longer as I added more and more
complex behaviours. This FSM method
will all but eliminate this hesitation. It
is more complex to design and code
than linear programming, but the
results, I feel, merit the complexity. Try
programming your robots both linearly
and using FSMs, I think you will agree
that using Finite State Machines
improves your robot’s abilities and
allows us to get as much out of our
Stamp II as we can! Eventually a set of
behaviours may become so complex
that even using FSMs will not prevent
some hesitation, but we can do much
more using FSMs as our programming
model rather than linear programming
before that happens.

(990050-6)

Next month we will continue with a method
called Subsumptive Programming which will
help us develop a step-by-step plan to implement
robotic behaviour.

38 Elektor Electronics 2/2000

Elektor Electronics 2/2000

tion of the original IC.
However, anyone who has tried to

use a BASIC-52 interpreter in EPROM
in an 80535 or 80537 system has experi-
enced a bitter disappointment. The ini-
tialisation routine for the serial interface
uses properties of the 8052 that have
not been passed on to the 80535 in
exactly the same form. The culprit is
Timer 2, which is not compatible with
the 8052.

The new processors can however be
used if the reset routine is modified.
The 8052-BASIC interpreter has provi-
sions for a custom reset routine and for
adding new user-developed instruc-
tions. We could thus write modifica-
tions that work with the new micro-
controllers. In particular, the modified
interpreter supports the Elektor 80537
Single Board Computer as well as the
new 537 ‘Lite’ computer.

The most commonly
used dialect of

BASIC for microcon-
trollers, Intel’s

8052AH-BASIC, can-
not be used as is

with the new 8051
derivatives. This arti-
cle presents a modi-

fied version of the
interpreter that also

supports the
80535/537 microcon-

trollers. These have
been used in recent

Elektor projects,
such as the 80C537
Single-Board Com-

puter and the 537
‘Lite’ computer.

40

Design by B. Kainka

a high-level language for the
80535/537

The Intel BASIC-52 interpreter was
originally provided in the form of a
mask-programmed microcontroller
with the type designation 8052AH-
BASIC. The interpreter automatically
recognises the amount of available
RAM and the baud rate of the con-
nected terminal when the system starts
up. There are also Autostart functions
that allow a program to be run auto-
matically on start-up. It is even possi-
ble to program an EPROM in the sys-
tem, as long as you use the original
Intel IC.

The 8052AH-BASIC IC is no longer
produced. However, the program has
been released for public use, so it can
now be used legally in an EPROM. If
you combine this with an 80C32 micro-
processor, you have a low-power
BASIC system. The only thing that you
lose is the EPROM programming func-

MICROPROCESSORS

BASIC-537

The modified interpreter, which we call
BASIC-537, has the following features:

9600 baud data transfer rate
with a 12 MHz clock

32kB RAM
6 new instructions
direct A/D converter polling
LCD support (address FFCOh)
Autostart function

The BASIC-537 interpreter occupies
the EPROM memory region from
0000h to 403Fh, and also requires 32 kB
of RAM starting at address 0000h. A
few jumper settings must be changed
on the 80537 boards, as shown in
Table 1, to ensure that the address
regions are properly configured.

In principle, any available terminal
emulator program running at 9600
baud can be used with the BASIC-537
interpreter. After the system is
switched on, the interpreter announces
itself with the following start-up mes-
sage:

MCS-51(tm) BASIC V1.1 / ES537
READY
>

You can now enter lines of BASIC code
in the usual manner. Each character is
sent back to the terminal via the serial
interface. Each time a Return character
is received, the interpreter converts the
complete line into its internal token
format and stores the tokens in the
RAM. The program can be started by
typing RUN, and it can be interrupted
at any time by pressing Ctrl-C. Typing
LIST sends the complete program list-
ing to the terminal, and typing NEW
clears the memory.

Instead of a simple terminal emula-
tor, you can also use the Windows pro-
gram BASIC.EXE, which is found on
the same diskette as the interpreter.

This is a combined terminal emulation
and editor program that is specially
designed for the BASIC-535 interpreter.
The diskette also holds an instruction
summary file (BASIC52.HLP), an ini-
tialisation file (SBASIC.INI), the binary
file of the EPROM contents
(BASIC537.BIN) and sample programs
with the extension BAS.

T H E P R O G R A M E D I T O R
When BASIC.EXE is first started, it is
set up to use COM2. A different port
can be selected via the Options/RS232
menu. The selection is saved in the file
SBASIC.INI when you quit the pro-
gram.

When the microcontroller board is
switched on, the BASIC-537 interpreter
sends its start-up message. You can
then enter the first program and run it.
The sample program Test1.bas outputs
data to port P1 and uses the original
BASIC-52 instruction PORT1:

10REM Port outputs
20FOR N=0 TO 255
30PORT1=N
40FOR I=1 TO 200 : NEXT I
50NEXT N
60GOTO 20
RUN

BASIC.EXE has two text windows. A
text editor with many editing functions
runs in the upper window. The lower
window displays all the characters
received from the microcontroller.
Every time that <Return> is pressed
in the editor, the complete line is sent
to the microcontroller.

The echoed characters appear in the
terminal window. You can edit each
line as much as you wish before it is
transferred. This also applies to lines
that appear earlier on in the text and
that you want to modify after the fact.
In the terminal window, you can see
whether each line has been accepted or
has caused an error message to be
returned. Alternatively, you can acti-
vate the terminal window and use it
for entering text, which will be trans-
ferred a character at a time.

The program’s special functions can
be called up using the Program menu.
These are the RUN, LIST, BREAK,
CONTINUE and NEW instructions for
the interpreter in the microcontroller,
and CLS, which clears the terminal
window. You can use LIST to fetch a
finished program and display it in the
editor window, and then to save it to
disk.

Naturally, instructions such as NEW,
LIST, RUN and so on can be entered
directly from the keyboard, the same as
program lines. For testing, direct
queries such as PRINT PORT1 can be
used. A special feature of the overall
system is that code lines of a program

that is already in the microcontroller
are not overwritten by new lines
unless the new lines have the same line
numbers. This means that you can
stock a collection of subroutines that
can be downloaded as needed. In
order to start from scratch, enter NEW
before downloading a program.

You can load a program via the
File/Open menu. First you should use
Program/Break to stop any program that
is already running, and then use Pro-
gram/New to delete it. The text of the
program will appear in a new editor
window, and in the terminal window
as well if the interpreter was ready.
Several editor windows may be open
simultaneously, which allows program
sections to be copied back and forth.

