\\ \section*{1\\ \section*{1 \\ \\ $+$ \\ \\ $+$ \\ \\ $-$ \\ \\ $-$ Brochure} Brochure}

Pesind ble fic torcarivems a

Eleruld
 ETFHROMESTHE INTERNATIONAL ELECTRONICS MAGAZINE

σ
 \section*{BUMPFR SUMTMFR ISSUF
 \section*{BUMPFR SUMTMFR ISSUF with over 50 constiruction projects}

In the September issue :

- Anemometer and flow meter
- Home modem
- Analogue rev counter
- LED oscilloscope
- $41 / 2$ digit 1 MHz frequency counter
- Reversible a.c. supply
- Panda-Wegener stereo decoder
- PIC programming course Part 2
- and more for your continued interest

Front cover

A selection of prototypes of projects publishedinthis issue.

Copyright © 1994 Elektuur BV

CONSUMERPRESS

APPLICATION NOTES

34 Solid-state temperature sensor

AUDIO \& HI-FI \& MUSIC

8 Surround sound
12 MIDI swell pedal
26 Auto-play for CD player
28 Programmable amplifier
40 Discrete preamplifier
48 Robust a.f. power amplifier
50 8th order Butterworth filter
54 'Near-perfect' input stage
56 Two-speaker amplifier
68 Compressor for guitars
84 Gneral purpose IR volume control

COMPUTERS \& MICROPROCESSORS

18 PIC programming course - Part 1
38 Serial 12 -bit A-D converter
4480 C 451 controller board
52 Joystick-to-mouse adaptor
54 PC over-temperature alarm
62 1-4 Mbyte SIMM adaptor
66 Centronics input/output interface
67 Non-volatile controller chip

GENERAL INTEREST

5 Optical doorbell
6 Overtone oscillator
26 Self-starting multivibrator
37 Drive for bistable relay
42 Heat sink monitor
46 Light-sensitive switch
50 Mains-synchronised oscillator
53 Thermo-controlled hot-plate
64 Crystal oscillator
70 Sensor interface
71 Solder vapour extractor
74 Experimentation boards for PICs
76 Polarity reversal protection
76 Slave switch
78 Water softener

88 Figuring it out - Part 18
92 Resettable fuse for caravans
98 Infra-red controlled switch
102 Points control for model railway
103 Rear wiper interval switch

POWER SUPPLIES \& BATTERY CHARGERS

28 Near-ideal rectifier
42 Indicator for lead-acid battery charger
55 Power supply for LCD module
60 Power supply decoupling
60 Solar cell powered NiCd charger
64 Near-ideal supply
70 Lead-acid battery charger
72 Discrete power supply

RADIO, TELEVISON \& COMMUNICATIONS

6 RC-5 transmitter with 80C535
22 Software emulation for $\mathrm{RC}-5$ code
36 General purpose infra-red buffer
46 S-VHS-to-VHS converter
71 Stereo decoder
104 Small loop antennas - Part 2

TEST \& MEASUREMENT

30 Charge meter
36 Programmable pulse spacing meter
56 Precision one shot pulse generrator
63 Frequency indicator
68 Peak a.f. voltage meter
72 Three-phase indicator
75 Sweep generator
80 Car battery monitor
102 PLL controlled ranp generator

MISCELLANEOUS INFORMATION

110 Readers' services
112 Terms of business
113 Switchboard
114 Buyers' guide
114 Index of advertisers

Elektor Electronics is published monthly, except in August, by Elektor Electronics (Publishing), P.O. Box 1414, Dorchester, Dorset DT2 8YH, England. The magazine is available from newsagents, bookshops, and electronics retail outlets, or on subscription at an annual (1994) post paid price of $£ 27$-00 in the United Kingdom; air speeded: $£ 34-00$ in Europe; $£ 43.00$ in Africa, the Middle East and South America; $£ 45.00$ in Australia, New Zealand and the Far East; and $\$ 57.00$ in the USA and Canada. Second Class Postage paid at Rahway N.J. Postmaster: please send address corrections to Elektor Electronics, c/o Mercury Airfreight International Ltd Inc.. 2323 Randolph Avenue.
Avenel, New Jersey, N J. 07001 Avenel, New Jersey, N.J. 07001.

This little circuit is for all cases where you can not hear the doorbell, for whatever reason, but would still like to be alerted if someone calls at you. The reason for being unable to notice the sound of-the bell may be that you are hard of hearing, blown away by an old Jesus \& Mary Chain song, or deafened by the noise of the circular saw in your workshop as it grinds its way through a piece of wood or metal. Whatever the case, someone wants to see you, and an optical warning is a godsend.

The circuit uses the existing bellpush (S_{1}) and associated transformer $\left(\mathrm{Tr}_{1}\right)$, which is usually rated at $8 \mathrm{~V}, 1 \mathrm{~A}$, and safe to use for the present application. The secondary voltage is rectified and smoothed by $D_{1}-C_{2}$ which power the optical doorbell driver. When the push-button is pressed, the bell will ring as usual. At the same time, transistor T_{1} is switched on and off at the rate of the mains frequency (50 or 60 Hz). This, in turn, causes a monostable multivibrator formed by $\mathrm{IC}_{1 \mathrm{a}}$ and $\mathrm{IC}_{\mathrm{lb}}$ to be started. The monotime is set to a value of about 15 seconds by C_{3} and R_{3}. The monostable in turn enables an oscillator, $\mathrm{IC}_{1 \mathrm{cc}}-\mathrm{IC}_{1 \mathrm{~d}}$, which controls output driver transistor T_{2}. Consequently, the lamp connected to the solid-state relay, IC_{2}, will flash for a predetermined period. LED $_{3}$ flashes at the same rate as a means of checking the operation of the optical door bell. The maximum power of the bulb connected to the circuit is about 100 W .

Since the mains voltage is present on two copper tracks and four solder points on the printed circuit board, the circuit must be built with due attention paid to electrical safety. The completed printed circuit board is built into a solid ABS enclosure with integral mains socket, so that the bulb can be connected via an ordinary mains cable and plug.

Parts list

Resistors:
$\mathrm{R}_{1}=100 \mathrm{k} \Omega$
$\mathrm{R}_{2}-\mathrm{R}_{5}=1 \mathrm{M} \Omega$
$\mathrm{R}_{6}=15 \mathrm{k} \Omega$
$\mathrm{R}_{7}=390 \Omega$

Capacitors:

$\mathrm{C}_{1}, \mathrm{C}_{4}=100 \mathrm{nF}$
$\mathrm{C}_{2}=100 \mu \mathrm{~F}, 25 \mathrm{~V}$, radial
$\mathrm{C}_{3}=22 \mu \mathrm{~F}, 25 \mathrm{~V}$, radial
$\mathrm{C}_{5}, \mathrm{C}_{6}=1 \mu \mathrm{~F}, 25 \mathrm{~V}$, radial

Semiconductors:

$\mathrm{D}_{1}=1 \mathrm{~N} 4002$
$D_{2}=1 N 4148$
$\mathrm{D}_{3}=\mathrm{LED}$
$\mathrm{T}_{1}=\mathrm{BC} 547 \mathrm{~B}$
$\mathrm{T}_{2}=\mathrm{BC} 557 \mathrm{~B}$

Integrated circuits:

$\mathrm{IC}_{1}=4011$
$\mathrm{IC}_{2}=$ S201S04 (Sharp)

Miscellaneous:

$\mathrm{K}_{1}=3$-way PCB terminal block, pitch 5 mm .
$\mathrm{K}_{2}=2$-way PCB terminal

block, pitch 7.5 mm . $\mathrm{S}_{1}=$ existing bellpush. $\mathrm{Tr}_{1}=$ existing bell trans former $8 \mathrm{~V} / 1 \mathrm{~A}$.
$\mathrm{BZ} \mathrm{Z}_{1}=$ existing doorbell. Enclosure: e.g., Bopla Nicro N12. [Phoenix

Mecano UK Ltd.,
Tel. (0296) 398853.$]$
PCB Ref. 944080 (p. 110).
Design: E. Verbeek
[944080]

RC5 TRANSMITTER WITH 80C535

TYhe 80C535SBC (singleboard computer) can be adapted to function as an RC-5 infra-red (IR) transmitter by the addition of some hardware and software described in this article.

The required carrier wave of 36 kHz is generated by software: it is, therefore, essential that a 12 MHz crystal is used as the clock for the microcontroller.

The circuit consists of four parallel-connected buffers Type 74 HCT 00 , followed by a Type 2N222 transistor, T_{1}, which drives IR transmit diodes D_{2} and D_{3}. The edges of the transmitted signal are enhanced by C_{2}.

The IR transmit diodes convert the digital code into infrared signals. Light-emitting diode D_{1} gives a visibile indication that a code is being transmitted.

The connection with the SBC is made via K_{1}.

The circuit is best built on the printed-circuit board that, together with the necessary software, is available through our Readers' Services.

Parts list

Resistors:

$\mathrm{R}_{1}=10 \mathrm{k} \Omega$
$R_{2}, R_{5}=330 \Omega$

$\mathrm{R}_{3}=470 \Omega$
$\mathrm{R}_{4}=3.3 \Omega$
Capacitors:
$\mathrm{C}_{1}=100 \mu \mathrm{~F}, 10 \mathrm{~V}$, radial
$\mathrm{C}_{2}=1 \mathrm{nF}$
$\mathrm{C}_{3}=100 \mathrm{nF}$

Semiconductors:

$\mathrm{D}_{1}=$ LED, 3 mm , red
$\mathrm{D}_{2}, \mathrm{D}_{3}=\mathrm{LD} 271$
$\mathrm{T}_{1}=2 \mathrm{~N} 222$

Miscellaneous:

$\mathrm{K}_{1}=10$-way straight box header
PCB Ref. 944106 (p. 110)
Software Ref. 946199
(p. 110)

Design: W. Hackländer and S. Furchtbar
[944106]

OVERTONE OSCILLATOR

Quartz crystals are ground by the manufacturers to oscillate either on the fundamental frequency or on one of the odd harmonics (overtones). Now-adays, this grinding is so accurate that fundamental mode crystals do not oscillate on the third or fifth overtone (as they usually could do in years past). However, the present circuit enables fundamental mode crystals to oscillate on an overtone (third or fifth).

In the design, use is made of the fact that rectangular waveforms contain odd harmonics. The signal generated by oscillator $\mathrm{IC}_{1 \mathrm{a}}$ is amplified in $\mathrm{IC}_{1 \mathrm{~b}}$. This means that the

edges of the signal become steeper, which gives the signal more harmonics. The wanted overtone is selected by resonant circuit $\mathrm{L}_{1}-\mathrm{C}_{5}$, amplified by $\mathrm{IC}_{\text {Ic }}$ and shaped into a proper square wave by inverterIC ${ }_{1 d}$.

In the prototype, a fundamental mode crystal of 4.9 MHz was used and this oscillated unfailingly on the third as well as on the fifth overtone. The circuit can work on other frequencies, but the value of L_{1} may then have to be altered by trial and error.

The circuit draws a current of only a few milliamperes.

Design: K. M. Walraven
[944084]

SURROUND

TThe quality of reproduced sound does not result from a single property of the audio signal, but from the sum total of several characteristics. It is not only the frequency response, the signal-tonoise ratio and distortion, but also the breadth and depth of the stereo image that determine the degree to which the reproduced sound is experienced as faithful. The breadth of the image is, within certain limits, under the listener's control (by placing the loudspeakers in the desired positions). However, since the dimensions of an average living room and a concert hall are vastly different, obtaining the right depth of the image is rather more difficult. There are now amplifiers on the market that provide 'surround sound', that is, sound that appears to surround the listener as it does in a concert hall. It is fortunately not necessary to buy one of these modern amplifiers, since the effect can also be obtained with an existing amplifier as this article shows.

Design considerations

The ultimate way of producing surround sound is to make a four-channel recording and play this back via four separate channels: two for speakers in front of the listener and two for speakers behind him. Several manufacturers introduced this quad system some years ago, but it was not a commercial success. This was mainly because of the high cost: the system required a complex decoder, a second stereo amplifier and two extra speakers.

Then, there was a lot of experimentation by manufacturers with matrix circuits that produced a sort of quasi-quad sound from a normal stereo signal. The results were encouraging, but the associated costs were almost as high as those of the real quad systems.

906035-11

Fig. 1. An additional loudspeaker connected as shown will reproduce only the difference between the two stereo channels. The difference is called the L-R (or R-L) signal.

Fig. 2. The final design. The effect of the loudspeakers at the rear of the listener can be adjusted with \mathbf{P}_{1} from ' $L-R$ ' to 'double stereo'. If the rear speakers are too loud, they can be moderated by resistors R.

Fig. 3. Adding a small circuit and two (inexpensive) loudspeakers to an existing audio system gives a surround sound system.
right-hand channel, not in both.
It is clear from this that the difference between the two channels contains just the right information to drive one or two loudspeakers at the rear of the listener.

Figure 1 shows that the L-R signal is obtained by connecting the extra loudspeaker between the two + loudspeaker terminals of the amplifier. The signals below 200 Hz (which are identical in both channels) thus appear both in phase and in anti-phase across the third speaker and so cancel one another.

The setup in Fig. 1 could be used in a practical application, were it not that it is rather simplistic.

Final configuration

Figure 2 shows the final setup, which is basically the same as that in Fig. 1, but there are now four loudspeakers. It will be seen that the additional (rear) speakers are connected in series across the two + loudspeaker terminals of the amplifier. The extra loudspeakers can be switched on and off with S_{1}.

Since sound affects different people differently, and it is, therefore, not certain whether the pure L-Reffect will please everyone, adaptation to individual taste is made possible by P_{1}. If this control is set to maximum resistance, the effect is almost the same as if P_{1} were not there (that is, the loudspeakers reproduce only

Good quality medium-frequency or wide-band drive units are perfectly suitable.

MIDI SWELL PEDAL

Design by D. Doepfer

> Microcontrollers are intended to make life simpler (?!) and the equipment in which they are used more versatile. The swell pedal presented here uses one and, therefore,can be configured rapidly for a number of functions. Musicians will almost certainly like the design, because it enables a standard swell pedal to be provided with a number of new features for only a small outlay.

Most inexpensive swell pedals on the market are no more than a potentiometer in a box. The potentiometer's resistance varies according to the degree with which the pedal is depressed. The present design is, strictly speaking, an interface between a MIDI system and the existing swell pedal, that is, it provides communication between the pedal and the instrument via MIDI codes. This not only leaves the quality of the sound unaffected, but it also offers new facilities. For instance, the volume can be influenced; the timbre can be adapted; the keying dynamics can be altered and several MIDI channels can be driven simultaneously. Selecting and setting up of the wanted functions and channels remains possible with the use of a standard MIDI keyboard.

Circuit description

A versatile design as outlined above is possible only with the use of a microcontroller, for which a Type 80C32 was chosen-see Fig. 1. Since within a MIDI system all communication takes place at
a baud rate of $32 \mathrm{kbit} \mathrm{s}^{-1}$, a clock frequency of 12 MHz is used, since the wanted baud rate is easily derived from this.

The microcontroller, IC_{1}, is linked to EPROM IC_{3} via busbuffer IC_{2}. The application software is stored in IC_{3}. The buffer is needed to sort out the multiplexed address and data bus.

The level of the ALE (Address Latch Enable) line shows whether the bus carries address signals or data. The ALE signal ensures that the address information is stored in IC_{2} at its trailing edge.

The PSEN signal instructs the EPROM to place the data of the selected address on to the databus. After a reset, the controller automatically executes the program in the EPROM.

A discrete 7 -bit digital-to-analogue (D-A) converter based on the P_{1} ports processes the position of the swell pedal (potentiometer P_{2}). The 7 -bit width enables the digitization of 128 positions of the pedal. This number corresponds to that for the coding in the MIDI protocol.

The output signal of the D-A converter, available across C_{4}, is compared by IC_{4} with the direct voltage at the wiper of P_{2}.

When the output level of IC_{4} is high, the D-A signal is lower than the potential at the wiper of the analogue swell pedal. This results in the microcontroller raising the level of the D-A signal, by successive approximation, until the output of IC_{4} goes low.

When the comparator changes state, the position of the swell pedal is known and available in digital form. The control range of the D-A converter can be altered to some extent with P_{1} to ensure that the 128 steps fall within the (resistance) range of P_{2}. This arrangement was found necessary because in certain circumstances P_{2} did not provide the maximum level of 5 V at the output. If it is found, however, that it does, P_{1} may be omitted.

The control program is stored in IC_{7}. a 2 kbit EEPROM. The programming of this device will be reverted to. For now, it is sufficient to know that this circuit has a 'teach' mode. In this mode, a choice can be made for the function of the pedal and the MIDI channel in which communication takes place. These choices are stored in IC_{7} and retained there until new ones are made. The IC has an $\mathrm{I}^{2} \mathrm{C}$ interface and communicates with the microcontroller via two I/O lines, P3.6 and P3.7. These lines simulate the communication channels of the $\mathrm{I}^{2} \mathrm{C}$ interface.

The address lines of $\mathrm{IC}_{7}, \mathrm{~A}_{0}, \mathrm{~A}_{1}$ and A_{2}, are linked to ground, so that the memory is set to its base address, $\mathrm{A}_{0(\mathrm{H})}$.

As already mentioned, IC_{7} is programmed in its teach mode. This mode is selected when S_{1} is closed, which is indicated by the flashing of D_{1}.

The MIDI input is via K_{1}, and the MIDI output via K_{2}. The input is electrically isolated from the remainder of the circuit by optoisolator IC_{6}. Such an isolator is present in all MIDI equipment to make it possible for a current loop to be used for MIDI communication.

The incoming 5 V power supply is stabilized by IC_{5}. Diode D_{3} protects the circuit against wrong polarity of the supply lines.

Construction

The circuit is best built on the doublesided printed-circuit board shown in Fig. 2. The small size of the board allows it to be built into most swell pedals.

Start by soldering all the passive components into place. Fit IC_{3} into an appropriate socket (this makes updating of the application program at a later date a simple matter). All other ICs can be soldered directly on to the board, although sockets are to be preferred.

When the board is populated (including the programmed EPROM), the interface is ready for use.

Use a mains adaptor with an output of not less than 8 V . Since the current drain should not exceed 300 mA in any circumstances, most mains adaptors are suitable.

A small modification needs to be made before the swell pedal can be connected to the interface. Normally, a swell pedal has two connections (it behaves like a variable resistor), but for the present circuit three connections are required. Open the pedal, solder three wires to the potentiometer, and close the pedal again.

If a pedal with an LDR (light-dependent resistor) is used, open the pedal and solder a $5-25 \mathrm{k} \Omega$ resistor in series with the LDR. Solder the +ve line to the resistor, ground to the LDR, and use the junction of the resistor and LDR as the 'wiper' of a potentiometer. Close the pedal again.

Connect the interface to the MIDI system via two MIDI cables and switch on the equipment. If all is well, the LED should light twice, the pedal should be active. and MIDI volume commands (MIDI controller \#7) should be sent when the pedal is moved.

The range of the pedal should be from 0 to 127; if it is not, adjust P_{1} accordingly (which may be done by ear).

If the swell pedal can not be turned to zero, the position of P_{2} must be altered until an output voltage of OV is obtained. Normally, it will be found possible to adapt the position of the potmeter or the spindle to which it is linked: in practice, it is a matter of a few millimetres at most.

Usage

The interface can be configured entirely to individual requirements. After it has been connected to the system and the mains supply, and this is switched on, it is in the default mode. This means that the volume commands are sent via MIDI channel 1 . When the pedal is depressed, the corresponding commands are sent via the interface. The value at which this happens varies between 0 and 127. If the pedal emulates a pitch bender, the code varies between 64 and 127 or between 64 and 0 . The pedal can also be used to adapt the velocity and thus the dynamic range of the incoming MIDI data. Note that in this mode data appear at the output only if there are data applied to the input.

If the MIDI equipment does not react to the commands, check the selected channel and ascertain that the polarity of the MIDI cables is correct. Operation of the interface can be checked by pressing push button switch S_{1}, whereupon the LED should begin to flash.

It is also possible that the expander used does not react to the volume command. There are some expanders, such as the Yamaha EMT10, which do not recognize this command. There are also expanders that use the command only for generating an after-tone. This means that
the volume of an already generated tone can not be influenced.

After receiving a program change command, the interface always sends an instruction containing the volume setting. This is necessary because some expanders switch to maximum volume (127) upon receiving a program change command.

Teach mode

The default mode, at which the pedal functions as MIDI controller \#7 and commands are sent in MIDI channel 1, can be altered by setting the interface to the teach mode. This is indicated by the flashing of the LED. The teach mode is used to select the MIDI channel at which the interface is required to work. This can be done with a standard MIDI keyboard when the interface input is linked to the MIDI output of the keyboard.

Key	MIDI channel
36 (C)	1 on
37 (C\#)	2 on
38 (D)	3 on
39 (D\#)	4 on
40 (E)	5 on
41 (F)	6 on
42 (F\#)	7 on
43 (G)	8 on
$44(\mathrm{G} \mathrm{\#})$	9 on

Fig. 1. Circuit diagram of the interface for the MIDI swell pedal.

45 (A)	10 on
46 (A\#)	11 on
47 (B)	12 on
48 (C)	13 on
49 (C\#)	14 on
50 (D)	15 on
51 (D\#)	16 on
60 (C)	1 off
61 (C\#)	2 off
62 (D)	3 off
63 (D\#)	4 off
$64(\mathrm{E})$	5 off
65 (F)	6 off
66 (F\#)	7 off
67 (G)	8 off
68 (G\#)	9 off
69 (A)	10 off
70 (A\#)	11 off
71 (B)	12 off
72 (C)	13 off
73 (C\#)	14 off

74 (D)
 75 (D\#)
 15 off 16 off

The wanted command is sent by depressing the relevant key on the keyboard when the LED flashes. The dynamic range properties sent in the MIDI command are not used by the interface. To keep the system easy to use, the note C is chosen as the starting point for both the switch on and the switch off commands.

It may of course happen that it is no longer clear which of the channels are active. In that case, there is only one solution: switch off all channels and switch on the wanted ones:

After all wanted channels have been selected, the teach mode is discontinued when the push button on the interface is pressed or when a program change command is sent. The LED then stops
flashing and the setting is stored in the EEPROM until the teach mode is selected again.

Other functions

So far, the interface has been used to modify a simple swell pedal into a modern digital pedal to influence the volume of the sounds. However, this is the standard configuration: the interface offers other functions, such as velocity control, after-touch or pitch bending

Program Number	Function
1	volume (controller \#7)
2	modulation (controller \#1)
3	portamento (controller \#2)
4	free choice
5	after-touch (mono)
6	pitch bend (entire range)

Fig. 2. The double-side printed-circuit board for the interface.
pitch bend (positive) pitch bend (negative) velocity (touch dynamics) data speed

The interface is set to the previously defined controller numbers (\#7 for volume; \#1 for modulation; \#2 for portamento) with the aid of program change commands 1,2 and 3 . A different controller number, if desired, can be set with program change command 4 . With this command, the interface adopts the controller number that was sent prior to the program change command. If, therefore, a random controller number is desired, a MIDI controller command with that number must be sent to the interface followed by program change command 4.

Program numbers 6, 7 and 8 may be used to imitate the various functions of a pitch bender. Program number 6 provides the range 0-127 with a neutral zone around number 64: this simplifies the setting of a neutral position. Program numbers 7 and 8 simulate the positive swing (64-127) and negative swing (64-0) of the pitch bender respectively.

The velocity function is a special one that can be selected with number 9. If then the pedal is depressed, it will no longer cause MIDI data to be sent but data that are being sent on the selected MIDI channel to be adapted. The velocity value contained in the MIDI command is then adapted in line with the position of the swell pedal. In the highest position of the pedal, the velocity value is multiplied by 1 , that is, it remains unchanged. The more the pedal is depressed, the smaller the factor with which the value will be multiplied. This increases the touch dynamic range.

This function was found useful because there are MIDI instruments on the market (expanders, keyboards, and others) that do not support the MIDI volume command (controller \#7). In spite of that deficiency, the interface makes it possi-
ble to influence the sound of such instruments. Also, keyboards that have no touch-sensitive keys may benefit from this function.

Note that the velocity function affects only the dynamic range of the note-on command: the note-off instruction retains its previous value.

Program number 16 influences the frequency (speed) at which commands are transferred through the interface. This function is provided because some instruments, owing to less-than-perfect software, suffer from timing errors if the frequency is too high.

With the interface in the teach mode, it will be noticed that the frequency with which the LED flashes changes when the pedal is depressed. The flashing rate is an indication of the speed at which the commands are transferred. Sometimes it may appear as if the LED lights continuously. This is because the human eye can not follow the high frequency flashing.

Set the frequency with the pedal and give a program change command 16. This setting is stored in the EEPROM. The default frequency is the lowest: about 15 Hz . This means that 15 commands are sent every second. The precise value of the highest positions depends on several factors. Since each MIDI volume command consists of three instructions, 45 bytes per second are sent at the lowest frequency. If 16 channels are active, $16 \times 45=720$ bytes per second are sent. Therefore, the ultimate data rate depends on the sampling frequency and on the number of active MIDI channels. The maximum sampling frequency is, therefore, limited by the number of active channels. The optimum setting can be found by trial and error only.
$\mathrm{R}_{2}=390 \Omega$
$\mathrm{R}_{3}=698 \mathrm{k} \Omega$
$\mathrm{R}_{4}=301 \mathrm{k} \Omega$
$\mathrm{R}_{5}=2.2 \mathrm{k} \Omega$
$\mathrm{R}_{6}, \mathrm{R}_{7}, \mathrm{R}_{8}=220 \Omega$
$\mathrm{R}_{9}, \mathrm{R}_{10}, \mathrm{R}_{12}=100 \mathrm{k} \Omega$
$\mathrm{R}_{11}=200 \mathrm{k} \Omega$
$\mathrm{R}_{13}=49.9 \mathrm{k} \Omega$
$\mathrm{R}_{14}=24.9 \mathrm{k} \Omega$
$\mathrm{R}_{15}=12.4 \mathrm{k} \Omega$
$\mathrm{R}_{16}=8 \times 1 \mathrm{k} \Omega$ array
$\mathrm{P}_{1}=50 \mathrm{k} \Omega(47 \mathrm{k} \Omega)$ preset potmeter
$\mathrm{P}_{2}=10 \mathrm{k} \Omega$ (potmeter in pedal)

Capacitors:

$\mathrm{C}_{1}=10 \mu \mathrm{~F}, 16 \mathrm{~V}$
$\mathrm{C}_{2}, \mathrm{C}_{3}=22 \mathrm{pF}$
$\mathrm{C}_{4}=100 \mathrm{pF}$
$\mathrm{C}_{5}=2.2 \mu \mathrm{~F}, 16 \mathrm{~V}$
$\mathrm{C}_{6}=100 \mu \mathrm{~F}, 25 \mathrm{~V}$
$\mathrm{C}_{7}=22 \mu \mathrm{~F}, 16 \mathrm{~V}$
$\mathrm{C}_{8}-\mathrm{C}_{11}=100 \mathrm{nF}$

Semiconductors:

$\mathrm{D}_{1}=\mathrm{LED}$
$\mathrm{D}_{2}=1 \mathrm{~N} 4148$
$\mathrm{D}_{3}=1 \mathrm{~N} 4001$

Integrated circuits:

$\mathrm{IC}_{1}=80 \mathrm{C} 32$
$\mathrm{IC}_{2}=74 \mathrm{HC} 573$
$\mathrm{IC}_{3}=27 \mathrm{C} 64$ (p. $110-$ Ref. $946635-1$)
$\mathrm{IC}_{4}=\mathrm{TLC} 271$
$\mathrm{IC}_{5}=7805$
$\mathrm{IC}_{6}=\mathrm{CNY}^{2} 7$
$\mathrm{IC}_{7}=24 \mathrm{C} 02$

Miscellaneous:

$\mathrm{K}_{1}, \mathrm{~K}_{2}=5-$ pin DIN socket, 180°
$\mathrm{S}_{1}=$ push-button switch with single-pole make contact
$\mathrm{S}_{2}=$ single-pole, single-throw switch
$\mathrm{X}_{1}=12 \mathrm{MHz}$ crystal
PCB Ref. 940019 (p. 110)
[940019]

Parts list

Resistors:

$\mathrm{R}_{1}=10 \mathrm{k} \Omega$

PIC ${ }^{\circledR}$ PROGRAMMING COURSE

PART 1: INTRODUCTION

Abstract

Large designs traditionally required complex and extensive digital circuits are now simple to realize by virtue of the small, powerful, PIC ${ }^{\oplus}$ microcontroller developed by Microchip Technology. The main application areas of PICs are automotive electronics, machine controls, and test and measurement equipment. Particularly logic circuits based on time or count pulses often become quite complex if ordinary logic components are used. A single PIC however can do the same at a smaller outlay, offering a staggering degree of circuit simplification. Microchip's PIC16C5x family is a class of its own in microcontroller land, and forms the subject of the present short course. Apart from programming aspects, the hardware will also receive some attention.

PIC $=$ Peripheral Interface Controller, a registered trademark of Microchip Technology, Inc.
By our editorial staff.
Source: Microchip Data Book, Microchip Technology Inc.

THE PIC16C5x family is a product of Microchip Technology Inc., of Chandler, Arizona, in the United States of America. The family consists of a series of CMOS microcontrollers featuring internal data and program memories. The program memory has a word size of 12 bits, which is obviously more than that of competitive 8 -bit controllers. As indicated in the 'portrait of a family' inset in our earlier article describing a PIC programmer (Ref. 1), the size of the program and data memory depends on the type of controller.

The fully static design of the microcontrollers allows the clock frequency to be reduced to d.c. The advantage of the 12 -bit word size is that most instructions require only one 'word', inclusive of their operand. The controller has 33 easy to remember instructions. With the exception of jumps (or 'branches'), these take one machine cycle. Consequently. Microchip advertises the PIC16C5x as a device which employs a RISC-like architecture (RISC

Fig. 1. Depending on the device, the 'window' type PIC microcontrollers come in an 18 -pin or a 28 -pin case.
$=$ reduced instruction set computer), which is marked by a compact but fast sequence of instructions, each of which is executed in one machine cycle.

Apart from the differences in memory size, the controllers in the 16C5x family have different numbers of I/O lines available, and different types of clock oscillator. Furthermore, the devices come in different enclosures, two of which are shown in Fig. 1. Comparing the different cases, the most conspicuous feature is the presence or absence of a glass window. The window-
less, and therefore cheaper, OTP (one-time programmable) versions is suitable for high-volume production. The window versions contain an EPROM, and are ideal for code development, since their program memory can be erased using ultra-violet light. All devices in the 16C5x family offer a copy protection bit. When set, this bit makes it impossible to read code from a programmed controller.

Internal hardware

The PIC architecture is based on a register file con-
cept with separate bus and memories for data and instructions. This so-called Harvard architecture enables the processor to execute one instruction and at the same time fetch the next from the program memory. Unfortunately this 'lookahead' mode can not be used for a number of branch instructions. Consequently, these instructions take two machine cycles instead of one.

The controller architecture is shown in Fig. 2. The program memory and the associated counter, the instruction register and the instruction decoder are found in the upper left-hand corner of the diagram. Below these elements sits the ALU (arithmetic/logic unit) with its working register, W. Central to the right is the data memory (general-purpose register file), and above that, the clock generator with watchdog, and the I/O register.

Program memory

The program memory consists of 'pages' of 512 words each. The PIC16C54 and 16C55 have one such page, while the PIC16C56 has two. Address bit A9 is used to select between the two pages. The PIC16C57 has four pages, which are selected with the aid of bits A9 and A10.

The structure of the program memory is illustrated in Fig. 3. Sequencing of microinstructions is controlled via the program counter (PC) using a 9 -bit or 11 -bit wide address. Some precautions have to be taken when executing branch instructions, or starting a subroutine. Problems may then occur if it is assumed that the data is 8 bit wide, which makes it impossible to fit in operands having a width of 9 bits or more.

The effect of a program instruction on the address bits of the program counter is illustrated in Table 1. The

Fig. 2. General architecture of a PIC16C5x microcontroller. Note the different widths of the internal buses.
programmer should take the above restriction as regards word size into account. With the exception of one GOTO instruction, instructions which alter the program flow may only be used in the lower half of the memory block (A8=0). Furthermore, bits 5 and 6 of the f 3 register must be correctly programmed when the PIC16C56 or 16C57 is used.

These bit are not automatically modified when the software jumps between pages. Making sure that they are modified appropriately is the task of the programmer.

Data memory and register file

Microchip Technology calls the PIC's internal memory 'register file' (RF), because a

Fig. 3. Structure of the program memory, which is divided into pages.
register is a memory location which can be accessed directly by the ALU. The set of the registers is then called a file.

The structure of the register file is shown in Fig. 4. Registers fall into the categories 'operational', 'I/O' or 'general-purpose'. The operational registers not only serve to control the core of the PIC, but also make results of certain actions available to the program. The I/O registers are used to gain access to the ports. Finally, the general-purpose registers are used to store data. To the user, all registers behave in the same way.

Operational registers

Register f0, Indirect Data Addressing

This register give the programmer indirect access to the data. Access is gained in conjunction with the FSR register described further on. A read or write command to register f0 is treated such by the controller that the ALU selects the location of which the address is contained in the FSR register. The combination of register f0 and the FSR register creates ways to manipulate memory areas in a very efficient way. In the (trivial) case of fo being read through indirect addressing (FSR then contains the value 00 H), the value 00 H is read. If fo is written to via indirect addressing, the result is a NOP.

Register f1, RTCC (Realtime Clock/Counter register)
This register may be compared to a location in the data memory. The content of this location is continuously incremented using a clock signal. The clock signal may be external, and applied to the RTCC input, or internal, when it is derived from the controller's instruction cycle clock. An internal prescaler enables the clock signal to be scaled as required. Further details on this feature are included in the discussion of the watchdog timer.

PIC16C5x
 PROGRAMMING

This short course is aimed at providing an introduction into programming and hardware aspects of the PIC16C5x family of microcontrollers manufactured by Microchip Technology Inc.

An assembler will be offered on disk later in the course. This assembler is distributed with the permission of Microchip tecnology Inc., and supports the PIC16C5x and PIC16Cxx series of controllers. It offers a full featured macro and conditional assembly capacity. It can also generate various object code formats including several hex formats to support Microchip's proprietary devleopment tools as well as third party tools. Also supported are hex (default), decimal and octal source and listing formats. An assembler users manual is available from Microchip technology distributors for detailed support.
The disk, which will be distributed via the Elektor Electronics Readers' Services will also contain a software simulator.

The files produced by the assembler can be downloaded to the PIC programmer described in Elektor Electronics March 1994.

JOIN the course!

Register f2, PC (Program Counter)

The program counter generates the addresses of the locations in the program memory. Depending on the device type, the program counter and its associated two-level hardware stack is 9,10 or 11 -bit wide, using bit A8, A9 and A10 as extensions of A0-A7. Table 2 summarizes the options.

The PC is normally incremented by one after an in-

PC address	Goto	Call	PC instruction
bit			
A10	bit 6 of f3	bit 6 of f3	bit 6 of f3
A9	bit 5 van f3	bit 5 of f3	bit 5 of f3
A8	from instr.	always 0	always 0
A7-A0	from instr.	from instr.	from ALU

Table 1. The effect of the different instructions on the address bits.

