Fusude FHEMROMIM THE INTERNATIONAL ELECTRONICS MAGAZINE

BUMPER CHRISTMAS ISSUE

 With over 50 consturuction projectsMedlum power HEXFET Copplifier AF RMS Volimeter Choosing component volues for
LCresoncint Gircuitis

SCART
switching box

MEDIUM POWER HEXFET AMPLIFIER

Design by T. Giesberts

Abstract

In spite of their relatively modest TO220 case, the International Rectifier HEXFETS used in the present 60-watt output amplifier can cope with fairly large voltages and currents. The amplifier is absolutely symmetrical from input to output. Its mechanical design is such that it can be accommodated on a fairly small printed-circuit board, including the electrolytic capacitors of the power supply.

TThe design objective was to arrive at a not too complex unit that nevertheless offered excellent performance, was fairly simple to build and could be reproduced relatively easily. The result is a straightforward amplifier without any unnecessary gimmicks.

A bipolar transistor may be considered a current-amplifying device that enables a (relatively) large current to be controlled by a much smaller one. A field-effect transistor (FET) behaves differently: it is a sort of variable resistance whose conduction is controlled by a voltage. It follows that the drives of these devices is quite different: an important consideration in the design of an output amplifier. A bipolar transistor needs a base current before it can function, whereas a FET can be driven almost without any energy. All it needs is a control voltage; the current it draws is negligible. When power FETS first came on to the market, many designers thought that they would simplify the design of output amplifiers beyond belief. That quickly proved to be not so, however, because power FETS have a fairly large capacitance between the gate and the drain/source channel (sometimes of the order of a few nanofards). This means that at high audio frequencies the driver stages need to deliver fairly large transfer currents to keep the bandwidth sufficiently large.

It may well be asked what advantage(s) aFET offers. In a bipolar power transistor, it is difficult to combine high voltage, large current, and wide bandwidth, because its operation must remain within the Safe Operating Area-sOA. It is not enough to just look at the peak voltage and current in the relevant data sheet. By virtue of modern production techniques, FETS can be fabricated that can handle high voltages (100 V and more) and, in spite of their modest dimensions, large currents. It is, therefore, much simpler to design an out-
put amplifier with reasonable power output with power FETS than with powertransistors. Of course, there are other requirements as well, such as slew rate and matching of complementary semiconductors ...

The circuit

A symmetrical design has the advantage that it minimizes problems with distortion, particularly that associated with even harmonics. Therefore, the input stages consist of two differential amplifiers. $T_{1}-T_{2}$ and $\mathrm{T}_{3}-\mathrm{T}_{4}$. These use discrete transistors, not expensive dual devices, to keep the cost
down. Performance is excellent, particularly if the transistors are matched.

A differential amplifier is one of the best means of combining two electrical signals: here, the input signal and the feedback signal. The amplification of the stage is determined mainly by the ratio of the collector and emitter resistances (in the case of $\mathrm{T}_{1}-\mathrm{T}_{2}$ these are $\mathrm{R}_{9}, \mathrm{R}_{10}, \mathrm{R}_{11}$ and R_{12}). These form a sort of local feedback: limiting the amplification reduces the distortion.

Two $R C$ networks ($\mathrm{R}_{3}-\mathrm{C}_{3}$ and $\mathrm{R}_{4}-\mathrm{C}_{4}$) limit the bandwidth of the differential amplifiers and these determine, to a degree, the open-loop bandwidth of the entire amplifier (which is 6.5 kHz).

Brief technical data

Input sensitivity
Input impedance
Power output ($1 \mathrm{kHz}, 0.1 \% \mathrm{THD}$)
Music power (500 Hz burst, 5 cycles on 5 cycles off)
Power bandwidth (35 W into 8Ω)
Slew rate
Signal-to-noise ratio (1 W into 8Ω)
Harmonic distortion (1 W into 8Ω)
(60 W into 8Ω)
Intermodulation distortion
($50 \mathrm{~Hz}: 7 \mathrm{kHz} ; 4: 1$)
Dynamic intermodulation distortion
rectangular $3.15 \mathrm{kHz}+$ sine wave 15 kHz)
Damping factor (at 8Ω)
Supply voltage
Quiescent current (T_{12} and T_{13})

```
1 Vr.m.s.
\(48 \mathrm{k} \Omega\)
63 W into \(8 \Omega\)
105 W into \(4 \Omega\)
68 W into \(8 \Omega\)
120 W into \(4 \Omega\)
\(1.5 \mathrm{~Hz}-125 \mathrm{kHz}(+0 \mathrm{~dB},-3 \mathrm{~dB})\)
\(20 \mathrm{~V} \mu \mathrm{~s}^{-1}\) (with input filter)
\(>99 \mathrm{~dB}\) (A-weighted)
\(<0.006 \%\) ( 1 kHz )
\(<0.005 \%\) ( 1 kHz )
\(<0.05 \%\) ( \(20 \mathrm{~Hz}-20 \mathrm{kHz}\) )
\(<0.008 \%\) ( 35 W into \(8 \Omega\) )
```

$<0.003 \%$ (35 W into 8Ω)

```
>160(20 Hz-20 kHz)
\pm35 V
200 mA
```

The d.c. operating point of the differential amplifiers is provided by two current sources. Transistor T_{6}, in conjunction with R_{18} and D_{2}, provides a constant current of about 2 mA for $\mathrm{T}_{1}-\mathrm{T}_{2}$. Transistor T_{5}, with R_{17} and D_{1}, provides a similar current for $\mathrm{T}_{3}-\mathrm{T}_{4}$. The combination of a transistor and an LED creates a current source that is largely independent of temperature, since the temperature coefficients of the LED and the transistor are virtually the same. It is, however, necessary that these two components are thermally coupled (or nearly so) and they are, therefore, located side by side on the printed-circuit board.

In the input stage, C_{1} is followed by a low-pass section, $\mathrm{R}_{1}-\mathrm{C}_{2}$, which limits the bandwidth of the input to a value that the amplifier can handle. Resistor R_{2} is the base resistor of T_{1} and T_{3}. So far, this is all
pretty normal. Network $\mathrm{P}_{1}-\mathrm{R}_{7}-\mathrm{R}_{8}$ is somewhat out of the ordinary, however. It forms an offset control to adjust the direct voltage at the output of the amplifier to zero. Such a control is normally found after the input stage. The advantage of putting it before that stage is that the inputs of the differential amplifiers are exactly at earth potential, which means that the noise contribution of their base resistors is negligible.

The signals at the collectors of T_{1} and T_{3} are fed to pre-drivers T_{8} and T_{9}. Between these transistors is a variable zener' formed by T_{7} which, in conjunction with P_{2}, serves to set the quiescent current of the output FETS.

The output of the pre-drivers is applied to T_{10} and T_{11}, which drive HEXFETs T_{12} and T_{13}. This power section has local feedback
($\mathrm{R}_{30}-\mathrm{R}_{31}$).
The design of $\mathrm{T}_{10}-\mathrm{T}_{13}$ is a kind of compound output stage, since the drain of the power FETS is connected to the output terminal. Note that T_{12} is a p-channel FET and T_{13} an n-channel type. Therefore, the stage provides current amplification as well as voltage amplification. The voltage amplification is limited to $\times 3$ by the local feedback resistors $\left(\mathrm{R}_{30}-\mathrm{R}_{31}\right)$. Here again, this feedback serves to reduce the distortion. The overall feedback of the amplifier is provided by $\mathrm{R}_{5}-\mathrm{R}-\mathrm{C}_{5}$.

Fuses are provided in the source lines of the hexfets. Power fets have an inherent current limitation by virtue of their positive temperature coefficient: when the device gets hot, its drain-source resistance rises and this reduces the current through it. The fuses and this property pro-

Fig. 1. Circuit diagram of the medium power HEXFET amplifier.
vide adequate protection against brief short-circuits. Note that the hexfets used can handle peak currents of up to 75 A . Electrolytic capacitors C_{11} and $\mathrm{C}_{12}(10,000 \mu \mathrm{~F}$ each and part of the power supply) are located close to the FETS, so that the heavy currents have only a short path to follow.

At the output is a Boucherot network, $R_{32}-R_{33}-C_{10}$, that ensures an adequate load on the amplifier at high frequencies, since the impedance of the loudspeaker, because of its inductive character, is fairly high at high frequencies.

Inductor L_{1} limits any current peaks that may arise with capacitive loads.

The signal is finally applied to the loudspeaker, LS_{1}, via relay contact Re_{1}. The relay is not energized for a few seconds after the power is switched on to obviate any plops from the loudspeaker. Such plops are caused by brief variations in the direct supply voltage arising in the short period that the amplifier needs to reach its correct operating level.

The supply voltage for the relay is derived directly from the mains transformer via D_{3} and D_{4}. This has the advantage that the relay is deactuated, by virtue of the lowvalue of C_{13}, immediately the supply voltage fails. The delay in energizing the relay is provided by T_{14} in conjunction with R_{36} and C_{14}. It takes a few second before the potential across C_{14} has risen to a value at which T_{14} switches on. This darlington transistor requires a base voltage of not less than 1.2 V before it can conduct.

The power supply-see Fig. 2-is traditional, apart from the resistors, $\mathrm{R}_{5}-\mathrm{R}_{8}$ in the power lines. These limit, to some degree, the very large peak charging currents to electrolytic capacitors C_{11} and C_{12}. Moreover, together with these capacitors, they form a filter that prevents most spurious voltages from reaching the amplifier. Measurements on the prototype showed that this was particularly evident at frequencies below 500 Hz .

Construction

The design of the printed-circuit board for the amplifier (Fig. 4) takes good account of the large currents that flow in the amplifier. This has given rise to a couple of tracks being paralleled instead of combined, so that the effect of currents in the power section on the input stages is minimal.

Populating the board is straightforward. Although not strictly necessary, it is advisable to match the transistors used in the differential amplifiers. This may be done conveniently on an $h_{f_{f}}$ tester by measuring the amplification at a collector current of about 1 mA . If such a tester is not available, use a base resistor that results in a collector current of about 1 mA measured with a multimeter. With the same resistor, test a number of other transistors and note the collector currents. Mount the selected pairs on the board and pack them closely together with a 5 mm wide

The HEXFET structure

As implied, the HEXFET structure involves an hexagonal device geometry. At the core is a radically new hexagonal, cellular structure as illustrated. It is this hexagonal geometry, along with advanced MOS processing, that gives the HEXFET an on-state resistance, $\mathrm{R}_{\mathrm{DS} \text { on }}$, one-third of that possible with the best previous MOSFET technology, in a given die size.

A planar, non-V-groove structure, the HEXFET conducts current vertically. For high packaging density, it uses a silicon-gate structure. The density of the hexagonal source cells on the top surface of the silicon die is over half a million cells per square inch. Electrons flow from a source cell through the channel which is around the periphery of that cell and then into the drain body. The bottom surface of the drain body is in electrical and thermal contact with the holder.

The efficient hexagonal source pattern, the silicon gate, and advanced mos processing techniques combine to produce the HEXFET's unique performance.

Fig. 2. Circuit diagram of the power supply for the HEXFET amplifier.
copper ring (made from a piece of 12 mm copper water pipe) as shown in Fig. 5.

Inductor L_{1} consists of six turns, inner diameter $16 \mathrm{~mm}(5 / 8 \mathrm{in})$, of insulated copper wire $1.5 \mathrm{~mm}(1 / 16 \mathrm{in})$ thick.

The large transistors are located on one
side of the board, so that they can be fixed directly to the heat sink. They must be insulated with the aid of ceramic washers.

The two sizes indicated on the board for
T_{12} and T_{13} may be ignored: they are a
precaution for possible different types of
transistor at a later stage.
Connections from the power supply and to the loudspeaker are by means of terminal blocks that can be screwed on to the board.

Mount the two amplifier boards, mains

Fig. 3. Printed-circuit board for the medium power HEXFET amplifier.

Fig. 4. The differential amplifiers are clamped together with a (DIY) copper ring.
transformers and electrolytic capacitors in a suitable enclosure. The wiring diagram for one channel is given in Fig. 6.

It is advisable to measure the supply voltages before they are connected to the amplifiers. Also, turn P_{2} to maximum (wiper towards R_{33}) before connecting the power supply to the amplifiers. Set input presets P_{1} to the centre of their travel. A few seconds after the supply has been switched on, the relay should come on. Connect a multimeter (1 V direct voltage range) and adjust P_{1} until the meter reads zero (both channels!).

Switch the supply off again and insert a multimeter (1 A d.c. range) in one of the supply lines; do not substitute it for one of the fuses, since that would affect the operating point of the relevant power FET. Switch the supply on again, wait 5 - 10 minutes (when the current has stabilized) and adjust P_{2} for a meter reading of 330 mA . After about half an hour, the current will remain steady at about 230 mA . The quiescent current through the output transistors is then around 200 mA . Switch off the supply, remove the meter from the supply line and repeat the above procedure with the other channel.

Finally, recheck the direct voltages at the outputs of the amplifiers and, if necessary, readjust P_{1} slightly.

The loudspeakers must be 4 -ohm or 8 -ohm types, whose impedance must not drop below 3Ω. It is not permissible to connect two 4 -ohm units in parallel to the amplifier, because that would give problems when large drive signals are applied to the FETS.

Fig. 5. Top view of the completed amplifier with the enclosure removed.

Parts list (one channel)

Resistors:

$\mathrm{R}_{1}=1 \mathrm{k} \Omega$
$\mathrm{R}_{2}=47.5 \mathrm{k} \Omega, 1 \%$
$\mathrm{R}_{3}, \mathrm{R}_{4}=47 \Omega$
$\mathrm{R}_{5}=2.0 \mathrm{k} \Omega, 1 \%$
$\mathrm{R}_{6}=84.5 \Omega, 1 \%$
$\mathrm{R}_{7}, \mathrm{R}_{8}=10 \mathrm{M} \Omega$
$\mathrm{R}_{9}, \mathrm{R}_{10}, \mathrm{R}_{13}, \mathrm{R}_{14}=1.21 \mathrm{k} \Omega, 1 \%$
$\mathrm{R}_{11}, \mathrm{R}_{12}, \mathrm{R}_{15}, \mathrm{R}_{16}=22.1 \Omega, 1 \%$
$\mathrm{R}_{17}, \mathrm{R}_{18}=499 \Omega, 1 \%$
$\mathrm{R}_{19}=22 \mathrm{k} \Omega$
$\mathrm{R}_{20}=2.2 \mathrm{k} \Omega$
$\mathrm{R}_{21}=560 \Omega$
$\mathrm{R}_{22}, \mathrm{R}_{23}=56.2 \Omega, 1 \%$
$\mathrm{R}_{24}, \mathrm{R}_{27}=150 \Omega, 1 \%$
$\mathrm{R}_{25}, \mathrm{R}_{28}=15.0 \Omega, 1 \%$
$\mathrm{R}_{26}, \mathrm{R}_{29}=15 \Omega$

ors
$\mathrm{C}_{1}=2.2 \mu \mathrm{~F}, 50 \mathrm{~V}, \mathrm{MKT}$
$\mathrm{C}_{2}=1 \mathrm{nF}$
$\mathrm{C}_{3}, \mathrm{C}_{4}=2.7 \mathrm{nF}$
$\mathrm{C}_{5}=330 \mathrm{pF}$, polystyrene, axial
$\mathrm{C}_{6}=33 \mathrm{nF}$
$\mathrm{C}_{7}, \mathrm{C}_{8}=100 \mu \mathrm{~F}, 10 \mathrm{~V}$, radial
$\mathrm{C}_{9}=1 \mu \mathrm{~F}$
$\mathrm{C}_{10}=100 \mathrm{nF}$
$\mathrm{C}_{11}, \mathrm{C}_{12}=10,000 \mu \mathrm{~F}, 50 \mathrm{~V}$, radial, for PCB mounting
$\mathrm{C}_{13}=47 \mu \mathrm{~F}, 40 \mathrm{~V}$, radial
$\mathrm{C}_{14}=10 \mu \mathrm{~F}, 63 \mathrm{~V}$, radial

Inductors:

$\mathrm{L}_{1}=$ air-core, 0.1 mH (see text)

Semiconductors:

$\mathrm{D}_{1}, \mathrm{D}_{2}=3 \mathrm{~mm}$ LED, red (1.6 V drop at 3 mA)
$\mathrm{D}_{3}-\mathrm{D}_{5}=1 \mathrm{~N} 4003$
$\mathrm{D}_{6}=1 \mathrm{~N} 4148$
$\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{6}=\mathrm{BC} 550 \mathrm{C}$
$\mathrm{T}_{3}-\mathrm{T}_{5}=\mathrm{BC} 560 \mathrm{C}$
$\mathrm{T}_{7}, \mathrm{~T}_{9}, \mathrm{~T}_{10}=\mathrm{BD} 139$
$\mathrm{T}_{8}, \mathrm{~T}_{11}=\mathrm{BD} 140$
$\mathrm{T}_{12}=$ IRF9540
$\mathrm{T}_{13}=$ IRF540
$\mathrm{T}_{14}=\mathrm{BC} 617$

Miscellaneous:

$\mathrm{Re}_{1}=$ relay, $24 \mathrm{~V}, 1$ make contact (e.g., Siemens V23056-A0105-A101*)
$\mathrm{F}_{1}, \mathrm{~F}_{2}=$ fuse, 2.5 A , fast, with holder for PCB mounting
Ceramic washers (5) for $\mathrm{T}_{7}, \mathrm{~T}_{10}-\mathrm{T}_{13}$
Terminal block (5) (see text)
Heat sink, $0.6 \mathrm{KW}^{-1}$ (e.g., Fischer SK85**)
PCB No. 930102 (see p. 110)

Power supply:

Mains transformer, 2×25 V, 160 VA
Mains on-off switch with indicator Fuse 1.25 A, slow with holder Bridge rectifier Type B200C35000
Electrolytic capacitor (4), $10,000 \mu \mathrm{~F}, 50 \mathrm{~V}$
Resistor (8) $0.1 \Omega, 5 \mathrm{~W}$

* ElectroValue, 3 Central Trading Estate, Staines, TW18 4UX, L (0784) 442253. Private customers welcome.
** Dau (UK) Ltd, 7075 Barnham Road, Barnham, West Sussex PO22 OES. L (0243) 553031 . Trade only, but information as to your nearest dealer will be given by telephone.