I N S T R U C T I O N S U M M A R Y
The most important instructions and
functions of BASIC-537 are listed in
Table 2. Numerous special functions
have been adapted to the environment
of the microcontroller. Some of the
original BASIC-52 instructions cannot
be used with the extended version and
are not shown. Four new instructions
have been specially added for the
80537.

The measurement range of the
twelve possible analogue inputs is 0 to
+5 V, but this can be modified within
wide limits using the instruction
DAPR, which writes a parameter byte
to the processor register with the same
name. A one-byte control parameter
can be specified for each measurement.
Its two 4-bit nibbles set the upper and
lower limits of the range. Bits 0–3 set
the lower limit in units of (5 V/16), and
bits 4–7 set the upper limit in the same
way. These two reference voltages
must have a minimum separation of
1.25 V. For example, a parameter value
of 84h sets the measurement range to
1.25–2.5 V. The value 00h is an excep-
tion; it sets the range to 0–5 V.

The instructions SFR and WrSFR
allow all of the special hardware func-
tions of the 80C537 to be used. They
provide access to both serial ports, the
timer, all supplementary ports and so
on. Providing free access to all special-
function registers presents a special
challenge to an interpreter, since all
8051 derivative ICs allow only direct
addressing (via an instruction such as
mov 90h, A). The SFR address thus
cannot be passed via another register.
A compiler has no problem with this,
since it hard codes the address, but an
interpreter must be able to pass the
address. This difficulty is probably the
reason why the original BASIC-52
interpreter allowed free access to the
internal RAM, the external RAM and
even the program region, but not to
the special function registers. Since a
32-kB EPROM has enough room for
the necessary extensions, an indirect

41Elektor Electronics 2/2000

80C537 Single Board Computer
➧ IC2 holds the BASIC-537

EPROM
➧ IC4 holds a 32-kB RAM
➧ IC5 and IC5 remain unused
➧ all 6 jumpers of J1A are con-

nected to J1C (stand-alone
mode)

537-Light computer
➧ J7:1—2 (12 MHz)
➧ J1A– J1C: 1—2 (stand-alone

operation)
➧ switch S1: RUN

Table 1. 80537 com-
puter board settings

approach can be used. There are two
small subroutines for reading and writ-
ing every address in the range from
128 to 255. When the interpreter
encounters an SFR or WrSFR instruc-
tion, it calculates a jump address that
leads to the proper subroutine. The
extended interpreter is thus prepared
for microcontrollers that haven’t even
been invented yet.

The text file Sample Programs, which
is also located on the diskette, contains
programs that illustrate the use of the
specific instructions of the interpreter.

L C D C O N T R O L
BASIC-52 allows serial interface out-
puts to be redirected to a different out-
put routine. This capability is used in
the BASIC-537 interpreter to drive a
liquid-crystal display. The display is
largely addressed using normal
instructions. Only the instruction for
initialising the LCD (LCDINIT) and the
instruction for setting the character
location (CURSOR) have been added.

The new 537 ‘Lite’ computer (Janu-
ary 2000) has an interface for an LCD
module. This is located in the address
space starting with address FFCOh.
The display is initialised using the new
instruction LCDINIT. After this, there
are several ways to output characters

42 Elektor Electronics 2/2000

Instructions
RUN Ctrl-C CONT LIST NEW

Operators
+ - / * = > >= < <= <> .AND. .OR. .XOR. ABS() NOT() INT() SGN()
SQR() RND LOG() EXP() SIN() COS() TAN() ATN()

Statements
CALL DATA READ RESTORE DIM DO-WHILE DO-UNTIL END FOR-TO-
STEP NEXT GOSUB ON-GOTO ON-GOSUB IF-THEN-ELSE INPUT LET
ONERR PRINT REM STOP

Extended BASIC-537 Statements
ONEX1 subroutine call following Interrupt 1
ONTIME timer interrupt call
RETI end of an interrupt subroutine
PH0., PH1. output a hexadecimal number with/without leading zeros
PUSH, POP move data to/from the argument stack
STRING reserve memory for a text string
IDLE wait for interrupt

Special function operators and system variables
CBY() DBY() XBY() GET IE IP PCON T2CON TCON TIME TIMER0 TIMER2
PI XTAL MTOP LEN FREE

80C537 I/O handling
AD (channel) [read-only] C = AD (0) analogue input (0 – 5V) at the

AD0 input
C = AD (11) analogue input (0 – 5V) at the

AD11 input
DAPR [write-only] DAPR = 128 switch the measurement

range to 2.5 V
SFR [read-only] print SFR (90H) reading special function reg-

isters
WrSFR [write-only] WrSFR 90H,255 writing special function regis-

ters
Table 2. Summary of
BASIC-537 instructions

to the display. The desired character
position can be specified using the
CURSOR instruction. The PRINT@
instruction writes directly to the dis-
play. A sample program is available on
the diskette or from the Elektor web-
site.

A program can send its outputs to
the terminal emulator using PRINT, or
to the LCD using PRINT@, as desired.
All output data can be formatted with
the USING instruction. However, the
line feed function has no effect on the
LCD. This means that the CURSOR
instruction should be used as much as
possible to specify the desired location
of the output data. Various types of
LCDs can be used, with one, two or
four lines. The sample program
LCD.BAS shows the character position
corresponding to the start of each line.

Another option is use the instruc-
tion UO 1 to redirect the entire out-
put to the LCD. The instruction
UO 0 switches the output back to
the terminal

A U T O S T A R T
The original BASIC-52 tests the entire
RAM after start-up, clears it and then
starts any program that it recognises in
the external EPROM. Both of the Elek-
tor 80C537 computers have battery-
backed RAM, so that the program that
was last run before the computer was
switched off remains present in the
RAM. The BASIC initialisation routine
has therefore been modified to auto-
matically start a program that is
already in the RAM.

All that you have to do is to load a
program into the computer’s memory.
After this you can disconnect the serial
cable to the PC and let the computer
work on its own. Each time the com-
puter is started up, the program is run
anew, at least as long as the lithium
battery provides enough power to
maintain the contents of the RAM. If at
any time you don’t want the system to
automatically run a program when it
starts up, all you have to do is to send
it a NEW instruction.

W E H A V E N ’ T
F O R G O T T E N T H E
8 0 5 3 5 !
Now we come to the widely used
80535 systems, such as the Elektor
80535 Single Board Computer. The
new interpreter can also be used with
this system, if you first carry out a few
modifications.