Fig. 4. The structure of the data memory is fairly complex because it is divided into banks. A key role is played by the FSR register.
struction has been executed. There are, however, a number of instructions which follow a different pattern:

GOTO

Bits AO-A8 are loaded directly, while A9 and A10 are fetched via bits 5 and 6 of the status register (PAO, PA1). When using the PIC16C56 and 16C57, the status register must be loaded appropriately.

CALL

The CALL instruction is different from GOTO in that bit 8 is always cleared to 0 . Consequently the range of this instruction is limited.

All other write instructions to the PC operate in the same way as the CALL instruction, i.e., they clear A8, and read A9 and A10 from the status register (16C56/57 only).

Register f3, Status Word Register

The C, D and Z flags (bits 0, 1 and 2) in this register provide the status of an arithmetic operation carried out by the ALU. The PD flag (bit 3) and the TO flag (bit 4) indicate the reset status, while PAO (bit 5) and PA1 (bit 6) are used as auxiliary bits (A9 and A10) for certain program counter operations (CALL, GOTO, see above).

Device	PC and stack width
PIC16C54	9 bit (A8)
PIC16C55	9 bit (A8)
PIC16C56	10 bit (A8,A9)
PIC16C57	11 bit (A8,A9,A10)

Table 2. The width of the program counter and the associated hardware stack.

Register f3

bit 7	bit 6 bit 5			bit 2	bit 1	bit 0
PA2	PA1 PA0	TO	PD	Z	DC	C
Bit	Function					
PA2	general purpose R/W, reserved for future use*					
PA1	page preselect bits					
PAO	PIC 16C54 and PIC16C55					
	PA1 and PA0: general purpose read/write*					
	PIC 16 C 56					
	PAO:	$0=$ bank 0 ($000 \mathrm{H}-1 \mathrm{FFH}$)				
		$1=$ ba	1 (20)	H-3FF		
	PA1:	general purpose read/write*				
	PIC 16 C 57					
	PA1/PA0:	$00=$ bank $0(000 \mathrm{H}-1 \mathrm{FFH})$				
		01 = bank $1(200 \mathrm{H}-3 \mathrm{FFH})$				
		$10=$ bank $2(400 \mathrm{H}-5 \mathrm{FFH})$				
		11 = bank 3 (600H-7FFH)				

TO Time-Out bit
Set to 1 during power-up and by the CLRWRT and SLEEP commands. Reset to 0 by a watchdog timer time-out. Not affected by other commands.

PD Power-Down bit
Set to 1 during power-up and by the CLRWRT command. Reset to 0 by a SLEEP command. Not affected by other commands.

Z Zero bit
Set if the result of an arithmetic logic operation is 00 H .

DC Digit Carry/Borrow bit
Carry/Borrow bit (bit 3) of result of ADDWF and SUBWF instructions.

C Carry/Borrow bit
Carry/Borrow bit (bit 7) of result of ADDWF and SUBWF instructions. Also used with RRF and RLF instructions.

* bits must not be used if application is to run on future systems.

Event	TO	PD
Power-up	1	1
WDT timeout	0	x
Sleep instr.	1	0
CLRWDT instr.	1	1
W don't care		
WDT $=$ watchdog-timer		

Table 4. Status of the TO and PD bits as a function of different functions.

Bits 3 and 4 (TO and PD) in the status word register are not affected by an 8 -bit wide write action.

If the register is used to indicate the result of an arithmetic operation, it should be noted that the sta-
tus bits are set after the following write.

It is recommended to use only the BCF, BSF and MOVWF instructions to alter the status register, since these do not affect any status bit.

Register f4, FSR (File Select Register)
PIC16C54/55/56: bits 0 trough 4 select one of the 32 available file registers in indirect addressing mode. i.e., using register fo. Bits 5, 6 and 7 are read-only. and always at 1 .

If no indirect addressing is used, the FSR may be used as a 5-bit wide generalpurpose register.

PIC16C57 only: bits 5 and 6 select the current data memory bank, both in indirect and direct addressing modes. Note that this is only

TO	PD	Reset caused by:
0	0	WDT wake-up from SLEEP
0	1	WDT timeout (not during SLEEP)
1	0	MCLR wake-up from SLEEP
1	1	Power-up
x	x	low pulse on MCLR input.
State of TO and PD not affected (x) until an event from		
Table 4 occurs.		

Table 5. TO and PD status after a reset.
valid for the register addresses 10 H through 1 FH , since addresses 0 H through OFH always point to the same registers. Finally, bit 7 is always at 1 .
(940062-1)

Continued in the September 1994
issue.

MICROCHIP ANNOUNCES FURTHER IMPROVEMENTS IN MICROCONTROLLERS

Microchip's PIC16C54 8-bit microcontroller is now available with reduced power consumption, improved electrical characteristics and denser packaging. Using an advanced $0.9-\mathrm{mi}-$ cron double-layer metal wafer fabrication process, the new one-time programmable PIC16C54A can be powered from a single lithium-ion battery, making it an ideal solution for portable aplications such as pagers and remote controls.

The PIC16C54A is the first of the PIC16C5x family to be manufactured using the 0.9 -micron process. The high-speed RISC-like 8 -bit device operates at up to 20 MHz , and provides faster instruction execution than any other 8 -bit microcontroller in its price range. An on-chip EPROM fuse configurator allows designers to select on-chip R/C timing circuits and crystal/resonator options to reduce component count, cost and board space requirements. On-chip memory facilities include 512 words of EPROM for program storage
and 25 bytes of static RAM for data. On-chip peripherrals include an 8 -bit realtime clock/counter with programmable prescaler, a watchdog timer, and $12 \mathrm{I} / \mathrm{O}$ lines with individual directional control. The PIC16C54A operates between 2.5 and 6.0 volts, and includes a power-down or sleep mode which reduces current drain to less than 4 $\mu \mathrm{A}$ when executed.

The new PIC16C54A is available in plastic DIP and SOIC, and also in a compact SSOP configuration.

Further information from
Microchip Technology Inc., 2355 West Chandler Blvd., Chandler, AZ 85224-6199, USA. Tel. 602 786-7200. Fax: 602 899-9210.

UK Headquarters:

Arizona Microchip Technology Ltd.. Unit 3, The Courtyard, Meadowbank, Furlong Road, Bourne End, Bucks SL8 5AJ. Tel.: (0628) 850303. Fax: (0628) 850178.

UK distributors:

Farnell Electronics, tel. (0532)792715, fax: (0532) 63340.

Future Electronics, tel. (0753) 687000, fax: (0753) 689100.
H.B. Electronics Ltd., tel. (0204) 25544, fax: (0204) 384911.

Hawke Components Ltd., tel. (0256) 880800, fax: (0256) 880325.

ITT Multicomponents, tel.:
(0753) 824131, fax: (0753) 824160.

Polar Electronics PLC, tel.: (0525) 377093, fax: (0525) 378367.

Sweden:

MEMEC Scandinavia AB, tel.: 08 6434190, fax: 08 6431195.

Denmark:
Exatec A/S, tel. 04492
7000, fax: 044926020.

SOFTWARE EMULATION OF RC5 INFRA-RED CODE

Abstract

A set of programs is described that allows a PC to send infra-red remote control commands to a TV set, video recorder or hi-fi stereo chain, using the RC5 standard. As regards hardware, all you need is one infra-red transmitter LED.

Design by M. Claessen

ONE very obvious trend in audio/visual consumer electronics is the use of remote controls. Designed to maximize user comfort, infra-red remote controls enable nearly all func-

Codes for frequently used addresses and commands	
System address	Apparatus
0	TV
2	Teletext
5	Video recorder
7	Experimental
16	Preamplifier
17	Receiver/tuner
18 Tape/c	e/cassette recorder
19	Experimental
20	CD player
Command number	Command
0-9	0-9
12	Standby
13	Mute
14	Presets
16	Volume +
17	Volume -
18	Brightness +
19	Brightness -
20 Co	Colour saturation +
21 Co	Colour saturation -
22	Bass +
23	Bass -
24	Treble +
25	Treble -
26	Balance right
27	Balance left
48	Pause
50	Fast reverse
52	Fast forward
53	Play
54	Stop
55	Record

tions of audio/video equipment to be selected and controlled from 'armchair distance'. This article shows that remote control is not only a 'luxury', but also makes it easy to set up links with other equipment, say, a PC.

Using suitable software, a video recorder, TV set or stereo rack can be controlled by a personal computer (PC) without having to change a thing on this equipment. The hardware extension required at the PC side of the link is, indeed, minimal, consisting of a single infra-red light emitting diode (IR LED), which is connected in series with the loudspeaker found in any PC. A small program then ensures that the right RC5 commands are generated and transmitted by the LED. The loudspeaker will function as before.

RC5 is a system developed by Philips for communication using infrared light. The system is also used by a number of other manufacturers of audio/video equipment. For the present project the designer has based the software on the RC5 standard and code set. The source code contained on disk should enable experienced programmers to adapt the program so that it can be used for, say, Sony or Pioneer equipment.

The program

The function of the program is to translate instructions or commands into a pulse code signal that can be applied to the loudspeaker connection on the PC's motherboard. This loudspeaker output is fairly rudimentary, and usually consists of an 'power' inverter only, which drives a miniature loudspeaker directly. The maximum power delivered to the speaker is about 150 mW .

In a normal infra-red remote control link, the encoding of selected commands is performed by a simple integrated circuit contained in the

MAIN SPECIFICATIONS

Code used:	RC5
Range:	5 to 13 m
PC requirements:	MS-DOS
PC type:	XT/AT/386/486
Source code:	on disk
Emulation:	Philips RC5903
IR diode:	LD271 or LD274
Transmit power:	max. 150 mW

handheld unit. In the present case, the encoding function is assumed by a program running on the PC. Since generating the digital code is time-critical, a machine-language program is used for that purpose. That allows the program, ELEKFUNC.EXE, to be called by routines written in 'higher' languages, for instance, Turbo Pascal.

Apart from ELEKFUNC.EXE, the diskette supplied through the Readers Services (order code 1901) contains two more programs: SWITCH.EXE and RC5.EXE. The latter enables you to select and transmit RC5 commands in a simple manner. SWITCH.EXE may be used to transmit a system address and a key code 'manually', for instance, 'SWITCH 24 35'.

The diskette also contains the source code of all three programs (Pascal for SWITCH and RC5, and assembler for ELEKFUNC). The source code files should enable you to finetune the software to personal requirements. In this context, Ref. 1 should be mentioned, since that design enables you to set up a complete wireless control system capable of switching apparatus in the home on and off. One application would be a lighting control system managed by the PC while you
are away on holiday. One condition for such a system to work is, of course, that the transmitter diode connected to the PC 'sees' the receiver diode in the apparatus to be controlled.

The hardware

As already indicated, an infra-red transmitter LED must be fitted inside the PC. In most PCs, the loudspeaker is connected to the motherboard via a thin cable and a 4 -way connector. Usually, only three of the four wires are used. The fourth connector pin serves to polarize the connector so that it can not be fitted the wrong way around. As far as we have been able to ascertain, the pin functions on this connector are as follows: pin 1 is data, pin 2 is not connected, pin 3 is ground, and pin 4 is +5 V . Connect the IR LED in series with the loudspeaker, making sure that the cathode goes to the PC ground connection. Alternatively, the diode may be connected across (i.e., in parallel with) the loudspeaker. In particular when the loudspeaker (or buzzer) is fitted on the motherboard, that may be the only viable option.
(930097)

930097-11

Fig. 1. Screendump showing how the program RC5.EXE enables an infra-red remote control to be simulated on an MS-DOS PC.

Reference:

1. Universal RC5 code infra-red receiver. Elektor Electronics January 1992.

AUTO-PLAY FOR CD PLAYER

Many CD players are equipped with a timer, which starts the player automatically as soon as the mains is switched on (perhaps by a time switch). There are, however, several makes that do not have this facility: the present circuit is intended for these.

The circuit is based on a dual timer Type NE556. The 5 V supply is derived from the CD player. When switch S_{1} is closed and the mains is switched on to the CD player, the present circuit will be powered via connector K_{1}.

Immediately upon the supply voltage becoming available, $\mathrm{IC}_{1 \mathrm{~b}}$ receives a trigger signal via network $\mathrm{R}_{1}-\mathrm{C}_{1}$. The timer then provides a pulse of about 1.2 s (time constant $\mathrm{R}_{2}-\mathrm{C}_{2}$). During this short period, the CD player is initialized. After the pulse has decayed, $\mathrm{IC}_{1 \mathrm{~b}}$ triggers the other timer, which in its turn switches on the transistor in optoisolator IC_{2} for 0.2 s (time constant $\mathrm{R}_{4}-\mathrm{C}_{4}$). The transistor is connected in parallel with the contacts of the play switch on the D player, so that this starts playing the $C D$ in the disc compartment.

Since the switch circuit of most CD players is multiplexed one way or another, the optoisolator is imperative as it

prevents the other signals being affected or even short-circuited to earth.

Since the transistor in the optoisolator conducts in only one direction, wiring it up correctly to the play switch must be done by trial and error. In other words, if it does not work, interchange the two wires from the transistor to the play switch. It is also possible to operate a
reed relay via IC_{2} to short-circuit the contacts of the play switch.

Light-emitting diode D_{1} serves as pulse indicator. It lights the moment $\mathrm{IC}_{1 \mathrm{la}}$ generates a pulse. The diode is not essential and, together with R_{8}, may be omitted.

Use an NE556, not a TLC556. since this does not provide enough current to drive two

LEDs.
The circuit should preferably be fitted inside the CD player, with switch S_{1} mounted on the front or rear panel.

The 5 V line is taken from the 5 V power supply in the player. The circuit draws a current of not more than 40 mA .

Design: G. Renker
[944016]

SELF-STARTING MULTIVIBRATOR

It is not too well-known that if the characteristics of the two transistors making up a multivibrator arenear-identical, it is very difficult to get the multivibrator started.

The present circuit shows how a small modification can make the basic cicuit sufficiently asymmetrical to ensure that he multivibrator always starts unfailingly. The only drawback is that the duty factor is affected slightly, but in practice this will normally not be very important.

In the diagram, resistor R_{4} connects the base and collector of T_{1}, so that this transistor can no longer become sat-
urated. Instead, it works as a self-setting amplifier. A consequence of this is that the amplified noise on the collector of T_{2} also appears on the collector of T_{1}. Because of this coupling, T_{2} is provided afresh with the amplified noise signal via C_{1}. This ensures tat the noise level increases rapidly so that the multivibrator starts.

Putting values to the circuit elements is straightforward. Take a collector current of $1-10 \mathrm{~mA}$. If it is 1 mA , the value of R_{1} and R_{3} is equal to the supply voltage times 1000 . The value of R_{1} and R_{4} should be equal to a quarter of the amplification factor of the tran-

sistors, multiplied by the value of R_{1}. The value of C_{1} and C_{2} is the same and is calculated from

$$
\mathrm{C}=f /\left(1.4 \times \mathrm{R}_{3}\right) .
$$

Design: C. Clarkson
[944096]

PROGRAMMABLE AMPLIFIER

TThe principle of the amplifier is simple: take a common-or-garden operational amplifier and make the feedback loop switchable with the aid of a multiplexer. Supplying the multiplexer with a 3-bit binary word enables one of up to six different amplification factors to be selected.

In the diagram, $\mathrm{IC}_{1 \mathrm{~b}}$ is the amplifier stage proper. Its feedback loop is split into a number of discrete resistors, $\mathrm{R}_{4}-\mathrm{R}_{10}$. which can be switched by multiplxer IC_{2}. With the specified values, there is a choice of six gains: $+20 \mathrm{~dB} ;+10 \mathrm{~dB} ; 0 \mathrm{~dB}$; $-10 \mathrm{~dB} ;-20 \mathrm{~dB}$; and -30 dB .

The amplifier/multiplexer
is preceded by an input buffer, $\mathrm{IC}_{1 \mathrm{la}}$. The input is protected against overload by $\mathrm{R}_{1}, \mathrm{D}_{1}$ and D_{2}. Conversely, the high input impedance of $\mathrm{IC}_{1 \mathrm{a}}$ obviates overloading of the output of a connected apparatus by the present circuit.

Although the channel resistance of the multiplexer is fairly high at 220Ω compared with the values of $\mathrm{R}_{4}-\mathrm{R}_{10}$, this has no detrimental effects since it is in series with the relatively high input impedance of $\mathrm{IC}_{1 \mathrm{~b}}$.

The capacitances of the discrete analogue switches in the multiplexer have some adverse effect on the signal, but this stays well within acceptable
limits. Up to 100 kHz , the circuit performs well; only above this frequency does a sine wave begin to resemble a triangle.

Harmonic distortion is $\leq 0.001 \%$ at 1 kHz and $\leq 0.01 \%$ at 20 kHz . With the gain set to +20 dB , the signal-to-noise ratio is $\geq 95 \mathrm{~dB}$ referred to 1 V with the input short-circuited.

Te rather unusual supply voltage of $\pm 16.5 \mathrm{~V}$ was chosen deliberately to obtain a maximum input voltage of $10 \mathrm{~V} \mathrm{r.m.s}$. with gains of -20 dB and -30 dB . If this is considered not very important, the supply may be lowered to $\pm 15 \mathrm{~V}$.

The circuit draws currents of +18 mA and -9 mA .

The relationship between the binary word and the resultant gain is:

92	91	90	gain
1	1	1	+20 dB
1	1	0	+10 dB
1	0	1	0 dB
1	0	0	-10 dB
0	1	1	-20 dB
0	1	0	-30 dB
0	0	1	${ }^{*}$
0	0	0	${ }^{*}$

* smaller than -90 dB at 1 kHz and 10 V r.m.s. input.

Design: T. Giesberts
[944005]

NEAR-IDEAL RECTIFIER

Occasionally, an ideal fullwave rectifier is required. for example in a dynamic compressor where switching thresholds and non-linear behaviour are not acceptable. The present circuit approaches this ideal.

The circuit consists essentially of two parts: the rectifier proper, $\mathrm{IC}_{1 \mathrm{~b}}$, and a differential amplifier, $\mathrm{IC}_{\mathrm{la}}$.

The rectified voltage appears acrossR 2 . Opamp $\mathrm{IC}_{1 b}$ ensures that rectifiers $D_{1}-D_{4}$

function as ideal components without switching thresholds.

Since most circuits require a direct voltage with respect to earth, $\mathrm{IC}_{1 \mathrm{a}}$ functions as a differential amplifier. Its output carries the rectified voltage across R_{2}. Assuming that the supply voltage is $\pm 10 \mathrm{~V}$, the level of the alternating signal at the input must not exceed $16 \mathrm{~V}_{\mathrm{pp}}$.

The circuit draws a current of only a few milliamperes.

Design: H. Bonekamp
[944079]

Design by H. Bonekamp

Abstract

Electrostatic discharge in a workshop or laboratory can lead to a great deal of damage. Even the electrostatic charge on the human body can give rise to voltages of up to $\mathbf{2 0} \mathrm{kV}$. Most semiconductors and integrated circuits can not withstand such potentials. With the meter described in this article the presence of unwanted electrostatic charges can be detected so that protective measures can be taken.

Although work on circuits containing semiconductors and integrated circuits should always be carried out with an earthed soldering iron and an earthing wrist strap, it is still good practice to ascertain whether anti-ESD (electrostatic discharge) measures are necessary. The meter described, an accurate electrometer with two ranges, $0-5 \mu \mathrm{C}$ and $0-500 \mathrm{nC}$, is perfect for this task.

Design considerations

With reference to Fig. 1, consider an object (or person), C_{1}, with a certain electrostatic charge, which is used to charge a (previously uncharged) capacitor $\mathrm{C}_{2} \cdot R$ is the inevitable transfer resistance. Provided that the value of C_{2} is not less than 10 times that of C_{1}, the larger part of the charge on C_{1} will have moved to C_{2} within a relatively short time. The potential across C_{2} can then be measured to form a measure of the charge the capacitor has received.

Since the charge is the product of capacitance and potential, $Q_{1}=\mathrm{C}_{1} U_{1}$ and $Q_{2}=\mathrm{C}_{2} U_{2}$. When the switch is closed, after a theoretically infinite time, $U_{1}=U_{2}$, that is, U_{2} may be taken as the original potential across C_{1}, multiplied by the ratio $\mathrm{C}_{1}:\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)$. Using this in the formula for the charge on C_{2} :

$$
\Theta_{2}=U_{1}\left(\mathrm{C}_{1} \mathrm{C}_{2}\right) /\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) .
$$

Assuming that C_{1} is negligibly small compared with C_{2} :

$$
Q_{2}=\mathrm{C}_{1} U_{1} .
$$

Fig. 1. The principle of the charge meter.

Resistance R merely delays the charge transfer, but has no effect on the amount of charge ultimately transferred.

Circuit description

In the circuit diagram in Fig. 2, capacitor C_{1}, corresponding (confusingly) to capacitor C_{2} in Fig. 1, functions as the measuring element. Each measurement starts with closing S_{1}, so that C_{1} is discharged very rapidly via R_{1}. If the (charged) object is connected to the input pin (or a person touches this pin), a transfer of charge takes place. As described earlier, C_{1} will then be charged to a potential that forms a direct measure of the charge originally on the object or person. Since the 'earthy' side of C_{1} is at half the supply voltage,

the capacitor may be charged in a positive as well as in a negative sense. Note that the capacitance of most people is in the range of $100-200 \mathrm{pF}$, so that the value of C_{1} more than meets the requirement mentioned earlier that it should be at least 10 times that of the object or person.

The potential across C_{1} is applied to the non-inverting input of $\mathrm{IC}_{1 \mathrm{la}}$, which, because of its high impedance, hardly constitutes a load on the capacitor. The

Fig. 1. Circuit diagram of the charge meter.

Electrostatic discharge (ESD)

Electrostatic discharge (ESD) may not only interfere with the correct operation of equipment, but can also lead to irreparable damage to certain components. - The discharge is obviously preceded by the forming of an electrostatic charge, which is normally caused when a conductive and a non-conductive material are rubbed together. Typical examples are the human body and nylon carpets or car upholstery, terylene clothing and plastic wrapping material. The consequent electrostatic voltage may be as high as 20 kV .
The phenomenon depends strongly on the humidity of the ambient atmosphere. The drier the air, the higher the voltage. Research has shown that in this respect the human body may be con
sidered as a capcitor with a value of $100-200 \mathrm{pF}$. During an ESD people have an internal resistance of $150-1500 \Omega$ The electrostatic charge appears to be concentrated in protruding parts of the body, such as the hands. Because of this and the speed of the discharge pulses, ESD can rapidly damage semiconductors when these are touched by hand.

Recognition of the phenomenon is not easy, because shocks are felt only when the potential is higher than $2-3 \mathrm{kV}$, but this level of voltage can already seriously damage sensitive semiconductors.

Electrostatic charges may be prevented by replacing non-conducting carpets, clothing or packing by conducting materials. Also, the use of an earthed wrist strap is advisable when semiconductors are

amplification of $\mathrm{IC}_{1 \mathrm{a}}$ can be switched between $\times 2$ and $\times 20$ by S_{2}, which switches R_{3} into the feedback loop, or disconnects it from the loop.

From the output of $\mathrm{IC}_{1 \mathrm{l}}$, the signal takes two paths: one to the metering network and the other to comparator $\mathrm{IC}_{1 \mathrm{c}}$.

The inverting input of $\mathrm{IC}_{1 \mathrm{c}}$ carries half the supply voltage as reference potential. In this way, the output of the comparator indicates the polarity of the measured charge. If this is negative, D_{6} lights and when it is positive, D_{7} lights.

The part of the output of $\mathrm{IC}_{1 \mathrm{a}}$ fed to the metering network is applied via R_{5} and P_{1} to $\mathrm{IC}_{1 b}$, which drives the meter, M_{1}. The diodes ensure that the meter pointer always deflects in the same direction, irrespective of the polarity of the original charge. Diode D_{3} protects the meter against too high a potential across it.

Power is derived from a 9 V battery, which is buffered by C_{2} and decoupled for r.f. by $\mathrm{C}_{3} . \mathrm{S}_{3}$ is the on-off switch, while D_{8} protects the circuit against a wrongly connected battery.

The stabilized half supply voltage mentioned on a few earlier occasions is obtained from potential divider $\mathrm{R}_{8}-\mathrm{R}_{9}$ and buffer stage $\mathrm{IC}_{1 \mathrm{~d}}$. It is essential for the correct working of the circuit that the output of $\mathrm{IC}_{1 d}$ is connected to a good earthing point (mains earth or water pipe).

Construction

The charge meter is best built on the printedcircuit board shown in Fig. 3. The design of the board allows either a single $4.7 \mu \mathrm{~F}$ capacitor (C_{1}) or five $1 \mu \mathrm{~F}$ capacitors ($\mathrm{C}_{5}-\mathrm{C}_{9}$) in parallel to be used as the input capacitor (see Fig. 4).

When the board has been completed, mount it in a small case as shown at the beginning of this article and in Fig. 5. A suggested front panel is shown in Fig. 6 (which is not available ready made).

It is absolutely essential that the circuit is properly earthed, either to the mains earth or to a water pipe.

The input (touch) terminal can be, for instance, a non-insulated audio socket.

Calibration and use

A variable power supply is required for calibrating the meter.

- Set the meter to the $5 \mu \mathrm{C}$ range $\left(\mathrm{S}_{2}\right.$ closed).
- Adjust the variable power supply to give an output of exactly 1.06 V if C_{1} is used and of 1.0 V if $\mathrm{C}_{5}-\mathrm{C}_{9}$ are used. Check the output with a digital voltmeter.
- Connect the output of the variable power supply across C_{1} or $\mathrm{C}_{5}-\mathrm{C}_{9}$, as the case may be.
- Adjust P_{1} for fulll-scale deflection (f.s.d.) on M_{1}.

When the earth wire has been connected, the power supply has been switched on,
and reset knob \mathbf{S}_{1} has been pressed, the charge meter is ready for use. The meter should then be at 0 . Touch the input, or connect an object suspected of having a static electric charge to the input.

Never forget to press the reset button before making a measurement. Also, it is advisable to start a measurement with the meter set to the higher range.

Parts list

Resistors:

$\mathrm{R}_{1}=100 \Omega$
$\mathrm{R}_{2}=1.00 \mathrm{k} \Omega, 1 \%$
$\mathrm{R}_{3}=1.05 \mathrm{k} \Omega, 1 \%$
$\mathrm{R}_{4}=19.1 \mathrm{k} \Omega, 1 \%$
$R_{5}=27 \mathrm{k} \Omega$
$\mathrm{R}_{6}, \mathrm{R}_{7}=2.7 \mathrm{k} \Omega$
$\mathrm{R}_{8}, \mathrm{R}_{9}=100 \mathrm{k} \Omega$
$P_{1}=25 \mathrm{k} \Omega$ preset potmeter

Capacitors:

$\mathrm{C}_{1}{ }^{*}=4.7 \mu \mathrm{~F}, 100 \mathrm{~V}$, polystyrene
$\mathrm{C}_{2}=100 \mu \mathrm{~F}, 16 \mathrm{~V}$, radial
$\mathrm{C}_{3}=100 \mathrm{nF}$
$\mathrm{C}_{4}=10 \mu \mathrm{~F}, 16 \mathrm{~V}$
$\mathrm{C}_{5}-\mathrm{C}_{9}{ }^{*}=1 \mu \mathrm{~F}, 63 \mathrm{~V}$, polystyrene

Fig. 5. Suggested final assembly of the charge meter.

* alternatives - see text

Semiconductors

$\mathrm{D}_{1}-\mathrm{D}_{5}, \mathrm{D}_{8}=1 \mathrm{~N} 4148$
$\mathrm{D}_{6}=$ LED, green, low current
$\mathrm{D}_{7}=$ LED, red, low current

Integrated circuits:

$\mathrm{IC}_{1}=\mathrm{TLC} 274 \mathrm{CN}$

Miscellaneous:

$\mathrm{S}_{1}=$ miniature spring-loaded push-button switch
$\mathrm{S}_{2}=$ slide switch, 1 make contact, PCB model
$\mathrm{S}_{3}=$ single-pole, single-throw switch
$\mathrm{M}_{1}=$ moving-coil meter, $50 \mu \mathrm{~A}$
$\mathrm{Bt}_{1}=9 \mathrm{~V}$ battery with terminal clip PCB Ref. 940033 (p. 110)
[940033]

Fig. 6. Suggested front panel.

APPLICATION NOTE

The content of this note is based on information received from manufacturers in the electrical and electronics industries, or their representatives, and does not imply practical experience by Elektor Electronics or its consultants.

SOLID-STATE TEMPERATURE SENSOR TC62X

By G. Kleine

Temperature sensors and switches in the TC62x series from Teledyne Components make some interesting applications practicable. They are particularly suited for applications where, owing to shock and vibration, mechanical devices can not be used. Both sensors and switches operate from supply voltages in the range $4.5-18 \mathrm{~V}$.

The TC620/621 can react to an upper and a lower temperature setting with the aid of two resistors. Three outputs serve to control the external load (fan, heating).

The TC626 is a 3 -pin thermal switch intended for operation in the frequency range $0-125^{\circ} \mathrm{C}$.

The accuracy of the switching temperatures, according to the manufacturers's data, is $\pm 3^{\circ} \mathrm{C}$.

Sensors TC620/621

The internal circuit of sensors TC620 and TC621 is shown in Fig. 1. Whereas in the TC620 an internal PTC (positive temperature coefficient) detector converts changes in the temperature into changes in resistance, the TC621 operates with an external NTC (negative temperature coefficient) resistor as detector. This makes the operation independent of the chip temperature, and makes it possiblel for the detector to be sited in the most convenient position for the particular ap-

FUNCTIONAL DIAGRAM

plication.
Inputs LOW SET(pin2) and HIGH SET(pin3) serve to set the two threshold temperatures. This only requires a resistor to the + ve supply line, V_{cc}. The value of the resistor determines the position of the threshold according to the formulas:

$$
\begin{array}{ll}
R=0.783 T+91 & \left(T<70^{\circ} \mathrm{C}\right) \\
R=T+77 & \left(T>70^{\circ} \mathrm{C}\right)
\end{array}
$$

940012-11
1

where R is the resistance in $\mathrm{k} \Omega$ and T is the threshold temperature in ${ }^{\circ} \mathrm{C}$.

The TC620/621 circuits have three outputs: LOW LIMIT, HIGH LIMIT, and CONTROL. The first two are used to indicate whether the relevant threshold is being exceeded. In the TC620 they are logic low when the ambient temperature is below the threshold and logic 1 when the ambient temperature is above the threshold. The third output, in conjunction with a bistable, has an hysteresis function.

3

T / C	$R / k \Omega$
0	91
10	99
20	107
30	115
40	122
50	130
60	138

$\star^{\text {multiturn }}$

	Table 2	
Type	Case	Ambient temperature
TC626 yyy CAB	3-pin TO-220	$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$
TC626 yyy EAB	3-pin TO-220	$-40^{\circ} \mathrm{C}-+85^{\circ} \mathrm{X}$
TC626 yyy VAB	3-pin TP-220	$-40^{\circ} \mathrm{C}-+125^{\circ} \mathrm{C}$
TC626 yyy CZB	3-pin TO-92	$0^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C}$
TC626 yyy EZB	3-pin TO-92	$-40^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$
TC626 yyy VZB	3-pin TO-92	$-40^{\circ} \mathrm{C}-+125^{\circ} \mathrm{C}$

where yyy indicates the switching temperature.
Switching temperatures between $0^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$ are available in $5^{\circ} \mathrm{C}$ steps; for instance, a Type TC626 045 VAB is housed in a TO-220 case. and has a switching threshold of $+45{ }^{\circ} \mathrm{C}$.

4

PIN CONFIGURATIONS
6

940012 -16b

SYSTEM OVERTEMPERATURE PROTECTION

940012-16a

When the HIGH LIMIT threshold temperature is exceeded, the bistable is set, whereupon it can start, say, a cooling system via pin5(that is, the CONTROL output), which is then logic high. Only after the temperature has dropped below the LOW LIMIT threshold again, is the bistable reset (when the CONTROL output becomes logiclow)-see Fig. 2.

In the Type TC620-H the CONTROL output is active low.

The operation of the TC621, owing to its external NTC resistive detector, is exactly
the opposite. Compared with the TC620, its HIGH LIMIT and LOW LIMIT are reversed, as are the allocation and polarity of the three outputs. This means that in this IC the output goes logic low when the ambient temperature exceeds the set threshold. The CONTROL output will have the same polarity as that in the TC620 if the other Q output of the bistable is used. Thus, pin 5 becomes logic high when the HIGH SET threshold is exceeded and logic low when the temperature is below the LOW SET threshold.

Table 1 gives a correlation of the various versions of the TC620 and TC621 and the relevant temperature ranges.

The TC620 may be tested with the simple circuit shown in Fig. 3. The two resistors that determine the threshold temperatures are connected in series with preset potentiometers, which enable accurate settings to be obtained (set the resistance with the aid of an ohmmeter).

Because of the PTC detector, it is important that the chip does not warm up. Therefore, the manufacturers permit an output current of only 1 mA . In the prototype circuit, each output is connected to a driver stage contained in IC_{2}.

Since the TC621x uses an external NTC detector, its output current can be up to 10 mA .

Figure 4 shows how simple an application circuit using a TC620/621 chip can be. Here, dependent on the ambient temperature, a fan is switched on and off. The CONTROL output of a TC620 drives a power MOSFET, which functions as the on/off switch for the fan.

Figure 5 shows how a thermostat is switched by a TC620. In the diagram, the power MOSFET switches a valve in the heating system. The circuit is powered by the 24 V supply of the heating system. When the power mOSFET is on, a standby battery comes into circuit.

Thermal switch TC626

The Type TC626 thermal switch is available for operation in the temperature range $0-125{ }^{\circ} \mathrm{C}$. It is housed in a TO-220 or TO-92 case-see Fig. 6a. The switching output delivers op to 10 mA in the TO-92 version, and up to 50 mA in the TO- 220 version. Table 2 gives an overview of the various versions and the associated temperature ranges.

The switching output of the TC626 is logic low as long as the threshold temperature is not exceeded. When the ambient temperature reaches the threshold, the output becomes logic high. This makes it possible, for instance, to protect an apparatus by having a relay switch off its supply voltage when a given temperature is exceeded-see Fig. 6b.
[940012]

GENERAL PURPOSE INFRA-RED BUFFER

TThe buffer enables 'stretching' the signal of any infrared (IR) remote control. This makes it possible, for instance, to control a video recorder in the living room from the bedroom or kitchen. The high-frequency modulated binary signal is converted by an IR receiver/decoder (see point 1 in the diagram) into a serial signal without that high frequency

The trailing edge of the received signal is delayed by $\mathrm{R}_{1}-\mathrm{C}_{1}$, since the IR receiver delays the leading edge. Without this compensation, the bits would become slightly wider than they were originally. This may result in errors in the receiver which ultimately must decode the signals, or a contraction of the distance to be spanned. Owing to D_{1}, the $R C$ network does not affect the leading edge (2).

To retransmit the decoded signals as IR signals, the lower periods of the signal must be filled with the basic frequency of the detected signal, which in the $\mathrm{RC}-5$ code is 36 kHz . This is done with the aid of $\mathrm{IC}_{1 \mathrm{la}}, \mathrm{IC}_{1 \mathrm{c}}$ and $\mathrm{IC}_{1 \mathrm{~d}}$.