Fig. 6. Wiring diagram of one channel of the medium power HEXFET amplifier.

535 CARD WITH EPROM EMULATOR (PART 2)

Although there is also a signal on the ACK line of the Centronics interface in emulator mode (unless JP6 is swapped), this of little consequence because the BUSY line is held high permanently in run mode. If you use P4.0
as an input, make sure that the line does not short-circuit the output of your application when 'emulator' mode is used. It is, therefore, recommended to drive P4.0 from an open-collector or open-drain output. This avoids the risk
of short-circuits, while a pull-up resistor is not required because it is already contained in the controller.

If you want to use the Centronics input in an application, do remember that the circuit is switched to emulator

Fig. 3a. Track layouts of the double-sided through-plated printed circuit board designed for the $\mathbf{5 3 5}$ system.
mode when a strobe pulse is received. Since it not normally possible to copy data into the data latch without making use of the strobe pulse, the jumper shown in the block diagram must be swapped to enable a program to be tested. Once that is done, the GAL can no longer switch the circuit to emulator mode. The same jumper is also swapped if EPROM instead of RAM is used for the program memory.

The 535 system

The circuit diagram of the 535 system, Fig. 2, is basically a worked out copy
of the block diagram, with only a few extra details that require explanations. Among these details are the test points marked with 'P's and the signal name.

The 535 board may be built in two versions: with emulator or without emulator. The version with emulator is typically used to test software for applications of the 535 board. Once the test and debugging phases have been completed successfully, the software may be burned into EPROM for use on a 535 system without an emulator function. The difference between the two versions is, of course, the presence of the parts required for the emulator
function. In a system without emulator function, components U5, U8, U9, RP1, ST6, R2, R5 and C24 may be omitted, while pins 8 and 9 of the socket for U9 are interconnected. Note, however, that the GAL (U5) and the PROM (U6) for this project are always supplied as a set, i.e., these parts can not be ordered separately.

As a consequence of the user being able to configure the system with or with an emulator function, provision must be made to use RAM or (EP)ROM respectively for the program memory. Because there are two differences in the pin order of $32-$ kByte RAMs and

Fig. 3b. Component mounting plan.

COMPONENTS LIST

seqment code

LCD_Base equ 8800 h
$\begin{array}{lll}\text { LCD_IWR } & \text { equ } & \text { LCD_Base }+0 \\ \text { LCD_DWR } & \text { equ } & \text { LCD_Base }+1 \\ \text { LCD_IRD } & \text { equ } & \text { LCD_Base }+2 \\ \text { LCD_DRD } & \text { equ } & \text { LCD_Base }+3\end{array}$

LCD_Wait	macro
Busy: mov	DPTR, \#LCD_IRD mbx jb
	ACC.7. Busy
	endm

```
LCD_Init
```

Initiated the LC-Display
Call without parameter at the beginning of the program

LCD_Init:
push DPH
push DPL
push ACC

mov	DPH, \#01Eh	; wait > 15 ms
mov	DPL, $\# 000 \mathrm{H}$	
LCD_K_waito:		
djnz	DPL, \$	
djnz	DPH, LCD_K_waito	
mov	DPTR, \#LCD_IWR	
mov	A, $\$ 00111000 \mathrm{~b}$; Function Set
movx	eDPTR, A	
mov	DPH, \#008h	; wait > 4,1ms
mov	DPL, $\# \mathrm{OOOH}$	
LCD_K_waitl:		
djnz	DPL, \$	
djnz	DPH, LCD_K_wait1	
mov	DPTR, \#LCD_IWR	
mov	A, $\$ 00111000 \mathrm{~b}$; Function Set
movx	eDPTR, A	
mov	DPH, \#001H	; wait > 100us
mov	DPL, \#033H	
LCD_K_wait2:		
djnz	DPL, \$	
djnz	DPH, LCD_K_wait2	
mov	DPTR, \#LCD_IWR	
mov movx	A, $\# 00111000 \mathrm{~b}$ eDPTR, A	; Function Set
LCD_Wait		
		; LCD busy?
mov	A, \#00000110b	; Entry Mode Set
mov	DPTR, \#LCD_IWR	; Instruction Write
movx	eDPTR, A	
LCD_Wait		; LCD busy?
mov	A, \#00001100b	;Display ON/OFF
mov	DPTR, \#LCD_IWR	; Instruction Write
movx	eDPTR, A	
LCD_Wait		;LCD busy?
mov	A, \#00000001b	; Clear Display
mov	DPTR, \#LCD_IWR	; Instruction Write
movx	@DPTR, A	
LCD_Wait		;LCD busy?
mov	A, $\# 10000000 \mathrm{~b}$; Set DD RAM Address
mov	DPTR, \#LCD_IWR	; Instruction Write
movx	eDPTR, A	;