The system must run at 12 MHz, in
order to yield a data transfer rate of
9600 baud. Everything else works as
well, as long as you take the available
processor hardware into account. The
A/D converter has only eight channels,
but is otherwise compatible. Naturally,
the 80535 has fewer timers, ports and

so on than the 80537.
Intel’s BASIC-52 interpreter expects

to find data RAM starting at address
0000h. The new initialisation routine
does not change this. However, the
80535 Single Board Computer divides
its 32 kB of RAM between the address
ranges 4000h–7FFFh and
C000h–FFFFh. Special logic allows the
RAM in these regions to be used to
store program code as well as data.

The necessary changes are quite
simple. Remove IC2 (a quad NAND IC,
type 74HC00) from its socket and
replace it with three small wire bridges,
as follows:

pin 3 to pin 4 (OE direct to RD)
pin 11 to pin 12 (CE direct to A14)
pin 7 to pin 8 (CS direct to

ground)

In this configuration there is 16 kB of
RAM available to the system, starting
at address 0000h. The normal BASIC-
537 interpreter can work with this. Of
course, you must tell the interpreter
that only 16 kB of RAM is available, by
entering:

MTOP = 16383

This line should also be placed at the
beginning of every program, since the
interpreter initialises itself to 32 kB of
RAM after a restart. Since all variables
are stored just below the upper RAM
boundary, the interpreter will function
correctly only if it has accurate infor-
mation about the amount of available
RAM.

If you would rather be able to use the
full 32 kB of RAM, you must make two
further modifications, as follows:

Bend pin 1 of the RAM IC (A14) so that
it does not stick into the socket, and
then connect it directly to address
line A14 (for example, at pin 12 of the
socket for IC2).

Bend pin 20 of the RAM IC (CE) so that
it also does not stick into the socket,
and then connect it directly to
address line A15, which is on pin 1 of
the same socket.

Now the system will see the full 32 kB
of RAM in one continuous block, start-
ing at address 0000h. With this modifi-
cation, it is not necessary to specify the
amount of available memory with
MTOP.

The 80535 Single Board Computer
does not have battery-backed RAM.
However, it is possible to use a ‘zero-
power’ RAM, which has a built-in
backup battery. If such a RAM is used,
this computer behaves the same way
as the new 80537 computer. With a
zero-power RAM you can have a pro-
gram start automatically. Even without
this luxury, though, the Autostart func-

tion of the extended BASIC interpreter
makes its presence known. This can be
seen if a reset is executed while power
is still applied. In this case the program
that is already present starts immedi-
ately after the reset. This is a quite use-
ful feature during program develop-
ment. Instead of entering Break and
then Run, you can simply press the
Reset button.

An additional difference can be seen
in the fact that it is possible to use a liq-
uid crystal display. The ’535 computer
does not have any decoding logic for
the LCD, so you will have to either
build some extra circuitry or else con-
nect the LCD to a port and use the 4-
bit mode. The display can be driven by
a somewhat complicated BASIC rou-
tine.

All of the supplementary ports of
the 80535 can be addressed not only
via their SFR addresses but also
directly. The instructions P3, P4 and P5
can be used for output only. An output
value can be directly assigned to a port
(e.g. P4 = 255). Reading input data
from the ports with the InP3, InP4,
InP5 and InP6 instructions is unfortu-
nately not as convenient, since this
must be done via the result stack. Port
states that have been read can be
fetched and put into a variable using
the POP instruction:

InP4 : POP A : PRINT A

The direct port instructions also work
with the 80C537, but only up to port
P6. BASIC-52 allows only a limited
number of new keywords. It is thus
not possible to give every new function
its own name. This means that we
have to continue programming the
special hardware of the microcontroller
via register addresses. With read oper-
ations in particular, the use of register
addresses (e.g. Print SFR(0E8h)) is often
more elegant than the use of direct
port instructions.

It is relatively easy to write some
reset routines and supplementary
instructions yourself, since the BASIC-
52 interpreter already has suitable
interfaces. You can find more detailed
information in the relevant literature.

(000018-1)

You can find additional information and
sample programs for 80535 and 80537
microcontrollers, and a DOS terminal
emulator for BASIC-52, at the author’s
homepage on the Internet:
http://home.t-online.de/home/B.Kainka

Project Software
Diskette, order code 996029-1.
(terminal emulator, help file and sample

programs)

EPROM, order code 996532-1.
(BASIC-537 interpreter)

43Elektor Electronics 2/2000

Elektor Electronics 2/2000

Be that as it may, the most obvious
way of increasing power output is to
raise the supply voltage of 12 V to a
higher level by means of a converter.
Such a converter, however, is not
exactly cheap and is, moreover, a noto-
rious source of noise and interference.
In view of the extensive electronic cir-
cuits in modern motor vehicles, this lat-
ter point is not to be underestimated.

Fortunately for the loudness-hun-
gry, there is an alternative to a con-
verter. Some years ago, Philips intro-
duced a special integrated output
amplifier chip, the TDA1560Q, that is
able to provide 30 watts into 8 Ω from
a 12 V power supply (without the use
of a converter). This output power is

44

Design by T. Giesberts

50+ watts from a 12 V battery

The integrated output amplifier
described in this article consists
of little more than one integrated
circuit. It is intended especially for
use in motor vehicles and other battery-
operated applications. Although it appears

simple and hardly worth looking at, the amplifier
can produce an appreciable audio power output.

power output, their design is far from
simple.

A simple calculation shows that a
conventional amplifier operating from
12 V (or maximum 14.4 V when the
battery is fully charged) cannot pro-
vide a power output of much more
than 6 W. Use of a bridge arrangement
may push this up to some 20 watts, but
that is just about the maximum possi-
ble.

Nowadays, many motorists, and
more particularly the younger ones,
want considerably more power than
6–20 watts. Loudness is their god, but
they unfortunately forget that this is an
unforgiving god, leading them to early
deafness.

Amplifiers come in all sorts. Most of
the amplifier designs published in this
magazine are intended for domestic or
studio use. As such, they are usually
powered by a 60–150 V supply, which
may, moreover, be further divided into
two balanced voltages. This makes
these amplifiers unsuitable for use in
motor vehicles.

Amplifiers that can operate from a
12 V supply are quite different units,
designed as they are for low-voltage
supplies. If, moreover, they are
required to provide a substantial

AUDIO & HI-FI

designed for in-car use

one-IC audio power amplifier

obtained by operating the amplifier in
Class H (see box elsewhere in this arti-
cle).

An amplifier based on the Philips
device was described in the February
1995 issue of this magazine.

Philips designers have further
improved a number of properties of
the IC, among which the power out-
put. According to the Philips data
sheet, the improved device, the
TDA1562Q, can deliver 70 watts into
4 ohms, but that is at the cost of the dis-
tortion, which at 10 per cent is rather
too high, even for in a car.