When pin 8 of $\mathrm{IC}_{1 \mathrm{c}}$ is high, this gate will generate the carrier frequency with the aid of $\mathrm{R}_{2}, \mathrm{P}_{1}$ and C_{2}. This signal is used via gate $\mathrm{IC}_{1 \mathrm{~d}}$ to switch output transistor T_{1}. This high frequency is transferred when the received signal is low, be-

cause the output of $\mathrm{IC}_{1 \mathrm{l}}$ is then high.

Gate $\mathrm{IC}_{1 \mathrm{~d}}$ is needed to switch the transistor off when oscillator $\mathrm{IC}_{1 \mathrm{c}}$ is disabled.

Fit D_{2} and D_{3} close to the equipment that is to receive the IR signals. The link between the LEDs and the pre-
sent circuit can be simply of loudspeaker cable.

The power supply may be a mains adaptor that can deliver a current of about 0.5 A .

Preset P_{1} may be adjusted by 'ear': simply vary it until the largest required distance can be spanned. If an oscillo-
scope is available, compare the frequency of the original signal with that of the oscillator and adjust P_{1} until they are identical.

Design: A. Rietjens
[944098]

PROGRAMMABLE PULSE SPACING METER

TThe meter can measure the spacing between the trailing edges of not fewer than two, nor more than, nine pulses in a train. The number of pulses is selected by a rotary switch.

The interval is measured with the aid of a 1 MHz pulse generator, IC_{4}. During measurements the generator signal is present also at the output of the circuit to enable an external counter to be used.

Decade scaler IC_{2} is reset with switch S_{1}, whereupon
pin 1 (output 0) of BCD-todecimal converter IC_{3} goes, while the level at all the other outputs of this circuit go high. This results in the output of $\mathrm{IC}_{1 \mathrm{~d}}$ becoming high, so that D_{2} lights. The 1 MHz pulses from IC_{4} (arranged as a : 16 divider). or the external generator signal, depending on the position of S_{3}, are then blocked by $\mathrm{IC}_{1 \mathrm{~d}}$.

On the trailing edge of the first pulse that reaches the circuit after this has been reset, IC_{2} is set to position 1. The level
at pin 1 of IC_{3} then goes high, resulting in the clock signal appearing at the output of the circuit. On the trailing edge of the second pulse, pin 3 of IC_{3} goes low, whereupon $\mathrm{IC}_{1 \mathrm{~d}}$ blocks the clock pulses if rotary switch S_{2} is in the position shown in the diagram. Setting this switch to a different position determines at which clock pulse the transfer of the 1 MHz pulse train is blocked. The pulse input is then disabled via the pole of S_{2} and gate $\mathrm{IC}_{1 \mathrm{a}}$.

The counter connected to the output of the circuit indicates how much time has elapsed between the first and the next desired (2-9) pulse. At the specified reference frequency this will be in steps of $1 \mu \mathrm{~s}$. If the clock signal were 1 kHz , the steps would be 1 ms .

The circuit draws a current of about 20 mA , which makes battery operation possible.

Design: K. Dietrich
[944002]

DRIVE FOR BISTABLE RELAY

Bistable relays have the great advantage that once they are in the wanted position they do not need power to maintain that status. Another advantage is that their position is retained when the power fails or is switched off. This means that such a relay can be used as a semi-permanent memory.

The present circuit is intended to drive a bistable relay. Typical of such relays is that they have two windings.

Since only a short voltage pulse is needed to switch the relay to its wanted position, the drive circuit contains two monostable multivibrators (MMV). One of these consists of $\mathrm{IC}_{1 \mathrm{~b}}$, C_{1} and R_{2}; the other of gates $\mathrm{IC}_{1 c}$ and $\mathrm{IC}_{1 \mathrm{~d}}$ and C_{2} and R_{3}. Buffers T_{2} and T_{3} ensure that the MMVs can provide sufficient current.

The digital input signal is buffered and inverted by T_{1}, so that a leading edge of the signal at the base rises, whereas that of the signal at the drain decays. A decaying leading edge triggers MMV IC $_{1 b}$, whereupon the output of $\mathrm{IC}_{1 \mathrm{~b}}$ briefly goes high. This level switches on T_{2}, so that the associated winding of Re_{1} is energized and the relay switches. A trailing edge at the input causes the other MMV to be triggered, which results in the other winding of the relay being energized. The relay then switches to its second position.

Diodes D_{1} and D_{2} protect the output transistors agains voltage peaks caused by the switching of the relay.

Design: G. Kleine
[944111]

SERIAL 12-BIT A-D CONVERTER

THe MAX187 is eminently suitable for building a goodquality 12 -bit A-D converter. Communication with the computer is serial, but not via the standard RS232 protocol. All that is needed are three free I/O lines. In the prototype, the Centronics port was used.

The diagram shows a thermometer designed around the MAX187 with an AD592 serving as the sensor. Because of the potential across IC_{2} and resistor R_{1}, a supply voltage of 8 V is required. The A-D converter works from 5 V , however. This is why there are two voltage regulators. For other applications, IC_{1} can, therefore, be omitted. Although the circuit draws a current of only a few mA , the power supply is not taken from the Centronics port.

The A-D converter is enabled by making pin 3 high. If this pin is left open, the IC is enabled, but the internal reference voltage (4.096 V) is disabled. In that case, an external reference voltage must be applied to pin 4.

A start-of-conversion pulse is generated by making pin 7 low. This pin must remain low until the conversion data have been read. During the conversion, the clock input (pin 8) must be low. The data output (pin 6) is high impedance when pin 7 is high. Pin 6 is low as long as the conversion lasts, but goes high as soon as it is ended.

The associated software must be able to detect the going high of pin 6, whereupon it must commence with reading the 12 data bits, starting with the MSB. Thirteen clock pulses at pin 8 are needed for this. The data change at the trailing edges of the clock.

The MAX187 is quite fast: $8.5 \mu \mathrm{~s}$ for the conversion; 13 times 0.25μ s for reading and a pause of $0.5 \mu \mathrm{~s}$: a total conversion time of $12.25 \mu \mathrm{~s}$. Seealso the timing diagram.

For use as a thermometer, the QBASIC program shown indicates the measured temperature on the monitor. QBASIC is delivered free of charge

with MOS-DOS versions 5 and 6.

[^0][944070]

DISCRETE PREAMPLIFIER

Quality-conscious audio buffs still prefer discrete designs. And quite rightly so, because although there are very good operational amplifiers available, discrete designs offer just that little bit extra.

The present preamplifier is a symmetrical Class A design. The input is a double differential amplifier consisting of dual transistors Type MAT02 or MAT03. A stable d.c. operating point is ensured by current sources T_{3} and T_{4}, which use LEDs as reference- D_{1} and D_{2} respectively.

The current through the LEDs is held stable by current source T_{5}. It is essential for good thermal stability that the transistors and associated diodes (T_{3} and D_{1}, and T_{4} and D_{2}) are mounted in close contact.

The input signals are applied to push-pull drivers T_{6} and T_{7}, which feed the output stages, consisting of emitter followers T_{10} and T_{11}. Transistors T_{8} and T_{9} ensure a constant quiescent current through the emitter followers. It is necessary for good thermal stability that T_{8} and T_{10}, and T_{9} and T_{11}, are mounted in close contact. Tothis end, their flat sides, with heat conducting paste in between, are juxtaposed. The pairs are held together with a loop of bare copper wire.

Before the mains is switched on, set P_{1} to maximum resistance. Switch on the mains, wait for about a minute and then adjust P_{1} for a quiescent current through T_{10} and T_{11} of 15 mA , corresponding to a voltage drop of 150 mV across R_{23} and R_{24}.

Since the amplifier is d.c. coupled throughout, the likelihood of a fairly high direct voltage at the output would be great, the more so because the input transistors are not truly complementary. This is, however, obviated by an active d.c. correction that holds the direct voltage at the output at zero in all circumstances. For this purpose, the output signal is passed via low-pass filter $\mathrm{R}_{26}-\mathrm{C}_{13}$ to integrator IC_{1}. Tis arrangement does not affect fast variations of the signal. If, however, the output signal has ad.c. component, T_{12} will con-

Fig. 1. Circuit diagram of the discrete preamplifier
duct to some degree, so that the bases of T_{1} and T_{2} are pulled into a negative direction. In a negative direction, because T_{1} ($\mathrm{n}-\mathrm{p}-\mathrm{n}$) has an inherently greater voltage amplification $(\times 3)$ than T_{2} (p-n-p).

Adjust P_{2} immediately on switch-on for as low a direct voltage at the output as possible. From then on, any variations caused by temperature changes will be corrected by IC_{1}. The speed at which the correction takes place can be increased by giving R_{26} and R_{27} lower values.

It is important for optimum

Some parameters

(measured with an output of $1 \mathrm{~V} \mathrm{r.m.s} .\mathrm{across} 47 \mathrm{k} \Omega$)

THD
THD +N
($\mathrm{B}=22 \mathrm{~Hz}-80 \mathrm{kHz}$)
Signal-to-noise ratio
($\mathrm{B}=22 \mathrm{~Hz}-22 \mathrm{kHz}$)
Bandwidth
Slew rate
Rise time
Input impedance
Sensitivity
Peak output voltage
$\leq 0.00005 \%$ (at 1 kHz)
$\leq 0.0004 \%$ (at 20 kHz)
$<0.0012 \%(20 \mathrm{~Hz}-20 \mathrm{kHz})$
$>104 \mathrm{~dB}$
$1.5 \mathrm{~Hz}-3.7 \mathrm{MHz}$
about $200 \mathrm{~V} \mu \mathrm{~s}^{-1}$
about $0.1 \mu \mathrm{~s}$
$47 \mathrm{k} \Omega$
150 mV
about 9 V r.m.s.

Fig. 2.Printed circuit board for the discrete preamplifier.

Fig. 3. Completed printed circuit board.
symmetry that the currents through T_{1} and T_{2} (and thus the voltage drops across R_{9} and R_{10}) are equal. This can only be if the potentials across D_{1} and D_{2} are equal, and it is, therefore, advisable to match these diodes for equal voltage with a test current through them of 3 mA . When the diodes are matched, the drops across R_{13} and R_{14} should not differ by more than a few millivolts.

The same applies to T_{6} and T_{7} : for good symmetry they should be matched for equal base/emitter voltage, with a
slew rate deteriorates to about $20 \mathrm{~V} \mathrm{\mu s}^{-1}$.

The preamplifier is best built on the PCB in Fig. 2, which is available ready-made.

The supply lines should be stabilized by a suitable voltage regulator.

Parts list

Resistors:

$\mathrm{R}_{1}=47.5 \mathrm{k} \Omega, 1 \%$
$\mathrm{R}_{2}=470 \Omega$
$\mathrm{R}_{3}=1.00 \mathrm{k} \Omega, 1 \%$
$\mathrm{R}_{4}=5.62 \mathrm{k} \Omega, 1 \%$
$\mathrm{R}_{5}, \mathrm{R}_{6}, \mathrm{R}_{9}, \mathrm{R}_{10}=806 \Omega, 1 \%$
$\mathrm{R}_{7}, \mathrm{R}_{8}, \mathrm{R}_{11}, \mathrm{R}_{12}=80.6 \Omega, 1 \%$
$\mathrm{R}_{13}, \mathrm{R}_{14}=221 \Omega, 1 \%$

Semiconductors:

$\mathrm{D}_{1}, \mathrm{D}_{2}=$ LED, red, flat
$\mathrm{D}_{3}, \mathrm{D}_{4}=1 \mathrm{~N} 4148$
$\mathrm{T}_{1}=$ MAT02
$\mathrm{T}_{2}=$ MATO3
$\mathrm{T}_{3}, \mathrm{~T}_{6}, \mathrm{~T}_{9}=\mathrm{BC} 560 \mathrm{C}$
$\mathrm{T}_{4}, \mathrm{~T}_{7}, \mathrm{~T}_{8}, \mathrm{~T}_{12}=\mathrm{BC} 550 \mathrm{C}$
$\mathrm{T}_{5}=\mathrm{BF} 256 \mathrm{C}$
$\mathrm{T}_{10}=\mathrm{BC} 337-40$
$\mathrm{T}_{11}=\mathrm{BC} 327-40$

Integrated circuits:

$\mathrm{IC}_{1}=\mathrm{OP} 77$

Miscellaneous:

PCB Ref. 944063 (p. 110)

Design: T. Giesberts
[944063]
$\mathrm{R}_{15}=2.7 \mathrm{k} \Omega$
$\mathrm{R}_{16}=820 \Omega$
$\mathrm{R}_{17}, \mathrm{R}_{18}=249 \Omega, 1 \%$
$\mathrm{R}_{19}, \mathrm{R}_{20}=10.0 \mathrm{k} \Omega, 1 \%$
$\mathrm{R}_{21}, \mathrm{R}_{22}=390 \Omega$
$\mathrm{R}_{23}, \mathrm{R}_{24}=10.0 \Omega, 1 \%$
$\mathrm{R}_{25}=47 \Omega$
$\mathrm{R}_{26}, \mathrm{R}_{27}=475 \mathrm{k} \Omega, 1 \%$
$\mathrm{R}_{28}=27 \mathrm{k} \Omega$
$\mathrm{R}_{29}=3.9 \mathrm{k} \Omega$
$\mathrm{R}_{30}=100 \mathrm{k} \Omega$
$\mathrm{R}_{31}, \mathrm{R}_{32}=392 \mathrm{k} \Omega, 1 \%$
$\mathrm{P}_{1}=10 \mathrm{k} \Omega$ preset potmeter
$\mathrm{P}_{2}=100 \mathrm{k} \Omega$ preset potmeter

Capacitors:

$\mathrm{C}_{1}, \mathrm{C}_{13}, \mathrm{C}_{14}=2.2 \mu \mathrm{~F}, 50 \mathrm{~V}$.
pitch 5 mm
$\mathrm{C}_{2}=33 \mathrm{pF}, 160 \mathrm{~V}$, polystyrene
$\mathrm{C}_{3}=10 \mathrm{pF}, 160 \mathrm{~V}$. polystyrene
$\mathrm{C}_{4}, \mathrm{C}_{5}=100 \mu \mathrm{~F}, 6.3 \mathrm{~V}$, radial
$\mathrm{C}_{6}, \mathrm{C}_{7}=150 \mathrm{pF}, 160 \mathrm{~V}$,
polystyrene
$\mathrm{C}_{8}=1 \mu \mathrm{~F}$, pitch 5 mm
$\mathrm{C}_{9}, \mathrm{C}_{11}=220 \mathrm{nF}$
$\mathrm{C}_{10}, \mathrm{C}_{12}=100 \mu \mathrm{~F}, 25 \mathrm{~V}$, radial
$\mathrm{C}_{15}, \mathrm{C}_{16}=100 \mathrm{nF}$

TYe monitor is intended especially for force-cooled power resistors mounted on a heat sink. Such constructions are used, for instance. to test audio output amplifiers. Since it may be forgotten to switch the associated fan on during testing, the resistors can overheat with all the consequences of this.

It is, of course, possible to use in series with the resistors a relay that is energized only when the power to the fan is switched on. This is, however, not feasible with low-value resistors (e.g., $\leq 1 \Omega$) because the transfer resistance of the relay may then play too large a role.

Another method is the use of a battery-powered alarm, which actuates a buzzer when the temperature rises above $80^{\circ} \mathrm{C}$. When the mains to the fan is switched on, the alarm is disabled. The present circuit then ensures that the fan is operated when the temperature reaches $80^{\circ} \mathrm{C}$. The advantage of this arrangement is that there is no (electrical) fan noise at low powers.

The circuit is powered by battery Bt_{1} via diode D_{4} if there is no mains voltage present. Stage T_{3} is not powered and the logic level at the in-

puts of gate $\mathrm{IC}_{1 \mathrm{c}}$ is 0 . This enables oscillator $\mathrm{IC}_{1 \mathrm{~b}}$, but this can not yet oscillate because C_{1} is short-circuited by a thermal switch connected to
K_{1}. The output of $\mathrm{IC}_{1 \mathrm{la}}$ is thus low, so that T_{1} is off and the (direct-current) buzzer is not energized. When the temperature rises above $80^{\circ} \mathrm{C}$, the
thermal switch opens and $\mathrm{IC}_{1 \mathrm{~b}}$ begins to oscillate, whereupon the buzzer sounds intermittently.
When the mains is switched on, a $12-\mathrm{V}$ potential is applied to the emitter of T_{3}, whereupon the level at the inputs of $\mathrm{IC}_{\text {lc }}$ goes high. This causes the oscillator to be disabled, so that the buzzer is deenergized. At temperatures below $80^{\circ} \mathrm{C}$, the sensor contacts are closed, so that T_{2} and T_{3} are switched off. Above that temperature, the sensor contacts open, whereupon T_{2} arranges for the fan to be switched on via T_{3}. When the temperature drops below $80{ }^{\circ} \mathrm{C}$, the sensor contacts close and the fan is switched off.

Gate $\mathrm{IC}_{1 \mathrm{~d}}$ provides a low-battery indication (which operates only when the mains is switched on).

The sensor must be fitted on to the heat sink close to the resistors. Any thermal switch whose contacts open at $80^{\circ} \mathrm{C}$ can be used.

The current drawn from the battery is only about $10 \mu \mathrm{~A}$, which rises to around 10 mA when the buzzer is energized.

Design: H. Bonekamp
[944001]

INDICATOR FOR LEAD-ACID BATTERY CHARGER

This unit is intended as an add-on for the many leadacid battery chargers that have no charge indicator. A green LED shows that the battery is connected with correct polarity. A red LED indicates that the battery voltage has reached its operating voltage, that is, the battery is fully charged. A yellow LED functions as on/off indicator, that is, shows that the mains is connected.

The operation of D_{1} and D_{3} is straightforward and needs no
explanation. In the prototype, D_{2} glowed faintly at 13.5 V and brightly at 14.4 V . Because of the tolerances in the zener and LED voltages, it may be necessary for a more positive indication to add another diode in series with D_{x} or even to omit D_{x}. Owing to the vast differences between commercial chargers, this can be ascertained only by trial and error.

Most standard chargers for 12 V lead-acid batteries provide a voltage of 13.8 V , while
fast chargers provide 14.4 V . Standard LEDs can be used. The + and 0 terminals in the diagram must be connected to the corresponding terminals of the battery. The ~ terminal must be linked to the secondary transformer winding with goodquality cable. Make sure that it is connected to the secondary and not to the primary, because that could be fatal.

Design: K. Walraven
[9440437]

$80 C 451$ CONTROLLER BOARD

The 80C451 from Signetics is one of the many derivates of the 'generic' 8051 originally manufactured by Intel. The obsolescent SC80451CCN64 was first discussed in Ref. 1. The ' 451 has several ports more than the 8051. Here, a small controller board is presented based on the 68 -pin PLCC version of the 80C451, the SC80C451CCA68 (12 MHz) or SC80C451CGA68 (16 MHz).

As indicated by the circuit diagram, the microcontroller board has all the 'typical' ingredients: memory formed by an EPROM, IC_{3}, an address latch, IC_{2}, a power supply, IC_{5}, a reset circuit, $\mathrm{S}_{1}-\mathrm{R}_{2}-\mathrm{C}_{5}$, an RS232 interface, IC_{4}, and connectors (boxheaders) $\mathrm{K}_{1}-\mathrm{K}_{6}$. which allow you to hook up extension circuits. Perhaps less common is the on-board $\mathrm{I}^{2} \mathrm{C}$ interface around mini-DIN connector K_{7}.

Boxheaders $\mathrm{K}_{2}-\mathrm{K}_{6}$ give access to the controller's plethora of port lines. Boxheader K_{6} is wired to allow easy connection of an LCD display. Such a display can be used in 4-bit mode only, while the contrast adjustment pot must be located on the unit itself. Also note that the associated 'contrast' pin, number 3, of the LCD module is not connected to the controller board.

If a flatcable, a 40-pin DIP header and a 40-way IDC socket are used, boxheader K_{1} gives a 1-to-1 correspondence with the pins of the 'standard' 8051 controller in a $40-\mathrm{pin}$ DIL enclosure. However, to prevent problems, the ' 451 clock signal is not copied to the socket. Jumper JP_{1} allows you to connect the $5-\mathrm{V}$ supply of the ' 451 system to the 8051 system. The 40-way DIL socket enables the controller board to be turned into a simple 8751 emulator (see also Ref. 1). In that setup, port 0 of the emulated 8751 equals port 5 of the '451. Similarly, port 2 of the emulated 8751 then equals port 4 of the 451 .

Although an $\mathrm{I}^{2} \mathrm{C}$ socket is provided on the board, that should not be taken to mean that the 80 C 451 has built-in hardware to interface with an $\mathrm{I}^{2} \mathrm{C}$ bus. It should be noted that the $\mathrm{I}^{2} \mathrm{C}$ lines of the controller board

are capable of supplying up to 1.5 mA , which is less than a standard $\mathrm{I}^{2} \mathrm{C}$ line $(3 \mathrm{~mA})$. However, this need not cause problems because $3.3-\mathrm{k} \Omega$ pull-up resistors are used here. On the same tack, the switching thresholds of the " 451 inputs are not to $\mathrm{I}^{2} \mathrm{C}$ standard, but no real problem there, either. Fortunately, a number of elementary software routines to implement $\mathrm{I}^{2} \mathrm{C}$ communication using the 80C451 are available from the Philips Semiconductors databank (bulletin board)
in Holland which can be contacted by modem on (+31) 40721102 . Dial up and download the file I2CBITS.EXE.

The RS232 channel is a standard application of the MAX232 single-chip RS232 interface. Although only RxD and TxD are implemented, this should work in most, if not all, cases where a simple link is desired to a PC running a terminal emulation program.

All of the popular EPROM types 2764 through 27512 may be used in this cir-

cuit - the selection is made with two jumpers, JP_{2} and JP_{3} (see table). Note that pin 26 (n.c. on the 64) is permanently tied to address line A13.

Finally, the quartz crystal frequency is 12 MHz or 16 MHz , depending on the controller type used. Capacitor C_{3} is mounted at the underside of the board for maximum decoupling efficiency. Current consumption of the board is of the order of 30 mA , depending on clock speed and connected extensions. In practice, a 100 mA power supply will be adequate for all and sundry applications.

Parts list

Resistors:

$\mathrm{R}_{1}=8$-way (9-pin) $10 \mathrm{k} \Omega \mathrm{SIL}$
$\mathrm{R}_{2}=100 \Omega$
$\mathrm{R}_{3}, \mathrm{R}_{7}=3.3 \mathrm{k} \Omega$
$\mathrm{R}_{4}-\mathrm{R}_{6}=330 \Omega$

Capacitors:

$\mathrm{C}_{1}, \mathrm{C}_{2}=33 \mathrm{pF}$
$\mathrm{C}_{4}=100 \mathrm{nF}$
$\mathrm{C}_{3}=100 \mathrm{nF}$ (fit at underside of board)
$\mathrm{C}_{5}=4.7 \mu \mathrm{~F}, 10 \mathrm{~V}$, radial
$\mathrm{C}_{6}=100 \mu \mathrm{~F}, 10 \mathrm{~V}$, radial
$\mathrm{C}_{7}-\mathrm{C}_{11}=10 \mu \mathrm{~F}, 16 \mathrm{~V}$, radial
$\mathrm{C}_{12}=100 \mu \mathrm{~F}, 25 \mathrm{~V}$, radial

Inductors:

$\mathrm{L}_{1}=100 \mu \mathrm{H}$ choke

Semiconductors:

$\mathrm{D}_{1}=1 \mathrm{~N} 4001$

Integrated circuits:

$\mathrm{IC}_{1}=\mathrm{SC} 80 \mathrm{C} 451 \mathrm{CCA} 88$
(12 MHz) or
SC80C451CGA68
(16 MHz)
(Signetics/Philips)
$\mathrm{IC}_{2}=74 \mathrm{HCT} 573$
$\mathrm{IC}_{3}=27 \mathrm{C} 64$ (see text)
$\mathrm{IC}_{4}=$ MAX232
$\mathrm{IC}_{5}=7805$

Miscellaneous:

$\mathrm{JP}_{1}=2$-way jumper.
$\mathrm{JP}_{2}, \mathrm{JP}_{3}=3$-way jumper.
$\mathrm{K}_{1}=40$-way boxheader.
$\mathrm{K}_{2}-\mathrm{K}_{6}=10$-way boxheader.
$\mathrm{K}_{7}=6$-way mini DIN socket,
PCB mount.
$\mathrm{K}_{8}=3$-way PCB terminal
block.
$\mathrm{K}_{9}=2$-way PCB terminal
block.
$\mathrm{S}_{1}=$ push-button 2CTL2
$\mathrm{X}_{1}=16 \mathrm{MHz}$ or 12 MHz
crystal.
PCB Ref.944069-1 (p.110).

Reference:

1. 8751 emulator, Elektor Electronics March 1992.

S-VHS-TO-VHS CONVERTER

Most modern video units are provided with anS-VHS or Y / C output. This output furnishes the black-and-white information (luminance or Y) and the colour information (chrominance or C) of a video picture on separate pins. This separation of data improves the quality of a picture generated by an S-VHS signal appreciably compared with a standard CVBS signal. Unfortunately, older television receivers without an S-VHS input can not process such a signal. It is for owners of such older receivers that the present circuit was designed: it recombines the Y and C components into a CVBS signal.

The two components of the S-VHS signal are applied to the converter via K_{1} and K_{2}. The level of the luminance component is $1 \mathrm{~V}_{\mathrm{pp}}$ and that of the chrominance component is $0.5 V_{p p}$. For that reason, a weighting factor is applied in the recombination of the components. The output signal is composed

of $1 / 3$ of the luminance component and $2 / 3$ of the chrominance component. The level of the signal at the base of T_{1} is thus 666 mV . The amplification of the circuit is $\times 3\left(\mathrm{R}_{9}: \mathrm{R}_{8}\right)$, so that the level of the signal at the collector of T_{2} is about $2 \mathrm{~V}_{\mathrm{pp}}$. The potential divider consisting of
R_{11} and the input impedance of the receiver (75Ω) halve the signal being applied to the receiver, whose level is, therefore, $1 \mathrm{~V}_{\mathrm{pp}}$ again.

If the input of the television receiver is adequately decoupled for d.c., capacitors C_{4} and C_{5}. as well as R_{10}. may be omitted.

This presupposes that the input impedance is 75Ω for both the a.c. and the d.c. component.

The converter draws a current of about 25 mA .

Design: J Kircher
[944004]

LIGHT-SENSITIVE SWITCH

TThe switch is typified by the very few components needed and its high sensitivity. Because of this, it has some limitations:

- It is suitable for use with incandescent lamps only.
- It has no switch-ondelay, so that the lamp will light also during the day if the sensor becomes shaded.
- It has no switchingthreshold, so that the lamp will light up gradually.

The circuit is connected in series with the lamp. The bridge rectifier ensures that both period halves of the alternating voltage can be switched with the aid of thyristor Th_{1}. The gate of Th_{1} is driven via $\mathrm{R}_{1}-\mathrm{C}_{1}$ and diac Di_{1}. At the onset of each period half, C_{1} is charged rapidly via R_{1}. As soon as the potential across the capacitor has reached some tens of volts, the diac switches, whereupon Th_{1} begins to conduct. It continues to do

so until the next zero crossing, when it gets a fresh gate pulse, and so on.

When transistor T_{1}, which is in parallel with C_{1}, begins to conduct, the potential across C_{1} remains virtually nil, so that the thyristor can not be ignited. When the light-dependent
resistor (LDR) between the base and collector of T_{1} is in light, it has a low resistance so that T_{1} is on. The thyristor, and thus the lamp, is off. When the LDR is in darkness, T_{1} is off and the thyristor, and thus the lamp, is on. The value of resistor R_{2} determines the moment of switch
on, so it can be chosen to individual requirements.

The circuit is so sensitive that great care must be taken to ensure that the LDR can not receive any light from the lamp (if it did, a sort of oscillator effect would ensue).

The LDR should be a type that has a resistance of about 60Ω when it is in bright light and of about $2 \mathrm{M} \Omega$ in darkness.

It is best to use a Type TIC126D thyristor, not a Type TIC106D, because this is so sensitive that the lamp would remain on. If a TIC 106D must be used, its sensitivity can be reduced by soldering a 220Ω resistor between gate and cathode.

Since the full mains voltage is present at various points in the circuit, it is essential that the switch is built into a wellinsulated enclosure.

Design: J. Voûte.
[944017]

ROBUST A.F. POWER AMPLIFIER

This is a no-frills audio power amplifier based on inexpensive transistors. It is short-circuit protected, and has a maximum power output of the order of 50 W into 4Ω. As shown by the circuit diagram, the amplifier is a classic push-pull class-B design.

To minimize the offset current which flows through feedback resistor R_{10}, zener diodes D_{1} and D_{2} should be matched for equal zener voltages. Similarly, transistors T_{7} and T_{8}, the complementary pair BD139-BD140, should be matched for equal baseemitter voltages, $U_{\text {be- }}$. They are fitted on a common heatsink to ensure that they are always at the same temperature. If T_{7} and T_{8} are not matched, or if D_{1} and D_{2} have different zener voltages, it may not be possible to compensate the offset voltage at the amplifier output despite adjustment of preset P_{1}.

To negate the effect of the input stage off-set variation, the feedback line is decoupled by two parallel connected bipolar electrolytic capacitors, C_{6} and C_{7}.

Like T_{7} and T_{8}, the input transistors, T_{1} and T_{2}, must be thermally coupled. This can be achieved in a simple way by clamping the two transistors face-to-face with the aid of a small band of aluminium, copper or brass.

Because of their floating bias, the input transistors are sensitive to supply voltage fluctuations. Each transistor is, therefore, provied with its own regulator consisting of a current sources ($\mathrm{T}_{3}-\mathrm{T}_{4}$) and a zener diode ($D_{1}-D_{2}$). Note that the tolerance on the FETs and the zener diodes may well cause a deviation of up to $\pm 1 \mathrm{~V}$ from the nominal supply voltage required, which is $\pm 18 \mathrm{~V}$.

Capacitors C_{8} and C_{9} in the cascade stages formed by $\mathrm{T}_{2}-\mathrm{T}_{6}$ and $\mathrm{T}_{1}-\mathrm{T}_{5}$ serve to minimize the adverse effect of the base-collector capacitances of T_{1} and T_{2}. The base-collector junctions of transistors T_{7} and T_{8} are shunted by capacitors ($\mathrm{C}_{10}-\mathrm{C}_{11}$) because the

BD139 and BD140 altough electrically complementary types do not have the same switching speed.

When the amplifier is first switched on, the voltage across R_{17} and R_{18} will settle at a certain value, and then rise slowly by about 0.15 V . This is normal and mainly owing to the simple design and the inevitable thermal effects in $\mathrm{T}_{1}-\mathrm{T}_{2}$ and $\mathrm{T}_{7}-\mathrm{T}_{8}$. This variation, however, calls for a good zener device to keep the quiescent current stable. In other words, the zener voltage between the bases of T_{13} and T_{14} must be independent of the current variation through T_{9} and T_{10}. The quiescent current is adjusted with preset P_{2}. The 'super' zener formed by T_{9} and T_{10} has an a.c. resistance which is about five times lower than that of a conventional one-transistor stabilizer. For obvious reasons, both transistors are fitted on the same heatsink as

Main parameters

Input impedance:	$47 \mathrm{k} \Omega$
Input sensitivity:	$1.25 \mathrm{~V}(30 \mathrm{~W} / 8 \Omega)$
C1 not fitted:rise time	$<0.7 \mu \mathrm{~s}$
slew rate:	$>40 \mathrm{~V} \mu \mathrm{~s}$
C1 fitted:	$<1.5 \mu \mathrm{~s}$
slew rate:	$>24 \mu \mathrm{~s}$
Bandwidth:	$(30 \mathrm{~W} / 8 \Omega): 10 \mathrm{~Hz}-180 \mathrm{kHz}$
THD $\mathrm{N}: 1 \mathrm{~W} / 8 \Omega:$	$<0.005 \%(1 \mathrm{kHz})$
$25 \mathrm{~W} / 8 \Omega:$	$<0.02 \%(1 \mathrm{kHz})$
$25 \mathrm{~W} / 8 \Omega:$	$<0.07 \%(20 \mathrm{~Hz}-20 \mathrm{kHz})$
$\mathrm{S} / \mathrm{N}(1 \mathrm{~W} / 8 \Omega):$	$>100 \mathrm{~dB}(\mathrm{~B}=22 \mathrm{kHz})$
$\mathrm{P}_{\text {max }}(\mathrm{THD}+\mathrm{N}=0.1 \%):$	30 W into 8Ω
	56 W into 4Ω
Damping $(20 \mathrm{~Hz}-20 \mathrm{kHz}) ; 8 \Omega):>350$	

Measurements conditions:

Amplifier powered by a regulated ± 25-V supply. Quiescent current (T13/T14) set to 200 mA ; bandwidth 10 Hz to 80 kHz unless otherwise stated.
the power output transistors.
SOAR (safe operating area) protection is provided by transistors T_{11} and T_{12}. Resistors R_{22} through R_{27} have values which enable the
currents through T_{13} and T_{14} to be kept within reasonable limits when the amplifier output is short-circuited or connected to a too low impedance.

The construction of the amplifier should be evident from the circuit board layout and the photograph. Transistors T_{9}, T_{10}, T_{13} and T_{14} must be fitted with ceramic washers to keep their metal tabs isolated while still maintaining a low thermal resistance to the SK85 heatsink. T_{7} and T_{8} must also be fitted with washers (mica types are o.k.) on their common heatsink.

Be sure to set P_{2} for maximum resistance (wiper fully counter-clockwise) before applying the supply voltage. Next, carefully adjust P_{2} for a quiescent current of about 200 mA through T_{13} and T_{14}. which should correspond to about 200 mV across R_{28} and R_{29}. Finally, the minimum loudspeaker impedance that can be used with the amplifier is 4Ω.