pop ACC
pop DPL
pop DPH

LCD_Write_Char
Writes a Character on the LC-Display
Call with Parameter (Character) in ACC

```
LCD_Write_Char:
    push DPH
    push ACC
    LCD_Wait ;LCD busy?
    mov DPTR,#LCD_DWR ;Data Write
    movx eDPTR,A
    pop DPL
    pop DPH

Fig. 4. Example of an LCD driver for the 535 controller.

EPROMs, jumpers JP1 and JP2 are added. These jumpers may be set to RAM or EPROM, just like JP5 and JP6.

The use of the Centronics interface for the emulator function leaves the controller's serial interface free for your own applications. Note, however, that the controller is capable of receiving and generating TTL level signals only. A MAX232 single-chip TTL/RS232 level converter is, therefore, used to allow the controller to be connected to a standard RS232 port on a PC.

Apart from digital I/O ports, the SAB80C535 also has eight analogue inputs, which are connected to an onboard 12 -bit A-D (analogue-to-digital) converter. Jumpers \(\mathrm{JP}_{3}\) and \(\mathrm{JP}_{4}\) enable you to select either the supply voltage or an external voltage (max. 5 V ; via \(\mathrm{ST}_{1}\) ) as the ADC reference.

Finally, preset R4 acts as a contrast control for the LC display, which is connected to ST8.

\section*{Construction}

The complete circuit is easily accommodated on a single Eurocard-size ( \(100 \times 160 \mathrm{~mm}\) ) printed circuit board, which is double-sided and through plated. This board is available readymade through our Readers Services, together with the programmed GAL and PAL. The artwork for the 535 board is given in Fig. 3. Connectors ST1-ST4 are 'twins', while ST10 is fitted alongside the edge of the board to enable this to be fitted in a 19 -inch case, or to be connected to another board. Connectors ST1A to ST4A enable the connection of ST1-ST4 and ST9 to ST10 to be 'tailored' to requirements. This is useful when the card is to be connected to an existing system. If you are not bound by an existing system, simply make the connection go straight across the board using two press-on (IDC) sockets and a length of flatcable. The relevant pin connections are given in Table 2.

If it is desired to fit the board into a 19 -inch enclosure, special attention should be given to connectors STo, \(\mathrm{ST} 2(\mathrm{~A}), \mathrm{ST} 3(\mathrm{~A})\), ST 8 , and resistor R 4 . These parts are located close to the board edge, and make it impossible to use the card guides normally present in 19 -inch racks. You may just be lucky with ST8 and R4, but lacking space for the boxes, ST2(A) and ST3(A) will have to be changed into normal pin headers. Also, PCB terminal block STo may have to be turned \(180^{\circ}\) to enable the supply wires to be inserted from the centre of the board.

The connection order of 34 -way boxheader ST8 is identical to that of the Centronics connector, with the exception of two missing pins (36-way
box headers do not exist). This does not cause problems if you use a length of flatcable between ST8 and the Centronics connector, making sure that pin 1 on one connector goes to pin 1 of the other (use the single coloured wire on one side of the flatcable for this purpose). Pins 18 and 36 of the Centronics connector are not used. Also, remember that there is no pin-for-pin correspondence between the Centronics connector at the side of the 535 system and the 25 -way sub-D connector at the side of the PC. Therefore keep in mind that some wires will have to be crossed if you use a flatcable to establish the connection between ST8 and the PC's printer port. The best way to avoid all problems in this regard is to use a ready-made IBM PC parallel printer cable, which is often cheaper than two connectors and a length of flatcable.

\section*{Software}

Like many other microcontroller boards, the present 535 system board is not more than the basis of a larger circuit designed to perform a certain function in conjunction with dedicated software. An example of a circuit based on a 80C535 microcontroller core is the Watt-hour meter (Ref. 2).

As already mentioned, you will need an assembler to be able to produce software for the 535 board. Fortunately, MCS51 assemblers come in a wide variety of levels and capabilities. If you are on a tight budget, do consider the as-
sembler contained on the \(8051 / 80 \mathrm{C} 32\) assembler course' diskette (Ref. 3), which is good value for money. Note, however, that the examples on this course disk may require small modifications because of the different memory structure of the 535 board.

A programming example specifically written for the present 535 board is given in Fig. 4. This is the listing of an LCD driver, which may be used to write messages on to the LCD that tell you what has happened during the course of a program under development. Alternately, such messages many be written to the PC via the RS232 interface on the 535 board. The routine shown in Fig. 4 has been written with a so-called macro assembler. which enables frequently called, small, program chunks to be defined only once. An example of such a macro is found at the top of the listing. Unfortunately, the assembler mentioned above does not support the use of macros. Consequently, the three individual instructions that make up the macro (LCD_Wait) must be repeated at every location this macro appears in the program.

\section*{References:}
1. \(\mathrm{I}^{2} \mathrm{C}\) alphanumerical display. Elektor Electronics September 1993.
2. Watt-hour meter. Elektor Electronics February 1993.
3. \(8051 / 8032\) assembler course. Elektor Electronics February through November 1992. Disk/EPROM order code: 1661 (see page 70).


Table 2. Connector pinning overview to help you find signals on the board.

\section*{USER INSTRUCTIONS}

Load emulator RAM:
1. Connect the printer port on your PC to the Centronics input on the 535 board.
2. Switch on the 535 board, which then waits for the first program to be downloaded.
3. On the PC, type COPY <file> PRN: /b to print the program to the 535 board in the form of a binary file. The /b switch prevents the COPY command from interpreting the value \(1 A_{H}\) as an end-of-file code.
4. The emulator program on the 535 board automatically loads the received data into the program memory, starting at \(0000_{\mathrm{H}}\).
5. One second after the last received byte, the processor is reset, and the downloaded program is started from \(0000_{H}\).
6. The running program is interrupted by a reset when the PC sends new data. Next, the emulator program (downloader) contained in PROM is started again. Steps 3,4 and 5 follow.
7. The effect of pressing the reset button depends on the program executed by the controller. With the emulator program (downloader) running, the Centronics BUSY signal is reset, and the load routine is initialized. Loading will continue from address \(0000_{H}\). With the controller running the program contained in the program memory, pressing the reset key causes a normal system reset. The processor is reset, and the execution of the program starts at \(0000_{\mathrm{H}}\).

\section*{Hardware options:}

535 board with emulator
1. IC position \(U_{4}\) has a RAM type 62256.
2. Jumper settings: JP2: 1-2; JP1, JP5 and JP6: 2-3.

535 board with EPROM
1. IC position \(U_{4}\) has an EPROM type 27256.
2. Jumper settings: JP2: 2-3; JP1, JP5 and JP6: 1-2
3. Only if the board is used with a program in EPROM: omit \(\mathrm{U}_{5}, \mathrm{U}_{8}\), \(\mathrm{U}_{9}, \mathrm{RP}_{2}\) and \(\mathrm{ST}_{6}\). Interconnect pins 8 and 9 of IC socket U9.

Analogue reference voltage
Internally ( 5 V ): JP3, JP4: 1-2.
Externally (max. 5 V ): JP3, JP4: 2-3.


\title{
VIEWS OF THE BRIDGE Part 1: Power rectification
}

\author{
By Bryan Hart
}

The diode-quad bridge network is a familiar component in power-supply design. However, the discussion of its operation in the technical literature generally, and in electronics textbooks in particular, is often superficial and a reader can easily get the feeling that 'something is missing' from the explanations. This feeling is intensified in attempting to explain oscilloscope traces of observed circuit waveforms. This article takes a fresh look at the bridge. Part 1 supplies a fuller account of its operation in power rectification than is normally given and Part 2 discusses the wider applicability of this versatile component assembly in the field of instrumentation.

\section*{Bridge construction}

Figure 1(a) shows two series-connected diodes, \(\mathrm{D}_{1}\) and \(\mathrm{D}_{2}\), arranged in parallel with a similarly connected pair, \(\mathrm{D}_{3}\) and \(\mathrm{D}_{4}\). Note that at this stage all the diodes 'point the same way'. If we now imagine the junction points \(\mathbf{A}\) and \(\mathbf{B}\) to be pulled out in the directions indicated by the arrows, then we arrive at the 'square'(or 'diamond') shape shown in Fig. 1(b). In this more usual form, which we will use from now on, this diode-quad connection is frequently referred to as a 'bridge' by analogy with the well-known Wheatstone bridge component arrangement. An alternative drawing, used in older texts, is shown for completeness in Fig. 1(c). This figure-of-eight representation is not so popular nowadays. Certainly, the diode polarity is not so easily remembered as it is for Fig. 1b.

The diode bridge can be purchased as an encapsulated module for power-rectification applications or be constructed from signal diodes, such as the populargeneral-purpose Type 1N4148, for miscellaneous low-power applications. The intended application determines which of the points \(\mathbf{A}, \mathbf{B}, \mathbf{X}, \mathbf{Y}\) are used as input terminals and which are used as output terminals.

To understand circuit operation, it is sensible engineering practice to assume, initially, that all the components used have ideal characteristics. Thus, the diode of Fig.2(a) is considered 'ideal' if its voltage-current characteristic is described by two straight line sections, (i) and (ii) in Fig. 2(b). As indicated in Fig. 2(c), (i) represents an open circuit, or the open state of that switch.A slightly more realistic model is that giving sections (ii) and (iii) in Fig. 2(b). These can be represented by the switch-battery combination in Fig. 2(c). The battery, \(U_{\mathrm{D}}\), represents the forward voltage drop, assumed constant, of the diode when it conducts. Its value is about

1 V for high-power diodes and 0.7 V for lowpower diodes.

\section*{Rectifier with resistive load}

A basic full-wave power rectifier setup is shown in Fig. 3(a). The input, from the secondary winding of a mains transformer, is connected to points \(\mathbf{A}\) and \(\mathbf{B}\), and the load, in this case resistor \(R\), is connected between points \(\mathbf{X}\) and \(\mathbf{Y}\).

The transformer provides d.c. isolation, for safety, and, via the choice of the secondary/primary turns ratio, a means of stepping down the mains voltage without significant power loss.

As indicated in Fig. 3(b), the 50 Hz sinusoidal secondary voltage is assumed to have a peak value of 15 V . At point \(\mathbf{J}\), \(U_{\mathrm{AB}}=+10 \mathrm{~V}\), corresponding to \(t_{1}=2.3 \mathrm{~ms}\); at \(\mathbf{K}, t_{2}=12.3 \mathrm{~ms}\) and \(U_{\mathrm{AB}}=-10 \mathrm{~V}\). As the usual assumption of a 'floating' output can be quite puzzling in an explanation of circuit operation for beginners, we will assume that \(\mathbf{Y}\) is connected to ad.c. reference potential, \(U_{\mathrm{r}}\), and, in particular, that \(U_{\mathrm{r}}=+5 \mathrm{~V}\).

Referring to Fig. 4, the operation for ideal diodes and \(U_{\mathrm{AB}}>0\) is as follows. Diodes \(\mathrm{D}_{2}\) and \(\mathrm{D}_{4}\) in opposite arms of the bridge conduct while \(D_{1}\) and \(D_{3}\) are cut off. Conduction in \(\mathrm{D}_{4}\) causes \(\mathbf{B}\) to be held at \(U_{\mathrm{r}}\), so all the variations in secondary voltage appears at \(\mathbf{A}\) and \(U_{\mathrm{X}}\) follows \(U_{\mathrm{A}}\). Point \(\boldsymbol{J}_{1}\) on waveform


Fig. 1. (a) Bridge representation emphasizing diode polarity; (b) conventional pattern; (c) older 'figure-of-eight' pattern.


Fig. 2. Diode representation: (a) symbol; (b) current-voltage characteristic; (c) switch equivalents for (b).


Fig. 3. (a) Bridge rectifier with resistive load; \(U_{\mathrm{T}}=\) reference voltage; (b) waveform of transformer secondary voltage.


Fig. 4. Waveform for \(U_{A}\). Boxed section shows instantaneous equivalent circuit at \(t=t_{1}=2.3 \mathrm{~ms}\).


\(U_{\mathrm{A}}\) corresponds to J -see Fig. 3(b). An equivalent circuit for instantaneous circuit conditions at \(t_{1}\) is shown in the boxed section of the diagram in Fig. 4. The arrows show the direction of current flow around the circuit. The peak inverse voltage (PIV) rating of each diode must exceed the peak input voltage, 15 V in this case.

Circuit operation for \(U_{\mathrm{AB}}<0\) closely mirrors that for \(U_{\mathrm{AB}}>0\) and is summarized in Fig. 5. In this case, \(D_{1}\) and \(D_{3}\) conduct while \(\mathrm{D}_{2}\) and \(\mathrm{D}_{4}\) are cut off; the direction of current flow is shown by the arrows on the broken lines. Conduction in \(\mathrm{D}_{4}\) now holds \(\mathbf{A}\) at +5 V , while \(U_{\mathrm{X}}\) follows \(U_{\mathrm{B}}\). Waveforms \(U_{\mathrm{A}}\) and \(U_{\mathrm{B}}\) are not sine waves and, with the present arbitrary choice of \(U_{\mathrm{r}}=+5 \mathrm{~V}\), neither has a negative section. However, \(U_{\mathrm{AB}}\left(=U_{\mathrm{A}}-U_{\mathrm{B}}\right)\) is a sine wave. From the waveforms for \(U_{\mathrm{X}}\) and \(U_{\mathrm{Y}}\) in Fig. 7(a) and 7(b), we obtain \(U_{\mathrm{XY}}\left(=U_{\mathrm{X}}-U_{\mathrm{Y}}\right)\) in Fig. 7(c). The dotted lines show the output obtained when the voltage drop of practical diodes is taken into account.

Although \(U_{\mathrm{X}}\) and \(U_{\mathrm{Y}}\) in Fig. 7(a) and 7(b) are dependent on \(U_{\mathrm{r}}\), it is significant that \(U_{\mathrm{XY}}\) in Fig. 7(c) is not. Thus, the presence of \(U_{\mathrm{r}}\), introduced for explanatory purposes, is not fundamentally necessary for the production of \(U_{X Y}\) in practice and can be dispensed with. In that case, the output is said to be 'floating'. More will be said about this later.

\section*{Use of a reservoir capacitor}

The bold line in Fig. 6 shows what happens to \(U_{\text {XY }}\) of Fig. 7(c) when a large reservoir capacitor, \(C\), is connected across load resistor \(R\). Waveform \(U_{\mathrm{XY}}\) is that of \(U_{\mathrm{AB}}\) with the gaps between the peaks almost filled in. There is only a 'ripple voltage', \(\Delta U\), which is normally small compared with the peak value, \(U_{\mathrm{p}}\). Current does not flow in opposite pairs of bridge diodes for half cycles of \(U_{\mathrm{AB}}\), but is limited to short intervals \(t_{\mathrm{C}}\) in the vicinity of the peaks. During these intervals, the diodes supply a charge \(Q_{C}=C \Delta U\)
to \(C\). Conduction ceases when \(U_{\mathrm{XY}}\) is not able to fall as fast as \(U_{\mathrm{AB}}\) when \(C\) is supplying the full load current, \(I_{\mathrm{L}}\), to \(R\). The magnitude of the charge lost by \(C\) in intervals \(t_{\mathrm{D}}\) is \(Q_{\mathrm{D}}=I_{\mathrm{L}} t_{\mathrm{D}}\). Since \(t_{\mathrm{D}} \ll T / 2\), we can write \(Q_{\mathrm{D}}=I_{\mathrm{L}} T / 2\). Diode conduction recommences when the rising \(U_{\mathrm{AB}}\) exceeds \(U_{\mathrm{p}}-\Delta U\).

After initial switch-on, a state of equilibrium as shown in Fig. 6 exists when \(Q_{C}=Q_{D}\).

Voltage \(\Delta U\) decreases as \(C\) is made larger. However, larges values of \(C\) mean smaller values of \(t_{\mathrm{C}}\), higher amplitude current pulses and the requirement for more expensive diodes to cater for this.

For equipment design purposes, maximum values of (electrolytic) capacitor \(C\) are given in component catalogues that specify the rectification characteristics of bridge asemblies. As an example, consider a bridge rectifier for operation at 50 Hz and a load current that can range from 100 mA to 1 A . The maximum capacitance value is specified as \(4700 \mu \mathrm{~F}\). From these figures, we deduce that


Fig. 7. Other circuit waveforms: (a) \(U_{X}\); (b) \(U_{Y}\); (c) \(U_{X Y}\). Dotted lines show \(U_{X Y}\) for finite diode drops.
\(Q_{\mathrm{D}(\max )}=10(\mathrm{~ms}) \times 1(\mathrm{~A})=10 \mathrm{mC}\) and \(Q_{\mathrm{C}}=4700(\mu \mathrm{~F}) \times \Delta U=(4700 \Delta U) \mu \mathrm{C}\), where \(\Delta U\) is expressed in \(V\). Equating \(Q_{\mathrm{C}}\) and \(Q_{\mathrm{D}}\) gives \(\Delta U=2.1 \mathrm{~V}\) (approx). This is the worst ripple case; for \(I_{\mathrm{L}}=100 \mathrm{~mA}\), it is 0.21 V .

The simple hydraulic system in Fig. 8 provides a graphic analogy for rectifier operation with a reservoir capacitor. The tank storing water is similar to the capacitor storing charge and the output pipe fulfils the role of the resistor. A human operator with a bucket, which can be refilled with water as required, plays the part of the transformer and diodes.

A quantity of water, \(Q_{0}\), flows from the tank through the pipe as the liquid level falls from \(h_{\mathrm{p}}\) to \(h_{\mathrm{p}}-\Delta h\). When the operator sees that the lower level is reached, hetips a quantity of water, \(Q_{\mathrm{I}}\), from the bucket into the tank. To restore the level to its original value, so that the process can be repeated continually, it is obviously necessary that \(Q_{\mathrm{I}}=Q_{0}\). To make the analogy with bridge operation closer, we should, of course, imagine two human operators with buckets who take it in turn to top up the tank!

\section*{Application in power supplies}

In modern power supply units(PSUs), the bridge rectifier-reservoir capacitor combination is followed by a voltage regulator, a standard catalogue item, as shown in Fig. 8. Resistor \(R\) is nolonger required: its role is taken over by the input circuit of the regulator. The function of the regulator is to reduce the ripple voltage to a negligible value and to produce a d.c. output voltage, \(U_{c c}\), that does not vary by more than a few millivolts when its output current, \(I_{\mathrm{L}}\), changes from zero to its rated maximum value.