The prototype of the design
described in this article provides
54 watts into 4 ohms at 1 per cent dis-
tortion. Since the number of requisite
external components is smaller than in
the case of the earlier device, the
printed-circuit board is even more
compact than that for the February
1995 amplifier.

T H E T D A 1 5 6 2 T Q
The internal circuitry of the new device
is very similar to that of its predecessor.
Since, however, not everybody can be
assumed to be au fait with the February
1995 article, the circuitry is described
anew.

The block schematic of the device is
shown in Figure 1. Particular attention
is drawn to the boxes marked ‘lift sup-
ply’, which are necessary in a Class H
system (see box).

The IC evaluates the input signal
and estimates the consequent drive of
the output transistors. When these
transistors tend to go into saturation,
the supply voltage is raised briefly by
switching the capacitors connected to
pins 3 and 5, and 13 and 15, in series
with the supply voltage.

Apart from the input amplifier and

Class H output amplifier, the device
contains several protection circuits.
One of these protects the IC against an
excessive output current and against
short-circuits.

The temperature protection circuit
works in two steps. When the first
threshold temperature is exceeded, the
device switches from Class H to Class B
operation. There is then no question of
increased supply voltage. When the
second threshold temperature is

exceeded, the drive to the output tran-
sistors is reduced.

There is also a protection circuit
against overvoltage and one against
too low load impedances. When the
load impedance drops below a prede-
termined critical level, operation is
switched from Class H to Class B. A
load impedance smaller than 0.5 Ω is
seen as a short-circuit, which causes
the device to be switched off alto-
gether.

45Elektor Electronics 2/2000

1

Figure 1.Block diagram of the innards of the TDA1562Q. A
number of protection networks make the amplifier virtu-
ally foolproof.

Brief technical data
Properties
High power output through Class-H operation
Low power dissipation during reproduction of music signals
Proof against short-circuits
Protection against excessive temperatures
Standby switch
No power-on or power-off clicks
Visible error indication

Measurement results (at Ub=14.4 V)
Supply voltage 8–18 V
Sensitivity 760 mV r.m.s.
Input impedance 70 kΩ
Power output 54 W r.m.s. into 4 Ω (f=1 kHz; THD+N=1%)
Harmonic distortion (THD+N) at 1 W into 4 Ω: 0.046% (1 kHz)

0.29% (20 kHz)
at 35 W into 4 Ω: 0.12% (1 kHz)

0.7% (20 kHz)
Signal-to-noise ratio (with 1 W into 4 Ω) 88 dBA
Power bandwidth 7.5 Hz – 185 kHz (at 25 W into 4 Ω)
Quiescent current about 135 mA (‘on’)

C I R C U I T
D E S C R I P T I O N
The circuit diagram in
Figure 2 emphasizes how few external
components are needed to construct a
complete output amplifier (in fact,
fewer than half the number in the Feb-
ruary 1995 amplifier). For instance, the
new device does not need compensa-
tion networks to enhance the stability.
Also, because of the absence of switch-
on phenomena, there is no need for a
switch-on delay network.

There is, of course, still a need for
supply line decoupling capacitors.

Capacitors C5 and
C6 are required for
Class -H operat ion,
about which more in
the box.

The value of input
capacitors C1 and C2 is
relatively low, thanks to

the high input impedance of the IC.
Switched RC network R4-C4 at the

‘mode select’ input (pin 4) serves to
switch the IC to ‘mute’ or ‘standby’.
When the supply voltage is switched
on, the IC is first switched automati-
cally to the ‘mute’ mode and to ‘on’
only after a short delay. The time con-
stant R4-C4 is a few tenths of a second
and this delay between the two states
is sufficient to obviate disturbing (and
annoying) switch-on phenomena.

Switch S1 enables
the amplifier to be
switched to ‘standby’
when the use of the
amplifier is not needed

for a period of time. When that time
has elapsed, the amplifier is quickly
reverted to normal operation. The cur-
rent drain in the standby mode is vir-
tually negligible at only 200 µA.

Resistor R3 prevents a short-circuit
current ensuing when S1 is being
closed at the instant C4 is being dis-
charged.

E R R O R I N D I C A T I O N
The diagnostic output (pin 8) of the
TDA1562Q is one of the few facets of
the device that is completely new. As
shown in the diagram, it can now be
used to drive an visible error indicator,
D1, directly. During normal operation
the diode should be out. Its lighting
may be caused by one of four possible
causes.
1. The amplifier is being overdriven.

The internal circuit responsible for
the indication is the ‘Dynamic Dis-
tortion Detector’ (see Figure 1). In
practice, this will be the case when
the distortion rises above 1.6 per
cent at 1 kHz. The diode is, there-
fore, a kind of clipping indicator.

2. There is a short-circuit between the
outputs or between one of the out-
puts and the supply line. In the first
case, the outputs are disabled,
whereupon the protection network
ascertains at short intervals of time
whether the short-circuit has been
removed. The DIAG output is then
disabled for 30 µs at 20 ms intervals.
In the case of a short-circuit
between one of the outputs to the
supply line, the DIAG output
remains active.

3. The internal sensor measures a tem-
perature of 145 °C, whereupon the

46 Elektor Electronics 2/2000

TDA1562

P
G

N
D

2

P
G

N
D

1

MODE

IC1

S
G

N
DVREF

OUT+

OUT–

S
TA

TDIAG

+IN

–IN

C2+C2–

C1+C1–

V
P

1

V
P

2

1217

16

11

1315

14

1053

4

8 9

6

1

2

7

C5
4700µ

25V

C6

4700µ
25V

C1

470n

C2

470n

C7

100n

C3

10µ
63V

C8

4700µ
25VC4

10µ
63V

R1

1
M

R4

1
0

0
k

R2

4
k

7

D1

S1

standby

LS+

LS–

000004 - 11

12V

R3

1k

2

Figure 2. The circuit of
the amplifier is con-
spicuous by its sim-
plicity. Diode D1 is an
error indicator.

000004-1
(C) ELEKTOR

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

D
1

H1

H
2H3

H
4

IC
1

R1

R
2

R
3

R
4

LS
+

L
S

-

0
+

S
1

Tstandby

0
0

0
0

0
4

-1 000004-1
(C) ELEKTOR

3

Figure 3. The compact
printed-circuit board
for the amplifier is
available through the
Readers’ services
(towards the end of
this issue).