Parts list

(One channel)

Resistors:

$\mathrm{R}_{1}=470 \Omega$
$\mathrm{R}_{2}=100 \mathrm{k} \Omega$
$\mathrm{R}_{3}, \mathrm{R}_{4}=220 \mathrm{k} \Omega$
$\mathrm{R}_{5}, \mathrm{R}_{6}=1 \mathrm{M} \Omega$
$\mathrm{R}_{7}, \mathrm{R}_{8}=470 \mathrm{k} \Omega$
$\mathrm{R}_{9}=68 \Omega$
$\mathrm{R}_{10}=820 \Omega$
$\mathrm{R}_{11}, \mathrm{R}_{12}, \mathrm{R}_{17}, \mathrm{R}_{18}=22 \Omega$
$\mathrm{R}_{13}=1.5 \mathrm{k} \Omega$
$\mathrm{R}_{14}=1.8 \mathrm{k} \Omega$
$\mathrm{R}_{15}, \mathrm{R}_{16}=270 \Omega$
$\mathrm{R}_{19}=1 \mathrm{k} \Omega$
$\mathrm{R}_{20}, \mathrm{R}_{23}, \mathrm{R}_{26}=220 \Omega$
$\mathrm{R}_{21}=100 \Omega$
$\mathrm{R}_{22}, \mathrm{R}_{25}=12 \mathrm{k} \Omega$
$\mathrm{R}_{24}, \mathrm{R}_{27}=330 \Omega$
$\mathrm{R}_{28}, \mathrm{R}_{29}=0.1 \Omega, 5 \mathrm{~W}$
$\mathrm{P}_{1}=1 \mathrm{k} \Omega$ preset H
$\mathrm{P}_{2}=250 \Omega$ preset H

Capacitors:

$\mathrm{C}_{1}, \mathrm{C}_{8}, \mathrm{C}_{9}=\operatorname{lnF}$
$\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{12}=1 \mu \mathrm{~F}$, pitch 5 mm
$\mathrm{C}_{4}, \mathrm{C}_{5}=680 \mathrm{nF}$
$\mathrm{C}_{6} . \mathrm{C}_{7}=100 \mu \mathrm{~F}, 10 \mathrm{~V}$, bipolar, radial
$\mathrm{C}_{10}, \mathrm{C}_{11}=100 \mathrm{pF}, 160 \mathrm{~V}$ polystyrene
$\mathrm{C}_{13}, \mathrm{C}_{14}=2200 \mu \mathrm{~F}, 40 \mathrm{~V}$, radial

Semiconductors:

$\mathrm{D}_{1}, \mathrm{D}_{2}=18 \mathrm{~V}$ zener, 0.5 W
$\mathrm{T}_{1}=\mathrm{BC} 517$
$\mathrm{T}_{2}=\mathrm{BC} 516$
$\mathrm{T}_{3}, \mathrm{~T}_{4}=\mathrm{BF} 256 \mathrm{~A}$
$\mathrm{T}_{5}=\mathrm{BC} 547 \mathrm{~B}$
$\mathrm{T}_{6}=\mathrm{BC} 557 \mathrm{~B}$
$\mathrm{T}_{7}, \mathrm{~T}_{10}=\mathrm{BD} 140$
$\mathrm{T}_{8}, \mathrm{~T}_{9}=\mathrm{BD} 139$
$\mathrm{T}_{11}=$ BC639
$\mathrm{T}_{12}=$ BC640
$\mathrm{T}_{13}=\mathrm{BDV} 65 \mathrm{~B}$
$\mathrm{T}_{14}=\mathrm{BDV} 64 \mathrm{~B}$

8TH ORDER BUTTERWORTH FILTER

Asusual in RCfilter designs, resistors $\mathrm{R}_{1}-\mathrm{R}_{4}$ and $\mathrm{R}_{5}-\mathrm{R}_{8}$ are given equal values. Unfortunately, again as usual, this leads to rather awkward values of the capacitors. However, rounding off these values to the nearest E12 value leads to ripples in the transfer characteristic. The specified component values give a cut-off frequency of 1 kHz .

The frequency characteristic is rather different from that of a Bessel filter, as is the transit time. Moreover, there is a tendency to ringing. This is because the second section has a 3 dB peak in its gain just before the cut-off point. However, in practice this is hardly noticeable: the prototype was found to be usable up to full drive of the opamps. The only noticeable effect was a (very) slight deterioration in the signal-to-noise figure around the cut-off frequency.

Although the NE5532 proved

well up to the task, it may be worthwhile to use opamps with FET inputs. These generate rather more noise than bipolar types, but, since the noise in the
filter is caused mainly by the resistor, this would not matter much.

Each of the NE5532 chips draws a current of about 4 mA .

MAINS-SYNCHRONISED OSCILLATOR

The mains-synchronised oscillator has certain advantages over a simple zero crossing detector. For instance, the brief failing of input pulses does not immediately cause a disaster and spurious pulses on the mains have hardly any effect on the circuit.

Because of the feedback to the positive input of IC_{1} via R_{5}. the opamp has some hysteresis. This causes the output to change state when the potential across C_{1} exceeds the upper hysteresis threshold and to change state again when that voltage drops below the lower hysteresis threshold. Since C ${ }_{1}$ is continuously charged via R_{1}, the output of IC_{1} continuously changes from one state to the other, so that the opamp behaves like a rectangular-signal generator. The duty factor depends on the threshold voltage; with values of R_{3} and R_{4} as specified, it is not greater than 50%. The
frequency of the oscillations is determined mainly by R_{1} and C_{1} and should be just a little higher than the mains frequency ($55-60 \mathrm{~Hz}$).

The oscillator is synchronized with the mains frequency by connecting the anode of D_{1} to the secondary winding of the supply transformer (that is, prior to the bridge rectifier). The positive pulsating direct voltage causes the discharge time of C_{1} to lenghten, so that the oscillator frequency drops and synchronises with the mains frequency. The synchronisation causes a phase shift that depends on the strength of the input signal and on the difference between the mains and oscillator frequencies.

If the level of the 50 Hz input signal is $<5 \mathrm{~V}$ or $>20 \mathrm{~V}$, the value of R_{2} should be changed accordingly.

Before the circuit is taken into use, check the frequency of the

freewheeling oscillator (input shorted to earth): this must be slightly higher than 50 Hz . The frequency depends to some extent on the opamp used.

Suitable opamps are the types LM358, TLC272, TLC271 and the TLC2201; note that a 741 is not suitable. If fast edges at the output are desirable, an LM339 is a good choice. Note,
however, that this type has an open-collector output, so that a resistor of a few $\mathrm{k} \Omega$ must be added between the output and the positive supply line.

The circuit as shown draws a current of only a few mA .

Design: K. Walraven
[944029]

JOYSTICK-TO-MOUSE ADAPTOR

A1though most PC games and more serious programs are perfectly suited to mouse control, there are applications, such as flight simulators, where joystick control would give a farmore realistic 'feel'. Unfortunately, not all programs where joystick control would be desirable actually support such a device. In these cases, only mouse control is available. Also, in more general terms, the following problems are often encountered when running flight simulators:

- although the resolution of the mouse is adequate for accurate control, the experience of flying is not simulated;
- the analoguejoystick is far too inaccurate, and is pro-cessed digitally in any case;
- the digital joystick with D-A converter in principle simulates full deflection of the analogue joystick.

The circuit shown here allows a digital (ex-Commodore 64) joystick to be used for playing games that support mouse control only. The interface is based on electronics salvaged from an inexpensive ($£ 10$ or less)
opto-mechanical mouse. The main board, the LEDs (or their series resistors) and the phototransistors are removed from the mouse. The phototransistors are replaced (electrically, that is) by four optoisolators contained inIC_{5}. This is achieved by connecting points XA, AB, YA and YB to the emitter or collector of each phototransistor removed. The adaptor board shown here has a number of jumpers to allow the collector and emitter of each photo-
transistor in the CNY74-4 to be wired to +5 V or ground. Jumpers E/C therefore determine whether the drive signal comes from the emitter or from the collector. The exact connections will depend on the electronics available on the mouse.

The circuit uses a TLC555 astable multivibrator and a 4017 divider to generate a pulse train which simulates the rotating slotted disc in the optomechanical mouse. This sig-
nal is routed to the optoisolators via two 4503 buffers. The desired direction (up/down; left/right) is selected with the digital joystick, via the enable inputs on the buffers. The speed of the cursor on the screen is set with preset P_{1}, since that determines the clock frequency of the TLC555.

The supply voltage for the interface is taken from the mouse, and can be found where the LEDs and their series resistors used to be connected. The

mouse/fire keys are wired directly, while the second 'fire' key (which is not available on the digital joystick) may be integrated into the adaptor enclosure.

Parts list

Resistors:
$\mathrm{R}_{1}-\mathrm{R}_{6}=10 \mathrm{k} \Omega$
$\mathrm{R}_{7}-\mathrm{R}_{10}=4.7 \mathrm{k} \Omega$
$\mathrm{P}_{1}=470 \mathrm{k} \Omega$

Capacitors:

$\mathrm{C}_{1}=10 \mathrm{nF}$
$\mathrm{C}_{2}-\mathrm{C}_{6}=100 \mathrm{nF}$
$\mathrm{C}_{7}=10 \mu \mathrm{~F}, 16 \mathrm{~V}$
Integrated circuits:
$\mathrm{IC}_{1}=$ TLC555
$\mathrm{IC}_{2}=4017$
$\mathrm{IC}_{3}, \mathrm{IC} 4=4503$
$\mathrm{IC}_{5}=$ CNY74-4

Miscellaneous:

$\mathrm{S}_{1}-\mathrm{S}_{4}=$ switch in C64 joystick.
PCB Ref. 944040 (p. 110).
Design: C. Wolff
[944040]

THERMO-CONTROLLED HOT-PLATE

The hot-plate was designed to keep a tray with developer for print material warm. It may also prove useful in a photographer's dark-room. It is contained in a small metal case, which also contains the electronics. The plate, which is made of aluminium and measures about $25 \times 15 \mathrm{~cm}(10 \times 6 \mathrm{in})$ is mounted about 2 cm above the mains transformer. Four par-allel-connected $22 \Omega, 25 \mathrm{~W}$ resistors screwed to the underside of the plate function as heating element. The current through the resistors is switched on an off by an electronically controlled relay, which is also fitted in the metal case.

A Type LM335 temperature sensor is connected to the negative input of comparator IC_{1}. The voltage across the sensor is directly proportional with the temperature, so that when the hot-plate cools off, it will at a given moment drop below the reference voltage set by P_{1} at the positive input of IC_{1}. The output of the comparator will then go high, so that after three inversions in $\mathrm{IC}_{2 \mathrm{a}}$, $\mathrm{IC}_{2 \mathrm{~b}}$ and $\mathrm{IC}_{2 \mathrm{c}}$, there is a low logic level at the base of T_{2}. Since this is a p-n-p transistor, it will begin to conduct, whereupon T_{3} is also switched on and relay Re_{1} is energized. The heating resistors (represented by R_{12}), connected to K_{1}, are then connected to the mains transformer via K_{2} and heat the hot-plate.

When the temperature causes the voltage across D_{1} to exceed the reference voltage at pin 2 of IC_{1}, the comparator output goes low and

T_{2} and T_{3} are switched off. The hysteresis provided by R_{5} ensures that the on and off thresholds are far enough apart to prevent relay clatter.

An optional indicator is formed by $\mathrm{IC}_{2 \mathrm{~d}}, \mathrm{~T}_{1}$ and D_{2}. When the heating resistors are not switched on, the comparator output is low. Pin 13 of $\mathrm{IC}_{2 \mathrm{~d}}$ is then also low and the gate functions as
an inverter, so that T_{1} is switched on and D_{2} lights. When the heating resistors are on, pin 13 of $\mathrm{IC}_{2 \mathrm{~d}}$ is high. Network $\mathrm{R}_{7}-\mathrm{C}_{2}$ then causes the gate to function as a rec-tangular-signal generator so that D_{2} flashes in sync with it.

In the prototype, a toroidal mains transformer from ILP $(2 \times 15 \mathrm{~V}, 2 \times 2.66 \mathrm{~A})$ was
used.
The power resistors were aluminium types provided with fixing holes.

The relay was a 24 V type from Siemens that can switch currents of 6 A or greater.

Design: R. Lucassen
[944031]

PC OVER-TEMPERATURE ALARM

Any PC, however old, is too valuable to break down as a result of inadequate cooling, usually caused by fan failure. The alarm causes a buzzer to sound when the temperature inside the PC reaches a predefined level. Obviously, this early warning should prompt you to switch off and take a very serious look at the cooling of the PC if you do not want it to be turned into a lot of silicon junk. You may have fitted too many insertion cards, or the fan has failed. In any case, the cost of the present circuit is always lower than that of a new motherboard or a power supply.

The temperature sensor used is an NTC (negative temperature coefficient) resistor, which is fitted at a suitable location in the air flow being maintained by the fan inside the power supply. The NTC is connected to a comparator whose output swings high if the resistance value of the NTC is smaller than the sum of preset P_{1} and fixed resistor R_{3}. The switching temperatures are $29^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}\left(84^{\circ} \mathrm{F}\right.$ or $120^{\circ} \mathrm{F}$) with the preset set to maximum or minimum resistance respectively.

The alarm is adjusted by first turning P_{1} to minimum resistance (wiper electrically towards R_{3}), heating the NTC to the desired alarm temperature (approx. $45^{\circ} \mathrm{C}$ or $113^{\circ} \mathrm{F}$ as a guide), and then adjusting P_{1} until the buzzer just
sounds.
The board is cut into two to enable two alarms to be built. The SMDs (surface mount devices) are fitted at the copper side of the board, and the conventional parts at the top side, as shown by the component overlays.

The circuit is powered via a 3.5 -inch drive connector, which can be connected either way to the board without affecting the operation or the temperature range of the alarm. The NTC may be mounted directly on to the board, or off the board at a suitable location in the PC. In the latter case, the device is connected to the board via two short wires.

Parts list

Resistors:

$R_{1}=$ NTC $100 \mathrm{k} \Omega$, Siemens series K164, $B=4600 \mathrm{~K}, \mathrm{R}_{2}$,
$\mathrm{R}_{4}=100 \mathrm{k} \Omega$, SMT
$\mathrm{R}_{3}=33 \mathrm{k} \Omega$, SMT
$\mathrm{R}_{5}=1 \mathrm{M} \Omega$, SMT
$\mathrm{R}_{6}=10 \mathrm{k} \Omega$, SMT
$P_{1}=50(47) \mathrm{k} \Omega$ preset
(Bourns)

Capacitors:

$\mathrm{C}_{1}=100 \mu \mathrm{~F}, 16 \mathrm{~V}$, radial
$\mathrm{C}_{2}=100 \mathrm{nF}$, SMT
Semiconductors:
$\mathrm{T}_{1}=\mathrm{BC} 847 \mathrm{~B}, \mathrm{SMT}$
Integrated circuits:
$\mathrm{IC}_{1}=\mathrm{TLC} 271 \mathrm{CD}, \mathrm{SMT}$

Miscellaneous:

$\mathrm{K}_{1}=4$-way SIL connector
(3.5" drive supply).

$\mathrm{Bz}_{1}=5 \mathrm{~V}$ DC buzzer
PCB Ref. 944076 (p. 110).

Design: L. Lemmens
[944076]

‘NEAR-PERFECT' INPUT STAGE

As far as audio enthusiasts lare concerned, striving for perfection is a never-ending quest. The present circuit should appeal to them.

The designer of amplifiers aims for the best possible symmetry, because that provides the optimum performance. Input stages often consist of two differential amplifiers that are each other's complement.

The d.c. setting of each differential amplifier is effected by a single-transistor current source, whose reference is a zener diode or LED. In itself, this is an excellent design, particularly when an LED is used, because this has a temperature coefficient virtually identical to that of the transistor. However, in practice, these values will hardly ever be exactly the same.

Since, moreover, the thermal coupling normally leaves something to be desired, it is clear that there will be variations in the d.c. setting in practice. Furthermore, as each differential amplifier has its own current source, these adverse effects are doubled. The inevitable result is that thetwo stages do not operate in perfect symmetry.

In the present circuit, the differential amplifiers have a common current source. Any variations in this have a symmetrical effect, producing as it were automatic compensation. This means that the d.c. operating point is far more stable and the offset drift caused by temperature variations is much smaller. The only factor that still causes troubles is that
there are no true complementary dual transistors on the market. Even in the MAT02 and MAT03, the h_{FE} s are too far apart, but better types are not yet available.

The 'near-perfect' input stage in its simplest form is shown in diagramA. The current source,
built from a JFET is enclosed by two current mirrors. The upper mirror fucntions as the current source for the lower differential amplifier and vice versa. The stability of the JFET source can be improved as shown in diagram B. Here the JFET is replaced by two tran-
sistors with a common emitter resistance. Two LEDs provide the setting of the base voltage; the current through these diodes is held constant by two JFET current sources. The current mirrors are built from monolithic dual transistors.

The collector-emitter volt-
age of the MAT03 must not exceed 36 V .

The current drain of circuit A is three times the current source setting. That of circuit B is the same plus the current drawn by the LEDs.

Design: T. Giesberts
[944065]
(A)

(B)

POWER SUPPLY FOR LCD MODULE

Building an LCD module into an equipment (for instance, a voltmeter into a power supply) is often not straightforward, because its supply can not be taken from the supply of the equipment (perhaps because floating voltages are to be measured).

This difficulty is resolve.11sy the present circuit, which derives a direct voltage from the existing d.c. supply and keeps it isolated with the aid of capacitors. This enables the LCD module to measure floating direct voltages.

The circuit is based on an astable multivibrator, $\mathrm{T}_{1}-\mathrm{T}_{2}$, in a traditional configuration. The alternative charging and discharging of capacitors C_{1} and C_{2} will cause T_{1} and T_{2} to be switched on and off in turn. This results in rectangular,

anti-phase pulses at the collectors of these transistors. These pulses are applied to $\mathrm{T}_{3}-\mathrm{T}_{4}$ and $\mathrm{T}_{5}-\mathrm{T}_{6}$ respectively

The signals at the emitters of these buffer stages are applied to a bridge rectifier via C_{3} and C_{4} respectively. The direct voltage taken from the bridge rectifier is smoothed by C_{5} and stabilized at 9 V by regulator IC_{1}.

The current that canbedrawn from the circuit is only a few mA , but this is sufficient for most LCD modules.

The input voltage must be in the range $12-15 \mathrm{~V}$. If it is lower ($8-12 \mathrm{~V}$), IC_{1} should be a Type 7806, assuming that the LCD module used can work from 6 V .

Design: R. Baltissen
[944039]

PRECISION ONE SHOT PULSE GENERATOR

TThis simple non-retriggerable pulse generator ('one-shot') is designed around an inexpensive digital watch crystal and two commonly available CMOS integrated circuits. Compared with the ubiquitous 74121/123 'external $R C$ ' mo-nostables and their derivates, this design is remarkably immune against supply voltage and ambient temperature variations. The output pulse width is defined with the aid of a 12 stage binary counter Type CD4040, at a precision equal to the period, T_{c}, of the crystal frequency.

NOR gate $\mathrm{IC}_{1 \mathrm{a}}$ is wired as a crystal oscillator, while $\mathrm{IC}_{1 \mathrm{~b}}$ and $\mathrm{IC}_{1 \mathrm{c}}$ form a bistable. Diodes at the outputs of the counter provide a logic AND function. The bistable is set by a low-to-high transition at the trigger input of the circuit, whereupon the counter is enabled. When the counter reaches the count at which all cathodes of the diodes connected to the Q outputs of the counter are at logic high, the bistable and

the counter itself are reset. Complementary one-shot pulses are available at the two outputs of the generator.

Up to 12 diodes may be connected to the counter outputs to program the divisor, n, that determines the width T_{0}, of the complementary output pulses:

$$
n=T_{0} / T_{\mathrm{c}} .
$$

A crystal frequency of 32.768 kHz will be one of the most cost effective, and results in a pulse width resolution of $30.5 \mu \mathrm{~s}$ and a maximum pulse width of 124.9 ms . Alternatively, crystals of higher frequencies up to 10 MHz may be
used to increase the pulse width resolution. The generator works at a supply voltage range from 5 V to 15 V at a current consumption of a few milliamps, depending mostly on the quartz crystal frequency.

Design: M.S. Nagaraj
[944022]

TWO-SPEAKER AMPLIFIER

TThe design of this amplifier is based on the assumption that, since the collector current of a transistor is, roughly, the same as the emitter current, the transistor can drive two loudspeakers.

In the diagram, T_{1} is a simple voltage amplifier, followed by emitter follower T_{2} and class A output amplifier T_{3}. Negative feedback is provided by $\mathrm{R}_{1}-\mathrm{R}_{2}-\mathrm{P}_{1}$. The amplification is about unity which can be altered slightly with P_{1}.

Noteworthy of the design is that the d.c. operating point of T_{3} is determined by the baseemitter voltage of T_{1}. This voltage and the potential across LS_{1} are virtually identical and the d.c. operating point of T_{3} is thus practically independent

of the supply voltage.
Inserting a second loudspeaker into the collector circuit of T_{3} doubles the power output of the amplifier. The output power is $2 \times 23 \mathrm{~mW}$ with a supply voltage of 5 V and $2 \times 40 \mathrm{~mW}$ with a supply voltage of 9 V . In the latter case, distortion amounts to 0.1%. The frequency range extends from about 15 Hz to 200 kHz .

Since the feedback loop reference is the positive supply line, the power supply needs to be decoupled well (whence the high value of C_{5}).

The current drain depends primarily on the setting of T_{3} and amounts to 100 mA at 5 V and 120 mA at 9 V .

Design: Amrit Bir Tiwana
[944049]

POWER SUPPLY DECOUPLING

In many advanced electronic circuits, speed and accuracy are of the utmost importance. It is sometimes overlooked that to achieve these, good decoupling of the power supply lines is an absolute must. 'Fast' ICs are particularly sensitive in this respect.

It can not be overemphasized that the connections of the decoupling elements to the supply pins of the IC must be as short as possible: every millimetre counts! Usually, the supply pins are located at opposite corners of the housing. As a rule of thumb, it may be taken that if the distance between these pins is doubled (owing to the layout of the PCB), the level of the resulting voltage variation is also doubled. That is significant.

Ideal, but expensive, are IC sockets with integral decoupling capacitor. It is, however, normally possible to achieve the same effect by soldering a small decoupling capacitor directly

across the supply pins. It may not look nice, but it is effective. A value of 100 nF per (TTL, HC or HCT) IC is sufficient. Nowadays, there are capacitors designed specifically for decoupling on the market: the Sibatit series from Siemens is an example.

In circuits where the frequency is higher than 50 MHz , the effect of the decoupling is magnified when a 10 nF capacitor is soldered in parallel with the 100 nF capacitor.

A practical difficulty often arises in a hybrid circuit, that
is, one with a digital section and an analogue section (e.g., an analogue-to-digital converter, ADC). Ideally, these sections should have separated supplies, but this is often not possible. If, therefore, only a single power supply is used, branch off a positive and a negative line for the analogue section immediately after the voltage regulator. In other words, never use combined supply lines in a hybrid circuit. As shown in the diagram, the effectiveness of the decoupling can be improved by inserting a resis-
tance or inductance in the positive supply line. An inductance screens the analogue section from the spurious signals arising in the digital section.

It is essential that the entire analogue section is decoupled properly. This may, however, cause the inductance and capacitance to form a resonant circuit. This may be prevented by using a much larger capacitor and damping the circuit with a small series resistance. In practice, an $L C$ filter consisting of a $100 \mu \mathrm{H}$ inductor and a $10 \mu \mathrm{~F}$ capacitor works very satisfactorily. As shown in the diagram, the $10 \mu \mathrm{~F}$ capacitor is connected in parallel with the 100 nF capacitor (which remains essential!). A miniature choke (same size as a resistor) is perfect, because its internal resistance of $1-2 \Omega$ is just right for damping the circuit.

Design: K.M. Walraven
[944082]

SOLAR CELL-POWERED NiCd CHARGER

Abattery of solar cells can charge a NiCd battery with better than 80% efficiency, provided the solar battery voltage exceeds the fully charged NiCd output by about 0.6 V . For that case, a simple blocking diode provides the charging path between the two batteries. Though inflexible, such dedicated systems are simple and effective.

The simple approach, however, is impractical if adjustment of the charging voltage is impossible or inconvenient. Badly mismatched voltages ($\ll 0.6 \mathrm{~V}$) cause a low level of power transfer and consequent slow charging of the NiCd battery.

Adding a step-down switching regulator enables a given bank of solar cells to charge batteries of various terminal voltages at optimum rates and with efficiencies approaching that of the regulator itself.

The IC used for this pur-

pose, the MAX639from Maxim, operates in an unorthodox fashion, regulating the charging current such that the solar battery's voltage remains near the level required for peak power transfer.

The device therefore regulates its input voltage, rather than its output voltage as is customary. Potential divider
$\mathrm{R}_{2}-\mathrm{R}_{3}$ disables the internal regulating loop by holding V_{FB} low. Voltage divider $\mathrm{R}_{1}-\left(\mathrm{R}_{2}+\mathrm{R}_{3}\right)$ enables the low battery input (LBI) to sense a decrease in the solarbattery voltage. Such decreases, which represent a move away from the solar cell's peak output power, cause the low battery output (LBO) to pull the SHDN input low and disable the
chip. The LBI input then senses a rising input voltage, LBO goes high, and the resulting pulsating control maintains maximum power transfer to the NiCd battery. Current limiting in the IC limits the output current to 200 mA .

With the IC enabled, the regulator passes current from pin6topin 5 through an internal switch resistance of less than 1Ω. Combined with the regulator's low quiescent current (typically $10 \mu \mathrm{~A}$) and high efficiency (typically 85\%), this performance allows the circuit to deliver as much as four times the power of a single-diode circuit.

Note that the circuit should be used only to charge NiCd cells that can be charged continuously with a current of 200 mA , that is, have a capacity greater than 1700 mAh .

Maxim Application
[944089]

1-4 MBYTE SIMM ADAPTOR

Memory upgrades for PCs can present unexpected problems. For instance, if you are upgrading with 4 -Mbyte SIMMs (single-in-line memory module), the existing 1-Mbyte SIMM will be useless in most cases. A waste of money? Not if you build the circuit shown here, which enables four 1-Mbyte SIMM modules with eight or nine DRAM chips, to act as a single 4-MByte SIMM, and occupy only one memory expansion socket. The circuit is not suitable for use with three-chip SIMMs.

The memory of a 486-based PC has a width of 32 bits, while a SIMM has a 'width' of only 8 bits (well, 9 , if you include the parity bit). Consequently, memory modules can only be added four at a time. If 1-MByte SIMMs are used, that allows memories of $4,8,12$ or 16 MByte to be created, or $16,32,48$ or 64 MByte if you can afford to use 4-MByte modules. In some cases, 4-MByte and 1-MByte modules may be 'mixed', for instance, to give 20 MByte, consisting of four 4-MByte and four l-MByte SIMMs. Thus, upgrading from $4-$ MByte to 16 MByte means that you have to exchange the four 1-MByte SIMMs with four 4-Mbyte modules. If you are lucky, the motherboard still has four sockets to insert your 1-MByte SIMMs, so that you can extend the memory up to 20 MByte. In other cases, for instance, when it is desired to upgrade a 12-MByte memory to 20 MByte, you may be left with eight 1-MByte modules for which there is no room on the motherboard.

Before deciding to build the present circuit, be sure to cast a look inside your PC to make sure that it has sufficient room in the memory expansion area for the circuit board and the SIMMs fitted on it. Particularly in mini-tower cases space may be tight, and the circuit can not be used.

Apart from the memory ICs used, the difference between a 1-MByte and a 4-MByte SIMM is that the latter has one more address line, A10. This line is used in conjunction with the two refresh signals RAS (row

address select) and CAS (column address select) to select between the four 1 -Mbyte SIMMs in the circuit. The level of A 10 is latched in $\mathrm{IC}_{5 \mathrm{a}}$ (row address line A10). Together with column address line A10. it is decoded into a 1 -of- 4 selection signal for the respective SIMM module. This happens when the CAS signal is actuated. The contents of the SIMMs are refreshed by the briefly addressing all rows. Hence, all RAS connections on the SIMMs are interconnected.

The adaptor board should be fitted with standard SIMM sockets, which can not be mounted the wrong way around because they are polarized. The SIMM module can also be

fitted with the correct polarization only.

If you use more than one adaptor board, these can not normally be fitted alongside each other in adjacent slots. That is why the PCB is doublesided, allowing you to mount SIMM sockets at both sides, and fit adaptor boards next to each other. The ICs are, of course, fitted at one side only.

Parts list

Capacitors:
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}=100 \mathrm{nF}$

Integated circuits:

$\mathrm{IC}_{1}-\mathrm{IC}_{4}=$ SIMM socket. 30-way.
$\mathrm{IC}_{5}=74 \mathrm{HCT} 74$
$\mathrm{IC}_{6}=74 \mathrm{HCT} 139$
$\mathrm{IC}_{7}=74 \mathrm{HCT} 04$

FREQUENCY INDICATOR

TThe circuit gives a coarse indication of the frequency by a tricolour LED, the Type LF-59EBGBW from Kingbright. When the frequency of the input signal is 50 Hz , the two blue LEDs light; when the frequency rises to 500 Hz , the red LED also lights, and when the frequency rises above 5 kHz , the green LED lights, too. The resulting hue is thus indicative of the frequency of the input signal.

The setting of P_{1} determines the threshold of operation of the red LED. Since the green and blue diodes need a higher threshold voltage, the offset voltage of the red LED is increased by the static voltage amplification of the opamp.

Networks in the feedback loops of the opamps provide cut-off points of $50 \mathrm{~Hz}\left(\mathrm{IC}_{1 \mathrm{c}}\right)$; $500 \mathrm{~Hz}\left(\mathrm{IC}_{\mathrm{lb}}\right)$ and 5 kHz $\left(\mathrm{IC}_{\mathrm{la}}\right)$. These networks ensure frequency-independent brightness of the LEDs.

The stability of the opamps is enhanced by networks $\mathrm{R}_{4}-\mathrm{C}_{2}, \quad \mathrm{R}_{7}-\mathrm{C}_{5}$ and $\mathrm{R}_{11}-\mathrm{C}_{7}$.

Since the brightness of blue LEDs is appreciable less than that of red or green

types, two of them are fitted in the LF-59EBGBW. The second blue diode has its own buffer opamp, $\mathrm{IC}_{1 \mathrm{~d}}$. In spite of the fact that there are two blue diodes, these also draw twice as high a current as the red and green to give the same brightness. It is for that reason that the value of resistors R_{13} and R_{14} is lower than that of R_{6} and R_{9}.

The level of the input signal should be $1 \mathrm{~V}_{\mathrm{pp}}$.

When all LEDs light, the
Design: H. Bonekamp circuit draws a current of
[944088]

CRYSTAL OSCILLATOR

Asingle non-buffered HC inverter can be made to function as a stable oscillator. The crystal may be either afundamental type (low frequencies) or an overtone model (high frequencies).

Circuit 1 in the diagram shows an oscillator that operates on the third overtone of the crystal. Note that oscillation is possible even on the seventh or ninth harmonic. The ' U ' in the type number of the IC indicates an unbuffered output; this type of IC is more suitable for use as an oscillator than the HC model. The crystal has a capacitance, C_{XL}, of 30 pF . This value is important, because the capacitance and inductance L_{1} form a resonant circuit that is tuned to a frequency just below the wanted crystal frequency. This arrangement prevents the crystal oscillating spontaneously on its fundamental frequency. The value of resistor R_{1} is specified as $3.3 \mathrm{M} \Omega$, but may lie anywhere between $1 \mathrm{M} \Omega$ and $10 \mathrm{M} \Omega$.

Circuit 1 may be used with power supplies of 5 V at frequencies up to 40 MHz . The HCU04 chip is not suitable for operation above 40 MHz .

A crystal that oscillates at its fundamental frequency
(which may be up to 17 MHz) does not need a tuned circuit. Both circuit 2 and 3 may be used. The difference between the two is the use of either a resistor or a capacitor at the output. For frequencies up to 2 MHz , circuit 3 is more suitable; for higher frequencies (up to 17 MHz), circuit 2 is better.

Calculating the component values for Circuit 1 is simplified by the BASIC program in Fig. 2. This program computes the values of $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} from the input frequency and capacitance, C_{XL}, of the crystal. Normally, the computed alue of C_{1} is about half that of C_{2} and C_{3}.

(3)

944013-11

Noote that the oscillators
Design: L. Pijpers shown here are not suitable for
[944013] use with watch crystals that operate at about 32 kHz .

```
10 DIM I$(8): PI = 3.141593
20 CLS : PRINT "Calculating crystal oscillators."
30 LOCATE 3, 1: PRINT "An inverter type 74HCU04 (unbuffered) is used."
40 LOCATE 6, 1: INPUT "Crystal frequency in MHz "; F: IF F = 0 THEN 20
50 LOCATE 9, 1: INPUT "Capacitance C(1) of the crystal (Return=30pF) "; CL
60 LOCATE 12, 1: PRINT "R1 = 3.3 MOhm"
70 IF CL = 30 OR CL = 0 THEN C1 = 27: C2 = 56: GOTO 150
80 IF CL = 8 THEN C1 =6.8: C2 = 15: GOTO 150
90 IF CL = 12 THEN C1 = 10: C2 = 22: GOTO 150
100 IF CL = 15 THEN C1 = 12: C2 = 27: GOTO 150
110 IF CL = 20 THEN C1 = 18: C2 = 33: GOTO 150
120 IF CL = 50 THEN C1 = 39: C2 = 82: GOTO 150
130 IF CL = 100 THEN C1 = 82: C2 = 180: GOTO 150
140 C1 =. 45*CL: C2 = 2 * C1
150 PRINT "C1 ="; C1; " pF": PRINT "C2 ="; C2; " pF": PRINT "C3 ="; C2; " pF"
160 IF F < 17 THEN PRINT "No need for inductor.": GOTO 180
170 T = 1111 / F: K = T * T / (4 * PI * PI): L = K / C1: PRINT "L1 ="; L; " uH"
180 LOCATE 20, 1: PRINT "More calculations (y/n) "; : INPUT I$
190 IF I$ = "N" OR IS = "n" THEN END ELSE 20
```

944013-14

NEAR-IDEAL SUPPLY

Anideal power supply maintains its e.m.f., irrespective of whether it is providing current or sinking it. The present supply approaches this ideal. Its output voltage may be set between 2 V and 16 V , while the output current may vary between -1 A and +1 A .

The supply is based on IC_{1}, a Type L165V operational amplifier from SGS Thomson. A stable reference voltage is provided by zener diode D_{1}. This voltage can be varied between 0 V and 2.5 V by P_{1}.

The opamp magnifies its input voltage $\times 6.45$. In theory, its output voltage should, there-

fore, be 0-16.1 V. In practice, this is not wholly realizable and the output voltage is limited to $2-16 \mathrm{~V}$.

Series network $\mathrm{R}_{4}-\mathrm{C}_{2}$ prevents the opamp oscillating spontaneously.

The opamp has various internal protection circuits, so that, provided it is mounted on a suitable heat sink of about $4.5 \mathrm{KW}^{-1}$, nothing serious can go wrong.

Design: H. Bonekamp
[944078]

CENTRONICS INPUT/OUTPUT INTERFACE

The Centronics interface available on almost any IBM PC or compatible lends itself to simple input/output functions provided the drive capacity of the output lines is considerably boosted. In principle, the five inputs on the Centronics interface can be used straight away because they are TTLcompatible. However, for added security, a resistor and a voltage limiting zener diode may be hooked up as shown here. It should be noted that this works on modern PCs only,i.e., those having CMOS inputs. If you have a very old computer, it is likely to have standard TTL inputs. If so, consider donating it to your nearest science museum, or reduce the value of the protection resistors to a few hundred ohms (or omit themaltogether). A simple test to see if this is necessary is to measure the voltage drop across the $2.2-\mathrm{k} \Omega$ resistors when applying a ' 0 '. If the voltage drop is greater than 0.8 V , you have an 'old' computer, and changing the resistors to low-value types is in order, as well as driving the inputs from low-impedance sources.

The inputs are pin 11 (BUSY: bit 7). pin 10 (ACK; bit 6), pin 12 (PAPER EMPTY; bit 5), pin 13 (SELECT; bit 4), and pin 15 (not connected; bit 3). The pin numbers refer to the 25 -way sub-D connector on the back of the PC. The corresponding pin numbers on the 36 -way Centronics connector may be found in the circuit diagram. The logic state of the above bits may
be interrogated by reading the LPT base address +1 . In this word, bits 0,1 and 2 are don't care', that is, they do not contain relevant information.