For correctoperation, the regulator requires to operate above a specified minimum value of \(U_{\mathrm{XY}}-U_{\text {cc }}\), for instance, 3 V . Capacitance \(\mathrm{C}_{2}\), typically a parallel combination of a \(10 \mu \mathrm{~F}\) electrolytic capacitor and a \(0.1 \mu \mathrm{~F}\) disc capacitor, is used to supply current for load surges.

In Fig. 8, \(U_{\text {cc }}\) is 'floating' in the same sense that the battery voltage for powering a torch is floating. Thus, the potential difference between the terminals of the battery is fixed, but the potential difference between either of its terminals and earth is not.

A third terminal ( E ) is available on the instrument panel of the PSU in Fig. 9. It is connected, for instance via the metal of the casing, to the earth terminal of the mains socket. When used, it takes on the role of \(U_{\mathrm{r}}\) discussed earlier. User options, for a single supply and two supplies, are shown in Fig. 10. Two PSU outputs may be stacked to produce a higher output voltage than is possible from a single supply. Note that not all commercially available low-cost PSUs have a floating output facility.

The advantages of a bridge rectifier over a conventional two-diode, full-wave rectifier setup are that the transformer is used more efficiently and does not need to have a centre tap. If a centre tap is available, the dual-polarity supply of Fig. 11 makes a useful circuit arrangement for powering oper-


Fig. 8. Hydraulic analogy for Fig. 7.


Fig. 9. A regulated PSU with 'floating' output.


Fig. 10. User options for Fig. 9: (a) positive output; (b) negative output; (c) dual-polarity output with the use of two PSUs.


Fig. 11. Dual output PSU using a centre-tap transformer.
ational amplifiers.
Figure 12(a) shows an instantaneous equivalent circuit, analogous to that of Fig.4, for \(U_{\mathrm{AB}}>0\) and near its peak. Similarly, Fig. 12(b) is an instantaneous equivalent circuit, analogous to Fig. 5, for \(U_{\mathrm{AB}}<0\) and near its peak.

In leaving the topic of power rectification, we note that finite voltage drops present no real problems. We can always obtain a higher secondary output voltage from the transformer to compensate from them as shown in the following example. Suppose:
\[
\begin{aligned}
& U_{\mathrm{cc}}=15 \mathrm{~V} ; \\
& U_{\mathrm{XY}}-U_{\mathrm{cc}} \geq 3 \mathrm{~V} ; \\
& \Delta U=1 \mathrm{~V} \\
& U_{\mathrm{D}}=1 \mathrm{~V}
\end{aligned}
\]

Then, taking into account two diode drops, the peak value of \(U_{\mathrm{AB}}\) must exceed 22 V . A secondary winding providing \(20 \mathrm{~V}_{\text {rms }}\), corresponding to \(28 \mathrm{~V}_{\text {peak }}\), is appropriate.

In Part 2, we will consider instrument applications of the diode bridge. In such cases, it is usually constructed from discrete signal diodes.

Fig. 12. Instantaneous equivalent circuits for \(U_{X Y}\) near a peak: (a) \(U_{A B}>0\); (b) \(U_{A B}<0\).

\section*{RMS AF VOLTMETER}

\author{
Design by F. Hueber
}

\begin{abstract}
Since measuring alternating voltages and currents is not a straightforward matter, it is not to be wondered at that errors occur frequently. Non-sinusoidal measurands (quantities to be measured) in particular demand a fair knowledge and experience from the test engineer/technician. Most of the difficulties are caused by the fact that measuring instruments invariably only have a simple rectifier at their input. This is reasonably all right at very low frequencies, but even then, it does not take account of the shape of the measurand. Alternating voltages can be measured accurately only by a true-r.m.s. voltmeter, which unfortunately is a fairly expensive instrument. The instrument desribed in this article offers a viable and inexpensive alternative.
\end{abstract}

It is important to define precisely what has to be measured. The definition of the r.m.s. (root-mean-square) value of an alternating voltage is that value which in a resistive load produces the same amount of heat as a direct voltage of that value. For instance, an alternating voltage of \(240 \mathrm{~V}_{\mathrm{rms}}\) causes a lamp to light as brightly as a direct voltage of 240 V . The waveform of the alternating voltage is not important. A sinusoidal voltage of \(240 \mathrm{~V}_{\text {rms }}\) has the same effect as a sawtooth-shaped, triangular or rectangular voltage of \(240 \mathrm{~V}_{\text {rms }}\). This means that the peak value of the alternating voltage is always higher than the r.m.s. value, except in the case of a square-wave voltage, whose r.m.s. value is equal to its peak value. Of a sinusoidal voltage, the ratio of the peak value to the r.m.s. value (called the peak factor) is \(\sqrt{ } 2(=1.414)\). Each and every shape of alternating voltage produces a different peak factor as shown in Table 1.

Since in most cases the r.m.s. value of a sinusoidal voltage is to be determined,

in a standard multimeter a simple rectifier converts the alternating voltage into a direct voltage. The measured value is corrected by a form factor (1.11), and the result is shown on the meter. The form factor is the ratio of the r.m.s. value and the average value of the alternating voltage.

Since most multimeters are calibrated for sinusoidal voltages, an error will occur when a non-sinusoidal voltage is measured. These errors and some other information for a number of standard waveshapes are shown in Table 1. These data enable the true value of the measurand to be determined, but this neither very convenient nor, in many cases, precise.


\section*{Measuring true-r.m.s. values}

True-r.m.s. meters use a special converter which makes complex arithmetical routines in the multimeter superfluous. The meaurand is applied to the converter, whose output is then a direct voltage that is representative of the r.m.s. value of the measurand. In other words, the IC assumes the entire complex conversion.

The output of the converter is calculated by sampling the input signal continuously. The value of the samples is squared and the average of the squared values over
\begin{tabular}{|c|c|c|c|c|}
\hline Waveform
\[
U_{\text {peak }}=1 \mathrm{~V}
\] & \begin{tabular}{l}
Peak factor \\
\(U_{\text {peak }} / U_{\text {rms }}\)
\end{tabular} & \begin{tabular}{l}
RMS value \\
(V)
\end{tabular} & Reading on multimeter* (V) & Error with multimeter*(\%) \\
\hline sinusoidal & 1.414 & 0.707 & 0.707 & 0 \\
\hline triangular & 1.73 & 0.508 & 0.555 & -2 \\
\hline white noise & 3 & 0.333 & 0.266 & -20.2 \\
\hline \begin{tabular}{l}
rectangular \\
(d.f. \({ }^{\dagger}\) 1:1)
\end{tabular} & 1 & 1.00 & 1.11 & +11 \\
\hline \begin{tabular}{l}
rectangular \\
(d.f. \({ }^{+} 33: 100\) )
\end{tabular} & 2 & 0.25 & 0.25 & -50 \\
\hline \begin{tabular}{l}
rectangular \\
(d.f. \({ }^{+} 1: 100\) )
\end{tabular} & 10 & 0.10 & 0.01 & -99 \\
\hline \begin{tabular}{l}
sawtooth \\
(d.f. \({ }^{\dagger}\) 1:1)
\end{tabular} & 2 & 0.495 & 0.354 & -28 \\
\hline \begin{tabular}{l}
sawtooth \\
(d.f. \({ }^{\dagger}\) 1:4)
\end{tabular} & 4.7 & 0.212 & 0.150 & -30 \\
\hline
\end{tabular}
\({ }^{+}=\)duty factor
*= calibrated for sine waves

Fig. 1. A sinusoidal signal has three important values: \(p(e a k)\), r.m.s. and av(erage).

Table 1. Correlation between waveshapes and the ratios of their peak, r.m.s. and average values.
a certain period is computed. The root taken from this result is the true-r.m.s. value. This procedure is reliable as long as the period over which the average is calculated
is long compared with the period of the measurand.

The converter used in the present meter is the AD636JH from Analog Devices. This
inexpensive model in the range has a maximum error of \(1 \%\). A more accurate model is the \(\operatorname{AD} 636 \mathrm{~K}(0.5 \%)\) but this is much more expensive.

\section*{True-RMS to d.c. conversion}

Thermal r.m.s. to d.c. conversion In theory, thermal conversion is a simple method; yet, in practice, it is difficult and expensive to implement. It involves comparing the heating value of an unknown a.c. signal to the heating value of a known calibrated d.c. reference voltage-see Fig. 2. When the calibrated voltage reference is adjusted to null the temperature difference between the reference resistor, \(\mathrm{R}_{2}\), and the signal resistor, \(\mathrm{R}_{1}\), the
power dissipated in these two matched resistors will be equal. Therefore, by the basic definition of r.m.s., the value of the d.c. reference voltage will equal the r.m.s. value of the unknown signal voltage.

Each thermal unit contains a stable, low temperature coefficient resistor, \(\mathrm{R}_{1}\) and \(R_{2}\), which is in thermal contact with a linear temperature-to-voltage converter, \(S_{1}\) and \(S_{2}\), an example of which would be a thermocouple. The output voltage of \(\mathrm{S}_{1}\left(\mathrm{~S}_{2}\right)\) varies in proportion to the mean


Figure 2.


Figure 3

square of \(V_{\text {in }}\); the first order temperature/voltage ratio will vary as \(K V_{\text {in }} / \mathrm{R}_{1}\).

The circuit in Fig. 2 typically has a very low error (about \(1 \%\) ) as wellas awide bandwidth. However, the fixed time constant of the thermal unit, \(\mathrm{R}_{1}, \mathrm{~S}_{1}, \mathrm{R}_{2}, \mathrm{~S}_{2}\), limits the low-frequency effectiveness of this r.m.s. computational scheme.

In addition to the basic types discussed, there are also variable gain thermal converters available which can overcome the dynamic range limitations of fixed gain converters at the expense of increased complexity and cost.

Direct or explicit computation
The most obvious method of computing r.m.s. value is to perform the functions of squaring, averaging and taking the square root in a straighforward manner with multipliers and operational amplifiers. The direct or explicit method of computation (see Fig. 3) has a limited dynamic range because the stages following the squarer must try to deal with a signal that varies enormously in amplitude. For example, an input signal that varies over 100:1 dynamic range ( 10 mV to 1 V ) would have a dynamic range of \(10,000: 1\) at the output of the squarer (squarer output \(=1 \mathrm{mV}\) to 10 V ). These practical limitations restrict this method to inputs that have a maximum dynamic range of about 10:1. The system error may be as little as \(\pm 0.1 \%\) of full scale when a highquality multiplier and square rooter are used. Excellent bandwidth and highspeed accuracy can also be achieved with this method.

\section*{Indirect or implicit method}

A generally better computing scheme uses feedback to perform the square root function implicitly or indirectly at the input of the circuit in Fig. 4. Divided by the average of the output, the average signal levels now vary linearly (instead of as the square) with the r.m.s. level of the input.This considerably increases the dynamic range of the implicit circuit as compared with explicit r.m.s. circuits.

Some advantages of implicit r.m.s. computation over other methods are fewer components, greater dynamic range, and generally lower cost. A disadvantage of this method is that it generally has a narrower bandwidth than either thermal or explicit computation. An implicit computing scheme may use direct multiplication and division (by multipliers), or it may use any of several log-antilog circuit techniques.

Figure 4


Fig. 5. Circuit diagram of the r.m.s. a.f. voltmeter.

The internal circuit of the AD636JH is shown in Fig. 6. The buffer operational amplifier may be used to lower the output impedance of the converter.


Fig. 6. Internal circuit diagram of the AD636.

\section*{The circuit}

The measurand is applied to the input stages via socket \(\mathrm{K}_{1}\)-see Fig. 5. A fre-quency-compensated step attenuator, \(\mathrm{R}_{1}-\mathrm{R}_{5}, \mathrm{C}_{1}-\mathrm{C}_{5}\), makes the level measurand suitable for the meter. It has four ranges: \(200 \mathrm{mV} ; 2 \mathrm{~V} ; 20 \mathrm{~V}\); and 200 V .

The attenuated signal is applied to \(\mathrm{IC}_{1}\) via \(\mathrm{C}_{7}\) and a protection circuit consisting of \(R_{6}, D_{1}\), and \(D_{2}\). It is imperative that the rating of \(\mathrm{C}_{7}\) is as specified: a lower rating may cause the capacitor to be destroyed with all the consequences of this.

The buffer amplifier in \(\mathrm{IC}_{1}\) is used as an impedance inverter for the input signal, because the low resistance of the actual input (pin 4) at \(\pm 7 \mathrm{k} \Omega\) would load the attenuator too heavily.

Since the input impedance of A-D converter \(\mathrm{IC}_{4}\) is fairly high, the output signal of \(\mathrm{IC}_{1}\) can be taken directly to \(\mathrm{IC}_{4}\).

Capacitor \(\mathrm{C}_{9}\) aids the determination of the average voltage by \(\mathrm{IC}_{1}\).

Capacitor \(\mathrm{C}_{10}\) smooths any ripples in the output signal of the converter. It is essential for the correct operation of the meter that \(\mathrm{C}_{8}, \mathrm{C}_{9}\), and \(\mathrm{C}_{10}\) are good-quality, low-leakage, preferably tantalum or new electrolytic, types.

The converter operates from a quasi-symmetrical supply. The common (pin 32) of \(\mathrm{IC}_{4}\), which is held at 2.8 V by an integral zener diode, is used as ground. The offset voltage at the output of \(\mathrm{IC}_{1}\) is compensated with \(P_{1}\). Thus, when, after calibration, the input of the meter is short-circuited, the display will read 0.00 V . To prevent insufficient compensation when the battery is flat or nearly so, it is important that a stable voltage is used for the compensation. This is achieved by the use of a common red LED as a voltage source. If the battery voltage drops, the current through \(\mathrm{D}_{3}\) also drops, but the potential across it will not vary much. In any case, the current through the diode is so tiny, that it will hardly
light.
Also required for correct operation is a stable reference voltage and this is provided by \(\mathrm{IC}_{2}\), a highly stable and temper-ature-compensated zener circuit. The reference voltage is 1.23 V which is brought down to 100 mV by \(\mathrm{R}_{14}, \mathrm{R}_{15}\), and \(\mathrm{P}_{3}\). This voltage is applied to pin 36 of \(\mathrm{IC}_{4}\).

\section*{dB measurements}

Often, for instance, for measurements on a.f. circuits (amplifiers, filters) there is a need for a logarithmic meter calibrated in dB rather than a linear meter. In antiquated test instruments that option was fairly simply implemented by adding a logarithmic scale to the display meter. In modern, electronic units this is not always so simple, Fortunately, \(\mathrm{IC}_{1}\) has a logarithmic output, pin 7. The voltage, \(-\log U_{\mathrm{in}}\), is derived from a transistor in the multiplier. This facility makes the conversion from a linear scale to a logarithmic one a simple matter. During logarithmic measurements, the display can be nulled as required with \(P_{2}\). When the input level changes, the display instantly shows the measured value in dB with respect to the set level.

The circuit is switched from linear to logarithmic measurement with \(\mathrm{S}_{2}\). Since the logarithmic voltage is negative, the \(\mathbf{b}\) and c sections of the switch are used to invert the polarity of the measurand with respect to \(\mathrm{IC}_{4}\). The a section provides a matched reference voltage at pin 36 of the A-D converter. The d section ensures that the decimal point of the display is in the correct position.

Since the logarithmic output voltage of \(\mathrm{IC}_{1}\) is temperature-dependent, the refer-
ence voltage must be compensated accordingly, which is effected with \(\mathrm{D}_{4}\). The reference voltage at \(P_{5}\) is, therefore, also dependent on the ambient temperature.

The dB measurements are possible in each range of the meter between +10 dB and -40 dB . For instance, in the 2 V range, the measurand varies between 6.32 V \((+10 \mathrm{~dB})\) and \(0.02 \mathrm{~V}(-40 \mathrm{~dB})\). Note that the sign in this range changes.

\section*{Frequency range}

The calculation of the r.m.s. values of the measurand is carried out with the aid of an arithmetical circuit which makes use of logarithmic signals. As in all logarithmic circuits, the bandwidth is proportional to the signal level. The upper curve in Fig. \(7\left(1 \mathrm{~V}_{\text {rms }}\right.\) input) shows the near-ideal behaviour of the r.m.s. converter. The dashed lines show the upper frequency limits for \(1 \%, 10 \%\) and \(\pm 3 \mathrm{~dB}\) of reading additional error. For example, note that a \(1 \mathrm{~V}_{\text {rms }}\) signal will produce less than \(1 \%\) of reading additional error up to 220 kHz . A \(10 \mathrm{mV}_{\mathrm{rms}}\) signal can be measured with \(1 \%\) of reading additional error \((100 \mu \mathrm{~V})\) up to 14 kHz . This means that the level of highfrequency measurands should be as high as possible. At the lower limit, linearity is guaranteed to about 30 Hz ; if a small error is acceptable, even down to 10 Hz . At very low frequencies, the bootstrap circuit keeps the measuring error down to about \(0.2 \%\) or \(\pm 0.2 \mathrm{~dB}\).

\section*{Construction}

The display is a standard application of the ICL7106. The 'low battery' indicator, provided by \(\mathrm{T}_{1}\), becomes active when the volt-


Fig. 7. The bandwidth of the converter is proportional to the level of the input signal.


Fig. 8. Inside view of the completed r.m.s. a.f. voltmeter.


Fig. 8. Printed-circuit board for the r.m.s. a.f. voltmeter.
age drops to \(6.5-7 \mathrm{~V}\). Since the entire circuit draws only about 3 mA , a 9 V battery will last quite a time.

The meter is best built on the single-sided printed-circuit board shown in Fig. 8. Apart from the BNC input socket and the battery, all components are housed on the board.

Start construction by laying the many wire bridges. The LCD is located above \(\mathrm{IC}_{4}\). and it should therefore be fitted in a goodquality socket. In case of trouble, \(\mathrm{IC}_{4}\) will then remain accessible.

Switch \(\mathrm{S}_{3}\) is a right-angle slide type so that its knob is located at the side of the meter.