COMPONENTS LIST

Resistors:
R1 = 1MΩ
R2 = 4kΩ7
R3 = 1kΩ
R4 = 100kΩ

Capacitors:
C1,C2 = 470nF
C3,C4 = 10µF 63V radial
C5,C6,C8 = 4700µF 25V radial

(18mm max. dia., raster 7.5 mm)
C7 = 100nF, raster 5 mm

Semiconductors:
D1 = high-efficiency-LED
IC1 = TDA1562Q (Philips)

Miscellaneous:
S1 = single-pole on/off switch
Four spade connectors, PCB mount
Heatsink for IC1 (Rth<2.5 K/W)
PCB, order code 000004-1 (see

Readers Services pages)

relevant protection circuit is
enabled.

4. The IC is in the power-up state.
When it is switched to the ‘on’ state,
the diode goes out. If, however, the
output impedance is not to specifi-
cation during power-up, the diode
remains lit.

A C O M P A C T B O A R D
The amplifier is best built on the single-
sided printed-circuit board shown in
Figure 3 (available through our Read-
ers’ services – see towards end of this
issue). As mentioned earlier, the board
is small for an output amplifier. In fact,
most of its surface is taken up by the
four car-type (spade) connectors via
which the power supply and the loud-
speakers are connected to the amplifier.

The small size of the board also cre-
ates a few difficulties. If, for instance,
the electrolytic capacitors are mounted
first, the fitting of the IC becomes
pretty difficult. It is, therefore, advis-
able to start with fitting the IC onto the
heat sink (using plenty of heat con-
ducting paste).

Also, ensure that after the board has
been placed in a suitable enclosure, its
solder (track) side remains readily
accessible. After the board and heat
sink have been secured in the case, sol-
der the pins of the IC to the board.

Figure 4 shows a photograph of the
completed prototype as built up in our
design lab.

Make sure that when the board is
fitted in the case, the loudspeaker ter-
minals are not (and cannot be) short-
circuited to earth. Although the IC is
protected against much abuse and mis-
use, it is always better not to tempt
providence.

In most cases, two amplifier mod-
ules will be fitted in one enclosure: one
for the left-hand channel and the other
for the right-hand channel.

Constructors who find 2×54 watts
insufficient may consider driving the
front and rear speakers in the vehicle
by separate amplifiers. This would take
the total number of modules required
to eight, and these deliver some
400 watts of audio power into the vehi-
cle. A case of minding the windows!

[000004-1]

Text (Dutch original): S. van Rooij

47Elektor Electronics 2/2000

4
Figure 4.There cannot
be many 50 W output
amplifiers that are this
small.

Class-H operation
A Class H amplifier is somewhat akin to a Class G amplifier, which is a power ampli-
fier in which two Class B amplifiers with different supply voltages are combined. Small-
amplitude signals are boosted by the one with the lower supply voltage, resulting in
much higher average efficiency for speech and music. When signals exceed the low-
voltage supply amplitude, the amplifier that operates from the higher supply voltage takes
over, while the first one is switched off.

In a Class H amplifier the supply voltage is varied by an efficient Class S amplifier
or the arrangement in the present design so that it remains just above the minimum
value required to prevent saturation. This configuration also achieves a much higher
average efficiency for speech and music signals. (A Class S amplifier is a pulse-width-
modulated audio amplifier in which the active elements are switched by a control fre-
quency several times higher than the signal frequency being amplified. This type of
amplifier has an efficiency of some 90 per cent).

In the present amplifier, Class H operation is achieved by the use of two switched
capacitors, C1 and C2. These are charged to the battery voltage and switched into
series with the 12 V supply line during brief drive peaks.

In the diagram, transistors T1–T4 are part of the ‘normal’ amplifier, while T5–T8 and
C1 and C2 are added for Class H operation. At small-signal amplitudes, T7 and T8
are on and C1 and C2 are charged to the battery voltage via diodes D1 and D2. When
the signal amplitude tends to drive T1 or T3 into saturation, the internal sensor
(lift/recharge control) detects this and causes T7 and T8 to be cut off and T5 and T6
to be switched on. When that happens C1 and C2 are in series with the supply line;
diodes D1 and D2 prevent their being discharged into the battery.

When the input signal amplitude drops, the capacitors are linked to earth again by
T7 and T8, whereupon their charge is topped up.

C1 C2

R1

D2D1

T1

T2

T6

T8

T5

T7 T3

T4

LIFT/
RECHARGE
CONTROL

LIFT/
RECHARGE
CONTROL

E1

950024 - 12

V3

V1 V2

V4

Elektor Electronics 2/2000

In short, even though using desol-
dering braid may appear to be the
most primitive of the three options, our
experience in the Elektor lab is that it
yields the best results.

B R A I D E D W I R E
Desoldering braid or ‘Wick’ is actually a
braided wire ribbon consisting of thin
copper wires together with impreg-
nated solder flux. The spaces between
the wires soak up the solder, so that it
is removed from the place where it is

no longer desired. Desoldering braid
can be obtained in small rolls a few
metres long (see Figure 1).

Using desoldering braid is very easy.
Before you start, remember that solder
flows best when it is good and hot. You
should thus not use too small a solder-
ing iron. If you have a temperature-
controlled soldering iron, set it to at
least 350 degrees. Now all you have to
do is to make sure that the desoldering
braid is hotter than the joint that is to
be desoldered, since the solder will

We can assume that the
majority of our readers have

sufficiently mastered the
noble art of soldering. How-
ever, the art of unsoldering

already soldered compo-
nents, or desoldering, is

something else. Even rather
experienced solder artists

often prove to be extremely
clumsy in this area. They go
about it the wrong way, and

lacking both patience and
the right touch, they tend to

mess around until they
have ruined not only the
component but also the

printed circuit board.

48

By K. Walraven

a craft in its own right

1

P U M P I N G O R S U C K I N G ?
The only good way to desolder is to
patiently remove all of the solder from
the points where the component is
attached to the circuit board. This can
be done using a special ‘solder-sucker’
soldering iron, a vacuum pump or des-
oldering braid.

Of these various options, the vac-
uum pump and the special soldering
iron may seem to be the most conve-
nient at first glance, but in practice this
is not so. The nozzles of these tools are
easily clogged, and the sucking action
is not always perfect. If you use a sep-
arate pump, you have to heat the sol-
der joint quite strongly, which is in
itself risky. Even then you have to
quickly switch between the soldering
iron and the pump, since otherwise the
solder will cool down and become
hard again.

GENERAL INTEREST

desoldering

flow to the hottest point.
Proceed as follows:
➧ First place a clean piece of desolder-

ing braid on the solder joint that you
want to remove, and then place the
tip of the soldering iron on top of the
braid.

➧ Now press quite firmly with the sol-
dering iron, to make good thermal
contact (see Figure 2). The solder will
be drawn into the braid.