The eight (data) outputs on D25 connector pins 2 through 9 are normally capably of sourcing 2.6 mA or sinking 24 mA . The outputs can be controlled by writing the corresponding eight databits to the base address of the LPT port. In addition to the eight databits, four extra outputs can beaddressed via base address +2 : pin 1 (STROBE; bit 0), pin 14 (AUTO FEED; bit 1, pin 16 (INIT; bit 2), and pin 17 (SELECT IN; bit 3). Originally these are control line outputs with an internal pullup of $4.7 \mathrm{k} \Omega$, and a current sink capacity of 7 mA . Note that the four higher-order bits (4 through 7) must be kept at ' 0 ' to prevent an interrupt with unexpected results.

Darlington transistors type BD679 are used to boost the current sink and source capacity of the twelve programmable outputs. The BD679 is capable of switching up to 4 A at a collector voltage of 80 V . In practice, it is recommended to stay below 2 A or so, and fit the transistors with heatsinks if considerable dissipation is expected. Remember that the collector of a darlington can never pull the load lower than 0.6 V , or even 0.8 V at a current between 1 A and 2 A .

The auxiliary voltage used for the BC547 driver transistors is not critical, and may lie between 5 and 15 V . At 5 V , the

total current consumption is about 50 mA .

The loads to be controlled by the Centronics port are connected between the collectors of the BD679s and the positive line of the external power supply (max. 80 V). If inductive loads (such as relay coils) are connected, do not forget to shunt these with (reverse connected) free-wheeling diodes. This is necessary to protect the darlingtons against reverse-emf voltage surges.

As regards programming. you may start in the simplest possible way in BASIC, for instance, with the following program which reads your four inputs, and presents the corresponding value in hexadecimal on the screen:

REM read Centronics inputs. display in hex
LPT1address $=\& H 378$

WHILE 1
cent $=\operatorname{INP}($ LPTladdress +1$)$ PRINT hex\$(cent) WEND

Or, equally simple, control the outputs:

REM square waves on D0-D7, D0 has highest frequency LPTaddress $=\& H 378$ count=0
WHILE=1
OUT LPTladdress, count
count=count+1
IF count >255 then count $=0$ WEND

Parts list

Resistors:

$\mathrm{R}_{1}, \mathrm{R}_{3}, \mathrm{R}_{5}, \mathrm{R}_{7}, \mathrm{R}_{9}, \mathrm{R}_{11}, \mathrm{R}_{13}, \mathrm{R}_{15}$, $\mathrm{R}_{17}, \mathrm{R}_{19}, \mathrm{R}_{21}, \mathrm{R}_{23}=1 \mathrm{k} \Omega$ $\mathrm{R}_{2}, \mathrm{R}_{4}, \mathrm{R}_{6}, \mathrm{R}_{8}, \mathrm{R}_{10}, \mathrm{R}_{12}, \mathrm{R}_{14}, \mathrm{R}_{16}$.
$\mathrm{R}_{18}, \mathrm{R}_{20}, \mathrm{R}_{22}, \mathrm{R}_{24}=10 \mathrm{k} \Omega$
$\mathrm{R}_{25}-\mathrm{R}_{27}, \mathrm{R}_{29}=2.2 \mathrm{k} \Omega$
$\mathrm{R}_{28}=820 \Omega$

Capacitor:

$\mathrm{C}_{1}=10 \mu \mathrm{~F}, 16 \mathrm{~V}$, radial

Semiconductors:

$\mathrm{D}_{1}-\mathrm{D}_{5}=5.1 \mathrm{~V}, 400 \mathrm{~mW}$
$\mathrm{T}_{1}, \mathrm{~T}_{3}, \mathrm{~T}_{5}, \mathrm{~T}_{7}, \mathrm{~T}_{9}, \mathrm{~T}_{11}, \mathrm{~T}_{13}, \mathrm{~T}_{15}$
$\mathrm{T}_{17}, \mathrm{~T}_{19}, \mathrm{~T}_{21}, \mathrm{~T}_{23}=\mathrm{BC} 547 \mathrm{~B}$
$\mathrm{T}_{2}, \mathrm{~T}_{4}, \mathrm{~T}_{6}, \mathrm{~T}_{8}, \mathrm{~T}_{10}, \mathrm{~T}_{12}, \mathrm{~T}_{14}, \mathrm{~T}_{15}$, $\mathrm{T}_{18}, \mathrm{~T}_{20}, \mathrm{~T}_{22}, \mathrm{~T}_{24}=$ BD679

Miscellaneous:

$\mathrm{K}_{1}=$ Centronics socket, PCB

mount, angled pins. $\mathrm{K}_{2}=3$-way PCB terminal block, pitch 5 mm .
18 PCB solder pins or 9 PCB

PCB Ref. 944067 (p. 110)
Design: K.M. Walraven)
[944067] terminal blocks, 2-way, pitch 5 mm .

NON-VOLATILE CONTROLLER CHIP

TWhe DS1210 controller chip from Dallas Semiconductor, in combination with a CMOS RAM and a lithium battery, forms a memory module that will retain its data for many years.

The controller performs several functions. It provides voltage to the RAM IC from V_{cc} or from the battery, depending on the voltage levels. The loss across the internal electronic changeover switch is smaller than 0.3 V .

If the supply voltage fails, the controller prevents any furtherwriting to the memory. The battery is then used as a temporary power supply. To make the circuit absolutely immune to power failure, a second battery may be used, which takes over when the main battery goes flat.

There is a facility to indicate to the user (via the software) the status of the main battery. If that voltage has dropped below 2 V , the controller blocks all read and write operations to the memory from the second read/write cycle onwards. In other words, if it proves im-
possible to change the content of the memory, the main battery is flat.

The diagram shows how the circuit can be used in an existing apparatus. Note that IC_{2} is the socket into which the memory to be protected is to be inserted.

Dallas Semiconductor
Application
[944107]

944107-11

PEAK A.F. VOLTAGE METER

The meter described can measure peak voltages from a few millivolts to several volts at frequencies up to 200 kHz .

The peak detector is formed by a comparator IC with opencollector output-see Fig. 1. Capacitor C will be charged to a certain potential. When the level of the incoming signal is below this voltage, the output transistor begins to conduct, whereupon the voltage across C will rise rapidly to the level of the negative supply line. When U_{C} is equal to the input voltage, charging will cease. In this manner, U_{C} will always correspond to the most negative level of the instantaneous input signal. As C is discharged gradually via R, U_{C} will follow any variations in the input signal. Of course, the circuit in Fig. 1 can measure only half the peak-to-peak voltage. Adding an identical circuit for the positive halves enables the whole signal to be measured.

In Fig. 2, IC_{1} is the positivepeak detector and IC_{2} the neg-ative-peak detector, whose 'memories' are C_{1} and C_{2} respectively. Low-pass filters $\mathrm{R}_{3}-\mathrm{C}_{3}$ and $\mathrm{R}_{6}-\mathrm{C}_{4}$ remove any unwanted peaks. The positive value is inverted by IC_{3} and summed with the negative half in IC_{4}, where the signal is inverted again.

The top end of the frequency range is limited only by the speed of IC_{1} and IC_{2}; in the prototype, the upper frequency was about 200 kHz , even with rectangular and triangular sig-
nals.
The lowerend of the frequency range is determined by the values of C_{1} and C_{2}. With the values as shown, the lower limit was about 500 Hz . If measurements down to 20 Hz are desired, the value of these capacitors must be increased to $220 \mu \mathrm{~F}$-but this will be at the cost of the reaction time. Following a rise in the input signal of 1 V will then take 2-3 seconds.

Note also that capacitors C_{1} and C_{2} are bipolar types. Only if there is certainty that the input signal will always be free of direct voltage can normal electrolytic types be used.

The supply voltage may be as low as $\pm 6 \mathrm{~V}$, but if input signals exceeding $4 \mathrm{~V}_{\mathrm{pp}}$ are to be measured, or if the signal has an appreciable d.c. offset, it is advisable to use a higher supply voltage. Although not strictly necessary, it is also advisable to stabilize the supply lines. Since the current drain does not exceed 20 mA , two 9 V batteries will suffice.

To calibrate the meter, shortcircuit the input to ground, connect a millivoltmeter across C_{1} and adjust P_{1} for a reading of 0 V . Next, do the same with the voltmeter across C_{2} and adjust P_{2}. This needs to be done carefully, because it is a matter of just a few millivolts. Then, adjust P_{3} and P_{4} for a voltage of 0 V at pin 6 of IC_{3} and IC_{4} respectively. Remove the shortcircuit from the input.

Design: V. Mitrovic
[944056]

1

COMPRESSOR FOR GUITARS

Many guitarists still swear by the good old valve amplifier. It is fact that valve amplifiers produce a sound different from that of a solid-state amplifier. This is caused mainly by the fact that in valve amplifiers the transition from the linear to the non-linear part of theoperating range is more gradual than in solid-state amplifiers, in which the transition
is sudden. In otherwords, in valve amplifiers, the distortion increases with increased drive levels and may thus be seen as a sort of dynamic compression. This phenomenon does not occur in solid-state devices, where the transition is quite sudden: the resulting sound is unpleasant.

Before the arrival of voltagecontrolled IC amplifiers, dy-
namic compressors were often designed with diodes as the control element. Since a certain degree of distortion is desirable, diodes are very suitable for use in a guitar compressor with 'valve sound'.

In the diagram, input amplifier IC_{1} drives two pairs of diodes via $\mathrm{R}_{5}: \mathrm{D}_{1}-\mathrm{D}_{3}$ for the positive half periods and $\mathrm{D}_{2}-\mathrm{D}_{4}$ for the negative half periods. Capacitors
C_{3} and C_{4} short-circuit any a.c. signals: they hold the level of the control voltage constant and thus determine the speed of the control. The diodes obtain a bias voltage (which is independent of the drive level) from the output of $\mathrm{IC}_{2 \mathrm{a}}$ via D_{5} and D_{6}.

When $S_{2 a}$ is open, the dynamic compression is disabled.

The stage based on $\mathrm{IC}_{2 \mathrm{~b}}$ compensates the output level at
various positions of the switches and potentiometers (the two halves of which turn in opposite directions). It is thus possible to take the output signal directly from the output of $\mathrm{IC}_{2 \mathrm{a}}$.

The onset of compression is set with P_{1}. This control should
be set, by trial and error, to a position where the 'plucking peaks' are just beginning to distort.

The amplification of IC_{1} is altered with S_{1} to enable instruments with a single as well as a double coil to be used.

Although the prototype performed to the taste of the designer, individual modifications are, of course, possible. Note, however, that the BAT85 diodes must not be replaced by common-or-garden diodes like the 1N4148, which produce
a far less pronounced 'valve effect'. This is because the distortion sets in more abruptly and at a higher level.

Design: W. Teder
[944048]

ELEKTOR ELECTRONICS JULY/AUGUST 1994

SENSOR INTERFACE

Connecting a sensor toanA-D (analogue-to-digital) converter is not always as straightforward as may be expected. Often, an interface is required to amplify the signal and to provide some offset control. The present circuit was designed on that basis.

Most A-D converters have a reference input; the voltage applied to this is fed internally to a potential divider. This means that the converter does not work with absolute values, but with the ratio of input voltage to reference potential.

If, for instance, a temperature sensor is required, it is best to base this on a resistor with positive temperature coefficient (PTC) connected in a bridge circuit. If the supply to the bridge is taken from the same source as the reference voltage, the reading of the A-D converter will be immune to small variations in the level of the reference voltage. In other

words, the reference voltage need not be regulated.

If a sensor sensitivity of about $0.75 \%{ }^{\circ} \mathrm{C}^{-1}$ is sufficient, abridge as described earlier will be adequate. If greater precision is required, the bridge voltage must be amplified, which can bearranged with any opamp that can operate from +5 V . In the
prototype, a modern, low-dissipation typewas used as shown in the diagram. This model, which has very low noise and very small offset, can be driven to 0.2 V with small loads (1 mA) from a negative as well as a positive supply.

The A-D converter used an unregulated +5 V supply. Diodes
D_{1} and D_{2} make sure that the reference voltage remains close to the supply voltage.

One branch of the bridge contains preset potentiometer P_{1}, while the other contains the PTC resistor, R_{3}. Resistor R_{2} does not only form part of the bridge, but also serves to make the temperature-to-voltage characteristic of R_{3} linear. With the type of PTC resistor in the diagram, R_{2} needs to be $4.1 \mathrm{k} \Omega$ to obtain a linear curve around $20^{\circ} \mathrm{C}$. If the KTY81-1 is used, the value of R_{2} should be $2 \mathrm{k} \Omega$. Capacitor C_{2} suppresses any noise.

The amplification of the opamp is determined by feedback resistor R_{6}, whose value is up to individual requirements (within reason). With values as specified, the amplification is about $\times 14$.

The circuit draws a current of only a few mA.

Design: K. Walraven
[944036]

LEAD-ACID BATTERY CHARGER

Apart from use as a standard charger, the present unit may also be used for continuous trickle charging to keep a 12 V lead-acid battery in top condition.

The charger is based on a precision voltage source, which has been given a negative temperature coefficient by a temperature sensor. This means that the charging voltage is reduced when the ambient or battery temperature rises.

According to the electrical firm of Bosch, a temperature coefficient of $-8 \mathrm{mV}^{\circ} \mathrm{C}^{-1}$ is the most beneficial for charging a leadacid battery. In the present circuit, this is achieved by using a common-or-garden transistor as sensor.

The operation of IC_{1} depends on the property that three-pin regulators tend to keep the voltage difference between their input and output at a constant 1.25 V . This means that the current through R_{1} is constant. Normally, this characteristic
is made use of to set the desired output voltage by means of a fixed resistor between the adj(ust) pin and ground. In the present circuit, this resistor is made variable by inserting T_{1} in the link. To keep the circuit stable, potential divider, $\mathrm{R}_{3}-\mathrm{R}_{4}-\mathrm{P}_{1}$ controls the base voltage of T_{1}.

Since the base-emitterjunction of T_{1}, in common with every other semiconductor, has a temperature coefficient of about $-2 \mathrm{mV}^{\circ} \mathrm{C}^{-1}$, the output also has a negative temperature coefficient. This is, however, four times as large because the baseemitter variation of T_{1} is multiplied by the scaling factor of $\mathrm{R}_{3}-\mathrm{R}_{4}-\mathrm{P}_{1}$.

Diode D_{1} shows whether the power is available.

Transistor T_{2} prevents the battery being discharged via R_{1} in the absence of a supply voltage (T_{2} is switched off).

The wanted output voltage is set between 13.5 V and 14.5 V with P_{1}. This rangemay be shifted to some extent by altering the

value of R_{4}.
To prevent T_{1} being warmed by its own base current, it is advisable to fit the transistor on a small sheet of metal.

If T_{1} is intended to monitor the ambient temperature only, it suffices to mount it just in the open air. If it is intended to com-
pensate a rise in battery temperature, it must be mounted as close to the battery as possible.

Linear Technology Application
[944033]

Soldering is an unhealthy activity: when the tin melts it releases harmful vapours. It is, therefore, advisable, to install a small 12 V d.c. extractor fan on or near the workbench. The present circuit is intended to control the fan.

The rotational speed of the fan is adjusted to a few hundred r.p.m. with P_{1}. Pressing push-button switch S_{1} during soldering raises that speed to maximum to give added extraction of the vapours. The length of time during which the fan rotates at maximum speed depends on the time constant $\mathrm{R}_{2}-\mathrm{C}_{3}$. The fan will also rotate at maximum speed for a time $\mathrm{R}_{2}-\mathrm{C}_{3}$ when it is switched on. After that, its speed drops to a few hundred r.p.m.

The circuit is a typical application of an LM317. The output voltage is determined by P_{1} when T_{1} conducts and by potential divider $\mathrm{R}_{3} /\left(\mathrm{R}_{4}-\mathrm{P}_{1}-\mathrm{R}_{5}\right)$

Extracting the separate lefthand and right-hand signals from a multiplexed stereo signal is a complex process. It requires an auxiliary carrier of exactly the same frequency (38 kHz) and phase as that in the transmitter. A voltage-controlled oscillator (VCO) by itself is not good enough. It needs to be synchronized with the 19 kHz pilot tone in the multiplexed (MPX) signal. Furthermore, a mono/stereo converter controlled by the pilot tone, preferably with an optical indicator, is required.

Fortunately, ready-made IC stereo decoders have been available for some time. Nevertheless, these decoders normally require quite a few external components and, moreover, their calibration is often not simple.

Moderndecoder ICs, however, are simplicity itself. As the diagram shows, one of these,
when the transistor is off. With voltage ranges from about 4 V values as specified, the output to around 11 V .

STEREO DECODER

Toshiba's TA7343P, needs only a few external components.

The MPX signal is applied to pin 1 , whereupon the separate left-hand and right-hand signals are available at pins 8 and 9 respectively. When the in-
ternal pilot-tone detector registers the presence of the 19 kHz signal, D_{1} is driven into conduction and the internal 'stereo switch' is actuated. When there is no pilot tone, D_{1} remains off and the circuit remains in the

When S_{1} is pressed, the potential across C_{3} drops to 0 , whereupon T_{1} stops conducting. After a little while, the voltage across C_{3} has risen sufficiently to cause T_{1} to begin to conduct again. It then forms a resistance in parallel with R_{4} and the upper half of P_{1}. As T_{1} begins to conduct harder and harder, its parallel resistance becomes smaller and smaller until it is a short-circuit. The output voltage then depends on the ratio between R_{3} and the lower half of P_{1} plus R_{5}. The potentiometer is thus used to set the minimum output voltage. With values as specified, the minimum output voltage can be set between 4 V and 8 V . This minimum voltage is used to drive the fan at low speed. If the fan stops, adjust P_{1} to give a slightly higher output voltage. Design: A. Rietjens
[944090]
mono mode
Manual switching to the mono mode is possible with S_{1}. When this switch is closed (pin 7 to +8 V), both outputs carry the L+R signal.

The VCO is adjusted with P_{1} and does not require any instruments or expertise: simply tune the receiver to a stereo transmitter and turn P_{1} till D_{1} lights.

In spite of its simplicity of application, the parameters of the TA7343P are very good. Harmonic distortion is 0.08\% (typical): auxiliary carrier suppression is 70 dB ; and the sig-nal-to-noise ratio is 74 dB . These figures were measured with a supply voltage of 8 V .

The supply voltage can range from 3.5 V to 12 V . The current drain (excluding that through the LED) is $11-18 \mathrm{~mA}$, depending on the supply voltage.

Toshiba Application
[944050]

DISCRETE POWER SUPPLY

In these days of integrated voltage regulators, many constructors will enjoy this oldfashioned power supply built from discrete components. It provides an accurately presettable output voltage of 13.8 V at a peak current of 10 A and is short-circuit-proof.

Ignoring the stage round T_{1} for a moment, the design is traditional. Transistor T_{2}, in conjunction with potential divider $\mathrm{R}_{6}-\mathrm{R}_{7}-\mathrm{P}_{1}$ and zener diode D_{7}, forms a variable voltage source that is followed by three emitter followers. The last of these, T_{5} and T_{6}, consists of two par-allel-connected golden oldies Type 2N3055, which together provide the output current.

What is new is the manner of current limiting provided by T_{1}. The base voltage of this transistor is derived from the output voltage via R_{4}. If the output voltage drops below 5 V , for instance through overload, T_{1} will switch off. Transistor T_{2} is then driven hard via D_{6}, which results in $\mathrm{T}_{3}-\mathrm{T}_{6}$ only justconducting, so that the output voltage and current become negligibly small.

To get out of this situation, a 50 Hz signal is applied to the base of T_{1} via D_{3}. The level of this signal is limited to 1.3 V by D_{4} and D_{5}. This causes T_{1} to switch on periodically, which will reenable the circuit if the overload or short-circuit at the out-

put has been removed. This means, of course, that even during a short-circuit fairly large current pulses flow through the load, but these are so short (about 2 ms) that they can not cause any harm.

Instead of the usual emitter resistors, the connecting wires to the emitters of T_{5} and T_{6} function as potential divider. They must, therefore, both be about 10 cm long and have a diame-
ter of 0.7 mm .
Because of the fold-back current limiting, the heatsink for T_{5} and T_{6} need not be large: a 10 cm long Type SKO1 ($2.5 \mathrm{~K} \mathrm{~W}^{-1}$) will suffice.

Choose transistors with a T03 case for T_{5} and T_{6} and mount with the aid of insulating washers.

Preset P_{1} should preferably be a multiturn type.

Buffer capacitor C_{1} may con-
sist of three parallel-connected $4700 \mu \mathrm{~F}$ electrolytic capacitors: this is at least as good as a 15 mF type and much cheaper.

Diodes D_{1} and D_{2} must be 10 A types: it may be cheaper to use two diodes from a 10 A bridge rectifier.

Finally, make sure that the large currents can not enter the control circuits.

Design: Altai
[944034]

THREE-PHASE INDICATOR

When athree-phase mo-tor is being installed, it is essential to know the sequence of phases R, Y and B, since an error may have disastrous consequences. The letters R, Y and B are abbreviations of 'red', 'yellow' and 'blue', that is, the colours used to identify the three phases. Also, red-yellowblue is the sequence universally adopted to denote that the e.m.f. in the yellow phase lags that in the red phase by
120° (a third of a cycle), and the e.m.f. in the blue phase lags that in the yellow phase also by 120°.

In the present circuit the phases are indicated by three neon lights mounted in a circle. If this 'running light' moves clockwise, the phase sequence is correct; if it moves anti-clockwise, the sequence is incorrect.

Each neon lamp is in series with a phase via a resistor. The three phases are simply inter-
connected after being rectified by $D_{1}-D_{3}$. Their junction is connected on and off to N(eutral) by T_{3}. The remainder of the circuit arranges for the switching to occur in a manner by which the neon lamps are shortcircuited to neutral in the correct sequence.

Transistor T_{3} is controlled by a monostable formed by T_{1} and T_{2}, which provides a switching signal at a frequency of about 48 MHz . It works as follows.

After the phases have been rectified by $D_{1}-D_{4}$, capacitor C_{2} is charged via R_{9}. As soon as the potential across C_{2}, and thus that at the emitter of T_{2}, rises above the level set by $\mathrm{R}_{8}-\mathrm{R}_{15}-\mathrm{P}_{1}$, T_{2} begins to conduct. This causes C_{2} to be discharged via $\mathrm{T}_{2}, \mathrm{R}_{11}$ and the base-emitter junction of T_{3}. Transistor T_{3} is then on briefly so that one of the neon lamps, depending on which phase is active at that instant, is short-circuited to neutral
and lights. The lamp lights until C_{2} is virtually discharged. This

D1 \ldots D4 $=1$ N4007

is because the collector of T_{2} keeps T_{1} switched on as well,
so that junction $\mathrm{R}_{8}-\mathrm{R}_{15}$ is also at neutral. When C_{2} has been discharged completely, T_{2} and T_{1} switch off and the neon lamp goes out. This continues until the next phase becomes active.

Provided that goodquality components are used for $\mathrm{R}_{8}, \mathrm{R}_{9}, \mathrm{R}_{15}, \mathrm{P}_{1}$ and C_{2}, the monostable will ensure a reliable indication.
The circuit is calibrated as follows. Connect it to the three-phase supply (neutral first!) after having turned P_{1} fully atiticlockwise. Then, slowly turn the preset clockwise until the running light formed by the neons appears to be at a standstill. Next, turn P_{1} a little further clockwise until the neon lights appear to move in a clockwise
direction at about two revolutions per second. Lock the preset in that position with some lacquer.

Because of the required accuracy, $\mathrm{R}_{8}, \mathrm{R}_{9}$ and R_{15} must be metal film types; C_{2} should be a polyester type and P_{1} must be a multiturn model. The neon lamps should have their series resistors integrated. Capacitor C_{1} must be a high-voltage type. Resis-tors $\mathrm{R}_{4}-\mathrm{R}_{6}$ must be special 500 V types (it is, of course, possible to connect two standard 250 V types in series).

Finally, the entire circuit is connected directly to the threephase supply so the utmost caution is necessary during construction, testing and calibration. It must be installed in a good-quality synthetic enclosure.

Design: R. Kähne
[944018]

EXPERIMENTATION BOARDS FOR PICs

In view of the popularity of general purpose PICs (Peripheral Interface Controllers), two experimentation boards are presented: one for the 18 pin models (Fig. 1a), and the other for the 28 -pin models (Fig. 1b).

The layout of both boards is given in Fig. 2; the board available from our Readers' Service contains both versions. The boards are indispensable for the practical application of the new PIC Programming course started in this issue.

Each board has provision for the 5 V power supply with polarity reversal protection: any mains adaptor that can provide 9-15 V and a current of 300 mA is suitable.

The board also has provision for the 8 MHz clock generator, reset circuit and decoupling capacitor.

The pin headers on the board ensure that access to the I/O lines is good.

Finally, extra soldering pads are provided for any additional hardware that may be needed.

Note that in the EPROMversion of the PICs no choice has been made as regards the type of oscillator. This means that during the configuration of the fuses (in the programming) the correct type of oscillator will have to be chosen and programmed (here, the XT).

Parts list

Resistors:

$\mathrm{R}_{1}=270 \Omega$
$\mathrm{R}_{2}=10 \mathrm{k} \Omega$

Capacitors:

$\mathrm{C}_{1}, \mathrm{C}_{2}=22 \mathrm{pF}$
$\mathrm{C}_{3}=10 \mu \mathrm{~F}, 16 \mathrm{~V}$
$\mathrm{C}_{4}, \mathrm{C}_{5}=100 \mathrm{nF}$
$\mathrm{C}_{6}=100 \mu \mathrm{~F}, 16 \mathrm{~V}$

Semiconductors:

$\mathrm{D}_{1}=1 \mathrm{~N} 4002$

Integrated circuits:

$\mathrm{IC}_{1 \mathrm{a}}=$ PIC16C54/56 (board a) $\mathrm{IC}_{1 \mathrm{~b}}=\mathrm{PIC} 16 \mathrm{C} 55 / 57$ (board b) $\mathrm{IC}_{2}=7805$

Miscellaneous:

$\mathrm{K}_{1}=8$-way single row header
$\mathrm{K}_{2}=10$-way single row header
$\mathrm{K}_{3}=$ mains adaptor connector $\mathrm{K}_{4}=10$-way single row header
a

Design: A. Rietjens
[944105]
$\mathrm{X}_{1}=$ crystal, 8 MHz
PCB Ref. 944105 (p. 110)

CORRECTIONS AND UPDATES

80C535 Extension card

June 1994, p. 8-11

The PCD8584 may be switched to '6800' mode if a WR signal arrives without a CS signal. The problem may be solved by combining WR and CS in a diode-AND gate as shown below. Pin 18 if IC_{4} is taken out of the IC socket and connected to ground via a $10-\mathrm{k} \Omega$ resistor. The WR signal is found on socket pin 18, and CS on pin 10 of IC_{5}. Also note that the PCD8584 is currently supplied as the PCF8584.

Dual-purpose LED display

December 1994, p. 90

Resistor R_{33} should be connected to ground, not to +12 V as shown in the circuit diagram.

Experimentation board for PICs

July/August 1994, p. 74.
In the circuit diagram, the signals on pins 7 and 8 of both connectors K_{1} should be swapped. MCLR is on pin 8, and RTCC on pin 7. The relevant PCB is all right.

Mains signalling system (2)

May 1994, p. 10-14.
The instructions for command ' T ' should read: 'T' must be followed by the address in ASCII, and terminated
with a semicolon (';').
The baudrate for the communication software should be set to 300 , format: 8 bits, 1 startbit, 1 stop bit, no parity.

Electronic fuse

March 1994, p. 56.

To prevent transistor T_{2} from burning out when the reset switch is pressed during an overload condition, switch S_{1} should be connected between the collector of T_{1} and the base of T_{2}.

SWEEP GENERATOR

Phase locked loop IC Type CD4046 enables a simple rectangularwave generator with variable frequency to be designed as shown in the diagram. Careful computing and choosing of the component values results in a usable sweep generator.

Capacitor C_{1} is charged via R_{1}; the resulting potential across it is applied to linked pins 9 and 14 of the IC. Pin 14 is the
input to the phase comparator, while pin 9 gives access to the control input of the voltagecontrolled oscillator (VCO).

When the input to the IC becomes logic high, the bistable in the phase comparator is reset. This results in the level at pin 13 going high and C_{1} being discharged via T_{1}.

At the same time, the high level at pin 13 causes C_{2} to be charged via R_{3}. When C_{2} has at-
tained a given charge, pin 3 goes high, so that the bistable is reset.

Diode D_{1} then causes C_{2} to be discharged rapidly. At the same time, C_{1} is charged again and the whole cycle repeats itself. The potential across C_{1}, which has an exponential waveform, ultimately provides the sweep of the VCO frequency.

The minimumVCO frequency depends on the values of $\mathrm{C}_{3}, \mathrm{R}_{4}$
and R_{5}; with values as specified, it is 2.2 kHz .

The maximumfrequency depends on C_{3} and R_{4}; with values specified it is 11 kHz .

The sweep time of about 600 ms (with a supply voltage of 12 V), is determined by C_{1} and R_{1}.

The supply voltage may be 7-15 V. The circuit draws a current of not more than 5 mA .

Design: M. Nagaraj
[944091]

POLARITY REVERSAL PROTECTION

Reversal of the supply lines to a circuit normally has diastrous consequences. The protection described here can prevent such a disaster occurring. It consists of an enrichment MOSFET that is connected close to the negative supply input. The transistor conducts only when it receives a positive gate voltage from the positive supply line via R_{1}.

Use is made of an n-channel transistor, which usually has a lower $R_{\mathrm{ds}(o n)}$ than p-channel types. This low transfer resistance is vital because it means that even with large loads the power loss is kept low.

If breaking into the negative supply line is difficult, a p-channel device can be used in the positive supply line.

There are several n-channel FETs that are suitable for

It is often handy if two or more sets of equipment that work together, such as a computer and a printer, or a tuner, amplifier and CD player are switched on and off together. This can be done with the aid of a slave switch, which is easy to build. The simplest type uses a resistor in series with the mains lead as sensor. As soon as a current flows, a voltage is developed across the resistor and this is used to switch on a triac. This arrangement is not only wasteful (power dissipation in the resistor), but also dangerous in that there is a risk of the entire load current flowing through the gate of the triac, which definitely can not cope with this.

It is much better to use a current transformer as sensor. In the present circuit, an old 1 A bell transformer with secondary voltages of $3 \mathrm{~V}, 5 \mathrm{~V}$ and 8 V was used. The 3 V winding is connected in series with the (neutral) mains line to the computer (amplifier). Note, however, that with certain computerprinter combinations, the printer should, according to the manufacturer, be switched on first. As soon as the com-
the present application; the IRF520 is but one of them - the IRF540 and BUZ11 are two alternatives.

Designing the protection so that, strictly speaking, the current flows in the wrong direction (from source to drain) is deliberate, since it prevents the internal protection diode conducting when the polarity of the supply is reversed accidentally. This diode will, however, conduct when the current becomes large. This is not much of a problem, because it can cope with the same level of current as the drain-source channel. In the IRF520, this is 9.2 A ; the IRF540 can handle up to 28A. The table shows the potential drop with and without heat sink: it is clear from this that at relatively large currents a heat $\operatorname{sink}\left(21 \mathrm{KW}^{-1}\right)$ is
a sensible addition. The figures in the table were obtained with a battery voltage of 12 V ; if a lower voltage is used, the drops across the FET may be slightly higher.

Design: T. Giesberts
[944044]

Current (A)	Drop without heatsink (mV)	Drop with heatsink (mV)
0.012	2.2	2.4
0.120	21.9	26
0.240	43.3	50
0.450	87.3	90
0.980	223	210
1.870	500	420
2.610	1100	\ldots
2.740	\cdots	640

SLAVE SWITCH

puter is switched on, the secondary current will be transferred to the primary winding. Since this winding has many more turns than the secondary, the current through it is much smaller than that in the secondary. For a voltage ratio of $3: 240$, the transformer ratio is $1: 80$, that is, the primary current is $1 / 80$ of the secondary current. This current is large enough, however, to start a sensitive triac like the TIC206D.

The starting current of the triac has the same waveform as that through the primary of the transformer. If this is a clean sine wave, the triac will strike just after the zero crossing as it should. In other cases, the triac might not strike until much later and that is not the idea. To ensure that the triac conducts continuously, a bridge rectifier and reservoir capacitor have been added.

The prototype needed a si-
nusoidal current of about 100 mA to start the triac. The voltage loss amounted to 95 mV , which increased to 295 mV with a current of 500 mA . Without a transformer, that is, with a series resistor, this would have been at least 2 V . Larger currents may be obtained by the use of the 5 V or 8 V winding. Note, however, that the current must not exceed the rating of the transformer.

Since mains voltage is present in the circuit, great care must be taken when working on the circuit, which, when finished, must be enclosed in a non-metallic housing.

There is a further danger in this circuit in that the transformer is used 'the wrong way around', so that when it is not loaded, very high voltages may arise across the primary winding. It is, therefore, strongly advisable to use a bell transformer, because this complies with stringent safety requirements.

Design: K.M. Walraven
[944083]

WATER SOFTENER

Exposing hard water to an electrical field causes cal-cium-carbonate crystals and other minerals to join and form larger crystals. At least, that is what researchers claim to have discovered in their efforts to combat the cause and ill effects of hard water.

The good news is that the risk of calcium compound deposits reduces with crystal size. If your home is on a hard water supply (which depends on the area you live in), you will probably be aware of the disastrous effects of solidified calcium compounds, which form green deposits on just about anything that runs hot and supplies water, i.e., heating elements in washing machines (expensive to replace!), taps, shower heads and kettles. Water softeners are available commercially, but unfortunately cost an arm and a leg.

Adual astable multivibrator (AMV) type TLC556 is used in the softener circuit to generate a swept-frequency rectangular waveform which is applied to a coil, L_{1}, wound around a length of plastic water tubing where the water supply enters your home. Alternatively, the coil is fitted on the water inlet tube of a certain apparatus, for instance, a washing machine that is to be protected against hard water. The oscillator output pulses are rectified by D_{1}. and cause D_{6} (a green LED) to light as an assurance that the coil is fed with pulses. The oscillator frequency is swept between about 800 Hz and 2.5 kHz . The coil, L_{1}, consists of 14 turns of solid, insulated wire, spaced at about the diameter of the water pipe. Some experimentation with different types of electromagnetic field
that work on the hard water is worthwhile.

Figure A shows two openended coils connected to K_{2}. This is the traditional arrangement of forming an electromagnetic field, i.e., a field with an electric and a magnetic component. Figure B shows three coils connected to K_{2}. This causes two mutually interacting electromagnetic fields. Lastly the arrangement in Fig. C produces a magnetic field only. All of these arrangements should be tried toascertain which onegives the best results on plastic or copper water pipes. All coils are 14 turns each, spaced as stated above.

The circuit is powered by a conventional mains supply consisting of a transformer, a rectifier, and a $12-\mathrm{V}$ voltage regulator.

Since the mains voltage is present on the printed circuit board (at the primary pins of transformer Tr_{1}), the completed PCB should be fitted into a robust plastic case. The coil wires are kept as short as possible and connected to PCB terminal block K_{2}. The circuit can safely be assumed to work if the green LED lights.