Mount rotary switches \(\mathrm{S}_{1}\) and \(\mathrm{S}_{2}\) directly on to the board: these controls must be supported by the lid of the housing to prevent undue mechanical stress on the board. This means that the holes through which the spindles protrude must be a tight fit. Make sure that the rings that determine the number of positions are in the correct position, otherwise the switch may be set to an undefined position.

It is important that the specified resistors and capacitors are used for the voltage divider. Different types may cause trouble when high voltages are applied to the attenuator.

Also important is that the connection between the BNC socket and the board is made from medium-duty cable. Should this cable be too thin, flash-over may occur when the input voltage rises to \(200 \mathrm{~V}_{\text {rms }}\).

\section*{Testing \& calibration}

Set \(\mathrm{S}_{2}\) to position LIN(ear) and \(\mathrm{S}_{1}\) to the 2 V range. Short-circuit the input. Adjust \(\mathrm{P}_{1}\) till the display reads ' 000 '.

Apply a sinusoidal signal of about 80 Hz at a level of \(1.8 \mathrm{~V}_{\text {rms }}\) both to the input of
the meter and to that of a (good-quality) multimeter. The two instrument should give the same reading. If not, adjust \(P_{3}\) until the two readings are identical.

Next, increase the signal frequency to 20 kHz and adjust \(\mathrm{C}_{1}\) until the two readings are the same again.

Then, set \(\mathrm{S}_{1}\) to the 20 V range and carry out the same tests as above. The reading in this case should be \(1 / 10\) of the input, that is, \(180 \mathrm{mV}_{\mathrm{rms}}\). If the meter readings are different at 20 kHz , adjust \(\mathrm{C}_{2}\) till they are the same again. Since the settings of \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\) affect one another, it is necessary for the foregoing tests to be repeated a couple of times.

Set \(\mathrm{S}_{2}\) to position dB and \(\mathrm{S}_{1}\) to position 2 V . Apply an alternating signal at a level of 2 V to \(\mathrm{K}_{1}\) and adjust \(\mathrm{P}_{2}\) until the display reads '000'. Then, set \(\mathrm{S}_{1}\) to position 20 V and adjust \(P_{4}\) until the display reads -20 dB . This completes the calibration.

\section*{Parts list}

\section*{Resistors:}
\(\mathrm{R}_{1}=1 \mathrm{M} \Omega, 1 \%\)
\(\mathrm{R}_{2}=100 \mathrm{k} \Omega, 1 \%\)
\(\mathrm{R}_{3}=10 \mathrm{k} \Omega, 1 \%\)
\(\mathrm{R}_{4}=1 \mathrm{k} \Omega, 1 \%\)
\(\mathrm{R}_{5}=110 \Omega, 1 \%\)
\(\mathrm{R}_{6} . \mathrm{R}_{24}=47 \mathrm{k} \Omega\)
\(\mathrm{R}_{7}, \mathrm{R}_{16}, \mathrm{R}_{17}, \mathrm{R}_{22}=1 \mathrm{M} \Omega\)
\(\mathrm{R}_{8}=18 \mathrm{k} \Omega\)
\(\mathrm{R}_{9}=4.7 \mathrm{k} \Omega\)
\(\mathrm{R}_{10}=470 \mathrm{k} \Omega\)
\(\mathrm{R}_{11}=150 \Omega\)
\(\mathrm{R}_{12}=1.5 \mathrm{k} \Omega\)
\(\mathrm{R}_{13}=22 \mathrm{k} \Omega\)
\(\mathrm{R}_{14}=10 \mathrm{k} \Omega\)
\(\mathrm{R}_{15}=680 \Omega\)
\(\mathrm{R}_{18}=220 \mathrm{k} \Omega\)
\(\mathrm{R}_{19}, \mathrm{R}_{20}, \mathrm{R}_{21}, \mathrm{R}_{23}=100 \mathrm{k} \Omega\)
\(P_{1}=100 \mathrm{k} \Omega\) preset, upright type
\(\mathrm{P}_{2}=100 \mathrm{k} \Omega\) preset
\(\mathrm{P}_{3}=50 \Omega\) preset, upright type
\(\mathrm{P}_{4}=10 \mathrm{k} \Omega\) preset, horizontal type

\section*{Capacitors:}
\(\mathrm{C}_{1}=10 \mathrm{pF}\) trimmer
\(\mathrm{C}_{2}=100 \mathrm{pF}\) trimmer
\(\mathrm{C}_{3}=33 \mathrm{pF}\)
\(\mathrm{C}_{4}=1 \mathrm{nF}\)
\(\mathrm{C}_{5} . \mathrm{C}_{14}=10 \mathrm{nF}\)
\(\mathrm{C}_{7}=22 \mathrm{nF}, 250 \mathrm{~V}\) a.c.
\(\mathrm{C}_{8}=47 \mu \mathrm{~F}, 16 \mathrm{~V}\), radial
\(\mathrm{C}_{\mathrm{g}}, \mathrm{C}_{10}=4.7 \mu \mathrm{~F}, 16 \mathrm{~V}\), radial
\(\mathrm{C}_{11}=22 \mu \mathrm{~F}, 16 \mathrm{~V}\), radial
\(\mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{16}=100 \mathrm{nF}\)
\(\mathrm{C}_{15}=100 \mathrm{pF}\)
\(\mathrm{C}_{17}=470 \mathrm{nF}\)
\(\mathrm{C}_{18}=220 \mathrm{nF}\)

\section*{Semiconductors:}
\(D_{1}, D_{2}, D_{4}=1 N 4148\)
\(\mathrm{D}_{3}=5 \mathrm{~mm}\) LED, red
\(\mathrm{T}_{1}=\mathrm{BC} 547 \mathrm{~B}\)

\section*{Integrated circuits:}
\(\mathrm{IC}_{1}=\mathrm{AD} 636 \mathrm{JH}\)
\(\mathrm{IC}_{2}=\mathrm{LM} 385 \mathrm{Z1} 1.2\)
\(\mathrm{IC}_{3}=4030\)
\(\mathrm{IC}_{4}=7106\)

\section*{Miscellaneous:}
\(\mathrm{K}_{1}=\) BNC socket for PCB mounting
\(\mathrm{S}_{1}=2\)-pole, 6-position rotary switch
\(\mathrm{S}_{2}=4\)-pole, 2-position rotary switch
\(\mathrm{S}_{3}=\) shift switch, right-angle, for PCB mounting
\(\mathrm{LCD}_{1}=3 \frac{1}{2}\) digit LCD Type LTD221F12
\(\mathrm{Bt}_{1}=9 \mathrm{~V}\) battery with clip
Enclosure Pac-Tec Type HPL9VB (available from OKIndustries, Unit 1 DeaconTrading Estate, Eastleigh SO5 5RR. Telephone (0703) 619841.

PCB No. 930108, see p. 110
Front panel foil No. 930108F (p. 110)


Fig. 9. Front panel foil for the r.m.s. a.f. voltmeter.


Fig. 8. Printed-circuit board for the r.m.s. a.f. voltmeter.

\section*{PWM MOTOR CONTROL}

Pulse width modulation (PWM) is ideal for controlling small electric PCB drills that draw currents of up to 2 A . Larger currents are possible if \(\mathrm{T}_{2}\) gets addtional cooling and the value of \(\mathrm{C}_{2}\) is increased. The design also makes use of the fact that the drill works with a small d.c. motor whose rotary speed is a fucntion of the voltage across it.

The design is based on a Type 40106 astable multivibrator, \(\mathrm{IC}_{1 \mathrm{la}}\), whose output is low for a period determined by \(\mathrm{R}_{1}\) and high for a period set by \(R_{2}\) and \(P_{1}\).

When \(C_{1}\) is discharged, the level at the input of \(\mathrm{IC}_{1 \mathrm{l}}\) is below the lower threshold, so that the output of this stage (pin 2) is high. The capacitor is then charged rapidly via \(D_{1}\) and \(R_{1}\), and reaches the upper threshold in about 1.5 ms . The output of \(\mathrm{IC}_{1 \mathrm{a}}\) then goes low, whereupon \(\mathrm{C}_{1}\) discharges via \(\mathrm{D}_{2}, \mathrm{R}_{2}\) and \(\mathrm{P}_{1}\). In the prototype, the discharge time could be set between 0.2 ms and 25 ms . This means that the duty factor of the output signal may be varied between 5\% and 90\%.

The signal is inverted again and then applied to the base of \(\mathrm{T}_{1}\). Transistors \(\mathrm{T}_{1}\) and \(T_{2}\) are switched on, and the motor is energized, during the negative period of

the output pulse of \(\mathrm{IC}_{1 \mathrm{~b}}(\operatorname{pin} 4)\). When the
imum.
[Amrit bir Tiwana - 934107]
resistance of \(P_{1}\) is at a minimum, the ro-
tary speed of the drill motor is at a max-

\section*{FREQUENCY-OPERATED SWITCH}

VToltage-operated switches are fairly commonplace, but frequency-operated ones are still rare. The one described here is based on a 4046, a PLL (phaselocked loop) that, internally, is largely digital.

The two frequencies that are to be compared are applied to pins 3 and 14 of \(\mathrm{IC}_{1}\). They must be rectangular with an amplitude equal to the supply voltage of 3-5V. Their duty factor is not important, since the ic reacts only to leading transitions (edges). If \(f_{1}\) is lower than \(f_{2}\), the output goes low. If \(f_{1}=f_{2}\), a rectangular voltage, whose duty factor is stable and determined by the phase difference of the two signals, is present at pin 13. This voltage is converted into a direct voltage by \(\mathrm{R}_{1}\) and \(C_{1}\), which is then applied to switching transistor \(\mathrm{T}_{1}\) via the source follower. If the voltage level is high enough, \(\mathrm{T}_{1}\) will switch on and energize the relay.

In theory, the error rate of the switch is 0 , but in practice \(0.1 \%\) must be allowed. The time constant \(\mathrm{R}_{1}-\mathrm{C}_{1}\) must be about 10 times as long as the period of the input

signal. Higher ratios delay the operation unnecessarily.

When the frequencies are almost identical, it may, in the worst case, take one period of the difference frequency before the circuit is enabled.

The circuit is suitable for operation
from \(3-15 \mathrm{~V}\) supplies, but make sure that the supply and relay voltages are the same. Transistor \(\mathrm{T}_{1}\) can switch up to 100 mA . The current drawn is about 0.5 mA plus the relay current.
[I.M. Nagarajan - 934088]

\section*{WINDSCREEN WIPER CONTROL}

THe circuit and the associated software form a quasiintelligent windscreen wiper interval for cars. Although intended for the 80C32 singleboard computer described in
Ref. 1, the hardware and software should be usable with any 8051 or 8032 based microcontroller system.

The hardware consists basically of a press-key, \(\mathrm{S}_{1}\), and three transistor drivers - two to drive the LEDS, and one to drive the windscreen wiper relay fitted in the car. \(\mathrm{D}_{2}\) is the wiper control on/off indicator, and \(D_{3}\) the wiper motor on /off indicator.

After the control has been switched on, the LED and relay control bits, P1.0 and P1.1, are cleared, and the processor enters a wait loop after a 130 ms delay. This delay serves to debounce the presskey, which is connected to port line P1.1. As soon as the key is pressed, the on/off bit, P1.0. is set, and \(D_{2}\) lights. If the key is pressed for less than 1 s , the program defaults to a wiper interval of \(6.5 \mathrm{~s}(32 \mathrm{H} \times 130 \mathrm{~ms})\). If the key is pressed for longer than about 1 s , the wiper interval takes the 'key pressed' time as the new interval time.

Once a key action has been detected (KEYo loop), the accumulator value is increased from 0 in 0.13 s steps until the key is released, whereupon the counter value is written to register R7. Next, the accumulator value is compared (by subtraction) with a preprogrammed value of about 1 s \((8 \times 0.13 \mathrm{~s})\). If it is smaller, the
carry flag is set, and the accumulator is loaded with the value contained in R6. This results in a (default) wiper interval of about 6.5 seconds.

When the key is pressed for longer than \(1 \mathrm{~s}, \mathrm{R} 6\) is loaded with the stored value via R7 and the accumulator (NEW TIME). The new interval then corresponds roughly to the time the key was held pressed. When the key is pressed again, the program reverts to start. If the key action is short ( \(<1 \mathrm{~s}\) ), one last wiper action takes place in the previously programmed interval time. If the key action is long ( \(>1 \mathrm{~s}\) ), this is taken to mean a new interval time. In this way, the wiper interval may be adapted quickly to the amount of rain on the windscreen.
(J. Borm - 934110)

\section*{Reference:}
1. Radio data system (RDS) decoder. Elektor Electronics February 1991.

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text {; Wiper interval } \\
& \text { press-key connected to P1.1 } \\
& \text {; on/off LED to } \quad \text { to P1.0 } \\
& \text {; relay } \quad \text { to P1.2 (buffered) }
\end{aligned}
\]} \\
\hline \multicolumn{3}{|l|}{; definitions of SFR's} \\
\hline A & EgU & OEOH \\
\hline RO & EQU & 000H \\
\hline R1 & EgU & 001H \\
\hline R2 & EgU & 002H \\
\hline R7 & EgU & 007H \\
\hline R6 & EgU & 006H \\
\hline P1 & EgU & 090H \\
\hline \multicolumn{3}{|l|}{; definition of port pins} \\
\hline \multicolumn{3}{|l|}{LED EgU 090H} \\
\hline KEY & EgU & 091H \\
\hline \multicolumn{3}{|l|}{RELAY EGU 092H} \\
\hline & ORG & OOH \\
\hline
\end{tabular}
; Store default interval in R6 (approx. 10 seconds) MOV R6, \#32H
; Initialize accumulator and hardware
START MOV A, \#O
\(\begin{array}{ll}\text { CLR } & \text { LED } \\ \text { CLR } & \text { REL }\end{array}\)
; software debounce of switch approx. 130 ms
MOV RO, \#OH
TIMEO MOV R1, \#OH
TIME1 DJNZ R1, TIME1
DJNZ RO, TIMEO
; wait until key pressed i.e. \(\mathrm{KEY}=0\)
KEYO JB KEY, KEYO
; key pressed, power LED on SETB LED
; start counting until key released (measurement interval)
KEY1 INC A
; time loop 130 ms
TIME2 MOV R1, \#OH
TIME3 DJNZ R1, TIME3
DJNZ R0, TIME2
; key released?
JNB KEY, KEY1
; store value ( \(\mathrm{A} \times 130 \mathrm{~ms}\) ) in R 7
MOV R7, A
CLR C
; compare value with minimum interval time (approx. 1s)
SUBB \(A\), \#08H ; \(8 \times 130 \mathrm{~ms}\)
JNC NEW_TIME ; >1s, new value, else default
\(\begin{array}{lcc}\text { WIPE } & \text { MOV } & \text { A, R6 } \\ \text { PULSE } & \text { MOV } & \text { RO, \#OH }\end{array}\)
TIME4 MOV R1, \#OH
; keep checking if key pressed (i.e. wiper off)
TIME5 JNB KEY, START1
JNB KEY, START1
DJNZ RO, TIME4
JNB KEY, START1
DEC \(\quad \mathbf{A}\)
JNZ PULSE
; switch on relay (fixed interval)
SETB RELAY
MOV RO, \#8
TIME6 MOV R1, \#OH
TIME7 MOV R2, \#OH
JNB KEY, START1
JNB KEY, START1
DJNZ R1, TIME7
JNB KEY, START1
DJNZ RO, TIME6
; switch off relay
CLR RELAY
START1 JNB KEY, START1
AJMP START
; update interval time
NEW_TIME ADD A, \#08
MOV A, R7
MOV R6, A
END
934110-12

TWe circuit presented here ensures that bicycle lights remain on for a little while after the bicycle (and thus the dynamo) has come to a standstill. It has the disadvantage that the frame of the bike cannot be used as the common return: a separate wire has to be run for this. This is because use is made of a bridge rectifier to provide full-wave rectification of the dynamo voltage. Consequently, the alternating and direct voltages must float with respect to one another.

Actually, bridge rectifiers are used that have one half in common. Diodes \(\mathrm{D}_{1}-\mathrm{D}_{4}\) constitute the bridge via which (and \(\mathrm{R}_{5}\) ) the NiCd battery is charged when the bicycle is moving (and the dynamo is connected). Diodes \(\mathrm{D}_{1}, \mathrm{D}_{3}, \mathrm{D}_{6}\), and \(\mathrm{D}_{7}\) form the bridge via which the bicycle lights are powered when the dynamo voltage is sufficiently high.

When the dynamo is driven, \(\mathrm{C}_{1}\) is charged via \(\mathrm{D}_{5}\), which causes \(\mathrm{T}_{1}\) to conduct. If \(T_{1}\) is on and the dynamo output drops below a certain level, \(\mathrm{T}_{2}\) is switched on, whereupon the bicycle lights are powered by the NiCd battery.

When the bicycle is at a standstill and the dynamo is no longer driven, \(\mathrm{C}_{1}\) is no longer charged. Because of this, \(\mathrm{T}_{1}\) will gradually stop conducting and this will also switch off \(\mathrm{T}_{2}\). The bicycle lights will then go out.

Switch \(\mathrm{S}_{1}\) serves to prevent the NiCd battery slowly discharging via the circuit when the bicycle is not used. The switch should then be opened.
 it may be lengthened by increasing the value of \(C_{1}\).

\section*{SOLAR PANEL SWITCH}

WThen a battery is charged by a solar panel during the day, it may discharge via that panel after sunset. This may, of course, be prevented by a diode, but that has the drawback of a forward voltage drop of 0.7 V or, in the case of a Schottky diode, 0.4 V . In many applications, this is not acceptable.

The present circuit replaces the diode and connects the solar panel to the battery via a relay contact. It is powered by the solar panel. When the supply voltage is too low, the relay is not energized so that the battery is not connected to the solar panel.

When the panel output is sufficient to energize the relay and the \(\operatorname{LDR}\left(\mathrm{R}_{2}\right)\) receives enough light to cause \(\mathrm{T}_{1}\) to conduct, the relay is energized and the battery will be charged.


Owing to its inherent hysteresis, the relay will remain energized even if the
potential across the panel drops somewhat. A connected and charged battery cannot actuate the relay when the light begins to fail, because the LDR will then switch off \(\mathrm{T}_{1}\). At what brightness that occurs may be preset with \(\mathrm{P}_{1}\).

Since the current drain is determined primarily by the relay, it is important that this is a miniature type with a high coil resistance, which can nevertheless switch up to 10 A (for instance, Siemens Type V23037-A0002-A101*).
[L. Lemmens - 934105]

\footnotetext{
* Siemens product. Available from ElectroValue, Unit 3, Central Trading Estate, Staines, Middx TW18 4UX. Telephone: (0784) 442253. Fax: (0784) 460320.
}

XICOR's X2404 or Philips' PCF8582 EEPROM with integral \(I^{2} \mathrm{C}\) interface can be connected to the \(\mathrm{I}^{2} \mathrm{C}\) interface published last year \({ }^{1}\) via a 6 -way PCB mount mini DIN socket.

The bus address of \(\mathrm{IC}_{1}\) (see Fig. 1) may be preset with the aid of jumpers A0, A1 and A2. The complete binary address of the PCF8582 is

\section*{\(1010 \mathrm{~A} 2 \mathrm{~A} 1-\mathrm{A} 0 \mathrm{R} / \mathrm{W}>\).}

With the jumpers positioned as shown, the address is \(\mathrm{AO}_{\mathrm{HEX}}\).

The X2404 is pin compatible with the PCF8582 but has twice its memory: two pages of 256 bytes each. Pages are selected by the software with the aid of the P bit in the \(\mathrm{I}^{2} \mathrm{C}\) address:

\section*{\(1010 \mathrm{~A} 2 \mathrm{~A} 1 \mathrm{PR} / \mathrm{W}>\).}

When the x2404 is used, jumper A0 must always be connected to earth. With the jumpers positioned as shown, the address for the first page is \(\mathrm{AO}_{\mathrm{HEX}}\) and that for the second page, \(\mathrm{A} 2_{\mathrm{HEX}}\).

Before new data can be stored in the EEPROM, the internal oscillator needs to be actuated by connecting network \(\mathrm{R}_{1} \mathrm{C}_{1}\) to the TEST input (not necessary with the X2404, whose pin 7 should be connected to earth: close jumper B). The erase/write time, \(T_{\text {ew }}\), is not greater than 10 ms with the X2404, and about \(30 \mathrm{~ms}\left(\mathrm{R}_{1} \mathrm{C}_{1}\right)\) with the PCF8582. The current drawn by \(\mathrm{IC}_{1}\) during erase/write operations may go up to 30 mA (X2404) or 2 mA (PCF8582). In the




|
WriteByteProm-

Store PromData into the EEPROM at address PromDataAddr.
procedure WriteByteProm(PromDataAddr,PromData:byte):
                - begin(* WriteByteProm *)
( Generate start condition on) if Start(Bus) \(>0\)
(I)C bus.) then
    I) begin
    || writeln('T/C error (start). ');
    || halt:
II end;
(Address I|C EEPROM) if Address(PromAddr) \(>0\)
II then
\| begin
i| writeln(IIC error (address).'):
II halt;
II end:
(Write data byte to EEPROM.) write(Bus,PromDataAddr,PromData);