➧ As soon as the braid is saturated, it
will not absorb any more solder. You
can easily see how saturated it is
from its colour. It is initially copper-
coloured, but becomes increasingly
silver-coloured as it absorbs more
and more solder (see Figure 3).

In order to fully clean the solder from
a joint, you sometimes have to work in
two steps. In the first step you remove
most of the solder. After this, you can
slowly draw the braid along under the
soldering iron, while holding the sol-
dering iron stationary (this takes a bit
of practice). Following this, you can
remove the last remains of the solder
with a fresh, unused piece of desolder-
ing braid.

F L U X
Once you have gained some experi-
ence in working with desoldering
braid, you will quickly realize that this
technique works well only if sufficient
flux is present. If there is not enough
flux, even liquid solder simply forms a
ball and will not soak into the braid.

Sometimes certain parts of the braid
do not have enough flux. This can be
caused, for example, by repeated flex-
ing of the braid at a particular location.

This fault can be remedied by
putting additional flux on the solder
joint that is to be removed. You can
buy flux paste in tubes for this pur-
pose. You can also use violinist’s rosin,
which is available in small tins, to
impregnate the braid. Since rosin is
hard, getting it into the braid is a bit
tricky. Set your soldering iron to a low
temperature (100 to 150 degrees); if
you do not have a regulated iron, you
will just have to be quick. Lay a small
piece of braid on the surface of the
rosin and warm the braid from the top
with the soldering iron (see Figure 4).
The rosin will melt and soak into the
braid. Hold the iron stationary and pull
the braid through underneath it.

You can also make your own desol-
dering braid in this manner. You can
use any piece of stranded wire (from a
bit of mains cable, for example) — just
remove the insulation and impregnate
it with flux. This is handy to know if
you run out of desoldering braid, or
simply find it too expensive.

(000006-1)

49Elektor Electronics 2/2000

2

3

4

Elektor Electronics 2/2000

EPROM contains the monitor pro-
gram, while the RAM chip acts as a
combined program and data storage
device. In this mode, jumper J7 has to
be set to the 12 MHz crystal position. If
not, the communications data speed is
not properly set up. However, once the
program has been downloaded, J7
may be changed at any time, if only to
ensure that the program runs about
33% faster after a reset. Do remember,
however, that the higher clock speed
also results in time-dependent routines
being executed faster.

The EPROM-resident monitor pro-
gram allows simple direct entry of
assembler commands as well as com-
fortable debugging at assembly-code
level. You may enter help to call up an
overview of all available functions.

In Run mode the previously down-
loaded user application program may

be executed straight
away by means of a

reset, after which the program runs in
the RAM area. The RAM component
then acts as an EPROM program stor-
age device, obviating the need to pro-
gram your own EPROM to be able to
employ the system in stand-alone
mode running the final version of the
program. The RAM component acts as
a shared program and data memory.
An essential component in this mode is
the backup battery, because, as you will
no doubt be aware, a RAM chip is a
‘volatile’ device which means that it
loses its contents when the supply volt-
age disappears.

When the Monitor EPROM is used
(mode 2) the serial interface SS0 is auto-
matically configured for 9,600 baud,
one stop bit and no parity (9600, N, 8,
1), which should enable flawless com-
munication with the host PC. However,
if the program is to run in Stand Alone
or Run mode, this serial interface ini-
tialisation is sadly missing. Unfortu-
nately, you have to provide and embed
the necessary routine for SS0 yourself
to make sure the communication with
the PC operates as it should.

P R O G R A M M I N G
Before you can start programming
away, you have to know some elemen-
tary facts about the memory configura-
tion of the 537 Lite board. After all, pro-
grams and user data are both stored in
RAM component IC7. This shared
memory space extends from 0000H
through 7FFFH, so its size is 32 kBytes.
In the programming environment
(8051 Compiler or Interpreter) you
have to indicate exactly which ranges
are reserved for the program and
which ones for the data. If you fail to
do this, memory contention may occur
and program(s) and data may actually
destroy each other!

Having built the board and successfully run the
first communication tests, you are ready to start
programming the 537 core system. In doing so,
some rather special points should be observed

which are discussed in this article. What’s
more, we show you how the board may be
used in practice by adding extensions and

components.

50

Design by Prof. B. vom Berg
and P. Groppe

part 2: programming and practical use

M O D E S O F T H E
5 3 7 ‘ L I T E ’ C O M P U T E R
The fact that it can be used in three dif-
ferent modes adds considerably to the
power and versatility of the the 537
Lite board. The modes are Stand
Alone, Program Download and Run.
Table 1 shows how to set jumpers and
switches to select between these
modes.

Stand Alone mode is typically used for
the final application of the board,
when a program has been fully tested
and is known to work error-free in the
target system. After a reset, the user
program is immediately executed from
EPROM.

In Program Download mode, a termi-
nal program is used to download the
program (developed on a host PC) to
the 537 Lite board. The program then
has to be started from
the host PC. The

Mode Jumper Switch EPROM RAM
J1A,J1B,J1C S1 IC2 IC7

Stand-alone 1-2 don’t care user program* Data*
Program download 1-2 LOAD RAM Monitor user program and data*
Run 2-3 RUN not active user program and data

*: 32 kByte device, address range 0-7FFFH

Table 1. Jumper- and
switch settings of the
three modes

MICROPROCESSORS

537 ‘Lite’ computer (2)

You should also be aware that the
EPROM-resident Monitor program,
whose functions include control over
the program download operation, also
requires a small scratch area in RAM.
Obviously, this area may not be over-
written by the program code or user
data! The monitor scratch area is
defined as 7F00H through 7FFFH in
RAM.

All this has the following implica-
tions if you want to start writing pro-
grams:

51Elektor Electronics 2/2000

7FFF End of RAM range (fixed): 32 kByte
Size: 256 bytes

7F00 Fixed start address of memory range for Monitor program

7EFF End of data memory range (fixed)
Size: 7.75 kBytes

6000 Start of data memory range (variable)

5FFF End of program code range
Size 24.0 kBytes

0000 Start of program code memory range (variable)

(**)
(*** p2: Capture analogue values with the 537 Lite Board ***)
(*** === ***)
(*** Version: 1.0, 12.10.99, 16:23 ***)
(*** Programmer: v.Bg. ***)
(**)

program p2;

(*** Definition of Variables ***)
const
(* For A/D converter *)
adcon0 = $d8;
addat = $d9;
dapr = $da;
busy = $dc;

var
(* A/D converter *)
adu:byte;

(* Various *)
i,zw: byte;

(*** Suroutine Collection ***)

(*** Main program **)

begin
(*** Clear screen ***)
write(chr($1a));