Parts list

Resistors:

$\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}=10 \mathrm{k} \Omega$
$\mathrm{R}_{4}=39 \mathrm{k} \Omega$
$\mathrm{R}_{5}=22 \mathrm{k} \Omega$
$\mathrm{R}_{6}=220 \Omega$
$\mathrm{R}_{7}=18 \mathrm{k} \Omega$
$\mathrm{R}_{8}=1.2 \mathrm{k} \Omega$

Capacitors

$\mathrm{C}_{1}=10 \mu \mathrm{~F}, 16 \mathrm{~V}$, radial
$\mathrm{C}_{2}, \mathrm{C}_{3}=10 \mathrm{nF}$
$\mathrm{C}_{4}=100 \mu \mathrm{~F}, 16 \mathrm{~V}$, radial
$\mathrm{C}_{5}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{10}=100 \mathrm{nF}$
$\mathrm{C}_{6}=47 \mu \mathrm{~F}, 50 \mathrm{~V}$, radial

$\mathrm{C}_{9}=47 \mu \mathrm{~F}, 16 \mathrm{~V}$, radial

Inductors:

$\mathrm{L}_{1}=14$ turns; see text

Semiconductors:

$\mathrm{D}_{1}=1 \mathrm{~N} 4148$
$\mathrm{D}_{2}-\mathrm{D}_{5}=1 \mathrm{~N} 4001$
$\mathrm{D}_{6}=$ green LED
$\mathrm{T}_{1}=\mathrm{BC} 547$
Integrated circuits:
$\mathrm{IC}_{1}=$ TLC556
$\mathrm{IC}_{2}=7812$
Miscellaneous:

$\mathrm{K}_{1}=$ two-way PCB terminal block, pitch 7.5 mm
$\mathrm{K}_{2}=$ two-way PCB terminal block, pitch 5 mm .
$\mathrm{Tr}_{1}=12 \mathrm{~V}$ 1VA5 mains transformer, e.g., VTR1112 (Monacor/Monarch).
PCB Ref. 944011 (p. 110).
Enclosure: size approx. $37 \times 57 \times 90 \mathrm{~mm}$.

Design: L. Pijpers
[944011]

CAR BATTERY MONITOR

Abstract

The lead-acid battery forms the heart of the electrical system in any car. If you are on a camping or caravanning holiday, it can happen that the battery is discharged so deeply by extra loads that the amount of energy left is too small to start the car. The car battery monitor described here prevents this problem by disconnecting extra loads in time, ensuring a battery condition which is always good enough for a reliable engine start.

Design by K. Walraven

FORGOTTEN to switch off the car lights? Not to worry, they will go out by themselves, very slowly. Good for your physical shape, too, because the car is bound to need a push-start the next morning.

For campers and caravanners the car battery is a welcome source of energy, because it allows many $12-\mathrm{V}$ operated devices to be used, for instance, a small vacuum cleaner, your mother-in-law's mini hair dryer, a coffee machine, a portable TV, an extra bedside light, an electric shaver, and, of course, the mini stereo rack. Relishing the use of all these luxury devices (which you have become used to at home), no one thinks of recharging the car battery. The joy lasts till the next morning, when the car, after a few feeble and discouraging sounds of the starter engine, refuses to start because of a totally exhausted battery. The only way to get 'on the move' again is to lend some battery power from the neighbours' car, or team up and pushstart the car. Obviously, such events are to be avoided at all costs, particularly when you are on holiday.

The preventive action of the car battery monitor described here can be achieved at a very small outlay, and
with a small effort as regards construction. The circuit measures the discharge level of the car battery by monitoring the battery voltage. If the voltage is in danger of becoming too low for the car to be started, the extra loads (lights, radio, etc.) are disconnected from the battery. So, if you happen to have forgotten to switch off something, that will not cause a totally drained battery.

The lead-acid battery

Before we tackle the description of the circuit proper, a short description is given of the discharge behaviour of a lead-acid car battery - see Fig. 1. Note that the graph shown is typical of a battery that has been in use for some time. The shape of the curve of an old battery is totally different from that produced by a brand new battery.

The graph indicates a relation between the charge condition (ranging from 'discharged' to 'charged') and the open-circuit battery voltage. This feature is exploited by the present battery monitor. If the battery voltage drops below a certain threshold, the load is disconnected to save the remaining energy. The exact value of the threshold

Fig. 1. Typical lead-acid battery discharge graph. The shape of the curve depends on the battery's age and condition.
differs from battery to battery. Hence, an adjustment is provided in the circuit to enable any threshold to be set, depending on personal requirements.

Circuit description

Looking at the circuit diagram of the battery monitor, Fig. 2, you are greeted by an old faithful, the Type 723 voltage regulator in position IC_{1}. This IC is used to compare a part of the battery voltage with an internal reference voltage. This is done with the aid of an internal opamp. The reference voltage is fixed at 7.15 V , and appears at pin 6. It is applied to the inverting input (pin 4) of the internal opamp. The non-inverting input is connected to the wiper of preset P_{1}. In this way, a part of the battery voltage appears at pin 5 of the 723. The actual size of the

Fig. 2. The battery saver is based on the familiar 723 voltage regulator, which contains, among others, a stable $7.15-\mathrm{V}$ reference and an opamp.
part is determined by voltage divider $\mathrm{R}_{2}-\mathrm{P}_{1}-\mathrm{R}_{3}$.

The battery voltage measured by the opamp is decoupled by capacitor C_{2}, which suppresses interference across P_{1} and R_{3}. The output of the internal opamp is connected to pin 10 of IC_{1}. This output is 'high' if the steppeddown battery voltage at pin 5 is higher than 7.15 V . The opamp output swings 'low' when the voltage at pin 5 drops below the reference level. That also causes the relay, Re_{1}, to be switched off, and LED D_{5} to go out. Diode D_{4} suppresses the back-emf voltage generated by the relay coil as the current through it is interrupted. The loads connected to the relay contacts are disconnected from the battery. Our goal has been achieved: if the battery voltage drops below a certain level, a number of loads are switched off automatically via a relay.

Switch S_{1} is intended for emergency cases, and allows you to switch the loads on (briefly) after they have been disconnected by the circuit. Fuse F_{1} protects the relay contact, the PCB tracks and the connecting wires against too high currents. LED D_{7} is the 'fuse intact' indicator. If it does not light while D_{5} is on, the fuse is blown.

The use of 'sense' lines requires a separate discussion, which is aided by the drawings in Fig. 3 and Fig. 4. In Fig. 3, the battery monitor 'sees' the voltage across the load. At first glance, this voltage is equal to the battery voltage, but there is a snag. Assuming that the wires between the battery and the load have a resistance of about 0.5Ω, and the load draws a current of 1 A , the cable 'drops' 0.5 V . The voltage applied to the monitor circuit is, there-
fore, 0.5 V lower than the battery voltage, causing the load(s) to be disconnected too early. In Fig. 4, the circuit
monitors the battery voltage via two sense wires. This setup eliminates the above measurement error, and enables the monitor to keep an eye on the actual battery voltage, ensuring that extra loads are switched off when it is really necessary.

Construction

Although the printed circuit board shown in Fig. 5 is not available readymade through our Readers Services, the construction of the battery monitor should not present problems. Alternatively, the circuit may be built on a piece of stripboard. The tracks which carry the load current must be tinned and sufficiently wide. The 'Amp' type spade terminals are secured to the PCB using bolts and nuts (Fig. 6). Once the screws have been tightened, the nuts may be soldered to the respective copper areas. The 'Amp' type terminal has three advantages: it is suitable for high currents; it enables an easy connection to clamp-on cable receptacles; and it is widely used for electrical systems in cars.

The IC is fitted in a socket, and the

Fig. 3. If the sense wires are connected across the load, the cable resistance may cause the battery monitor to measure a voltage which is lower than that on the battery terminals.

Fig. 4. The proper connection: the sense wires go directly to the battery terminals.

Fig. 5. Track layout (direct reading) and component overlay of the PCB designed for the battery monitor (PCB not available ready-made through the Readers Services).

Fig. 6. Illustrating the use of car-type 45° angled 'Amp' terminals and cable receptacles.
mounting of the other parts on the board will not present problems. Do not forget the single wire link on the board, because the circuit does not work without this 'component'.

Once the PCB is fully populated (Fig. 7), it may be fitted into a suitable
enclosure, using the front panel layout given in Fig. 8. Make sure the terminals remain accessible without having to open the case.

To prevent voltage loss in the connecting wires, the circuit is best mounted as close as possible to the car

COMPONENTS LIST

Resistors:

$R 1 ; R 7 ; R 8=2 k \Omega 2$
$R 2=3 \mathrm{k} \Omega 9$
$R 3=6 \mathrm{k} \Omega 8$
$R 4=1 \mathrm{k} \Omega$
$R 5=15 \mathrm{k} \Omega$
$R 6=4 \mathrm{k} \Omega 7$
$P 1=10 \mathrm{k} \Omega$ preset H

Capacitors:

$\mathrm{C} 1=10 \mu \mathrm{~F} 25 \mathrm{~V}$
$\mathrm{C} 2=100 \mu \mathrm{~F} 25 \mathrm{~V}$
$C 3=1 \mathrm{nF}$
$\mathrm{D} 1 ; \mathrm{D} 7=\mathrm{LED}, 5 \mathrm{~mm}$, green
D2;D3;D4 = 1N4148
D5 = LED, 5 mm , red
D6 = 1N4001
$I C 1=C A 723 C E$

Miscellaneous:

S1 = push-to-make button.
$\operatorname{Re} 1=\mathrm{V} 23127-\mathrm{A} 2-\mathrm{A} 101$ (12V;
Siemens).
F1 = 6.3A slow
4 'Amp' cable sockets and PCB-mount spade terminals.
Enclosure Pac-Tec HM-kit 6600-902.
battery. Use heavy-duty copper wire with a cross-sectional area of at least $4 \mathrm{~mm}^{2}$, or $6 \mathrm{~mm}^{2}$ if very high currents are switched. Such wire may be obtained from hi-fi shops as loudspeaker cable.

Connect the circuit to the load(s) and the battery as indicated in Fig. 4. If you want the LEDs and the presskey on your car dashboard, they must be connected via wires if the battery

Fig. 7. Fully populated board, ready for mounting into an enclosure.
monitor is mounted close to the battery. Alternatively, if these parts are fitted on the board, the front panel layout shown in Fig. 8 may be used.

Adjustment

Strictly speaking, preset P_{1} can only be adjusted by trial and error. Unfortunately that may take quite a lot of time, whence our suggestion to adjust the circuit as follows.

Connect the circuit to an adjustable power supply, and make the output voltage equal to the desired switching threshold, for instance, 11.5 V or 12 V (guidance values). Adjust P_{1} until the relay is just de-energized. If, after some time, it is found that the switchoff voltage is too low or too high, the threshold may be corrected a little by carefully adjusting the preset.

Attention!

Car batteries are capable of delivering extremely high currents which can cause fire and other hazards. The circuit discussed here is only suitable for $12-\mathrm{V}$ car batteries. For higher battery

Fig. 8. Suggested front panel layout and lettering (not available ready-made through the Readers Services).
voltages, for instance, 24 V , the relay must be replaced by a suitable type, and voltage divider $R_{2}-P_{1}-R_{3}$ requires different resistor values.
(936042)

Electronics Workbench (version 3) from Interactive Image Technologies (IIT) is a CAD package specifically geared to rapid design and verification of analogue and digital circuits. Since the circuit is simulated on a computer, making changes to it is much quicker than the traditional breadboard method, i.e., scouring for components, fitting them, soldering and connecting the test equipment after every change. None the less, no electronics design program, including EWB, does away with the need to build a prototype from real components, since the proof of the pudding is in the eating. EWB should be of great interest to students, as well as to the reasonably advanced hobbyist. Once a circuit is known to function properly using EWB, you have the green light to actually build it.

Drawing a circuit in EWB is helped by a 'parts bin' containing most commonly used electronic parts. Although the drawing phase is pretty fast and efficient, producing the circuit response (measured by various instruments, including an oscilloscope and a bode plotter) is sluggish. Tests were carried out on a Macintosh IIci computer. Digital circuits, by contrast, produced test results much faster.

Adding parts to the library is easy if you duplicate the existing 'ideal' version of a particular component, and then assign parameter values to the 'real' part to be added. From then on, the part is available for all new work.

Although the components pick and place operations work fine, the program sometimes has a quirk in the way in which the parts are actually positioned and connected. Also, although they are electrically correctly con-
nected, the leads to the test bench instruments sometimes take surprising paths criss-cross through the circuit.

Among the shortcomings of the program that should be mentioned are the inability to read netlists and so put circuits generated by other programs on the test bench, and the unusually simple shapes assigned to some ICs like the 555. Also, it would be desirable to have a rather more elaborate parts library, and to be able to mix linear with digital electronics. Fortunately, a library extension (Model Set 1), and a set of 150 'standard circuits' can be obtained from IIT.

None of these criticisms, however, can alter my opinion that Electronics Workbench is well worth considering if you are after a drastical reduction of cost and time spent on the design of analogue and digital circuits of up to medium complexity.
tech. ed.
Electronics Workbench costs £199 (excl. VAT and p\&p), and is available for DOS, Windows and Apple platforms, from Robinson Marshall (Europe) Ltd., Nadella Building, Progress Close, Leofric Business Park, Coventry CV3 2TF. Telephone: (0203) 233216, fax: (0203) 233210.

GENERAL-PURPOSE INFRA-RED VOLUME CONTROL

Abstract

Home made audio amplifiers are rarely equipped with a remotely controlled motor-driven volume control. Curious, because motor-driven pots are highquality products, and consequently should appeal to the 'high-end' audio fraternity. Fortunately, prices of motor-driven volume controls have come down to acceptable levels, while infra-red remote controls can be obtained fairly easily from TV spare parts sources. Time to put two and two together.

Design by T. Giesberts

THE number of electronics hobbyists interested in building audio amplifiers and related items is traditionally fairly high. It may therefore safely be assumed that a fair number of readers have been waiting for a project of the kind described here.

A relatively simple circuit is discussed that enables the volume of, for instance, a home-made amplifier or a similar circuit (Audio DAC, Ref. 1) to be controlled via an ordinary infra-red remote control. The remote control unit may be any type, as long as it is RC5 compatible. The self-learning (or 'intelligent') brand offered by some radio and TV retailers may also be used.

Thanks to the use of integrated circuits, the number of components in the project is small, while motor-driven potentiometers are available at reasonable prices these days. All in all, many high-end audio enthusiasts will find the remote-controlled volume control a worthwhile upgrade for an existing preamplifier.

The drive circuit

The circuit diagram of the infra-red volume control is shown in Fig. 1. The circuit consists mainly of three ICs for receiving and decoding the infra-red signal, and a couple of transistors to drive the motor. The circuit has its own power supply, which is fed by the secondary winding of the mains transformer used in the preamplifier. That is done to save you the cost of an extra transformer, while the preamplifier supply will happily supply the small extra current drawn by the volume control.

The infra-red signal transmitted by the remote control unit is picked up by IC_{1}. The IS1U60 from Sharp not only contains an infra-red sensitive diode. but also a complete receiver consisting of an amplifier, a limiter, a $38-\mathrm{kHz}$ pass-band filter, a demodulator and an output stage - all in a case with a size of only a few millimetres.

Furthermore, the ISIU60 is fully screened against electromagnetic interference, and features a lens element to bundle and focus infra-red light. Sharp Electronics in their datasheets specify a minimum operating range of 5 metres, while 3 metres is guaranteed at a horizontal angle of incidence of 30°, or a vertical angle of incidence of 15°. In practice, the range achieved by the receiver is much larger - our prototype easily covered 15 m . The high sensitivity of the IS1U60 makes the device just the thing for the present application.

The received and filtered drive signal may be applied directly to the decoder, a SAA3009 $\left(\mathrm{IC}_{2}\right)$. The SAA3009 is related to the SAA3049, which was used in earlier projects in this magazine, including a multi-purpose RC5 infra-red receiver (Ref. 2). The main difference between the SAA3009 and the SAA3049 is the higher output current capacity of the former: 10 mA

Fig. 1. The circuit of the IR volume control consists of three sections: an infra-red receiver, a decoder and a driver for the motorized potentiometer.
against 3 mA for the SAA3049. Obviously this is reflected by the 3009's total current consumption, which can go up to 70 mA .

The function of the SAA3009 is to convert the received data into a binary code. The serial RC5 signal contains two important data: the system address and the command proper. In the RC5 set of codes, the function 'preamplifier' is assigned system address 16. As a matter of course, every user is free to assign a different address to the amplifier (or, in more general terms, the volume control), if ' 16 ' is already in use, or if the potentiometer is fitted in a circuit which is not an amplifier. The address is set with the aid of inputs A0-A4 on the SAA3009. Address ' 16 ' is selected by making A0 through A3 logic low (jumpers fitted), while no jumper is fitted for A4. The address reserved for TV sets is ' 0 ', which is selected by fitting all four jumpers on jumper block K_{1}.

The SAA3009 operates in single-
system mode (SSM), which means that it responds to only one address. Shortcircuiting resistor R_{5} causes the IC to switch over to combined system mode (CSM). The decoded address is then available on pins A0 through A4, which then function as 'active-low' outputs.

In the RC5 protocol, the system address is followed by the command proper. That is decoded in IC_{2}, and made available at outputs A through F. In principle, the IC is capable of decoding up to 64 commands in addition to the 32 system addresses. In the present circuit, however, only two commands matter:

address	F	E	D	C	B	A Command	
16	0	1	0	0	0	0	vol. up
17	0	1	0	0	0	1	vol. down

Outputs A-F are connected to the 'P' inputs of a digital comparator, IC_{3}. The output of this comparator, labelled $\mathrm{P}=\mathrm{Q}$. goes low when the dataword at
the ' P ' inputs matches the dataword at the ' Q ' inputs. That happens when $\mathrm{P}=0010111$. The least significant bit, A, forms the only difference between the 'volume up' and 'volume down' commands. This bit is connected to the P0 and the Q0 pin of the comparator, to make sure that they are always at the same level. It also drives the gate of MOSFET T_{3} and so determines the left/right rotation of motor M_{1}.

If the dataword at the P inputs matches the preset dataword at the Q inputs, T_{4} is driven, and the motor driver is powered. Next, the level of the 'volume up/down' bit, A, determines the rotation direction of the motor. If $\mathrm{A}=0$, T_{5} conducts. Consequently, T_{3} is switched off, so that the base of T_{6} is pulled to ground, causing this transistor to be switched off also. However, since a voltage of 5 V is present on the collector of $\mathrm{T}_{6}, \mathrm{~T}_{8}$ is switched on, and T_{7} is switched off. The upshot is that a current flows through the motor winding, via T_{4}, T_{5}, T_{8}, and into the ground rail.

If $\mathrm{A}=1$, the above state is reversed: T_{5} is then off, so that T_{3} and T_{6} are switched on. T_{6} pulls the base of T_{7} to ground, so that T_{7} starts to conduct also. Consequently, current flows in the opposite direction through the motor winding, via $\mathrm{T}_{4}, \mathrm{~T}_{7}$, and into the ground rail again, this time via T_{6}. In this way, the level of bit A determines the direction of the motor. LED D_{6} lights any time the motor operates.

The sub-circuit around T_{1} and T_{2}, between the CA output of IC_{2} ('command received', pin 19) and the enable input (G) of IC_{2}, affords additional protection against noise, and also serves to detect when a new system address is received. If a system address is de-
coded, the CA output supplies a rectangular signal which is low for 15 ms , and high for 105 ms . Because of the large time constant of network $\mathrm{R}_{7}-\mathrm{C}_{7}$, transistor T_{2} operates as a rectifier on this signal. Its collector will therefore remain logic high as long as the signal is present at pin 19. As soon as the signal disappears, IC_{3} is immediately disabled.

Immediately after the supply is switched on, IC_{1} is reset via capacitor C_{2}. Diode D_{1} ensures that C_{2} is rapidly discharged when the supply is switched off. The toggle bit (pin 18), which changes state on every command received, is not used in this circuit.

The power supply is conventional.

Diodes D_{7} and D_{8} rectify the alternating voltage supplied by the secondary winding of the preamplifier's mains transformer, and C_{11} smooths the direct voltage. Resistor R_{15} reduces the regulator input voltage so that the dissipation of the 7805 is kept within specifications. The value of the 5 -watt resistor depends on the transformer's secondary voltage. For example, if the secondary voltage is 30 V , the rectified voltage will be of the order of 40 V . Since the maximum input voltage of a 7805 regulator is 35 V , resistor R_{15} will have to drop at least 5 V . The current consumption of the IR volume control being about $50 \mathrm{~mA}, \mathrm{R}_{15}$ then takes a value of $5 \mathrm{~V} / 50 \mathrm{~mA}=100 \Omega$.

Fig. 2. The PCB may be cut into two, separating the driver board from the potentiometer board. The IR receiver circuit, IC1, and the potentiometer are best mounted onto the preamplifier's front panel. This printed circuit board is available ready-made through the Readers Services (see page 110).

COMPONENTS LIST

Resistors:
$R 1=47 \Omega$
$R 2=2 \Omega 2$
$R 3=1 \mathrm{M} \Omega$
$R 4=33 \mathrm{k} \Omega$
$R 5=68 \mathrm{k} \Omega$
$R 6=5 \mathrm{k} \Omega 6$
$R 7=10 \mathrm{M} \Omega$
$R 8=10 \mathrm{k} \Omega$
$R 9-R 14=1 \mathrm{k} \Omega$
$R 15=s e e ~ t e x t$
$P 1=20 \mathrm{k} \Omega$ log. stereo potentiometer
w. motor drive (Alps type 20KAX2)

Capacitors:

$\mathrm{C} 1=220 \mu \mathrm{~F} 10 \mathrm{~V}$ radial
$\mathrm{C} 2=22 \mu \mathrm{~F} 25 \mathrm{~V}$
$\mathrm{C} 3 ; \mathrm{C} 4=27 \mathrm{pF}$
C5 $=10 \mu \mathrm{~F} 25 \mathrm{~V}$. radial
C6 $=47 \mathrm{nF}$ ceramic
$\mathrm{C} 7=33 \mathrm{nF}$
$C 8=100 \mu \mathrm{~F} 10 \mathrm{~V}$
$\mathrm{C} 9=100 \mathrm{nF}$
C10 $=220 \mathrm{nF}$
$\mathrm{C} 11=470 \mu \mathrm{~F} 40 \mathrm{~V}$

Semiconductors:

D1-D5 = 1N4148
D6 = low-current LED
D7;D8 = 1 N4002
$\mathrm{T} 1 ; \mathrm{T}_{2}=\mathrm{BC} 547 \mathrm{~B}$
T3 = BS 170
$\mathrm{T} 4 ; \mathrm{T5} ; \mathrm{T7}=\mathrm{BC} 640$
T6;T8 = BC639
IC1 = IS1U60 (Sharp), or SFH506-38
(Siemens)
IC2 = SAA3009
IC3 $=74$ HCT 688
IC4 $=7805$

Miscellaneous:

K1 $=10$-way boxheader w. 5 jumpers. X1 $=4 \mathrm{MHz}$ quartz crystal
Printed circuit board 930099 (see page 110).

Fig. 3. Three different types of infra-red receiver IC may be used with the wireless volume control. Note the different pinnings, which are catered for by a 5-way SIL socket on the driver board.

Construction

The printed circuit board of which the artwork is shown in Fig. 2 consist of two sections which are separated with a jigsaw. The combined board is available ready-made through the Readers Services. The larger board contains the drive electronics, while the smaller one serves to mount the motor-driven potentiometer. Solder pins may be fitted at the solder side of the potentiometer board. The small board is useful if you want to fit the pot at the back of the preamplifier case. The PCB is not strictly necessary if you decide to secure the pot behind the front panel, in which case the wires may be soldered directly to the tags on the motor.

As long as you do not forget to fit the wire links, and take care to fit the polarized components the right way around, no special problems should be encountered in the construction. Work carefully, and follow the parts list and the component overlay.

An alternative for the IS1U60 is the Siemens SFH506-38. As shown in Fig. 3, the two ICs have different pinnings, so take care when connecting one to the input of the control board. The SFH505A appears to be obsolete. and should not be used in conjunction with the SAA3049.

Once populated, the circuit board may be fitted into the preamplifier enclosure. Replacing the existing potentiometer in the preamplifier with the motorized type is fairly easy in most cases. The PCB with the drive electronics is best fitted behind the preamplifier's front panel, so that the infra-red diode contained in IC_{1} can 'look out'

through a hole. If space is tight, the PCB may have to be located a little further away from the front panel. In that case, IC_{1} may be connected to the board via a short length of screened cable.

Final notes

Those of you who are wondering how to program an existing remote control unit for system address 16 may find the information in Ref. 2 of use, since modification details are given in that article.

Finally, just before the present design was finalized for publication, information was received from Philips Components that the SAA3009 is supplied in limited quantities only. A suit-
able equivalent is the SAA3049, which does not suffer from supply problems. However, the use if the 3049 does require a number of resistors to be added, as shown in Fig. 4. Eleven 10$\mathrm{k} \Omega$ pull-up resistors are fitted at terminals AO-A4 and A-F of IC_{2}, and a $68-\mathrm{k} \Omega$ resistor in parallel with D_{1}. Components $\mathrm{R}_{3}, \mathrm{C}_{3}, \mathrm{C}_{4}$ and the quartz crystal may be omitted.
(930099)

References:

1. AF digital-to-analogue converter, parts 1, 2 and 3, Elektor Electronics July/August, September and October 1992.
2. Universal RC5 code infra-red receiver, Elektor Electronics January 1992.

Fig. 4. If a SAA3049 is used instead of a SAA3009 you have to add 12 resistors.

FIGURING IT OUT

PART 18 - THE LAPLACE TRANSFORM

By Owen Bishop

Abstract

This series is intended to help you with the quantitative aspects of electronic design: predicting currents, voltage, waveforms, and other aspects of the behaviour of circuits. Our aim is to provide more than just a collection of rule-of-thumb formulas.

We will explain the underlying electronic theory and, whenever appropriate, render some insights into the mathematics involved.

Systems of many kinds, from electronic circuits to the motion of planets and the spending patterns of supermarket customers, may be modelled with differential equations. Setting up the equations is usually fairly easy. Solving the equations may be unexpectedly dfficult. Obviously, a solution may be more readily reached if we assume that certain values are zero or remain constant, but this may make the model unrealistic, or at least limit its applicability. Various techniques have been devised to assist the solution of differential equations. One of these is the operator \mathbf{D}, described in Part 14. Another technique, known as Euler's method, is easy to use but, since it relies heavily on approximations, is not entirely reliable. A third and powerful technique is the Laplace transform.

Transforms

Given a set of values, we transform them by performing a specified mathematical operation on each of them. A well-known example is the logarithmic transform. Take this set of numbers:
$0.5,2,3.5,7,20.22$.
The logarithmic transform of these is obtained by taking the natural logs, or logs to any other base, if preferred. Natural logs can be found with a pocket calculator and we obtain the transformed set (shown here to 4 decimal points):
$-0.6931,0.6931,1.2528$,
$1.9459,3.0067$.

The members of the original set map in a one-to-one manner with the members of the transformed
set. We can also perform the inverse transform, using the e^{x} function on the calculator, and recover the original set.

At one time, logs were used extensively to assist in calculations, either in the form of \log tables, or on the slide rule. This is because they have the property that adding logs is the equivalent of multiplying ordinary numbers. For example:

$$
\begin{aligned}
& \ln 2+\ln 3.5=0.6931+1.2528 \\
& =1.9459=\ln 7
\end{aligned}
$$

Taking logs, adding them, and taking the antilog of the sum, has given us the product. Adding is easier than multiplying, especially when there are many decimal places.

Finding a fractional power of a number is a troublesome operation. For example, find the value of $3.5^{2.4}$. The \log transformation comes to our aid because multiplying a \log by a number is the equivalent of finding the power. In this example:

$$
\begin{aligned}
& 2.4 \times \ln 3.5=2.4 \times 1.2528 \\
& =\ln 20.22
\end{aligned}
$$

that is,

$$
3.5^{2.4}=20.22
$$

Multiplying the log, then finding the antilog, has given us the power. Multiplying is easier than taking powers, especially when they are fractional. Summing up, we use the log transform because it makes certain maths operations easier to do. We use the Laplace transform for the same reason.

Laplace transform

The Laplace transform operates
on a time function. By this we mean that a quantity (such as voltage) is specified by a function $f(t)$, in which time is the independent variable. For example, $u=3 \sin \omega t$. We say that u is in the time domain. We sometimes write $u(t)$ and $i(t)$ for the function instead of $f(t)$, the lower case letter indicating the quantity involved. The Laplace transform of a time function $f(t)$ is $F(s)$, where:

$$
F(s)=\int_{0}^{\infty} f(t) \mathrm{e}^{-s t} \mathrm{~d} t
$$

[Eq. 132]
The main condition attached to this transform is that the integral must be convergent, which means that the integral must approach a definite limiting value as t becomes large, and not become infinitely large itself. Most of the time, functions met in electronics conform to this requirement. It is also specified that $f(t)=0$ when $t=0$. If it is not, we insert starting conditions into the equations.

Unit step function

The Laplace transform is not unduly complicated when the time function is a simple one. As an example of the transform, we look at the unit step function, which, in effect, is equivalent to just turning on the power switch-see Fig. 147a. Up to the instant of the starting time, the switch is open. The voltage across the resistor is $u=0$. The switch is closed when $t=0$ and the voltage across the resistor instantly rises to $u=1$. We have a unit step-see Fig. 147b. The function describing this is piecewise:

$$
u(t)=0 \quad-\infty<t<0^{-}
$$

Fig. 147

$$
u(t)=1 \quad 0^{+}<t<+\infty .
$$

Note that we specify u up to the instant before the switch is closed ($t=0^{-}$) and from the instant after the switch is closed $\left(t=0^{+}\right)$. It is undefined for the instant of closing. The second of the two functions above is the one we transform. Substituting in Eq. 127:

$$
\begin{aligned}
U(s) & =\int \mathrm{e}^{-s t} \mathrm{~d} t \\
& =\frac{-1}{s}\left[\mathrm{e}^{-s t}\right]_{0}^{\infty}=1 / s
\end{aligned}
$$

As t approaches infinity, $\mathrm{e}^{-s t}$ approaches zero; when t is zero, $\mathrm{e}^{-s t}=\mathrm{e}^{0}=1$. The integral reduces to $1 / s$. Similarly, if the step is other than a unit step, for example $u=\mathrm{a}$, the transform is a / s.

Other transforms

In a similar way, we can find the transforms of other common functions. As might be expected, the integrations required are more complicated than that for the simple step function above. However, there is noneed to worry about this as the transforms of
all the most frequently met functions are available in a table (see Box 1). The transforms in Box 1 are mostly needed when we are performing the reverse transform, as we shall see later. Since our calculations usually begin with a differential equa-
tion, we need to know how to transform these. Box 2 shows the transforms of the terms of a differential equation and the way to use these and the transforms in Box 1 is explained in the example below.

A differential equation con-

Function

1 (unit step function)
a (step function)
t (ramp function)
$\mathrm{e}^{\text {at }}$ (growth function)
$\mathrm{e}^{-a t}$ (decay function)
$1-\mathrm{e}^{a t}$
$1-\mathrm{e}^{-a t}$
$\sin \omega t$
$\cos \omega t$

Transform	Conditions
$1 / s$	$\Re(s)>0$
a / s	$\Re(s)>0$
$1 / s^{2}$	
$1 /(s-\mathrm{a})$	$\Re(s)>\mathrm{a}$
$1 /(s+\mathrm{a})$	$\Re(s)>-\mathrm{a}$
$\mathrm{a} / s(s-\mathrm{a})$	$\Re(s)>\mathrm{a}$
$\mathrm{a} / s(s+\mathrm{a})$	$\Re(s)>-\mathrm{a}$
$\omega /\left(s^{2}+\omega^{2}\right)$	$s>0$
$\mathrm{~s} /\left(s^{2}+\omega^{2}\right)$	$s>0$

$\Re(s)$ is the real part of s in those cases where s is a complex number.
a and ω are constants.
Box 1 - Laplace transforms of functions.

Term	Transformed term
Constant a	a / s
Function $f(t)$	$F(s)$
First derivative $f^{\prime}(t)$	$s F(s)-f\left(0^{+}\right)$
Second derivative $f^{\prime \prime}(t)$	$s^{2} F(s)-s f\left(0^{+}\right)-f^{\prime}\left(0^{+}\right)$
Integral $\int_{0}^{t} f(t) \mathrm{d} t$	$F(s) / s+f\left(0^{+}\right) / s$

Box 2 - Laplace transforms of differential equations.

1. Factorise the denominator of the original fraction, if possible.
2. Match the factors against one or more of the formats shown in Box 4.
3. Box 4 sets out the form of the partial fractions; write them out as an identity.
4. Clear fractions by multiplying both sides of the identity by the original denominator.
5. Equate coefficients of each power of x, obtaining equations for constants A, B, etc.
6. Solve these equations to find A, B, etc.

Example: Express $(3 x+5) /\left(x^{2}-x-12\right)$ as a partial fraction.
Step 1: $\quad(3 x+5) /\left(x^{2}-x-12\right)=(3 x+5) /(x+3)(x-4)$.
Step 2: There are two factors, both have the form $(x+a)$. So, there are two partial fractions, both with the form $\mathrm{A} /(x+\mathrm{a})$.
Step 3: $\quad(3 x+5) /(x+3)(x-4) \equiv A /(x+3)+B /(x-4)$.
Step 4: $3 x+5 \equiv \mathrm{~A}(x-4)+\mathrm{B}(x+3)$

$$
\equiv \mathrm{A} x-4 \mathrm{~A}+\mathrm{B} x+3 \mathrm{~B}
$$

Step 5: Equating coefficients of $x: \mathrm{A}+\mathrm{B}=3$.
Equating constants: $-4 \mathrm{~A}+3 \mathrm{~B}=5$.
Step 6: $A=4 / 7$ and $B=17 / 7$; partial fractions are:

$$
(3 x+5) /\left(x^{2}-x-12\right)=4 / 7(x+3)+17 / 7(x-4)
$$

Further worked examples appear in the text.
sists of several terms, usually including a constant, a first fifferential ($\mathrm{d} y / \mathrm{d} t$), a second differential ($\mathrm{d}^{2} y / \mathrm{d} t^{2}$), and possibly differential terms of third or higher orders. An example taken from Part 13 is a model of a series $L C R$ circuit in which $R=500 \Omega$, $C=2 \mu \mathrm{~F}$, and $L=100 \mathrm{mH}$. The differential equation, based on Eq. 94, is:

$$
\begin{aligned}
& \mathrm{d}^{2} i(t) / \mathrm{d} t^{2}+5000(\mathrm{~d} i(t) / \mathrm{d} t) \\
& +\left(5 \times 10^{6}\right) i(t)=0
\end{aligned}
$$

[Eq. 133]
Note that we have replaced i in
Eq. 94 with $i(t)$ to emphasise that i varies in the time domain - it is a function of t-but it represents exactly the same quantity. Our aim is to discover the way i varies with time. In other words, to obtain the function $i(t)$. To solve this equation, we will first find itstransform. It can be shown that, if we find the transform of each term individually and sum the transforms for each side of the equation, this gives the transform of the whole equation. Working from right to left:

- The transform of 0 is 0 (a unit step in which a $=0-$ see Box 1)
- The transform of $\left(5 \times 10^{6}\right) i(t)$ presents a problembecause, until we have solved the equation, we do not know the form of the function i. Represent it by a symbol, using the corresponding capital letter, and say that its transform is $I(s)$. Note that the transform is in the s domain, which can be shown to be the frequency domain. Since any constant multiplier also multiplies the transform, the transform of $\left(5 \times 10^{6}\right) i(t)$ is $\left(5 \times 10^{6}\right) I(s)$.
- The transform of $5000(\mathrm{~d} i(t) / \mathrm{d} t)$ can be obtained by integration according to Eq. 132. Skipping over the intermediate stages, which are a conventional integration by parts, we find that the transform of $\mathrm{d} i(t) / \mathrm{d} t$ is $s I(s)-i\left(0^{+}\right)$.