| Generate stop condition on | close(Bus):
standby mode and during read operations, the current is appreciable lower. The overall current drain is then almost entirely that through \(\mathrm{D}_{1}\), that is, 10 mA . The Pascal unit in Fig. 2 contains procedures for programming and reading the EEPROM. With WriteByteProm data may be stored byte by byte. Via PromDataAddr
access may be had to each address; this is also true for the ReadByteProm read procedure. To use the unit, 'PCF8582' or 'X2404' must be added to the USES command in the source code of the application program in use.
[J. Ruiters - 934114]
\({ }^{1}\) Elektor Electronics, February 1992, page 36.

NOTE: After this article had been written, it was learned that the pcF8582AP has been superseded by the PCF8582E-2P.

\section*{SMALL POWER CONVERTER}

TThe converter enables an existing positive supply voltage to be raised, to be lowered, or to be changed into a negative potential.

The new voltage is electrically isolated from the source by a DIY transformer wound on a G2-3FT12 toroid. The primary winding consists of 30 turns. The number of secondary turns is calculated from
\[
n=30 U_{0} / U_{\mathrm{i}}
\]
where \(U_{0}\) is the wanted voltage and \(U_{1}\) is the input voltage. Increase the number of turns so found by 10-20 to compensate for losses. If the output voltage is somewhat too large, it can always be reduced with \(\mathrm{P}_{1}\). Both windings must be wound with 0.3 mm dia. enamelled copper wire. Make sure that the turns of both are evenly distributed along the core.

The transformer is driven by a CMOS Schmitt trigger NAND gate that has been converted to a rectangular-wave generator by \(\mathrm{R}_{1}\) and \(\mathrm{C}_{1}\). MOSFET \(\mathrm{T}_{1}\) serves as output stage. Additional charging current for \(C_{1}\) is provided via \(R_{2}\) and \(P_{1}\), which control the duty factor of the rectangular signal. The frequency of this signal is about 220 kHz and its duty factor must be smaller than 0.5.

When \(T_{1}\) is switched on, some energy is transferred to the secondary winding and some is stored in the magnetic field. When \(\mathrm{T}_{1}\) stops conducting, the energy in the magnetic field is transferred to the secondary winding.

The idea is to make the duty factor small enough to ensure that all energy stored in the field is transferred before \(\mathrm{T}_{1}\) switches on again. If not, there is the risk that the residual magnetic field becomes stronger and stronger, which causes the core to become saturated and this in turn lowers the efficiency. Also, owing to the reduced inductance at the primary side, the current through \(\mathrm{T}_{1}\) will rise appreciably, which means the end of the transistor.

The current through \(\mathrm{T}_{1}\) will also rise dangerously when the secondary load is too heavy. The average current through the primary should not exceed 150 mA

(the peak current may be several times larger). From the turns ratio it is easily calculated what the maximum secondary load current should be. With the ratio shown in the drawing ( \(10 \%\) extra turns at the secondary side), the secondary load should be not smaller than \(80 \Omega\),

Apart from a heavy load, no load is also to be avoided. In that case, the energy stored in the magnetic field can only move to \(\mathrm{C}_{2}\) where it is stored in the electric field. This means that the charge on \(\mathrm{C}_{2}\), and thus the voltage across it, increases to a level where it can have a serious effect on the circuit to which the converter will be connected. As a rule of thumb (just as with the maximum load current), the indicated value of \(1.5 \mathrm{k} \Omega\) is directly proportional to the turns ratio.

The Type 1N4148 rectifier diodes are fast enough to cope with the frequency of 220 kHz (1N400x types are not). These diodes can stand a constant current of 200 mA ( 400 mA peak).

The efficiency of the convertor with a supply voltage of 15 V is about \(65 \%\). When the load current is small, this drops
to about \(50 \%\). The efficiency also drops when the supply voltage is lower than indicated.

The maximum input voltage is 15 V , since the supply to neither \(\mathrm{IC}_{1}\) nor \(\mathrm{T}_{1}\) must exceed this value. The current drawn from a 15 V source and a load of \(80 \Omega\) is about 165 mA .

The prototype worked fine with the wiper of \(P_{1}\) turned completely to + ; it may even be possible to lower the value of \(\mathrm{R}_{2}\) slightly.

If necessary, the duty factor of the rectangular voltage may be increased somewhat with \(P_{1}\). When this is being done, the current through \(\mathrm{T}_{1}\) should be watched carefully, preferably on an oscilloscope. If the current suddenly rises too fast, the core is becoming saturated and this means that \(P_{1}\) must be turned back slightly. Bear in mind that when \(\mathrm{P}_{1}\) is set to a critical position, a slight change in load can drive the core into saturation, with all the consequences of this.
[T. Giesberts - 934064]

\section*{SOLID-STATE VOICE RECORDER}

Integrated circuits ISD1012, ISD1016, and ISD1020 from chip maker ISD enable sounds to be recorded and played back. The final two digits in the type coding show the length of a sound message in seconds. The difference in recording and play back time is caused by the sampling frequency, which is highest \((10.6 \mathrm{kHz})\) for the shortest time.

The circuits have a non-volatile memory that can store the recorded sound for not less than ten years without any supply voltage. The circuits also contain a microphone amplifier and an output amplifier.

The drawing shows the simplest circuit for using one of these ICs: an electret microphone, a loudspeaker, three operating switches and a power supply.

Switch \(\mathrm{S}_{1}\) is the recording/playback switch: for recording, it must be closed.

Switch \(\mathrm{S}_{2}\), when open, sets the ic to the power-down mode. The larger part of the circuit is then switched off, which reduces the current drain. Switching to power down also serves as a reset when, for instance, during recording an overflow occurs (message too long). The ic indicates this by making the end-of-message (ЕОм) output low during the recording.


Recording or playback is started by closing \(\mathrm{S}_{3}\). This switch must remain closed during recording and should preferably be a push-button type.

The circuit is kept simple, although it is possible to connect several ICs in cascade if longer messages, or a number of
short ones, are to be recorded.
The bandwidth of the circuits is similar to that of telephones: ISD1012 4.5 kHz ; ISD1016-3.4 kHz; ISD10202.7 kHz . The current drain during playback is about 25 mA .
[L. Lemmens - 934096]

\section*{ACTIVE TWO-WIRE TEMPERATURE SENSOR}

WThen a physical quantity (measurand) has to be measured at a distance, it is normally necessary to provide the sensor proper with an amplifier. This amplifier needs a power supply, which means that a third wire has to be taken to the sensor. In the present circuit, the measurand and the power supply use the same two lines. To that end, the measurand, buffered by \(\mathrm{IC}_{1 \mathrm{a}}\), is converted into an additional supply current drawn from current source \(\mathrm{IC}_{\mathrm{lb}}\). In other words, the magnitude of the input voltage may be gauged from the level of the supply current (which, of course, also consists of the current drawn by the opamp and, possibly, the sensor).

When the specified sensor and opamp are used, the current is about 0.7 mA \((0.65 \mathrm{~mA}\) with a supply voltage of 5 V ; 0.7 mA at 10 V ; and 0.77 mA at 15 V ). With a ful-scale deflection (FSD) of 10 mA , this is a deviation of about \(7 \%\), which is, however, easily compensated.

The circuit design is such that when

the temperature at the sensor varies from \(0^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\), the supply current changes from 0.7 mA to 10.7 mA . Thus, a moving coil ammeter in the supply line enables the temperature to be read quite simply; the supply current to the opamp \((0.7 \mathrm{~mA})\) is nullified with the adjustment screw on
the meter.
Note that the voltage drop across long lines must be compensated by a higher supply voltage to prevent that \(\mathrm{IC}_{1}\) and \(\mathrm{IC}_{2}\) are under-powered (they must get at least 5 V).
[L. Pijpers - 934095]

\section*{STEREO PWM OUTPUT AMPLIFIER}

THe most remarkable feature of this small stereo amplifier is the use of a stepper motor bridge driver IC as a stereo power output stage. The circuit diagram shows a three-stage pulse-width modulation (PWM) converter/amplifier for each channel. The left ( L ) and right ( R ) audio input signals are first converted into triangular waveforms by opamps \(\mathrm{IC}_{1}\) and \(\mathrm{IC}_{2}\), which are wired as integrators, with feedback from the power output stage via resistors \(\mathrm{R}_{7}\) and \(\mathrm{R}_{11}\). Next, the triangular waveforms are converted into rectangular signals with a variable pulsewidth by opamps \(\mathrm{IC}_{3}\) and \(\mathrm{IC}_{4}\), which drive the digital inputs of the bridge power amplifier, IC5.

The L6203 from SGS-Thomson is actually a full bridge driver for motor control applications. Its DMOS output transistors have an \(R_{\mathrm{D}-\mathrm{S}(\mathrm{on})}\) resistance of only \(0.3 \Omega\), which results in low dissipation and, consequently, high efficiency. Each channel (half bridge) of the device is controlled by a separate logic input, while a common 'enable' (pin 11) is available to switch both channels on and off. In the present application, the channels are enabled by a +5.1 V level derived from the ic's voltage reference output. Although the L6203 contains a bridge circuit, the loudspeakers are connected single-ended for a stereo output arrangement.

The test results obtained with a prototype of the amplifier are not spectacular
but none the less worth mentioning.
With a supply voltage of 12 V and an input frequency of 1 kHz , a maximum output power of 2 W was supplied into a load of \(4 \Omega\). The nominal input level required for this output power was \(2 \mathrm{~V}_{\text {rms }}\). A damping factor of 20 was measured, while the distortion was about \(1.5 \%\).

These figures change slightly when the supply voltage is increased to 14.4 V . Maximum output power, for instance, increases to about 2.8 W with a distortion of about \(1.5 \%\). The input drive level required for this output power is \(2.25 \mathrm{~V}_{\text {rms }}\). With full drive, the amplifier achieves an efficiency of about \(73 \%\), with PWM clock intermodulation products down to -40 dB .

At lower input signal levels, the distortion of the amplifier remains around \(0.3 \%\), and the noise level at about -80 dB .
(SGS-Thomson application -934076)

\section*{Parts list}

\section*{Resistors:}
\(\mathrm{R}_{1}, \mathrm{R}_{2}=47 \mathrm{k} \Omega\)
\(\mathrm{R}_{3}, \mathrm{R}_{4}=33 \mathrm{k} \Omega\)
\(\mathrm{R}_{5}, \mathrm{R}_{6}=2.2 \mathrm{k} \Omega\)
\(\mathrm{R}_{7}, \mathrm{R}_{11}=18 \mathrm{k} \Omega\)
\(\mathrm{R}_{8}, \mathrm{R}_{12}=22 \mathrm{k} \Omega\)
\(\mathrm{R}_{9}, \mathrm{R}_{13}=100 \mathrm{k} \Omega\)
\(\mathrm{R}_{10}, \mathrm{R}_{14}=470 \Omega\)
\(\mathrm{R}_{15}, \mathrm{R}_{16}=10 \mathrm{k} \Omega\)
\(\mathrm{R}_{17}, \mathrm{R}_{18}=1 \mathrm{k} \Omega\)

\section*{Capacitors:}
\(\mathrm{C}_{1}=10 \mu \mathrm{~F}, 25 \mathrm{~V}\)
\(\mathrm{C}_{2}=10 \mu \mathrm{~F}, 25 \mathrm{~V}\) radial
\(\mathrm{C}_{3}=100 \mu \mathrm{~F}, 25 \mathrm{~V}\) radial
\(\mathrm{C}_{4}, \mathrm{C}_{5}=560 \mathrm{pF}\), polystyrene
\(\mathrm{C}_{6}=220 \mu \mathrm{~F}, 25 \mathrm{~V}\) radial
\(\mathrm{C}_{7}, \mathrm{C}_{8}=22 \mathrm{nF}\)
\(\mathrm{C}_{9}=220 \mathrm{nF}\)
\(\mathrm{C}_{10}, \mathrm{C}_{11}=470 \mathrm{nF}\)
\(\mathrm{C}_{12}, \mathrm{C}_{13}=2200 \mu \mathrm{~F}, 25 \mathrm{~V}\), radial

\section*{Inductors:}
\(\mathrm{L}_{1}, \mathrm{~L}_{2}=30 \mu \mathrm{H} / 3 \mathrm{~A}\) toroid choke

\section*{Semiconductors:}
\(\mathrm{D}_{1}, \mathrm{D}_{2}=1 \mathrm{~N} 4148\)

\section*{Integrated circuits:}
\(\mathrm{IC}_{1}, \mathrm{IC}_{2}=\mathrm{CA} 3100^{*}\)
\(\mathrm{IC}_{3}, \mathrm{IC}_{4}=\mathrm{LM} 311 \mathrm{~N}\)
\(\mathrm{IC}_{5}=\mathrm{L} 6203^{* *}\)
* Harris Semiconductor UK distributors: Farnell Electronic Components Ltd. (0532) 636311; Thame
Components Ltd. (0844) 261188.
** SGS Thomson Microelectronics UK distributors (among others): Abacus Electronics Ltd. (0635) 33311; Access Electronic Comp. Ltd. (0462) 480888; Farnell Electronic Components Ltd. (0532) 636311.



\section*{OPTICAL SQUELCH}

Many of the less expensive shortwave receivers have no squelch circuit and continue to emanate noise when no usable signal is coming in. Fortunately, they normally have an LED which lights to indicate that the level of an incoming signal is at or above a predetermined limit. This LED can be used to control a light dependent resistor (LDR). The potential across the LDR can serve to actuate a circuit that switches the loudspeaker or headphones off in the absence of a suitable signal. This is possible without any work in the receiver itself by connecting an external loudspeaker to the headphone output. Inserting the plug into this socket automatically switches off the internal loudspeaker. The connection to the external loudspeaker is via the contact of relay \(\mathrm{Re}_{1}\).

The circuit is based on comparator \(\mathrm{IC}_{1}\). \(P_{1}, R_{1}\) and \(R_{2}\) provide the reference voltage at the inverting input of the opamp, which in the quiescent state (when no light falls on to \(\mathrm{R}_{4}\), which then has a high resistance) is higher than the potential at the non-inverting input. When light falls on to \(\mathrm{R}_{4}\), its resistance decreases, whereupon the level at the non-inverting input of the comparator becomes higher than that at the-ve input. The output of the comparator then changes state and switches on \(T_{1}\), whereupon the relay is energized. The relay contact then con-

nects the loudspeaker to the headphone output.

During construction it should be borne in mind that the less ambient light falls on to the LDR, the better the squelch will perform.

Preset \(P_{1}\) should be adjusted so that the relay is not energized when the LED is out, but is actuated as soon as the diode lights. If difficulties arise in the setting of \(P_{1}\), they are probably caused by the LDR having an incorrect value. In the diagram, the values of \(R_{1}, R_{2}\) and \(P_{1}\) are suitable for use with an LDR that has a resistance
when light falls on to it of about \(6 \mathrm{k} \Omega\). Measure this resistance with a multimeter; the value of \(R_{1}\) should be made (about) equal to this, and that of \(P_{1}\) about twice as high. The value of \(R_{2}\) and \(R_{3}\) should be roughly the sum of the values of \(P_{1}\) and \(\mathrm{R}_{1}\).

The power supply may be taken from the receiver; if that is not possible, a separate mains adaptor should be used. The circuit draws a current of about 5 mA plus the relay current.
[K. Walraven - 934053]

\section*{LOW-DROP A.C. SWITCH}

\section*{FOR 12 V HALOGEN LIGHTS}

Because of their inertia, power consumption, contact wear, and often size, relays are not really suitable for switching alternating voltages. Moreover, they cannot be used in phase control circuits. Replacing them by triacs may give problems owing to the forward voltage drop across these devices.

A much better solution is the use of anti-series-connected SIPMOS transistors. Unfortunately, these need a control voltage that is isolated from the alternating voltage to be switched. This difficulty is, however, overcome by making use of the inverse diodes of the transistors as shown in the diagram.

In the off condition, when the optoisolator does not conduct, \(\mathrm{C}_{1}\) is charged during the negative half period (A positive, \(B\) negative) via \(D_{3}\) and one of the inverse SIPMOS diodes. If the output is terminated, the capacitor will also be charged during the positive half period either via \(\mathrm{D}_{4}\) and the inverse diode of \(\mathrm{T}_{2}\) (load between A2 and B2), or via \(\mathrm{D}_{4}\) and the inverse diode of \(\mathrm{T}_{1}\) (load between A1 and B1).

The circuit is switched on by making the optoisolator conduct, whereupon the voltage across \(C_{1}\) is connected to the gates of \(T_{1}\) and \(T_{2}\) via \(R_{1}\) and the transistor in

the optoisolator. Diode \(D_{5}\) prevents the gate voltage becoming too high. When the circuit is on, \(\mathrm{C}_{1}\) continues to be charged during the negative half periods via \(\mathrm{D}_{3}\) and one of the SIPMOS transistors.

Diode \(\mathrm{D}_{2}\), in conjunction with \(\mathrm{D}_{1}\) and \(\mathrm{D}_{4}\), suppresses current peaks caused by the switching of inductive loads.

The circuit can switch alternating volt-
ages of up to 45 V . Without a heat sink for the SIPMOS transistors, the maximum current should not exceed 3 A . For larger currents or when large inductive loads are switched regularly, a small heat sink should be used.
[B.C. Zschocke - 934083]

In miniature circuits, the trend is away from expensive dry button cells and to NiCd button types. These batteries are easy to maintain: they may be charged with a constant current for a certain, fixed period, normally 14-16 hours.

The usual NiCd battery chargers are generally not suitable for charging button cells, as their minimum charging current is too high for these cells. The charger described here operates from a \(9-\mathrm{V}\) mains adaptor and can charge from one to five button cells.
\(\mathrm{D}_{1}\) is a protection diode, while \(\mathrm{R}_{1}\) and \(\mathrm{C}_{1}\) decouple the supply line to charging processor \(\mathrm{IC}_{1}\), an economy model of the well-known U2400B. \(\mathrm{D}_{3}\) is a safeguard against polarity reversal of the button cells. \(\mathrm{R}_{4}\) limits the charging current to 5 mA . During trickle charging, a current of 0.5 mA flows through \(\mathrm{R}_{4}\) and \(\mathrm{R}_{5}\). The value of \(\mathrm{C}_{2}\) determines the charging time. After the mains adaptor is plugged in, the cells are charged at full current for a period shown in the table ( \(\mathrm{T}_{1}\) is on): after that period, trickle charging takes place ( \(\mathrm{T}_{1}\) off). The trickle charging current is always \(1 / 10\) of the full charging current.