(*** Intro text ***)
writeln('Program p2: Capture analogue values using 537 Lite Board');
writeln('==');
writeln;
writeln(' now capturing measurement values');
writeln;

(*** Main loop ***)
repeat (* Start of endless loop *)

(* Capture and display measurement values *)
for i:=0 to 2 do (* Convert 3 measurement values *)
begin
adu:=reg(adcon0); (* Read adcon *)
adu:=adu and %11000000; (* single conversion, internal start *)
adu:=adu or i; (* Channel selection *)
writereg(adu,adcon0); (* Copy value into SFR *)
writereg(0,dapr); (* Start conversion *)
repeat until (bit(busy)=false); (* Wait for done *)
zw:=reg(addat); (* Read converted value *)

write('Input AN',i,': ',zw); (* Put on display *)
writeln(' = ',(zw*5)/256,' V');(* Convert into Volt and display *)

end;
writeln; (* Supply empty line *)

(* Wait: approx. 1000 ms until next measurement *)
wait_25ms(40);

until false; (* Exit from endless loop *)

end.

Figure 1.
P2.PAS
listing.

Table 2. RAM memory map

➧ The total RAM range
available for program
and data extends from 0000H
through 7EFFH, so its size is
32,512 bytes.

➧ The program memory range always
starts at address 0000H, and is imme-
diately followed by the data memory
range.

➧ The data memory range may not
reach into the monitor memory
range. The memory division is illus-
trated in Table 2.

At this point, an example may help to
show what considerations play a role
in practical programming.

Let’s assume that a program with a size
of about 20 kBytes and requiring about
5 kBytes of data memory is not quite
finished and therefore requires some
additional memory locations. The com-
piler/interpreter should be ‘informed’
that the program code range starts at
0000H, and the data range, at 6000H.
Consequently the program space has a
size of 24,576 bytes (24 kBytes), while
the data memory measures 7,936 bytes
(7.75 kBytes).

When the program is developed
further, you should take care that the
program code does not cross the
5FFFH border, and the data, the 7EFFH
border. If that happens, the two mem-
ory blocks will corrupt one another.

Programming the 537 Lite board
takes four steps:

➧ The user program is written in a pop-
ular and widely used programming
language like Assembler51, C51,

BASIC52, PL/M51 or
Pascal51. BASIC52 and

Pascal51 in particular allow very fast
and powerful results to be obtained.
Whatever programming language is
used, the final product of your pro-
gramming efforts, a block of object
code, should be either an Intel-Hex
file, a file with the extension .hex or
an ASCII file containing BASIC
tokens.

➧ The object code file is downloaded to
the 537 board via one of the available
RS232 interfaces on the PC.

➧ Test the program in combination
with the target system hardware.

➧ Once all errors have been sorted out
and the program works as it should,
there are two possibilities to accom-
modate the final version of the soft-
ware in the system.
– The first option is to program an
EPROM and install it instead of the
Monitor EPROM. The system then
runs in Stand Alone mode
(mode 1), so that 32 kBytes of
data/program memory is available.

– The second option is to switch S1
to RUN (mode 3) after the program
download operation, prompting
the program to execute from RAM.
When a backup battery is used, the
RAM contents is not lost when the
battery voltage is switched off. A
Lithium battery should have
enough energy for several years of
problem-free use.

The advantage of the second option
is that you do not have to burn an

EPROM. Consequently there’s no
need to have an EPROM programmer
and/or UV eraser available.

P R A C T I C A L
A P P L I C A T I O N S
Of course, the 537 core should not lie
idle among half a dozen or so other
microcontroller boards in one of your
drawers. We strongly suggest you actu-
ally use the board by giving it a practi-
cal application. A good example is that
of a CAN bus system host as described
in last month’s issue of this magazine.
Other experimental circuits and appli-
cations include peripheral devices with
serial control (3-channel D-A converter,
temperature sensor, LED display, etc.),
keypad/keyboard interfaces, voice pro-
duction, digital and analogue I/O
cards, IrDA, radio and fibre-optic com-
munication systems. Many such pro-
jects may be found in existing litera-
ture, or will be published shortly.

Even if space is at a premium in this
magazine, an example should be
included that illustrates the use of the
537 Lite computer in combination with
the DOS version of Pascal51. This inte-
grated programming environment also
runs in a Windows 95/98 DOS box.

Having launched the editor
nilied.exe you first have to set up the
desired memory model. This is done in
the menu Options|NiliPascal Parame-
ters (Figure 1). The minimum settings
are the definitions of data and program
memory start addresses, the microcon-
troller clock frequency and the baud
rate of the communication between the
PC and the 537 Lite board. Your per-
sonal preferences and settings are
saved and the menu is closed.

At this point you may enter a pro-
gram or load an available piece of code,
for example, one of the examples
found on the project diskette, 976008-
1. The example program p2.pas cap-
tures input voltages on the first three
inputs AN0, AN1 and AN2 of the 537’s
on-chip A-D converter. The sampling
rate is one per second. You may apply
different voltages in the range 0-5 V to
pins 3, 4, 5 and 15 of connector K3 and
check the associated conversion results
on the display.

The program p2.pas should be com-
piled without errors after pressing
Shift-F9. Next, you quit the program
editor by typing Alt-x which takes you
back to the DOS level. The next step is
to download the object code to the 537
Lite board and run it! Figure 2 shows
what you should see on your display.

(990054-2)

Design editing: K. Walraven
Text editing

(German original): R. Gerstendorf

52 Elektor Electronics 2/2000

Program p2: Capture analogue values using 537 Lite Board
===

now capturing measurement values

Input AN0: 118 = 2.3046875e0 V

Input AN1: 122 = 2.3828125e0 V
Input AN2: 118 = 2.3046875e0 V

Input AN0: 66 = 1.2890625e0 V
Input AN1: 56 = 1.0937500e0 V
Input AN2: 29 = 5.6640625e-1 V

Input AN0: 75 = 1.4648437e0 V
Input AN1: 91 = 1.7773437e0 V
Input AN2: 109 = 2.1289062e0 V

Input AN0: 107 = 2.0898437e0 V
Input AN1: 112 = 2.1875000e0 V
Input AN2: 111 = 2.1679687e0 V

Figure 2. Measure-
ment results produced
by P2.PAS on the PC
display.