As above, we have had to state the transform in terms of $I(s)$, because we do not yet know the form of $i(t)$. The term $i\left(0^{+}\right)$is the current flowing at the instant
that timing begins. Again, we multiply the transform by the coefficient of the original term, so the transform of $5000[\mathrm{~d} i(t) / \mathrm{d} t]$ is

$$
5000 s I(s)-5000 i\left(0^{+}\right)
$$

In Part 13, we stipulated that the current is 2 mA when timing begins, so $i\left(0^{+}\right)=0.002$ and the transform is $5000 \mathrm{~s} I(\mathrm{~s})-10$. Note that instead of having to differentiate $i(t)$, we have simply multiplied its transform by s to give $s I(s)$. Multiplying by s is much easier than differentiating, which is the reason for using the transform.

- The transform of the extreme left-hand term, $\mathrm{d}^{2} i(t) / \mathrm{d} t^{2}$, is also made according to Eq. 132 and, assuming that no current is flowing at the instant the power is switched on, it produces

$$
s^{2} I(s)-s i\left(0^{+}\right)-\mathrm{d} i\left(0^{+}\right) / \mathrm{d} t
$$

The second differential is obtained by multiplying $s I(s)$ by s; as before, it is much easier to multiply by s than it is to differentiate. In this expression, $i\left(0^{+}\right)$ $=0.002$, as above. $\mathrm{d} i\left(0^{+}\right) / \mathrm{d} t$ is the rate of change of current when timing begins. In Part 13, we said that this is $0.05 \mathrm{~A} \mathrm{~s}^{-1}$, so the tranform under these starting conditions becomes

$$
s^{2} I(s)-0.002 s-0.05
$$

Summing the transforms of the terms on each side of Eq. 133, we obtain a new equation in the frequency domain:

$$
\begin{aligned}
& s^{2} I(s)-0.002 s-0.05 \\
& +5000 s I(s)-10 \\
& +\left(5 \times 10^{6}\right) I(s)=0
\end{aligned}
$$

The next step is to simplify this in order to find $I(s)$, the Laplace transform of Eq. 133. Examination shows that $I(s)$ is a factor in three of the terms. The equation becomes:

$$
\begin{aligned}
& \left\{s^{2}+5000 s+\left(5 \times 10^{6}\right) \mid I(s)\right. \\
& =0.002 s+10.05
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Factors in denominator } & \text { Partial fractions } \\
x+\mathrm{a} & \mathrm{~A} /(x+\mathrm{a}) \\
x^{2}+\mathrm{ax}+\mathrm{b} & (\mathrm{~A} x+\mathrm{B}) /\left(x^{2}+\mathrm{a} x+\mathrm{b}\right) \\
(x+\mathrm{a})^{2} & \mathrm{~A} /(x+\mathrm{a}) \text { and } \mathrm{B} /(x+\mathrm{a})^{2} \\
(x+\mathrm{a})^{3} & \mathrm{~A} /(x+\mathrm{a}), \mathrm{B} /(x+\mathrm{a})^{2} \text { and } \mathrm{C} /(x+\mathrm{a})^{3} \\
\left(x^{2}+\mathrm{a} x+\mathrm{b}\right)^{2} & (\mathrm{~A} x+\mathrm{B}) /\left(x^{2}+\mathrm{a} x+\mathrm{b}\right) \text { and } \\
& (\mathrm{C} x+\mathrm{D}) /\left(x^{2}+\mathrm{a} x+\mathrm{b}\right)^{2}
\end{array}
$$

so that:

$$
I(s)=\frac{0.002 s+10.05}{s^{2}+5000 s+\left(5 \times 10^{6}\right)}
$$

The expression below the line can be factorised, using the quadratic equation formula (available on many scientific calculators) to give:

$$
I(s)=\frac{0.002 s+10.05}{(s+1382)(s+3618)}
$$

[Eq. 134]
We are working toward getting the terms of the equation into the same form as one or more of the transformed expressions in Box 1. Many of these have a single factor, such as ($s-a$), beneath the line. The equation above could be turned into this form by expressing the fraction as partial fractions. When this is done, we find that:

$$
I(s)=\frac{0.003258}{s+1382}-\frac{0.001258}{s+3618}
$$

(To confirm this working, add the two partial fractions and verify that you get back to the fraction of Eq. 134). A search through the table of Box 1 shows that expressions of this form are transforms of the decay function, $i(t)=\mathrm{e}^{-\mathrm{a} t}$. We are ready to perform the reverse transform, reading from right to left in Box 1 and substituting appropriate values for a and s :

$$
\begin{aligned}
i(t) & =0.003258 e^{-1382} \\
& -0.001258 e^{-3618}
\end{aligned}
$$

This is precisely the same result as was obtained in Part 13 using the straightforward techniques for solving differential equations. It serves to confirm that the Laplace transform does give the correct result, in spite of the apparently roundabout route from start to finish. The advantage of the Laplace method is that it can be used with differential equations that do not yield readily to the ordinary techniques.

It has taken several paragraphs to work through this example, but the steps in the calculation are few:

1. Transform the differential equation, using Boxes 1 and 2.
2. Simplify the equation to obtain an expression for $I(s)$.
3. Insert initial values and recast the expression so that it consists of terms of the same type as the transforms in Box 1 .
4. Find the inverse transforms,
using Box 1 , to obtain an equation for $i(t)$.

The important point to notice is that at no stage is there any need to differentiate or integrate. The tables of transforms cover almost every case, and tables more extensive than Boxes 1 and 2 are available for the infrequently used functions. The only maths required is simple algebraic manipulation, mostly the finding of partial fractions. This does not seem to appear in GCSE maths syllabuses, so a simple routine for this is outlined in Boxes 3 and 4.

Transformed circuits

Fig. 148

Figure 148 shows a circuit in which the switch is in position A long enough to reach a steady state. The switch is changed to position B when $t=0$. At any instant the voltage across the two resistors is $120 i(t)$ and, because it depends on the rate of change of current, the voltage across the inductor is $0.5 \mathrm{~d} i(t) / \mathrm{d} t$. Applying the rules for networks that we first met in Part 4, we can state that by KVL, and with the switch in position B:

$$
\begin{equation*}
120 i(t)+0.5 \mathrm{~d} i(t) / \mathrm{d} t=0 \tag{Eq.135}
\end{equation*}
$$

This differential equation describes the behaviour of the circuit but, since it does not take into account the initial state of the circuit, we do not yet have an equation for $i(t)$. Because the voltage source is now switched out of the circuit, it is hard to see how we can allow for it. This is where the transform helps out. Transforming Eq. 135:

$$
120 I(s)+0.5\left\{s I(s)-i\left(0^{+}\right)\right\}=0
$$

[Eq. 136]
Now we can take the initial current, $i\left(0^{+}\right)$, into account. We find its value by noting that in the steady state with the switch at A , assuming that the resistance of the inductor is negligible, a voltage of 6 V across a resistance of 100Ω causes a current

Fig. 149
of $i\left(0^{+}\right)=6 / 100=0.06 \mathrm{~A}$. Substituting in Eq. 136 :

$$
\begin{aligned}
& 120 I(s)+0.5 s I(s)-0.03=0 \\
& \text { or } \\
& 120 I(s)+0.5 s I(s)=0.03
\end{aligned}
$$

[Eq. 137]
Equation 137 is the equation which woulld be obtained by applying the network rules to the circuit of Fig. 149. In other words, Fig. 149 is the circuit of Fig. 148 transformed into the frequency domain. Note how the inductance depends on s, which has the dimensions of frequency. The circuit includes a voltage source, representing the voltage due to the initial current. From Eq. 137:

$$
I(s)=0.03 /(0.5 s+120)
$$

Before we can reverse the transform, we must multiply the numerator and denominator of the fraction by 2 to obtain s in the denominator instead of 0.05 s :

$$
i(s)=0.06 /(s+240)
$$

Box 1 shows that this is the transform of the decay function. In the transform, $a=240$ and:

$$
i(t)=0.06 \mathrm{e}^{-240 t}
$$

The graph of this function is given in Fig. 150. It shows that the current starts at 0.06 A and decays exponentially, being very close to zero after 20 ms .

Fig. 150
Next month we look at how to model capacitors and how to
calculate initial and final currents and voltages.

Test yourself

1. Use the table of Box 1 to find the transforms of (a) $2 \mathrm{e}^{-6 t}$, and (b) $3 \cos 4 t$.
2. Use the table of Box 1 to find the inverse transform of (a) $3 / s(s-3)$, and (b) $28 /\left(s^{2}+49\right)$.
3. Write the transform of this equation and solve it, using the starting conditions given: $\mathrm{d}^{2} i(t) / \mathrm{d} t^{2}+\mathrm{d} i(t) / \mathrm{d} t-6=0$, given that $i\left(0^{+}\right)=0$ and $\mathrm{d} i\left(0^{+}\right) / \mathrm{d} t=5$.
4. In the circuit of Fig. 151, the input voltage is 10 V at $t=0$, and ramps down according to the equation $u=10-200 t$. (a) Express the current in this circuit as a differential equation; (b) find the transform of the equation and simplify it; (c) find the inverse transform to obtain an equation which shows how the current varies in time.

Fig. 151

Answers to Test yourself (Part 17)

1a $\delta z / \delta x=2+3 y$; $\delta z / \delta y=2 x+3$.

1b $\delta z / \delta x=3 x / 2 y$; $\delta z / \delta y=-3 x^{2} / 4 y^{2}$.
2. Charge decreases by $0.2 \mu \mathrm{C}$, from $198.0 \mu \mathrm{C}$ to $197.8 \mu \mathrm{C}$.
3. $\mathrm{d} r / \mathrm{d} t=0.75$;
$\mathrm{d} u / \mathrm{d} t=100 \times 10^{-6} ;$
$\delta i / \delta u=-1 r$; $\delta i / \delta r=(u-10) / r^{2}$; $\mathrm{d} i / \mathrm{d} t=86.7 \times 10^{-9}$ when $i=1 \mathrm{~mA}$, equivalent to a tempco of $86.7 \mathrm{ppm}{ }^{\circ} \mathrm{C}^{-1}$.
[930010-XVIII]

SUMMER CROSSWORD 1994

By Klodz

Across:

1 Dinosaurs? No ham is without these waves (9)
6 Dupe Tamil round a height (9)
11 Back-knits dishonesty (5)
13 Does operations (9)
14 Garlic King of the Jungle tells some story (9)
15100 reeds? No point in belief (5)
16 Henry's entry (9)
17 PDP-11 or its color scheme (5)
18 Odd drink over whisper (6)

20 Shapes Old Boy wants (7)
23 Berate about comeback (6)
27 Screwy colonels? (4)
28,29 Raison de raser?! $(5,5)$
30 Point to hot cable (4)
34 Can he give issue? No! (6)
35 Dupre, the Frenchman, perhaps, came first (7)
36 Note acorn about some peeper (6)
39 Fish I've got for quality sounds (2-3)
41 Roller's side stake out hit from above (9)

44 Did he keep up with the Jones's? (5)

45 A retard team might do this to Earth (9)
46 Smear solder on starter for utensil! (3-6)
47 No vice in hearsay! (5)
48 Type of small Sovereign? Fifty about her planners (9)
49 Russian gets hotter about flier (5-4)

Down:

1 On top of the way? $(7,5,9)$
2 Typed in order (6)
3 Dictator of the year? No, head stupid (7)
4 Drug Squad issue 500 ? No. Thought they knew! (6)
5 Little Christopher, say, has ten letters. So it does! (10)
6 And others have no alien carpet. Not sharp (6)
7 Calling all cards! (7)
8 Imagined not being at home. Pictured (6)
9 Grapple coracle, then hoe for Top Chart! (21)
10 Altering? $(8,9)$
12 Coastal cartographers? $(7,10)$
19 Give vase the runaround (3)
21 Could it trigger infra-red zebra crossing? (7)
22 Danced to the fourth track (7)
24 Financial cartel compromising foreign sea (3)
25 We hear it's safe (5)
26 A news item (5)
31 Geometric car light (3)
32 Yet, how trivial is this theory? (10)
33 Polo? Not quiet round here (3)
37 Mum's clean with a clasp (7)
38 Dynasty one Scot would have in explanation (7)
40500 in Andes does not make one happy (6)
42 Veers around point to find birds (6)
43 Do campers mean this here? (6)
44 Inferior odd Continental (6)

The solution will be published in the September 1994 issue.

Summer Crossword 1994	44	Inigo	24	ERM	
Solution:	45	Irradiate	25	Sound	
Across:	46	Tinopener	26	Point	
1	Sinusoids	47	Voice	31	Arc
6	Amplitude	48	Engineers	32	Relativity
11	Stink	49	Tigermoth	33	Lo
13	Functions			37	Manacle
14	Allegoric	Down:		38	Meaning
15	Creed	1	Surface mount technique	40	Sadden
16	Induction	2	Sorted	42	Reeves
17	Decor	3	Idiotic	43	Intent
18	Murmur	4	Sussed	44	Impair
20	Oblongs	5	Crisscross		
23	Rebate	6	Alkali		
27	Nuts	8	Polling		
28,29	Fuzzy logic	9	Imaged		
30	Wire	10	Intectroencephal transform		
34	Eunuch	12	Fractal dimensions		
35	Prelude	19	Urn		
36	Cornea	21	Brazier		
39	Hifis	22	Grooved		
41	Airstrike				

RESETTABLE FUSE FOR CARAVANS

940061 x

Abstract

Considering the increasing volume of electrical equipment towed along by today's caravanners, people frantically searching for torchlights and then the spare fuses box can be observed almost any night on any camping site. If you have a caravan, and want to keep that unpleasant aspect of holiday making at bay, you are well advised to extend the electrical system with a resettable fuse as described here.

From an idea by E. Bosman

THE true spirit of caravanners and camping enthusiasts seems to have vanished if you look at what some people bring with them to their holiday destination: an electric coffee machine, a hot water boiler, an electric iron, a colour TV sets and even a satellite TV receiver, to mention but a few things. Obviously, the modern holiday maker does not want to forfeit the comfort and luxury he or she has come to value so much at home. At the same time, most of you would also like to think of camping as a 'primitive' pastime: back to nature, idyllic places, elementary cooking, and making coffee on a smoking little fire made from wet wood, that is what it should be about. Unfortunately, as in so many cases, modern technology has changed all that. For better or for worse, that is for you to judge.

In any case, the arrival of more and more electrical equipment in and around the caravan or mobile home greatly increases the risk of fuses blowing at unexpected times. A blown fuse is not a very serious event in itself

Fig. 1. Basic elements that make up an electronic, resettable, fuse.
if it is just the caravan fuse, since that is fairly easy to replace. Provided, of course, you have your torchlight handy when disaster strikes (most of you will know that fuses usually blow when it is dark).

Far more trouble, indeed, if the fuse

in the caravan connection post on the camping blows. That can happen if it has a lower rating than the caravan fuse. Undesirable as it may be, a blown fuse is often difficult to forestall in the hubbub of getting your caravan parked, connected, and so on. A lot of trouble can be prevented by first asking the camping proprietor about the rating of the fuse installed in the connection post, and install a lighter fuse in your caravan before actually connecting up to the mains network. For example, if the mains outlet is said to have a $10-\mathrm{A}$ fuse, it is best to use a $6-\mathrm{A}$ fuse in the caravan. Undoubtedly the best way to prevent trouble with the mains supply is to insert a resettable, adjustable fuse in series with the (fixed) caravan fuse. The resettable fuse is then adjusted for a trip current just below that of the fixed fuse. Once the resettable fuse is installed, all you have to do is press a button if you are suddenly in the dark as a result of an overload or an short-circuit.

The electronic fuse described here is fairly easy to build, as reliable as can be achieved with simple means, and adjustable for currents between 4-A and 16 A . In other words, a 'must' for all caravanners!

General layout

Although there are several options to designing an electronic alternative to a fuse, there is no way to go round certain basic 'ingredients'. For example, a current sensor is always required to detect the overcurrent level, as well as a device to break the supply. In other words, the design is basically as shown in Fig. 1.

A series resistor, R, and a relay contact are inserted in the supply line to the load. The voltage drop across R depends on the current which flows through the resistor. All that is required in addition is an electronic circuit which monitors the voltage across R, and actuate the relay if a certain threshold is exceeded. What remains, is, of course, the question how the electronic control is realized in practice.

Comparators with a memory

To be able to check if a voltage exceeds a certain level, that level needs to be defined as a threshold. Although that can be achieved with the aid of a comparator, it is also desirable for the load

Fig. 2. Circuit diagram of the resettable fuse for caravanners.
voltage to remain switched off (after an overload condition) until the reset button is pressed. In other words, some kind of memory function is in order.

A cursory look at the circuit diagram in Fig. 2 will inform you that both basic elements mentioned above are present in the circuit. There are even two comparators, so that the circuit responds to the positive as well as the negative half cycle of the mains voltage. Briefly, the operation is as follows. The series ('sensing') resistor is formed by R_{12}. When the voltage
across R_{12} rises above +100 mV or -100 mV , the respective comparator $\mathrm{IC}_{1 \mathrm{a}}$ or $\mathrm{IC}_{1 \mathrm{~b}}$ toggles, causing bistable IC_{2} to be triggered, and to change state also. Consequently, the relay is de-energized, and the bistable holds its state until the 'start' key is pressed.

Let us examine the circuit in more detail. The sensing resistor, R_{12}, has a low value to prevent too much power being wasted by dissipation. Resistors with such a low value are fairly easy to make yourself from (enamelled) copper wire of a known diameter or wire gauge
number. Since the value of R_{12} determines the trip level of the electronic fuse. Table 1 indicates how values of $18 \mathrm{~m} \Omega$ down to $5 \mathrm{~m} \Omega$ may be produced for maximum fuse actuation currents of 4 A and 16 A respectively.

Comparators $\mathrm{IC}_{1 \mathrm{la}}$ and $\mathrm{IC}_{1 \mathrm{~b}}$ jointly compare the input voltage with a reference voltage derived from the $12-\mathrm{V}$ supply with the aid of $R_{3}-R_{6}$. Of these resistors, R_{4} and R_{5} drop about $2 \times 100 \mathrm{mV}$. The alternating voltage dropped by the sensing resistor arrives at the voltage monitor via R_{1} and R_{2}.

$I_{\text {max }}$	$R_{\text {sense }}$	P $_{\text {R(sense) }}$	c.s.a.	wire dia.	length
4 A	$18 \mathrm{~m} \Omega$	0.3 W	$0.5 \mathrm{~mm}^{2}$	$0.8 \mathrm{~mm} \mathrm{(22)}$	52 cm
6 A	$12 \mathrm{~m} \Omega$	0.5 W	$0.5 \mathrm{~mm}^{2}$	$0.8 \mathrm{~mm}(22)$	35 cm
10 A	$8 \mathrm{~m} \Omega$	0.7 W	$0.5 \mathrm{~mm}^{2}$	$0.8 \mathrm{~mm} \mathrm{(22)}$	23 cm
16 A	$5 \mathrm{~m} \Omega$	1.13 W	$0.75 \mathrm{~mm}^{2}$	$1 \mathrm{~mm} \mathrm{(20)}$	22 cm

c.s.a. $=$ cross-sectional area.

Nearest SWG value in brackets.

Table 1. Design data to help you make your own shunt resistor.

This voltage is limited by diodes D_{1} and D_{2}, while capacitor C_{1} suppresses fast pulses and RF noise. The sensitivity of the fuse is adjusted with preset P_{1}. The preset acts as a kind of fine adjustment' of the fuse value, bearing in mind that the maximum current defined by R_{12} can only be increased, not decreased, by the preset.

As soon as the positive or negative half period of the voltage across R_{12} exceeds the reference level of 100 mV , one of the comparator outputs swings from high to low. Next, bistable IC_{2}, a

Fig. 3. Track layout (direct reading) and component mounting plan of the printed circuit board designed for the resettable fuse (PCB not available ready-made).

COMPONENTS LIST

Resistors:

$\mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 6, \mathrm{R} 7, \mathrm{R} 8, \mathrm{R} 10=10 \mathrm{k} \Omega$
$R 3=100 \mathrm{k} \Omega$
$R 4, R 5=1 \mathrm{k} \Omega$
$\mathrm{R} 9=1 \mathrm{M} \Omega$
$R 11=47 \mathrm{k} \Omega$
R12 $=$ see table 1
$\mathrm{Pl}=47 \mathrm{k} \Omega$ preset H

Capacitors:

$\mathrm{C} 1, \mathrm{C} 3, \mathrm{C} 4=100 \mathrm{nF}$
$\mathrm{C} 2=470 \mathrm{nF}$
$\mathrm{C} 5=470 \mu \mathrm{~F} 25 \mathrm{~V}$
$\mathrm{C} 6=10 \mu \mathrm{~F} 16 \mathrm{~V}$
Semiconductors:
D1-D5 = 1N4148
T1 = BD 140
IC1 = TLC272
IC2 $=$ TLC555
IC3 $=7812$
$\mathrm{B} 1=\mathrm{B40C500}$
Miscellaneous:
K1 = PCB terminal block, raster 7.5 mm .

S1 = push-to-make button.
RE1 $=$ relay, 12 V , w. make contact 240V/16 A (e.g., Conrad Kaco RY-T1L or Siemens V23008 series).
$\mathrm{Tr} 1=$ mains transformer, $12 \mathrm{~V} / 3 \mathrm{VA}$ (e.g., Block VR3112, Monacor VTR3112 or Velleman 1120038 M).
La1, La2 $=$ neon light w. series resistor. Enclosure: dimensions $150 \times 80 \times 55 \mathrm{~mm}$ (e.g., Bopla E440).
'good old' 555, is triggered via low-pass filter $\mathrm{R}_{8}-\mathrm{C}_{2}$. The high level at the Q output of the 555 then swings high, causing transistor T_{1} to be switched off, and the relay to be de-energized. The 555 now acts as a 'memory', which retains its state until a short pulse is received at pin 6. That happens when the 'start' key is pressed. The relay is then re-energized, and the fuse is 'whole' again, re-establishing the current flow. If, however, the short-circuit or overload condition still exists, the relay will be de-energized again instantly. Keeping S_{1} pressed has no effect, since only a pulse resets the 555. In other words, it is necessary to release the key and press it again in any case. Before you do that, however, investigate and clear the cause of the overload.

Short transients in the comparator input signals are suppressed by C_{1}. Futhermore, the trigger signal for the bistable is purposely delayed a little to prevent the fuse being actuated on

Fig. 4. Completed prototype of the caravan fuse. Note that the current sense wire is insulated and folded. Also note the use of heavy-duty grommets and strain reliefs on the mains in and out cable.
every current surge. This is achieved with the aid of network $\mathrm{R}_{8}-\mathrm{C}_{2}$. The neon lights (with internal resistors), La1 and La2, are added to the circuit to be able to check at any time if the mains voltage is present at the input and output of the fuse. If you wish, you may omit these lights, although we found them very useful on the prototype.

The power supply is entirely conventional, consisting of a mains transformer, a bridge rectifier, a smoothing capacitor and a fixed voltage regulator.

Construction

The artwork of the printed circuit board designed for the resettable fuse is given in Fig. 3. Unfortunately this board is not available ready-made through the Readers Services, so you have to have it made, or etch it yourself. Populating the board will present no problems using the component overlay and the parts list.

The main attention during the construction should go to the sensing resistor, R_{12}, the relay, and the way the current-carrying connections are made. Table 1, apart from indicating the diameter and length of the copper wire needed for a particular resistance value, also shows the maximum power dissipation. Clearly, the wire will run quite hot at high load currents. The relay is not an off-the-shelf component either, as already indicated by the space reserved for it on the printed circuit board. Most Siemens 'E-card' relays used in Elektor Electronics projects are capable of switching up to 8 A . However, the contact rating is re-
duced to 4 A for continuous use. That may be just sufficient for a 'small' fuse, but is certainly inadequate for the present application, where much higher currents are required. Hence, a much larger relay is used here, the connections of which are formed by clamp or screw terminals. that brings us to the third matter of attention: the electrical connections in the fuse circuit.

At currents of between 10 A and 16 A is it no longer possible, or even allowed (in the interest of safety), to establish electrical connections by soldering. PCB terminal blocks are not suitable either. Normal terminal blocks may be used, although you must be sure to use $16-\mathrm{A}$ types, not the smaller (and cheaper) 6-A versions.

By far the best way to connect and wire the circuit is to use car-type 6.3-$\mathrm{mm}(0.25-\mathrm{in}$.) wide spade terminals and sockets known as 'AMP' types. These terminals are also used on the relay specified in the parts list. Never use an ordinary pair of pliers to clamp the socket on to the cable - it will yield an unreliable and possibly dangerous connection. Instead, use special 'AMP' type crimp pliers, which also offer a cable stripper and cutter. On the cable sockets, make sure that the hole is properly filled with wire before crimping. If necessary, double the wire.

As a matter of course, great attention should be paid to electrical safety, because the present circuit carries the mains voltage at several points. The enclosure must be a sturdy all-plastic (ABS) type. The prototype was housed in a Bopla Type E440 case, which provides a neat fit for the circuit board

Fig. 5. Wiring diagram. Be sure to use 'amp' type push-on cable sockets and spade terminals to make the current-carrying connections.
and the $16-\mathrm{A}$ relay. The mains input and output cables ($220 / 230 / 240 \mathrm{~V}$) are three-wire types passed through grommets, and fitted with a strain relief at the inside of the case.

The internal wiring of the fuse is shown in a separate diagram, Fig. 5. Do not forget to make a through connection for the protective earth.

Adjustment

The circuit should be functional after a careful check on the wiring and the construction of the printed circuit board. The adjustment of P_{1} is not particularly difficult, although it may involve quite a bit of work. A suggested adjustment procedure is given below. In the example, it is assumed that the mains voltage is 240 V .

The preset is set to the centre of its travel, and the fuse is installed. Pressing the start key should close the relay. Both neon lights should then be on. Next, arrange a load which draws a current corresponding to the desired fuse trip level. In case you require a relatively high trip level, say, 12 A , a 2kW electric heater is good to begin with, since it draws just over 8 A . Add
a paint stripper, an electric iron or similar load of about 800 W , and you have a load drawing a current close enough to 12 A .

Turn the wiper of P_{1} until the fuse is just actuated (counter-clockwise: less sensitive: clockwise: more sensitive). Be very careful while adjusting the preset, and do not touch any part of the circuit. If the span of P_{1} is too small, switch off, and change the length of the sensing resistor as required.

While testing you are will probably notice that the fuse value is a little temperature dependent. The reason is simple. As the circuit heats up, the resistance of the sensing resistor rises, so that the fuse becomes more sensitive. Fortunately, that is no cause for alarm, since the effect occurs with normal fuses also.
(940061X)

TestSystem for Service, Education, Lab. and Industry....

MEASURE with IIEETHLR $\square \square$

MATSWIN-Software offers quick and easy solutions even for the unskilled user

Connect up to 16 Modules to one PC via serial cable:
Digital-Multimeter, Universal-Counter, DC-Calibrator, Signal-Generator, Multiplexer and remote PowerSupplies.
Modules come in aluminum cassettes and can be mounted in individual configuration into $4 \times$ and $6 \times$ racks which supply power and Bus connection (12V operation possible).
Suitable for many applications in service, automation, QC, education and wherever a simple to use but flexible test-station is required.

MATSCARD and MATSVIEW

a complete PC-Lab as plug-in-card

100 kHz sample rate, 12 Bit res., 16 analog and 16 digital inputs, up to $\pm 10 \mathrm{~V}, 2$ Voltage outputs, many trigger functions, Onscreen display in analog, bargraph, and scope-type, many functions for signal-analysis, printout and pary, just plug in and ready to start.
plot

Dealer inquiries welcome ! Please ask for tree information brochure MEGALAB Meßtechnik Gb. der MEGATRON Elextronik AG \& C Am Tummelsgrund 48, Germany 01462 Mobschatz, Tel \& Fax (Germ.) 351/4410831

INFRA-RED CONTROLLED SWITCH

Abstract

Infra-red remote control units for TVs and video recorders usually have a large number of press-keys to select a staggering variety of functions. For simple on/off remote control applications, such as opening a door or controlling a lamp, these transmitters are far too complex. That is why a much smaller transmitter and an associated receiver are described here. The system is suitable for switching loads up to $1,000 \mathrm{~W}$ using a simple toggle on/off function.

MOST infra-red remote controls supplied with today's audio and video equipment use the so-called RC5 code. The RC- 5 standard is based on a set of codes which are used to control the plethora of functions available on modern audio and video equipment.

The pulse codes generated by remote control units are conveyed to the receivers in the audio/video equip-
ment by infra-red light. The transmitter contains an infra-red LED which is switched on and off at a rate of about 36,000 times per second by an oscillator and a switching transistor. In this setup, the oscillator is actuated by code pulses.

The 'packets' of infra-red light transmitted in this way are received on a diode or transistor which is sensitive to infra-red light. Next, the signal is
converted back into electrical pulses by a $36-\mathrm{kHz}$ receiver and an associated detector. The pulses are applied to a decoder which is capable of recognizing the transmitted code. Depending on the received (and recognized) code. one of the functions of the audio/video equipment (volume, contrast, program, etc.) is switched.

The encoder contained in the IR transmitter monitors the keypad on the remote control, and converts the code of the key pressed by the user into a corresponding pulse train.

The IR receiver described below uses an unmodulated carrier with a frequency of 32 kHz , which is a simpler signal than the RC-5 code. The infra-red remote control system has a 'toggle' type on/off function, where every key action produces a short 32kHz burst.

A miniature infra-red transmitter

The circuit diagram, Fig. 1, already indicates that the infra-red transmitter is a compact unit.

At the far right in the diagram are two series-connected infra-red LEDs, D_{7} and D_{8}. These LEDs are powered, and start to emit infra-red light, when transistor T_{2} conducts.
T_{2} receives base current and is switched on when the output of Schmitt trigger NAND gate $\mathrm{IC}_{4 \mathrm{~d}}$ (pin 11) goes logic high. Since its two inputs, pins 12 and 13 , are interconnected, the NAND gate functions as an inverting buffer.

As already mentioned, the IR LEDs are switched at the rate of a $32-\mathrm{kHz}$ carrier. This carrier is generated by a square-wave oscillator built around $\mathrm{IC}_{4 \mathrm{c}}$. If pin 9 of $\mathrm{IC}_{4 \mathrm{c}}$ is made high (which happens briefly any time S_{1} is pressed), the gate starts to oscillate at a frequency determined by network $\mathrm{R}_{7}-$ $\mathrm{C}_{9}-\mathrm{P}_{1}$. The preset, P_{1}, allows the carrier frequency to be 'tuned' accurately to the operating frequency of the integrated IR receiver contained in the receiver (IC_{5}, see further on).

Since pressing switch S_{1} should produce a short infra-red signal rather than a continuous one, the $32-\mathrm{kHz}$ carrier generator built around $\mathrm{IC}_{4 \mathrm{c}}$ has a time limiter consisting of $\mathrm{R}_{5}, \mathrm{R}_{6}$ and C_{8}. When S_{1} is not pressed, the inputs of $\mathrm{IC}_{4 \mathrm{a}}$ are low because the charge voltage on C_{8} has disappeared via resistor R_{5}. As soon as S_{1} is pressed, the transmitter is powered. After a short while, C_{8} is charged sufficiently by R_{6} to cause the start state of $\mathrm{IC}_{4 \mathrm{a}}$ to be
changed. The voltage at both gate inputs (pins 1 and 2) is then high enough for the output of $\mathrm{IC}_{4 \mathrm{a}}$ to drop from high to low, causing the squarewave oscillator, $\mathrm{IC}_{4 \mathrm{c}}$, to be switched off. For a new pulse to be generated via S_{1}, you have to wait a short while for C_{8} to be discharged again via R_{5}.

Since the IR LEDs are switched on and off by short $32-\mathrm{kHz}$ bursts, they do not need the usual current-limiting resistor required for continuous (d.c.) operation. Here, the internal resistance of the battery helps to keep the peak LED current within specifications.

IR receiver

The circuit diagram of the receiver associated with the small IR transmitter is shown in Fig. 2. The upper part of the diagram shows the power supply, while the receiver proper is drawn below.

The power supply consists of transformer Tr_{1}, bridge rectifier $D_{1}-D_{4}$, smoothing capacitor C_{3} and voltage regulator IC_{3}. The latter provides the receiver electronics with a regulated 5V supply voltage. The relay coil voltage is taken directly from C_{3}, and appears across the relay coil when transistor T_{1} is switched on by the receiver electronics. T_{1} then receives base current from pin 9 of $\mathrm{IC}_{2 \mathrm{~b}}$, via resistor R_{3}.

D-type bistable $\mathrm{IC}_{2 \mathrm{~b}}$ is wired as a di-vide-by-two scaler. As illustrated by the timing diagrams in Fig. 3, each positive-going edge at the clock input of $\mathrm{IC}_{2 \mathrm{~b}}$ (pin 11) produces a level change at the outputs (pin 8, inverting input; pin 9, non-inverting input). Consequently, the rectangular signal which arrives at the clock input is divided by two before it appears at the bistable outputs. The first clock pulse at pin 11 causes output pin 9 to go high, while the second clock pulse causes it to go low again. In this way, the relay is alternately energized and switched off again, resulting in the previously mentioned 'toggle' function of the remote control system. The apparatus connected to the relay contacts may be a mains operated device. The connection with the relay contacts is made via terminal block K_{1}.

Selection

The 'on' and 'off clock pulses which arrive at the clock inputs of $\mathrm{IC}_{2 \mathrm{~b}}$ (pin 11) emanate from D-bistable $\mathrm{IC}_{2 \mathrm{a}}$. Together with monostable $\mathrm{IC}_{1 \mathrm{a}}$, the bistable forms a selection circuit which serves to ensure that only $32-\mathrm{kHz}$ signals with a certain minimum burst length cause a clock pulse at pin 11 of $\mathrm{IC}_{2 \mathrm{~b}}$. Noise and other spurious pulses are suppressed by the selection circuit

Fig. 1. Circuit diagram of the one-channel on/off infra-red remote control transmitter.

Fig. 2. Circuit diagram of the infra-red receiver, and pinouts of the three IR receiver ICs that may be connected to the input.

Fig. 3. Timing diagrams of the main signals in the circuit. (1): an IR 'burst' emitted by the remote control, switched on and off at a rate of 32 kHz ; (2): the same burst, after detection by IC5; (3): monostable pulse produced by IC1a; (4): an on/off switching pulse; (5): a high level which causes relay Re1 to be energized.
because they are nearly always shorter than the on/off pulses transmitted by the IR remote control.

Figure 3 should help you to understand the operation of the selection circuit. The upper signal, (1), is the 32kHz carrier. Every time S_{1} is pressed, a short burst is generated. The receiver IC, IC_{5}, contains a complete detector which turns the infra-red light into an electrical signal which is subsequently rectified.