[J. Heine - 934056]

\begin{tabular}{c|c}
\hline \(\mathrm{C}_{2}(\mathrm{nF})\) & Charging time \\
\hline 15 & \(0: 58\) \\
18 & \(1: 10\) \\
22 & \(1: 26\) \\
27 & \(1: 46\) \\
33 & \(2: 09\) \\
39 & \(2: 33\) \\
47 & \(3: 04\) \\
56 & \(3: 40\) \\
68 & \(4: 27\) \\
82 & \(5: 22\) \\
100 & \(6: 33\) \\
120 & \(7: 51\) \\
150 & \(9: 49\) \\
180 & \(11: 47\) \\
220 & \(14: 25\) \\
270 & \(17: 41\) \\
\hline
\end{tabular}

Table 1
\begin{tabular}{cccccc}
\hline \(\begin{array}{c}\text { Capacity } \\
(\mathrm{mAh})\end{array}\) & \(\begin{array}{c}\text { Charging } \\
\text { Current } \\
(\mathrm{mA})\end{array}\) & 1 & \multicolumn{3}{c}{\(\mathrm{R}_{4}(\mathrm{k} \Omega)\) for number of cells } \\
2
\end{tabular}\()\)
\(\mathrm{R}_{5}=0.1 \mathrm{R}_{4}\)
Table 2

\section*{PRIVACY PHONE}

UTndesired listening-in to telephone conversations may be prevented by the present circuit, which requires only two components to protect a telephone.

In each telephone to be protected, a triac is inserted in series with the \(a\) line. A diac is connected between the anode and the gate of the triac. The trip voltage of the diac is about 25 V , which is appreciably lower than the line voltage of about 50 V , and considerably higher than the potential across a telephone set that is in use (5-12 V). Thus, the triac is switched only if the receivers of all the parallel telephones are on the hook. As soon as a receiver is lifted, the voltage

across all sets drops from about 50 V to at most 12 V , so that no diac can be tripped. If, after the receiver has been lifted, the polarity of the line voltage reverse, the diac is not affected. When a call signal is received, all triacs conduct, so that the bell on each telephone will ring.

An added advantage of the present circuit is that it suppresses the parallel tinkling of telephones when a number is dialled on one of them (this happens only where older telephone exchanges are still in use).

The circuit is small enough to be built into the telephone line outlet box.
[L. Lemmens - 934081]

\section*{INFRA-RED CONTROLLED REMOTE SWITCH}

Nowadays, several manufacturers produce ics that combine an infra-red receive LED with associate amplifier and demodulator. The Type SFH505A from Siemens, used in the present circuit, has in addition a band-pass filter to minimize any interference. It is best used in conjunction with the infra-red transmitter in the next article.

The output of \(\mathrm{IC}_{1}\) is limited to a maximum pulse width. This is used to advantage by the associated transmitter to span as long a distance as possible. Most commercial remote controls use modulated data transfer, in which the pulse width is smaller than \(\mathrm{IC}_{1}\) can handle. The difference is easily detected by an integrator, \(\mathrm{R}_{2}-\mathrm{C}_{2}\), and a Schmitt trigger, formed by the -T input of monostable \(\mathrm{IC}_{2 \mathrm{a}}\). The time constant is just short enough to ensure that at the maximum pulse width of \(\mathrm{IC}_{1}\) the voltage across \(\mathrm{C}_{2}\) is just under the trigger threshold of \(\mathrm{IC}_{2 \mathrm{a}}\) ( \(\mathrm{IC}_{1}\) has an active low output, which
is why it is connected to the negative trigger input of \(\mathrm{IC}_{2 \mathrm{a}}\). Note that remote control units of, for instance, Sony or Philips, have no effect on the present circuit.

The monostable is retriggerable, so that any bounce at the transmitter does not affect the wanted state of the circuit The mono time has been set at about half a second. The circuit cannot, therefore, switch on and off rapidly. If nevertheless several or repeated pulses arrive at the trigger input, they cause a lengthening of the output pulse, but the state of the circuit gets changed only once.

The output at pin 7 of \(\mathrm{IC}_{2 \mathrm{a}}\) clocks Dtype bistable \(\mathrm{IC}_{3 \mathrm{a}}\) at the last transition (trailing edge). The bistable is arranged as a binary scaler, so that the circuit can be switched on and off by repeated transmissions.

Diode \(\mathrm{D}_{2}\) indicates that \(\mathrm{IC}_{2 \mathrm{a}}\) has received a trigger pulse. If interference is experienced from other remote controls,
this is indicated by \(\mathrm{D}_{2}\)
The output of \(\mathrm{IC}_{3 \mathrm{a}}\) energizes one of the relays via \(T_{1}\). At the same time, it triggers monostable \(\mathrm{IC}_{2 \mathrm{~b}}\), which energizes the second relay via \(\mathrm{IC}_{3 \mathrm{~b}}\) and \(\mathrm{T}_{2}\). In this way, the second relay is energized a good half a second after the first. This enables several apparatuses to be switched on in two steps. Diodes \(\mathrm{D}_{3}\) and \(\mathrm{D}_{4}\) indicate when the relays are actuated. The relays can switch up to \(2000 \mathrm{VA}(8 \mathrm{~A})\).
The switch-on current of an equipment may be limited by first switching on the mains voltage with one relay via a series resistor and use the second relay to short out the series resistor.

The circuit draws a current of about 0.6 mA when the relays are unenergized and the Leds are out. When the relays are actuated and the LEDs light, this increases to 125 mA .
[T. Giesberts - 934077]


\section*{BASIC INFRA-RED TRANSMITTER}

The transmitter is intended primarily for use with the receiver in the preceding article. It works from two small 1.5 V dry batteries or one 3 V lithium battery. To make the unit compact and yet have reasonable frequency stability, the design uses a phase-shift oscillator, \(\mathrm{T}_{1}\), which provides good frequency stability. To ensure that the transistor has sufficient amplification at the low supply voltage, it is a darlington.

Each of the branches of phase-shift network, \(\mathrm{R}_{1}-\mathrm{C}_{1}-\mathrm{R}_{2}-\mathrm{C}_{2}-\mathrm{R}_{3}-\mathrm{C}_{3}\) has roughly the same time constant. To ensure that the branches do not affect each other unduly, \(\mathrm{R}_{2} \approx 3.8 \mathrm{R}_{1}\), and \(\mathrm{R}_{3} \approx 3.8 \mathrm{R}_{2}\). Because of this mutual influence, the gain of the amplifier is somewhat higher than the theoretical value of 18 dB .

The value of \(R_{5}\) is a compromise. It needs to be low so as not to affect the phase-shift network (the output impedance of \(\mathrm{T}_{1}\) also affects the oscillator frequency). At the same time, it must not be too low, because that would increase the current and reduce the gain.

To lessen the influence of the baseemitter resistance of buffer \(T_{2}\), this transistor is driven by \(\mathrm{T}_{1}\) via an independent resistor, \(\mathrm{R}_{6}\). The buffer is necessary to provide sufficient current for the LEDS. Owing to the low supply voltage, these diodes cannot be connected in series, and they are, therefore, driven independently

via their own series resistor, \(\mathrm{R}_{7}\) and \(\mathrm{R}_{8}\).
The transmitter is switched on and off by connecting or disconnecting the supply voltage with \(\mathrm{S}_{1}\). A drawback of this is that current continues to flow as long as \(\mathrm{S}_{1}\) is pressed. Briefly pressing of \(S_{1}\) is, however, sufficient to switch the receiver on or off.

The current drawn by the circuit depends on the supply voltage and on how long \(S_{1}\) is pressed. When \(U_{b}=2 \mathrm{~V}\), the frequency is 29.3 kHz , the peak current through each of the LEDS is 25 mA , and the total current drain is 27 mA . When
\(U_{\mathrm{b}}=3.2 \mathrm{~V}\), the frequency is 30.4 kHz , the peak current through each of the LEDS is 64 mA , and the total current drain is 63 mA .. At this supply voltage, the range between the prototype transmitter and receiver was \(13 \mathrm{~m}(43 \mathrm{ft})\).

The current drain may be reduced by connecting in series with \(\mathrm{S}_{1}\) a parallel \(R C\) network ( \(R=10 \mathrm{k} \Omega\); \(C=1000 \mu \mathrm{~F}, 6.3 \mathrm{~V}\) ). When \(\mathrm{S}_{1}\) is then pressed, only a brief current pulse ensues; even if \(S_{1}\) is held down, the current does not rise above about \(300 \mu \mathrm{~A}\).
[T. Giesberts - 934078]

\section*{PEAK LEVEL INDICATOR}

TThe indicator shows by means of two LEDS when the signal level in either channel of a stereo audio system exceeds a preset value.

In the diagram, \(\mathrm{IC}_{1 \mathrm{a}}\) and \(\mathrm{IC}_{1 \mathrm{~b}}\) function as comparators. A reference voltage of \(0-11 \mathrm{~V}\) is applied to their non-inverting inputs by \(\mathrm{P}_{1}\) and \(\mathrm{P}_{2}\) respectively. Resistor \(\mathrm{R}_{3}\) ensures that the reference voltage cannot exceed the common mode range of the opamps.

The signals from the two channels are rectified (half-wave) by \(D_{1}\) and \(D_{2}\) and the resulting direct voltage is applied to the inverting inputs of the opamps. Since the input impedance is high, the drop across the diodes is only \(200-300 \mathrm{mV}\). Resistors \(R_{1}\) and \(R_{2}\) serve to limit the input current if the drive levels exceed the common mode range.

When the peak value of the input signal rises above the reference voltage less the drop across the diode, the output of the relevant opamp changes state (goes low), whereupon the associated LED lights.


The circuit may be used at frequencies up to 20 kHz (allowing for variations in peak levels of \(\pm 0.25 \mathrm{~dB}\) ).

The indicator draws a current of only 0.25 mA when the LEDS are out and of 24 mA when both LEDs light. This drain
may be reduced by the use of high-efficiency LEDS (which draw only \(2-3 \mathrm{~mA}\) ). The value of \(R_{4}\) and \(R_{5}\) should then be increased to \(3.3 \mathrm{k} \Omega\).
[Amrit bir Tiwana - 934082]

\section*{SIMPLE DC TO DC CONVERTER}

To keep the converter simple, it contains no preset controls, which means that the level of the output voltage is dependent to some degree on the load. In theory, the output level is twice the level of the input voltage, but, owing to losses in the converter, that level cannot be attained. The main losses occur at the semiconductor junctions of the transistors and the rectifier diodes. Since the drop at these junctions is constant at about 0.6 V , the losses are proportionally larger with an input voltage of 6 V than with one of 18 V .

Oscillator \(\mathrm{IC}_{1}\) generates a signal at a frequency of about 10 kHz . Depending on the output level of the IC, either \(\mathrm{T}_{1}\) or \(\mathrm{T}_{2}\) is switched on. This results in \(\mathrm{C}_{2}\) being charged during one half period; during the other half period, the charge of \(\mathrm{C}_{2}\) is transferred to \(\mathrm{C}_{3}\). This results in the output voltage being twice the input voltage less the losses mentioned.

The circuit contains no critical components; \(\mathrm{IC}_{1}\) may be any version of the 555 , bipolar or сMOS, while the transistors may be inexpensive LF types.


Although the present circuit uses 1N4004 diodes, Types 1N4001 will do just as well.

Although the switching frequency is of the order of 10 kHz , and the diodes are designed for lower frequencies, no problems were experienced in the proto-
type, primarily because the voltages and currents are relatively small.

The converter draws a current of 5 mA (555) plus twice the output current.
[Amrit Bir Tiwana - 934026]

\section*{FREQUENCY DOUBLER}

TThe circuit of the frequency doubler may be looked at from different angles. With input signals \(\geq 1 \mathrm{~V}, \mathrm{~T}_{2}\) and \(\mathrm{T}_{3}\) operate as full-wave rectifiers. This means that the fundamental frequency of the input signal is automatically doubled. With input signals \(<1 \mathrm{~V}\), the two antiphase signals produced by \(\mathrm{T}_{1}\) from the input signal are applied to the emitters of \(T_{2}\) and \(T_{3}\) and summed. This means that the fundamental frequency will virtually disappear, so that, because of nonlinearities, only the harmonics remain: the first harmonic will then become the new fundamental frequency in the output signal. This means, of course, that the signal strength reduces appreciably: of an input of 25 mV , only 6 mV remain.

Assuming that the input is sinusoidal, the suppression of the fundamental frequency is optimized with \(P_{1}\). The operating point of \(\mathrm{T}_{3}\) should be set with \(\mathrm{P}_{2}\) for as near a sinusoidal output as possible. In the protype, the output signal showed a distortion of \(5.5 \%\) with an input signal frequency of 1 kHz .

The input frequency range is 80 Hz to

well over 100 kHz .
Any tendency of \(T_{2}\) or \(T_{3}\) to oscillate may be suppressed by soldering a small ceramic capacitor (about 56 pF ) between
the base and collector of the transistor. The circuit draws a current of about 4 mA .
[Amrit Bir Tiwana - 934086]

\section*{WIND DIRECTION INDICATOR}

The indicator shows eight wind directions by means of LeDs. The sensors are reed contacts powered by a permanent magnet. The mechanical construction must be such that it is impossible for more than one reed contact to be closed at any one time.

At the instant a reed contact closes, a leading transition (edge) is applied to the clock inputs of D-bistables (flip-flops) \(\mathrm{IC}_{2}\) and \(\mathrm{IC}_{3}\) via an or gate in \(\mathrm{IC}_{1}\). This results in the outputs of the bistables assuming the status of the D inputs, so that only the LED associated with the closed reed contact lights.

If the wind changes direction slightly, and the reed contact opens, then, owing to the bistable construction, the LED will continue to light. Only when the wind has changed direction so much that another reed contact closes will a different LED light.

When the supply voltage is switched on ( \(\mathrm{S}_{1}\) ), only \(\mathrm{D}_{9}\) will light owing to the power-on reset via \(\mathrm{R}_{10}\) and \(\mathrm{C}_{3}\). Only when one of the reed contacts has caused a leading transition (edge) at the clock inputs will one of the direction LEDS ( \(\mathrm{D}_{1}-\mathrm{D}_{8}\) ) light.

The indicator needs to be supplied by a regulated 5 V source. It draws a current of not more than 10 mA .

The leds are low-current Siemens types.
[J. Ruiters - 934097]


\section*{REGULATOR SHORT-CIRCUIT INDICATOR}

Modern integrated voltage regulators are protected against short circuits, but do not give an indication when a short circuit occurs. In the case of regulators with fixed output ( 78 xx ) a short-circuit indicator is easily arranged by connecting an LED and series resistor across the regulator output. The LED will light only during normal operation, that is, input available and output not short-circuited.

If this sort of indicator is used with regulators with a variable output, such as the LM317, the brightness of the LED will vary with the set output. To make the brightness constant, the current through the LED must become independent of the output voltage. The Led cur-
rent must then not be limited by a series resistor but by a current source. Such a source can be made with only one extra component: \(T_{1}\) in the circuit diagram.

The design makes use of the available reference voltage across \(\mathrm{R}_{1}\). This voltage is generated by the LM317 and serves in the first instance, in conjunction with \(R_{1}, R_{2}\) and \(P_{1}\), to regulate the output voltage.

In the present circuit, the reference voltage is used to keep the drop across \(\mathrm{R}_{3}\) constant:
\(U_{\mathrm{R} 3}=1.25-U_{\mathrm{eb}}=1.25-0.65=0.6 \mathrm{~V}\).

The current through \(D_{3}\) is then \(0.6 / 180\) \(=3.3 \mathrm{~mA}\), which is more than ample for the low-current LED used here.

On the prototype, the LED current remains constant with output voltages from 3 V to 25 V . In other words, over that range of voltages, the LED lights with constant brightness.

The base current of \(\mathrm{T}_{1}\) is only \(15 \mu \mathrm{~A}\), so that the operation of the regulator is not affected by the branching off of the reference voltage.

In the present circuit, \(T_{1}\) dissipates only 100 mW when the collector-emitter voltage is 25 V . Since this transistor can dissipate up to 500 mW (with heat sink), overheating is highly unlikely. Also, its
collector-emitter voltage of 25 V is well below the maximum permissible 45 V . These limits should be borne in mind, however, if the power supply provides higher output voltages.

Capacitor \(\mathrm{C}_{3}\) increases the ripple suppression from 65 dB to 80 dB . Diode \(\mathrm{D}_{2}\) protects \(\mathrm{IC}_{1}\) and \(\mathrm{T}_{1}\) against too high a discharge current from \(\mathrm{C}_{3}\) and too high a base-emitter reverse bias (max. 5 V ) when the regulator is short-circuited.

Diode \(\mathrm{D}_{1}\) protects the regulator against discharge currents from \(\mathrm{C}_{4}\) and any electrolytic capacitors in the circuit being supplied). Without this diode, these capacitors would discharge through the regulator should the input of this Ic be shortcircuited or be connected to a lower voltage.

The quiescent current of the indicator circuit is about 10 mA , while the peak current may rise to 1.5 A . At maximum input voltage ( 35 V ) and minimum output voltage ( 3 V ), the circuit can provide

a constant current of about 150 mA .
[J. Ruiters - 934102]

\section*{PRECEDENCE DETECTOR}

TThe detector was designed primarily for use with quiz games. It indicates who has first pressed a push button by the sounding of a buzzer and the lighting of an LED. The quiz master can then reset the detector.

In the diagram, the four push buttons, \(\mathrm{S}_{1}-\mathrm{S}_{4}\), are connected to the D inputs of four bistables contained in \(\mathrm{IC}_{2}\). They are also connected to the clock input of \(\mathrm{IC}_{2}\) via OR gates \(\mathrm{IC}_{1 \mathrm{la}}, \mathrm{IC}_{1 \mathrm{~b}}\) and \(\mathrm{IC}_{1 \mathrm{c}}\). The Q outputs of the bistables drive \(\mathrm{D}_{1}-\mathrm{D}_{4}\).