✃

DATASHEET 2/2000

HT12D

Integrated circuits
Special Function

HT12A

Integrated circuits
Special Function

DATASHEET 2/2000

53
E

lektor E
lectronics

2/2000

HT12A
212 Series of Encoders

Manufacturer
Holtek Semiconductor Inc.,

No.3 Creation Rd. II, Science-based Industrial Park,
Hsinchu, Taiwan, R.O.C. Fax: 886-3-563-1189.
Internet: http://www.holtek.com.tw

Features (HT12A only)
➧ Operating voltage 2.4V- 5V
➧ Low power and high noise immunity CMOS tech-

nology
➧ Low standby current: 0.1µA (typ.) at VDD =5V
➧ 38kHz carrier for infrared transmission medium
➧ Minimum transmission: one word
➧ Built-in oscillator needs only 5% resistor
➧ Data code has positive polarity
➧ Minimal external components
➧ 18-pin DIP or 20-pin SOP package available

Application example
IR Remote Control for Sony MZ-R30 MiniDisc Walk-
man, Elektor Electronics February 2000.

General Description
The 212 encoders type HT12A and HT12E are CMOS
LSIs for remote control system applications. They are
capable of encoding information which consists of N
address bits and 12–N data bits. Each address/data

HT12D
212 Series of Decoders

Manufacturer
Holtek Semiconductor Inc.,

No.3 Creation Rd. II, Science-based Industrial Park,
Hsinchu, Taiwan, R.O.C. Fax: 886-3-563-1189.
Internet: http://www.holtek.com.tw

Features (HT12D only)
➧ Operating voltage: 2.4V-12V
➧ Low power and high noise immunity CMOS tech-

nology
➧ Low standby current
➧ Capable of decoding 12 bits of information
➧ Pair with Holtek’s 212 series of encoders
➧ Binary address setting
➧ Received codes are checked 3 times
➧ Address/Data number combination
➧ 8 address bits and 4 data bits

➧ Built-in oscillator needs only 5% resistor
➧ Valid transmission indicator
➧ Easy interface with an RF or an infrared transmis-

sion medium
➧ Minimal external components

Application example
IR Remote Control for Sony MZ-R30 MiniDisc Walk-
man, Elektor Electronics February 2000.

Pin Descriptions (HT12A only)

Pin Name I/O Internal Connection Description

A0 – A7 I CMOS IN, pull-high
Input pins for A0-A7 setting. These pins can be externally set to VSS
or left open

D8 – D11 I CMOS IN, pull-high
Input pins for data D8-D11 setting and transmission enable, active
low. These pins can be externally set to VSS or left open

DOUT O CMOS OUT Encoder data serial transmission output

L/MB I CMOS IN pull-high
Latch/Momentary transmission format selection pin.
Latch: floating or VDD. Momentary: VSS

OSC1 I OSCILATOR 1 Oscillator input pin

OSC2 O OSCILLATOR 1 Oscillator output pin

X1 I OSCILLATOR 2 455 kHz resonator oscillator input

X2 O OSCILLATOR 2 455 kHz resonator oscillator output

VSS I — Negative power supply (GND)

VDD I — Positive power supply

Pin Descriptions

Pin Name I/O Internal Connection Description

A0 – A11 I NMOS TRANSMISION GATE
Input pins for A0-A11 setting. They can be externally set to VDD
or VSS

D8 – D11 O CMOS OUT Output data pins

DIN I CMOS IN Serial data input pin

VT O CMOS OUT Valid transmission, active high

OSC1 I OSCILLATOR Oscillator input pin

OSC2 O OSCILLATOR Oscillator output pin

VSS I — Negative power supply (GND)

VDD I — Positive power supply

Pin AssignmentPin Assignment

✃

HT12D

Integrated circuits
Special Function

HT12A

Integrated circuits
Special Function

DATASHEET 2/2000DATASHEET 2/2000

54
E

le
kt

or
 E

le
ct

ro
ni

cs
2/

20
00

input can be set to one of the two logic states. The
programmed addresses/data are transmitted together
with the header bits via an RF or an infrared trans-
mission medium upon receipt of a trigger signal. The
capability to select a DATA trigger on the HT12A fur-
ther enhances the application flexibility of the 212

series of encoders. The HT12A provides a 38kHz
carrier for infrared systems.

Functional description
Operation
The HT12A encoder begins a 4-word transmission
cycle upon receipt of a transmission enable (D8-D11,
active low). This cycle will repeat itself as long as the
transmission enable (D8-D11) is held low. Once the
transmission enable returns high the encoder output

completes its final cycle and then stops as shown in
the transmission timing diagram.

Information word
If L/MB=1 the device is in the latch mode (for use
with the latch type of data decoders). When the
transmission enable is removed during a transmis-
sion, the DOUT pin outputs a complete word and
then stops. On the other hand, if L/MB=0 the device
is in the momentary mode (for use with the momen-
tary type of data decoders). When the transmission
enable is removed during a transmission, the DOUT
outputs a complete word and then adds 7 words all
with the ‘1’ data code.

General Description
The HT12D decoder is a CMOS LSIs for remote con-
trol system applications. It is paired with Holtek’s
212 series of encoders. For proper operation, a pair
of encoder/decoder with the same number of
addresses and data format should be chosen. The
decoders receive serial addresses and data from a
programmed 212 series of encoders that are trans-
mitted by a carrier using an RF or an IR transmis-
sion medium. They compare the serial input data
three times continuously with their local addresses.
If no error or unmatched codes are found, the input
data codes are decoded and then transferred to the
output pins. The VT pin also goes high to indicate a
valid transmission.
The HT12D decoder is capable of decoding informa-
tion consisting of N bits of address and 12–N bits of
data. The HT12D is arranged to provide 8 address
bits and 4 data bits.

Functional description
Operation
The HT12D decoder receives data that are transmitted
by an encoder and interpret the first N bits of code
period as addresses and the last 12–N bits as data,
where N is the address code number. A signal on the
DIN pin activates the oscillator which in turn decodes
the incoming address and data. The decoders will then
check the received address three times continuously. If
the received address codes all match the contents of
the decoder’s local address, the 12–N bits of data are
decoded to activate the output pins and the VT pin is
set high to indicate a valid transmission. This will last
unless the address code is incorrect or no signal is
received. The output of the VT pin is high only when
the transmission is valid. Otherwise it is always low.

Output type
The HT12D provides 4 latch type data pins whose
data remain unchanged until new data are received.

HT12A Block Diagram HT12D Block Diagram

Transmission timing for HT12A (L/MB = VSS) Decoder timing for HT12D

	U000201.jpg
	e002X02.pdf
	e002X06.pdf
	e002X10.pdf
	e002X12.pdf
	e002011.pdf
	e002016.pdf
	e002022.pdf
	e002028.pdf
	e002033.pdf
	e002035.pdf
	e002036.pdf
	e002040.pdf
	e002044.pdf
	e002048.pdf
	e002050.pdf
	e002053.pdf