The output of the IR receiver IC is normally high, and swings 'low' only when S_{1} on the transmitter is pressed. This 'low' pulse is drawn in Fig. 3 (2). The positive going edges of the pulse serve to control the previously mentioned selection circuit, $\mathrm{IC}_{1 \mathrm{a}}-\mathrm{IC}_{2 \mathrm{a}}$.

The positive going edges supplied by the IR receiver IC are applied to the

COMPONENTS LIST

Fig. 4. Track layout (direct reading) and component mounting plan of the printed circuit board for the infra-red controlled switch. This board is available ready-made through our Readers Services (see page 110).

input of monostable $\mathrm{IC}_{1 \mathrm{a}}$ as well as to the clock input of D-type bistable $\mathrm{IC}_{2 \mathrm{a}}$. Every positive going edge supplied by the IR receiver IC causes the monostable to be triggered. The response is a 'low' output pulse at the inverting input, pin 4. The length of that pulse (number 3 in the timing diagram) is determined by R_{2} and C_{2}.

The selection circuit around IC_{1} and $\mathrm{IC}_{2 \mathrm{a}}$ will only feed an on/off pulse to pin 11 of $\mathrm{IC}_{2 \mathrm{~b}}$ if IC_{5} supplies a pulse which is longer than the mono-time of $\mathrm{IC}_{1 \mathrm{a}}$. In that case, the D-input (pin 2) and the reset input (pin 1) are both logic high when a clock pulse (positive going edge) arrives at the clock input of $\mathrm{IC}_{2 \mathrm{a}}$ (see also Fig. 3). Consequently, the high level at the D input of $\mathrm{IC}_{2 \mathrm{a}}$ is 'copied' to the output of $\mathrm{IC}_{2 \mathrm{a}}$ (pin 9). which goes high. As already discussed. the high level at the output of IC2a causes $\mathrm{IC}_{2 \mathrm{~b}}$ and the relay circuit $\mathrm{T}_{1^{-}}$ Re_{1} connected to it to be switched on or off.

In the above example, it was assumed that a regular transmitter pulse was received, i.e., one with a length which exceeds that of monostable $\mathrm{IC}_{1 \mathrm{a}}$. The response of the circuit to interference is illustrated to the right in Fig. 3. Noise (signal 2 in the drawing) is shorter than the monotime of $\mathrm{IC}_{1 \mathrm{a}}$. The instant the noise is already passed, a clock pulse has been generated at pin 3 of $\mathrm{IC}_{2 \mathrm{~b}}$, although $\mathrm{IC}_{1 \mathrm{a}}$ is still going through its monotime, so that the MMV output, pin 4, is still low. This level keeps $\mathrm{IC}_{2 \mathrm{a}}$ in the 'reset' state, preventing short noise pulses from being clocked through on to the output. Interference is effectively blocked in this way because the individual pulses are shorter than the monotime of $\mathrm{IC}_{1 \mathrm{a}}$.

Construction

The artwork of the printed circuit board designed for the infra-red transmitter, the receiver and the associated power supply is shown in Fig. 4. The printed circuit board is available ready-made through the Readers Services. The three sub-sections (transmitter, receiver and power supply) are separated with the aid of a jigsaw. Cutting is made easy by the dashed lines on the component overlay.

The construction of the transmitter is unlikely to cause problems. Mount IC_{4} as the last component, and then do a careful check on your soldering work. To test the transmitter, temporarily connect 'ordinary' LEDs, for instance, red ones, instead of the IR LEDs. The LEDs should light briefly when S_{1} is pressed. If this works, mount the IR LEDs, and you can safely assume that the transmitter is func-

Fig. 5. Prototype of the infra-red transmitter.
tional. As a matter of course, the IR LEDs are fitted in a position that allows them to radiate their invisible light in one, common, direction.

Although the transmitter may be fitted in almost any small, plastic case with room for the PCB and the battery, the receiver must be housed in an enclosure which is electrically safe. If you wish, the receiver and the power supply may be fitted in separate cases, when a three-wire cable is used to interconnect these units.

The construction of the receiver is along the same general lines as that of the transmitter, i.e., the ICs should be fitted last. The LED indicator ($D_{1}-R_{4}$) is very useful for testing the receiver. Connect the $5-\mathrm{V}$ supply to the receiver, point the transmitter at the IR receiver, IC_{5}, and press S_{1} repeatedly. LED D_{1} should go on and off. Increase
the distance between the transmitter and the receiver, and adjust P_{1} until no further increase can be achieved.

Since the power supply PCB carries the mains voltage at several points, it must be mounted with great attention paid to electrical safety. All mains carrying wires should be properly isolated using heat-shrink sleeving. Also be sure to use grommets and strain reliefs on the mains cables that enter the case.

The power supply section is the simplest to test: you only have to check if the relay operates (clicks), and D_{1} goes on or off, when the transmit key is pressed. If that works, the load to be switched may be connected to terminal block K_{1} for a 'final test'. The maximum load power that can be switched is $1,000 \mathrm{~W}$.
(936066)

Fig. 6. Fully populated receiver and power supply boards.

PLL-CONTROLLED RAMP GENERATOR

TYhe CD4046 is an integrated phase-locked loop (PLL) with integral voltage-controlled oscillator (VCO) that is used in many digital circuits. In the present circuit, the VCO is used to generate a sawtooth signal. Normally, the VCO produces a triangular signal that is compared with an external digital signal. The VCO in the standard 4046 can be used for digital signals up to 1 MHz ; in the HC
or HCT version it is usable up to 38 MHz .

In the present circuit, the VCO generates a triangular signal whose rise time is 1000 times longer than its decay time: actually, a sawtooth signal.

Figure 1 shows a section of the internal structure of the 4046, while the complete circuit of the generator is given in Fig. 2. The single capacitor normally connected between
pins 6 and 7 of the chip is replaced by two capacitors, C_{1} and C_{2}, whose values have a ratio of $1000: 1$. Capacitor C_{2} is discharged rapidly through T_{1}, which is switched on and off by the signal from the VCO. The capacitor is charged by a FET in the 4046 that functions as a current source.

The frequency at which T_{1} is switched is, of course, also the frequency of the sawtooth sig-
nal. It can be set with P_{1}, with values as shown, between 20 kHz and 200 kHz .

Since the output is connected directly to the timing section of the circuit, a buffer stage, consisting of a simple FET or operational amplifier, may prove desirable.

The circuit draws a current of about 3 mA .

Design: M.S. Nagaraj
[944019]

1

2

POINTS CONTROL FOR MODEL RAILWAY

Electric points of a model railway system contain two small magnets. To set the points in a given position, one of these magnets must be energized briefly (say, 0.5 s). Any electronic control must, therefore, translate a a change in logic level into a short pulse.

In the present circuit, the digital input signal is applied to XOR gates $\mathrm{IC}_{1 \mathrm{a}}$ (pin 1) and $\mathrm{IC}_{1 \mathrm{~b}}$ (which functions as an inverter) and to $A N D$ gate $\mathrm{IC}_{2 \mathrm{a}}$. The input signal is also applied to the other input of $\mathrm{IC}_{1 \mathrm{a}}(\operatorname{pin} 2)$ via a delay network, $\mathrm{R}_{1}-\mathrm{C}_{1}$. As long as the input signal is constant (whether 1 or 0), the levels at the inputs of $\mathrm{IC}_{1 \mathrm{a}}$ are equal and the output, pin 3, is low. The AND gates, $\mathrm{IC}_{2 \mathrm{a}}$ and $\mathrm{IC}_{2 \mathrm{~b}}$, have at least one low level at their

inputs, so that their outputs are also low and the transistors, T_{1} and T_{2}, are off.

When the level of the input signal changes, the output of $\mathrm{IC}_{1 \mathrm{a}}$ is high during the time C_{1}
is being charged. If the input level changes to 1 , the output of $\mathrm{IC}_{2 \mathrm{a}}$ becomes high; if it changes to 0 , the output of $\mathrm{IC}_{2 \mathrm{~b}}$ goes high (because the input is inverted by $\mathrm{IC}_{1 \mathrm{~b}}$).

Depending on which AND gate has a high output, relay Re_{1} or Re_{2} is energized by T_{1} or T_{2} respectively. The darlington transistor can switch up to 1 A , which for most points is more than adequate.

It is important that HC types are used for IC_{1} and IC_{2}, because these ensure that the switch-over point is close to half the supply voltage. If standard types are used, T_{1} will conduct for much longer than T_{2}.

The supply voltage for the points relays should be about 15 V .

Design: M. Averkvist
[944023]

REAR WIPER INTERVAL SWITCH

Many cars have a rear wiper that is controlled by a switch with a makebreak combination. In modern cars, the wiper is operated simply by pressing a push-button (with a make contact). In such a case, there is an electronic circuit between the switch and wiper motor, to which an interval circuit can be added. The present circuit allows the time interval to be set between 2 s and 22 s with a potmeter. Operation of the wiper remains via the pushbutton. If this button is pressed briefly, the wiper travels once and then stops; if the button is held down for more than 2 s , the interval circuit comes into operation. Pressing the button briefly again switches off the interval circuit. The advantage of the design is that the existing push button is used: it needs no additional switches as many other designs do.

In the diagram of Fig. 1, S_{1} is the existing push-button. When this is pressed, T_{1}, which functions as an inverter, is on. The level at pin 1 of $\mathrm{IC}_{1 \mathrm{a}}$ is then pulled low via debounce network $\mathrm{R}_{4}-\mathrm{C}_{1}-\mathrm{D}_{1}-\mathrm{D}_{2}$, whereupon monostable multivibrator (MMV) $\mathrm{IC}_{1 \mathrm{a}}-\mathrm{IC}_{1 \mathrm{~b}}$ is started. Its mono time is determined by $R_{5}-C_{2}$, which here is about 2 s .

At the same time that the MMV is started, D-type bistable $\mathrm{IC}_{2 \mathrm{a}}$ is set via C_{3}, whereupon pin 2 goes low. This results in the output of $\mathrm{IC}_{1 \mathrm{c}}$ going high: the relay is then energized via $\mathrm{IC}_{1 \mathrm{~d}}$ and T_{2} for as long as S_{1} is pressed.

After the mono time has elapsed, the output of $\mathrm{IC}_{1 \mathrm{~b}}$ goes high again and the bistable receives a clock pulse. At that instant, the status of S_{1} is read in via the D-input of $\mathrm{IC}_{1 \mathrm{la}}$. If S_{1} was pressed briefly, a logic is written and pin 2 remains low. This means that the relay can not be energized, so that the wiper makes only sweep.

If S_{1} was depressed when the bistable was clocked,

1

pin 2 goes high and astable multivibrator (AMV) $\mathrm{IC}_{1 \mathrm{c}}$ is enabled. The relay is energized briefly after every few seconds, depending on the position of P_{1}, so that the wiper sweeps again and again. That situation persists until S_{1} is pressed again. The bistable is then reset and $\mathrm{IC}_{1 \mathrm{c}}$ ceases conducting.

Network $\mathrm{R}_{6}-\mathrm{C}_{4}$ provides a power-on reset

The power supply has several provisions for keeping interference on the car's electrical system from the present circuit. Inductor L_{1} blocks high-frequency interference pulses, while zener diode D_{6} ensures that the level of signals filtered out by L_{1} does not rise above 27 V .

Figure 2 shows how the circuit is connected in the car (here a Renault Espace). The connection between push-button switch and
wiper motor is broken, whereupon the two resulting wires are soldered to points A and B.

If one of the terminals of the push-button switch is connected to ground, it functions as S_{2} in the circuit: R_{1}, R_{2} and T_{1} can then be omit-
ted. The pole contact of Re_{1} is then connected to ground, while the switching contact is linked to the wiper motor.

The only item that has to be fitted on or near the dashboard is the knob of P_{1}.

Design: J. Seyler
[944095]

SMALL LOOP ANTENNAS FOR MW AM BCB, LF AND VLF RECEPTION

PART 2 (FINAL): PRACTICAL CONSTRUCTION

Abstract

Last month we examined the basic theory of loop antennas, and demonstrated some of the basic forms of loop antenna, resonating methods and coupling methods. In this second and final installment we will take a look at the actual construction of practical loop antennas, some representative loop preamplifier circuits, and a couple of interesting, if odd, applications of loop antennas.

By Joseph J. Carr, B.Sc., M.S.E.E.

Loop construction

Discussing antennas is all well and good, and indeed somewhat intellectually satisfying, but, as they say, 'the devil is in the details'. Unless the loop antenna is to remain a theoretical construct you read about in this magazine, it must be somehow rendered into practical form. And that is where the going can get a might sticky.

Hoop loops

Perhaps the stickiest form of loop to make is the low frequency circular loop. At higher frequencies, a single length of RG52/U coaxial cable can be formed into a satisfactory single-turn loop antenna. Indeed, the amateur radio literature contains numerous examples of 14 through 54 MHz amateur band portable 'fox hunting' RDF loop antennas made from coaxial cable. At lower frequencies, however, the problem becomes a bit more difficult, although not impossible as you will soon see.

A solution that I found is shown in Fig. 13a and Fig. 13b. A schematic of the hoop loop is shown in Fig. 13a, while the actual antenna that I built is shown in Fig. 13b sitting at my ham radio station. A black plastic box contains a preamplifier and resonating capacitor (box should have been metal, by the way).

The core of this loop construction idea came to me while visiting a crafts store frequented by my wife: it is an embroidery hoop. These products are two-piece circular wooden or plastic hoops sized such that one fits inside the other. The
larger outer hoop is broken at one point, and fitted there with a thumbscrew assembly for tightening the outer loop against the inner loop in order to hold fast the fabric the embroiderist is working on.

The first version that I built used multi-conductor ribbon cable with each wire cross-connected to its adjacent mate (more later). In Fig. 13b you can see the outer edge of the ribbon cable protruding beyond the width of the wooden hoop.

Picture frame loop

Another approach is the planar wound loop of Fig. 14. This loop antenna was built with supplies from the same crafts store, but this time wooden picture frame material was used. The frame material is intended for do-it-yourself framers, and comes in 2 -foot and 3 -foot lengths. Each length is cut with tongue and groove, and slanted 45 degrees at each end, so that they joined to form either a longer straight section or a right angle joint. I used four 2 -foot sections to form the square loop shown in Fig. 14.

The winding of the loop antenna in Fig. 14 is ribbon cable, as before, but in this case it is thumb tacked to the wooden frame. Care must be taken to push the thumb tacks through the ribbon cable between conductors in to not harm them. I could discern no effect on the performance of the loop antenna from the thumbtacks passing through the cable. Note that the cable is folded over on itself at each corner in order to make the turn. This also had little or no noticeable effect on the performance, although I should

Fig. 13. Embroidery hoop loop antenna: (a) schematic; (b) photo.
imagine that performance deteriorates at least somewhat.

Ribbon cable windings

The previous two antennas, and one to be shown shortly, use computer ribbon cable as the antenna windings. The idea is to cross-connect wires in order to form

Fig. 14. Picture frame loop antenna.

Fig. 15. Cross-connection of ribbon cable conductors to form a continuous loop.
a continuous loop. In the 50 -conductor version shown in Fig. 15, the connections to the loop at wires 1 and 50. At the beginning of the loop, the other end of wire no. 1 is soldered to wire no. 2 , the other end of no. 2 to no. 3 and so on until one end of no. 49 is soldered to one end of no. $50, \ldots$ with the remaining free end of no. 50 becoming the connection for the loop.

For small loops (under 1 metre squared), which use only a few turns, one
might want to purchase the pre-cut type of ribbon cable that has a single-row inline connector on each end (female on one end and male on the other). The connectors can be wrapped around the loop frame and then fastened together one pin off (see inset to Fig. 15). The loop end at ' A ' is a normal pin from the male connector, while that at ' B ' is a loose pin or wire inserted into the opposite end of the female connector.

Cross loop

Figure 16 shows several aspects of the traditional cross loop. I made several of these loops from spruce wood purchased from hobby shops that cater to model builders. The spruce is typically sold in the same display as balsa wood stock. The stock that I purchased from an American source was 24 inches (60 cm) by 3 inches (7.6 cm), and was $3 / 16$ inch $(4.8 \mathrm{~mm})$ thick. Two lengths were needed. Each length was notched at the middle ('c') half the width, so that the
two pieces could be fit together to form a cross as seen in Fig. 16b. At the ends of the wood pieces small slits, the width of a jeweller's or jigsaw blade, were cut to a depth of 6 mm . These slits hold the \#26 ($0.45-\mathrm{mm}$ dia.) enamelled wire that form the main loop. Holes 0.042 -inch ($1-\mathrm{mm}$) in diameter are drilled 12 mm from each end, in the centre of the piece. These holes are for the single turn of the coupling loop.

Figure 16b shows the basic assembled structure of the cross loop. At the junction of the two pieces a set of four 1cm square stiffeners are glued into place. For better strength, a small screw passing through stiffeners on opposite sides of the same wooden member might be in order.

Figure 16c shows the finished loop with the wires strung. The support for the loop (besides the dead pine tree beside my house) is a $2.5-\mathrm{cm}$ wooden dowel about 1.5 metres in length. This antenna proved quite useful on $75 / 80$ metre ham

Fig. 16. Cross loop antenna: (a) form of each element; (b) assembly; (c) photo; (d) improved form.
bands, and could be used for fox hunting applications.

Subsequent use of this antenna proved the design to be mechanically weaker than I prefer. In order to overcome this defect, I added the corner gussets and a centre plate gusset, as shown in Fig. 16d. The gussets were cut with 45 -degree angles from the same type of stock as formed the cross pieces. Additional 1-cm pieces can be placed behind the corner gussets to improve stability, if necessary.

Large box loop

At VLF frequencies a large box loop is sometimes in order. Loops with dimensions of 1.5 to 3 metres squared are found in the literature. Large square loops are somewhat more difficult to build because mechanical stability becomes a larger issue, especially when the loop is installed outdoors. When wind is a factor, the 'sail area' of the loop becomes a serious issue. In this section we will take a look at a large box loop made with substantial materials (Fig. 17).

The basic design of the loop is a square frame stabilized by corner gussets, as shown in Fig. 17. The sectioned view is shown in the inset. The sides of the elements ('A') are made from corner moulding of the sort sold to homeowners at do-it-yourself lumber stores. Use $0.625-$ inch $(1.6-\mathrm{cm})$ to 1 -inch $(2.54-\mathrm{cm})$ stock. The stock is glued and screwed to the backplate ('B'), forming a U-shaped channel. The backplate can be anything from $0.25(6 \mathrm{~mm})$ to 0.625 inch (1.6 cm) thick, and as wide as needed to accommodate the moulding and the wires (' D '). The wire is laid into the channel, and can be either wound enamelled wire or ribbon cable. In the case of the ribbon cable, for VLF operation, two or more layers of ribbon cable can be wound over top one

Fig. 17. Form of large loop antenna.

Fig. 18. Low capacitance winding separates groups of conductors.
another (although this approach can seriously increase stray capacitance).

If the loop antenna is to be shielded (a good idea), then line the U-shaped channel with copper foil ('C') prior to installing the wire. Once the wire ('D') is installed, inspected and tested, then the free foil ends can be folded over on itself and soldered together, completing the shield. Keep in mind to leave a $1-2 \mathrm{~cm}$ gap in the foil shield opposite the feedpoint of the loop.

Once the loop is completed, cement a cover (' E ') over the U-channel. This cover can be of the same stock as the backplate ('B'), although thinner stock would also suffice. The cover plate can be slotted at the feedpoint in order to bring the cable into the tuning box, where all connections are made and both the tuning capacitor and preamplifier (if either are used) are located.

Reducing stray capacitance

All coils have a certain amount of unwanted capacitance along with the normal inductance. This stray capacitance makes the coil self-resonant at some frequency that is hopefully far higher than the normal operating frequencies. Loop antennas are no exception, and can exhibit rather large stray capacitance numbers.

The stray capacitance does not normally bother loop constructors, and indeed may help. For example, when the variable tuning capacitor (400 pF or so) is insufficient to resonate the loop at some desired frequency. The stray capacitance of the loop may well permit use of smaller add-on capacitors to achieve resonance. But at other times, such as when the self-resonant point is forced too low,

Fig. 19. Coaxial cable 100 kHz loop: (a) schematic. Note that the centre conductor of the far end is connected to the shield at the feedpoint; (b) close up.
the stray capacitance has a bad effect on operation of the loop.

Conversations with some radiosolar observers (Taylor and Stokes 1992), while researching another article, showed me that stray capacitance was a big problem for them ... and one which they had overcome. A typical 20 to 30 kHz VLF loop used by radiosolar observers to detect sudden ionospheric disturbances (SIDs) are square, 1 to 2 metres on a side, and wound with 100 to 150 turns of wire. They use an arrangement similar to Fig. 18 to reduce the stray capacitance effect. Whether ribbon cable or free winding is used, the
windings are separated into groups of 20 to 50 turns, and each group is spaced about 2 cm from the adjacent groups. All of the groups are connected in series with each other in order to form a single continuous loop antenna.

Coaxial cable 100 KHz loop

A reader wrote to me and provided the design of Fig. 19 (Ingram 1993). The original antenna was designed to receive LORAN-C navigation signals in the vicinity of 100 kHz . The antenna element consists of 16 turns of RG-59/U 75- Ω coaxial cable (in Fig. 19a only one turn is shown), on an average diameter of 2 metres, connected such that the centre conductor of the last turn is soldered to the outer shield of the first turn at the feedpoint. The introductory photograph with Part 1 and the drawing in Fig. 19b show the mechanical structure of this antenna. Coupling is provided through an 8:1000 Ω audio transformer. Although a bit large, the coaxial cable antenna should provide very good, low-noise reception because of the Faraday shield manner of the construction. The designer claimed that a $500-\mathrm{kW} 100-\mathrm{kHz}$ station at a distance of nearly 500 km produced a signal of $1,000 \mu \mathrm{~V}$ into the $50-\Omega$ input of the receiver.

Coupled ferri-loop

A loop antenna that is a modification of one of Marris' designs (Marris 1992) is shown in Fig. 20. The circuit is shown in Fig. 20a and the actual antenna is in Fig.20b. This antenna is made by embedding $7.5-$ inch ($19-\mathrm{cm}$) ferrite rods in $10-$ inch ($25.4-\mathrm{cm}$) lengths of PVC plumbing pipe. Each ferrite rod is wrapped with electrical or masking tape to support it when it is force-fit ('gently') into the pipe. I found that a $1-\mathrm{cm}$ diameter rod, when inserted into a $2.5-\mathrm{cm}$ o.d. pipe, required about 14 turns of 3-M brand black electrical tape to hold it firm when pressed into the pipe.

The windings consist of whatever number of turns are required for operation at the desired frequency. In an antenna meant to work in the 2 to $5-\mathrm{MHz}$ region, including 75/80-metres per Marris' design, I used ten turns of wire, and the ferrite rods were the $\mu=800$ type. Lower frequencies would require higher number of turns, and possibly the $\mu=1,200$ or $\mu=2,000$ ferrite rods.

Three of the four sides of the ferri-loop are identical to each other, and are similar to Marris' design. The sides are held together with cemented 90 -degree PVC pipe elbows. The fourth side, however, differs from the other three. It is fitted with a tee-connector. The winding on this side is split into two halves of five turns each. Like the other windings, these are exterior to the PVC pipe. The coupling winding $\left(L_{5}\right)$ consists of 5 turns of wire wound directly on the ferrite rod that forms $L_{1 A}$ and $L_{1 B}$. The connections to L_{5}

Fig. 20. Ferriform antenna: (a) schematic; (b) photo.
are connected to very thin shielded wire or coaxial cable, and routed to the receiver or preamplifier.

Loop preamplifier circuits

The signal levels obtained by loops is quite low, even when the loop is tuned to the received frequency. As a result, it is common practice to boost loop output using a preamplifier stage. Although almost any preamplifier will suffice, if it cover the desired frequency range, there are several designs which seem most popular, and these will be discussed below.

Whichever amplifier is selected, it must be capable of amplifying the range of frequencies covered by the loop. The amplifier that might be right for the VLF amplifier may or may not also be suitable for operation in the LF or MW portion of the spectrum. Several devices present themselves quite well in this respect, however. For example, the MiniCircuits MAR-x series of MMIC chips may be designed for VHF through lowmicrowave applications, but they also work well at VLF through HF as well. Similarly, some specialist integrated circuits houses, such as Burr-Brown, offer operational amplifiers and operational transconductance amplifiers with gainbandwidth products of $150,200,350$ and 500 MHz . These amplifiers can easily be used at VLF through MW frequencies. Another Burr-Brown product is the 35 MHz VCA- 610 voltage controlled amplifier. This device features a high impedance input, a low impedance output, and is voltage controllable over a range of ± 40 gain for a control voltage range of $\pm 2 \mathrm{~V}$. The VCA-610 was designed for ultrasonic medical imaging applications at frequencies similar to those used by VLF through MW radio stations.

As appealing as the above approaches might be, however, except for the MAR-x chips these solutions are also a bit expensive for hobbyist applications. So let us now turn our attention to some circuits using easy-to-obtain components that are low in cost.

Figure 21 shows the circuit of a loop antenna preamplifier that can be built

Fig. 21. Single-ended loop preamplifier.
with ordinary hobbyist grade components, yet functions at frequencies up to 70 kHz or so. This circuit uses an ordinary garden variety NPN silicon transistor for amplification. I have used 2 N2222, 2N3904 and 2N4401 (latter preferred) for this application, all successfully. The biasing is the ordinary resistance voltage divider $\left(R_{1}-R_{2}\right)$ with emitter stabilization $\left(\mathrm{R}_{3}\right)$.

The capacitor across resistor R_{3} is set to have a reactance at the lowest operating frequency of $<0.1 \mathrm{R}_{3}$, or 47Ω. The idea behind setting the value of C_{2} is to keep the a.c. path to ground as low a reactance as possible, while maintaining the d.c. level caused by the current flow in R_{3}. In practice, this goal is very easy to achieve. At 10 kHz , for example, a $1-\mu \mathrm{F}$ capacitor has a reactance less than 16Ω, so falls well within the $\mathrm{R} / 10$ rule of thumb. Using a $2.2 \mu \mathrm{~F}$ or $3.3 \mu \mathrm{~F}$ comes closer to a more ideal $\mathrm{R} / 100$ rule.

For VLF receivers in the $<100-\mathrm{kHz}$ range, almost any electrolytic capacitor will suffice for C_{2}, although tantalums are preferred. At higher frequencies, however, other forms of capacitor are in order. The Panasonic V-series capacitors are available in values up to $1 \mu \mathrm{~F}$, but are not electrolytics (and thus are not polarity sensitive). These capacitors make a better choice for higher frequency units. Also, some builders actually parallel a $1 \mu \mathrm{~F}$ tantalum with a $0.1 \mu \mathrm{~F}$ disk ceramic for wider frequency coverage. For the $<70 \mathrm{kHz}$ bandwidth of this circuit, however, a single $1 \mu \mathrm{~F}$ tantalum capacitor seems sufficient.

Some people who are located close to AM BCB stations, or other large signal sources, may wish to control the gain of the front-end by deleting C_{2} altogether. 'Whistler' hunters, i.e., those who seek to receive natural radio signals (Mideke 1992), often leave the emitter resistor of the first stage unbypassed for exactly this reason. It cuts the gain, but is also cuts the level of the interfering signal.

Transformers Tr_{1} and Tr_{2} are ordinary transistor radio audio transformers. In the circuit shown here, $\operatorname{Tr} 1$ is an audio output transformer used in reverse; i.e., the $8-\Omega$ winding is connected to the loop and the $1,000-\Omega$ winding is connected to the input of the amplifier. In some loop antennas, a 1000:1000 Ω transformer is used to couple the loop to the receiver or preamplifier, and can be used in place of Tr_{1}.

Both Tr_{1} and Tr_{2} can be ordinary transistor radio grade transformers for work up to 70 kHz or so. At frequencies to 150 kHz , however, these transformers must be replaced by high grade commercial audio transformers that are guaranteed to be $\pm 1 \mathrm{~dB}$ to that frequency. Several such transformers are seen in commercial electronics parts catalogs.

Two output circuit configurations are popular for this preamplifier. One is the transformer coupled version shown in
the main circuit, while the other is the resistor-capacitor coupled version shown in the inset. The $R C$ coupled version replaces the transformer with a $10-\mathrm{k} \Omega$ resistor, and couples the signal to the next stage (or receiver) through a $1-\mu \mathrm{F}$ capacitor $\left(\mathrm{C}_{4}\right)$.

Cascode preamplifier

A cascode two-stage amplifier is shown in Fig. 22. This circuit uses a junction field effect transistor $\left(\mathrm{T}_{1}\right)$ at the input, and an NPN silicon transistor for the output stage. Common devices such as MPF102 for T1 and 2N4401 for T_{2} are sufficient. Transistors T_{1} and T_{2} are di-rect-coupled, with d.c. bias applied to T_{2} through $\mathrm{R}_{2}-\mathrm{R}_{3}$.

Fig. 22. Cascode loop preamplifier.

The input circuit in this example is tuned to a specific frequency, although in some cases a transformer arrangement such as shown earlier in Fig. 9 might also be used. The inductance needed to tune the loop may be a little hard to come by at the lowest frequencies, in which case two or more coils can be connected in series. In some cases, a xenon tube trigger transformer, such as Maplin JE15R, provides a part of the inductance $(6 \mu \mathrm{H})$, and the rest can be made up with coils in the 10 to $100 \mu \mathrm{H}$ range. The transformer provides the coupling loop needed to isolate the amplifier from the loop.

Alternatively, the loop itself can be used as the inductor for this circuit. Such an arrangement is not at all uncommon, and works out well, especially when the loop antenna is not located at a remote site from the amplifier (co-location is the usual, and best, practice).

Another alternative is to provide a high impedance antenna input to the preamplifier. If you plan to use a whip, random length wire, or other non-loop antenna, then connecting the antenna to the top of the resonant $L C$ tank circuit
through a small value disk ceramic or mica capacitor will achieve your purpose.

Push-pull and differential preamplifiers

A lot of loop antenna builders prefer to use push-pull or differential amplifiers for the loop preamplifier job. Any number of possibilities present themselves. For example, an operational amplifier in the differential configuration can be used, if it has a sufficient gain-bandwidth product. Devices such as the CA3140 (and related chips) or the Signetics NE5534 device, are easily available and will work well into the VLF region. Also, devices such as the CA3028, which is popular in amateur radio circles, is also useful for this purpose.

Figure 23 shows a circuit based on common JFET transistors. Each transistor operates in the common source configuration, with the inputs tied to the loop outputs and loop shield. The JFET outputs are combined in a trifilar wound three-winding transformer (Tr_{1}). The Mini-Circuits RF transformers can be used in this application, although at VLF they have a substantial loss (-3 dB or so). One can also wind a variant of Tr_{1} using either toroidal or bazooka forms made of low frequency ferrites. The number of turns will depend on the frequency used, and some experimentation is needed. I found that 50 trifilar turns of \#30 (0.31 mm dia.) enamelled wire over an FT-68-72 form worked well at 60 kHz in a WWVB receiver, but I have not checked it at frequencies lower than 60 kHz .

Special loop applications

The loop antenna is sufficiently different from other antennas to suggest some in-

Fig. 23. Push-pull loop preamplifier.
teresting applications. The normal loop pattern is a figure- 8 with very deep nulls being present at the broadside aspect to the antenna. The use in nulling interfering signals and in radio direction finding were described earlier. In this section we will describe two additional applications: the sports fan's loop and the monodirectional loop.

Sports fan's loop

This application uses a special form of loop antenna to boost the performance of AM BCB portable radios. It apparently originated when sports fans wanted to listen to ball games on distant AM stations that were normally out of the range of their portable receivers. The loop antenna is a square box loop, typically 60 to 150 cm on each side. A $100-\mathrm{cm}$ square loop, with 8 turns of wire spaced to occupy 2.5 cm , produces an inductance of about $330 \mu \mathrm{H}$, which can be resonated to 550 kHz with 240 pF . No preamplifier is needed, although the resonating capacitor should be placed inside of a shielded metal box.

Fig. 24. Sports fans' loop.

The radio in the sports fan's loop is placed such that its internal loop stick receives in the same direction as the square loop (see Fig. 24). While a square loop has its nulls perpendicular (or broadside) to the loop, the loopstick has its nulls off the ends. Signals picked up by the larger loop are coupled into the loopstick antenna, providing a stronger signal for the radio to receive than is normally available with the loopstick alone.

At first, the version that I built (while researching my book Joe Carr's Receiving Antenna Handbook) did not work, so I wondered at the stories I had been told. However, the problem was soon found out: I had failed to know where the loopstick was inside the radio. I had assumed it was along the top of the radio, and ran from left-to-right relative to the front panel. However, it was actually mounted vertically along the right side of the radio near the tuning capacitor. Replacing the radio with one that

Fig. 25. (a) Monodirectional 'cardioid' pattern, (b) omni/monodirectional combination circuit.
had the loopstick antenna as shown in Fig. 24 solved the problem.

Monodirectional reception

The normal loop pattern is bidirectional, figure- 8 , with deep nulls broadside to the loop. This pattern permits the antenna to null out, i.e. attenuate, any signal in the direction that the nulls point. Unfortunately, the bidirectionality causes two problems. In radio direction finding there is a directional ambiguity because RDF is typically done by pointing the null at the station until minimum signal level is achieved. The line perpendicular to the loop face contains the location of the station, but the station could be either in front of or behind the loop. In some cases, RDFers will take the directional measurement from three locations, and note where the three lines cross, which is the location of the station to a good precision. But in other cases, multiple location measurements are not feasible. In those applications, a monodirectional loop with but one null is needed.

Another problem caused by the loop is seen not in RDF, but when the loop user is at a fixed location that is on or near a
line that runs between two stations. If you desire to listen to one of the stations, and the other is strong enough to cause interference, then nulling one with the loop also nulls the other. Assuming that the ratio of the signal levels is not such that nulling both places one below some comfortable threshold (a situation that I have never seen), one needs a monodirectional loop that has but one null.

There are two approaches to solving this problem. The classic approach is shown in Fig. 25. In this situation, the loop is paired with a small whip antenna used as a sense element, resulting in the cardioid pattern of Fig. 25a. The signal from the omnidirectional loop antenna is combined with the signal from the bidirectional loop antenna, in a network, as shown in Fig. 25b.

In use, the null is pointed at the offending station, while the maxima is pointed at the desired station.

The other approach is to use a spoiler loop in the manner of Fig. 26 (Levintow n.d.). Here we have the undesirable situation of a pair of stations on the same or adjacent channels located such that the receiving site is on the line between the two stations. Two antennas are needed: the small ferrite loopstick and a 60 to 150 cm resonant box loop. The ferrite antenna can be a special antenna coupled to the receiver, e.g., when a receiver without an internal antenna is used, or it can be the normal loopstick inside of a portable receiver. The loopstick is placed such that it is broadside to the desired station. The box loop is placed 30 to 150 cm away from the loopstick, and in the direction of the offending station; the exact distance must be found experimentally for each situation. When the box loop is rotated through an angle of about 30 to 90 degrees with respect to the line between radio stations, a point will be found at which the offending station is nulled.
(940028-2)

Fig. 26. Use of a secondary loop to null interference.

[^0]: Design: K.M. Walraven