After the bistables have been reset with \(\mathrm{S}_{5}\) (which briefly makes the CLR input low), all g outputs are high, so that the LEDS are out. If one of the push-buttons, say \(S_{1}\), is pressed, a high level ensues at the associated \(D\) input. This high level is applied to the clock input of all bistables, whereupon the existing levels at the D inputs of the bistables are stored and applied to the outputs; \(\mathrm{D}_{1}\) will then light

Since the switches and the LEDS are connected to the supply line via a common resistor, \(\mathrm{R}_{4}\), the voltage at points after \(R_{4}\) will drop to about 2 V owing to the lighting of \(D_{1}\). Because of potential divider \(\mathrm{R}_{9}-\mathrm{R}_{10}\). the voltage across the switches will be only about 1 V . If then one of the switches, other than \(S_{1}\), is pressed, the voltage at the associated D input(s), as well as at the clock input, will be too low for the ic to react. In this way. the circuit is disabled after one of the switches has been pressed.

Darlington \(\mathrm{T}_{1}\) drives the d.c. buzzer. The base of \(\mathrm{T}_{1}\) is connected to the anodes of the LEDS via \(\mathrm{R}_{3}\) and \(\mathrm{C}_{4}\). At the instant one of the LEDs lights, \(\mathrm{C}_{1}\) passes this low

level to \(\mathrm{T}_{1}\), which then energizes the buzzer. After about \(0.5 \mathrm{~s}, \mathrm{C}_{4}\) is recharged via \(\mathrm{R}_{2}\) and \(R_{3}\), so that \(T_{1}\) is switched off.

The circuit draws a current of about

5 mA when the LEDS are out. When one of the Leds lights and the buzzer sounds, the current rises to some 50 mA .
[D. Ibrahim - 934092]

\section*{VARIABLE DIFFERENTIAL AMPLIFIER}

In a traditional differential amplifier with feedback to the-ve (inverting) input of an operational amplifier and a potential divider at the +ve (non-inverting) input, it is tricky to make the amplification variable. This is because the feedback network and the potential divider need to be each other's image to ensure satisfactory suppression of the common-mode signals (common-mode rejection ratio - CMRR). This means that there must be two variable resistors and these must at all times be equal.

This is not necessary with the present circuit in which one preset can arrange the amplification without affecting the CMRR. It has the following transfer function:
\[
\begin{equation*}
U_{0}=2 \mathrm{R}_{2} / \mathrm{R}_{1}\left(1+\mathrm{R}_{2} / \mathrm{P}_{1}\right)\left(U_{2}-U_{1}\right) \tag{V}
\end{equation*}
\]


It is clear from this that only \(\mathrm{P}_{1}\) affects the difference voltage \(U_{2}-U_{1}\). The commonmode signal does not appear in the function. This is partly because \(P_{1}\) has no effect on it and partly because the resistors with the same circuit reference also have the same value. In theory, that gives total rejection of common-mode signals; in practice, tolerances of the components used will determine the cmrr. To calculate that, however, the formula will have to be expanded appreciably.
[L. Lemmens - 934073]

\section*{TEMPERATURE MONITOR}

TThe monitor is intended for use in relatively small spaces (like living rooms). The sensor is a readily available LM335 from National Semiconductor. This gives an output voltage of \(10 \mathrm{mV}^{\circ} \mathrm{C}^{-1}\). This voltage is compared in \(\mathrm{IC}_{1 \mathrm{a}}\) and \(\mathrm{IC}_{1 \mathrm{~b}}\) with two reference voltages. One of these is preset with \(P_{1}\) and the other with \(P_{2}\). The output of the comparators is used to switch \(\mathrm{D}_{2}, \mathrm{D}_{3}\) and \(\mathrm{D}_{5}\).

When the voltage produced by \(D_{1}\) is smaller than either of the reference potentials, the outputs of \(\mathrm{IC}_{\mathrm{la}}\) and \(\mathrm{IC}_{1 \mathrm{~b}}\) are low: \(\mathrm{D}_{2}\) will then light.

When the ambient temperature rises, the output of \(\mathrm{D}_{1}\) rises proportionally. When the level of the sensor output lies between the two reference levels, the output of \(\mathrm{IC}_{\mathrm{la}}\) is high and that of \(\mathrm{IC}_{1 \mathrm{~b}}\) is low. Diode \(\mathrm{D}_{3}\) will then light, showing that the critical temperature has been reached.

At even higher temperatures, the output of \(\mathrm{IC}_{1 \mathrm{~b}}\) will also go high and \(\mathrm{D}_{5}\) lights, while the other two LEDS go out. At the same time, the relay will be energized via \(\mathrm{T}_{1}\). The relay contact may then actuate an external load (e.g., a buzzer).

Zener diode \(D_{4}\) ensures that \(T_{1}\) does not come on when \(\mathrm{D}_{3}\) lights (since the output voltage of \(\mathrm{IC}_{1 \mathrm{~b}}\) then rises slightly owing to the current through this IC).

The temperature at which the LEDs should light may be set with \(\mathrm{P}_{1}\) and \(\mathrm{P}_{2}\). Bear

in mind, however, that the monitor is intended for 'normal' temperatures between \(25^{\circ} \mathrm{C}\) and \(100^{\circ} \mathrm{C}\).

The monitor draws a current of about

20 mA ; when the relay is energized, this rises to about 50 mA .
[M. Stehouwer - 934066]

\section*{SPECIAL BAND-STOP FILTER}

Double T filters are used in many circuits. This type of filter can be made into a perfect band-stop filter, at least in theory. In the present circuit (Fig. 1), a double T filter is used in a different manner. It can have the characteristic of the combination of either a bandstop filter and a low-pass filter (switch \(\mathrm{S}_{1}\) in position 1) or a high-pass filter and a bandstop filter ( \(\mathrm{S}_{1}\) in position 2 ). The characteristic curves are given in Fig. 2 and 3 respectively.

The variable \(K\) in Fig. 2 and 3 is determined by the setting of \(P_{1}\). Variable \(M\) depends on the setting of \(\mathrm{P}_{2}\), and determines the \(Q\) factor.

A drawback of the present design is that the maximum suppression is diminished

slightly. At \(M=0.75\), maximum attenuation is (calculated) 50 dB . With components values as in Fig. 1, the frequency at that attenuation is 1 kHz . Other frequencies can be computed easily. The bandstop frequency, \(f_{\mathrm{bs}}\), with \(\mathrm{S}_{1}\) in position 1 is
\[
f_{\mathrm{bs}}=1 / 2 \pi R C K .
\]
[Hz]
With \(\mathrm{S}_{1}\) in position 2 ,
\[
\begin{equation*}
f_{\mathrm{bs}}=K / 2 \pi R C . \tag{Hz}
\end{equation*}
\]

In all cases, \(0 \leq K \leq 1 ; C\) is in farad and \(R\) is in ohms. Various types of IC may be used for the operational amplifier.

The current drawn by the circuit is around 2 mA .
[A. v.d. Veene - 934074]


\title{
RC-5 INFRA-RED RECEIVER FOR 80C32 COMPUTER
}

RC-5 is the Philips/Sony standard for infra-red [IR] remote control of audio /video equipment (Ref. 1). The circuit and the listing given enable the 80C32 single-board computer (Ref. 2) to receive and process IR command signals sent by an RC-5 compatible IR remote control unit.

The hardware consists of a Siemens SFH505A IR detector connected directly to the P1.0 port line of the \(80 \mathrm{C} 32 \mathrm{mi}-\) crocontroller. The Sharp Type IS1U60 IR detector may be used as an alternative to the SFH505A, with the advantage of higher sensitivity thanks to a pass-band that is better 'tuned' to RC-5 signals*.

Note, however, that the SFH505A and the IS1U60 have different pin connections. The IR detector supplies an inverted output signal (high level when no IR signal is detected), which has certain ramifications for the software.

The program (see listing) makes use of the EMON51 monitor program (Ref. 3).

Since all timings are based on software, it is essential that the 80C32 computer runs at a clock speed of 12 MHz . It should also be connected to a PC or a terminal, and have the EMON51 system monitor in EPROM. The LOOP routine ensures that the decoding always begins at the start of a new code. count is the count loop proper. If P1.0 goes low during the wait time, \(R_{6}\) is reset, and the waiting starts again.

Next, a number of registers are initialized to prepare for the reception of a new code, and the software waits for the first high-to-low transition. Note, however, that a half bit time of the new word has already elapsed when this H -to-L transition is actually detected. This means that \(1 / 4\) bit time of the second start bit has elapsed after waiting \(3 / 4\) bit time. Next, the level at P1.0 is monitored twice every bit time - first at \(1 / 4\), and again at \(3 / 4\) of the bit time. The bi-phase modulation used allows the microprocessor to determine if a ' 0 ' or a ' 1 ' is meant.

Actually, it is sufficient if a 'check' is carried out only once every bit time. If the synchronization is all right, and the check is made at \(1 / 4\) of the bit time, the correct value is established automatically (remember that the input signal is inverted). Checking two times during every bit period, however, enables the software to flag

receive errors.
The received bits are shifted into a 16 bit register formed by R4 (low) and R5 (high). The second start bit becomes the MSB. When the received word is complete, the two lowest system address bits are moved from R4 to the LSBS of R5, which leaves the six databits in R4, and the system address bits in the lowest five bits of R5.

Routine CTRL checks if the check bit
has changed since the last decoding action. If so, the software decides that a new key has been pressed, or the same key has been pressed again, whereupon the RC- 5 system address (that is, the equipment identification number) and the data (that is, the control action required) are sent to the PC. If not, the program jumps back to the start. By omitting the JZ LOOP instruction, the address and data are transmitted on every received code ('auto repeat').
(K.D. Gens - 934103)

\section*{References:}
1. Universal RC5 code infrared receiver. Elektor Electronics January 1992
2. \(8051 / 80 \mathrm{C} 32\) single-board computer. Elektor Electronics May 1991.
3. 8051/8032 Assembler course ( 8 instalments). Elektor Electronics February to November 1992.
* The ISIU60 detector is available from Hero Electronics Limited. Dunstable Street, Ampthill, Beds MK45 2JS. Telephone: (0525) 405015. Fax: (0525) 402383.


\section*{COMPACT A-D CONVERTER}

Although good and inexpensive integrated analogue-to-digital (A-D) converters are now readily available, it may be instructive to build one from discrete components.

The present convertor is based on a Type TLC274 IC, which contains four comparators. The outputs of these stages also form the output of the converter.

The problem with designing A-D converters is producing a correctly tracking reference voltage. In fact, each bit requires a small digital-to-analogue (D-A) converter to generate the needed reference. This problem is usually solved by assigning the MSB comparator half the supply voltage as reference: this is produced by potential divider \(\mathrm{R}_{1}-\mathrm{R}_{2}\). For each subsequent bit, the preceding bits are then added to the reference voltage, which requires a few resistors. In case of bit B, this means that bits C and D are used; for bit A, bits \(\mathrm{B}, \mathrm{C}\) and D are used. The translating of the level of these bits is effected by \(\mathrm{IC}_{2}\) and \(\mathrm{R}_{1}-\mathrm{R}_{14}\).

The regulated \(5-\mathrm{V}\) supply voltage forms the basis for the reference voltage. The levels at the outputs of the buffers should ideally be 5 V (logic 1) or 0 V (logic 0). The resistors in the potential divider should be close tolerance types to ensure good linearity. The higher the resolution (the more bits) of the A-D converter, the more accurate the resistors need to be. It should also be borne in mind that the output level of the buffers in \(\mathrm{IC}_{2}\) deviates more and more from the ideal the greater the current that must be provided. In other words, the value of the resistors must be relatively high. The problem is further minimized by connecting two non-inverting gates in parallel to increase fanout. With values as shown, the voltage drop at the MSB output buffer (that which provides the largest current) was 6 mV in the prototype. Compared with the value of theLSB of 312.5 mV , this is negligible.

The conversion speed depends on the propagation times of the comparators and

buffers. Although the TLC274 performs acceptably, for optimum results true comparators should be used.

The input sensitivity of the circuit is set with \(\mathrm{P}_{1}\).

Diodes \(\mathrm{D}_{5}\) and \(\mathrm{D}_{6}\) protect the opamp
inputs against too high potentials.
The current drawn with all LEDS off is about 7 mA ; with all four LEDs on, this rises to about 20 mA .
[T. Giesberts - 934075]

\section*{BATTERY CHARGING REGULATOR}

Philips' ic Type tea1100 uses the deltapeak principle* to charge NiCd and \(\mathrm{NiM}_{3}\) batteries fast and effectively. The ask of the delta-peak battery charging regulator is to ascertain and evaluate the change in the battery voltage: if the voltage at pin 7 drops \(1 \%\) or more below the average maximum, charging is discontinued. The voltage at pin 7, according to
the manufacturers' data sheet, must be \(0.385-3.85 \mathrm{~V}\). Potential divider \(\mathrm{R}_{4}-\mathrm{R}_{5}\) ensures that the battery e.m.f. corresponds with this range. The values of these resistors are given by:
\[
\mathrm{R}_{4} /\left(\mathrm{R}_{4}+\mathrm{R}_{5}\right) \cdot n \cdot 1.8<3.85
\]
\[
\mathrm{R}_{4} /\left(\mathrm{R}_{4}+\mathrm{R}_{5}\right)<2.14 n
\]
\(\mathrm{R}_{4} /\left(\mathrm{R}_{4}+\mathrm{R}_{5}\right) \cdot n \cdot 1.1>0.385 ;\)
\[
\mathrm{R}_{4} /\left(\mathrm{R}_{4}+\mathrm{R}_{5}\right)>0.35 n
\]

The charging current, \(I_{\mathrm{C}}\), is given by:
\(I_{\mathrm{c}}=1.25 R_{\text {sense }} / R_{\text {shunt }} \cdot R_{\text {ref }}\).
where \(R_{\text {sense }}\) is \(\mathrm{R}_{10} ; R_{\text {shunt }}\) is \(\mathrm{R}_{8}\) in paral-
lel with \(\mathrm{R}_{9}\); and \(R_{\mathrm{ref}}\) is \(\mathrm{R}_{2}\).
Timeout, TO, is a safety facility of the ic. If, for whatever reason, no maximum can be detected, the IC stops the charging after the timeout. This time constant is given by
\[
\mathrm{TO}=2^{26 \cdot 0.93 \cdot R_{\mathrm{ref}} C_{\mathrm{osc}}, ~}
\]
where \(C_{\mathrm{osc}}=\mathrm{C}_{3}\). Note that both timeout and charging current are influenced by \(\mathrm{R}_{2}\). When the charging current and timeout are being determined, the value of \(\mathrm{R}_{2}\) must therfore be fixed and that of \(\mathrm{C}_{3}\) must be variable.

When the battery is fully charged, the TEAl 100 switches to the 'maintain charge'
mode. In this mode, during \(1 / 10\) of the normal charging time \(1 / 2\) of the usual charging current flows (in other words, the battery is trickle-charged at \(1 / 20\) of the normal charging current). This tricklecharge current may be altered on the basis of the following formula:
\[
I_{\text {trickle }}=1.25 R_{\text {sense }} / 10 R_{\text {shunt }} R_{N}
\]

The current is determined from the drop across the shunt resistor and switched by the transistors via pin 2 of \(\mathrm{IC}_{1}\).

Stability of the circuit is ensured by capacitor \(\mathrm{C}_{2}\).

When no battery is connected to \(\mathrm{K}_{1}\) or when a battery is being trickle-charged, \(D_{1}\) flashes; when the voltage at pin 7 drops, the LED lights continuously.

The supply voltage at pin 12 must be \(5.65-11.5 \mathrm{~V}\). The quiescent current (when the outputs are all off) is some 4 mA .

This IC enables many other applications: a number of these are given in Philips' Data Sheet TEA1100 \& TEA1100T.
[A. Rietjens-934112]

The delta-peak principle was described in detail in the December 1992 issue (p. 86) of this magazine.

\section*{MULTI-COLOUR-LED}

It had to come: an LED that can produce all visible colours. It is the Everlight Type 339-1 VRKGBBW. In fact, it consists of four LEDS in one case: one red, one green, and two blue. When these Leds are driven into varying brightnesses, all visible colours and white can be produced. The circuit described makes the LEDs light in all colours in any given order.

The circuit consists of an integrator followed by a Schmitt trigger. Together these form an oscillator that produces a triangular voltage with an amplitude of about \(1.5 \mathrm{~V}_{\mathrm{pp}}\) at its pin 1. This signal is applied to one of the LEDS via \(\mathrm{T}_{1}\) and current limiting resistor \(\mathrm{R}_{5}\).

Three of these circuits should be built: one for the red, one for the green, and one for the two blue LEDS. Each circuit should, however, have a different value \(\mathrm{C}_{1}\), say, \(470 \mathrm{nF}, 330 \mathrm{nF}\), and 220 nF . Each of the blue LEDS, although connected to the same circuit, should have its own series resistor.

The direct voltage level of the triangular signal may be shifted with \(P_{1}\). Start with the wiper at earth, and then turn the control very slowly till the LED just begins to light. The best setting is when the LED lights for two thirds of the time and is off for one third.

The value of the series resistors is low, because the sensitivity, especially of the blue leds, is low.

Do not turn \(\mathrm{P}_{1}\) too far, but take care that the current through the red and green LEDS remains below 30 mA ; the blue ones can draw up to 40 mA . The average current drawn by the circuit is then about 70 mA .
[K. Walraven - 934065]


\section*{ANGLER'S BAIT INDICATOR}

The indicator shows when a fish has taken the bait. Until that happy moment (at least for the angler), the bite sensor is open, so that both LEDs are out. When a fish has been hooked, the sensor closes the current loop, whereupon both leds light. In addition to these diodes, a buzzer may be used to give an audible signal. \(\mathrm{D}_{2}\) continues to light, even when the sensor has been reopened, for as long as the thyristor has no hold current. In this way, each tug on the hook line is indicated by \(\mathrm{D}_{1}\).

The circuit draws a current of \(20-60 \mathrm{~mA}\), depending on the type of LED and whether a buzzer is used.


The sensor is made from a mercury switch, cast, half a metre of stranded wire and a 3.5 mm mono jack socket. The cast is placed in the line directly under the reel. When the line is tightened, the indicator is actuated.
[F. Roth - 934072]

\section*{TELEPHONE MONITOR}

I\({ }^{\mathrm{t}}\) is sometimes necessary to make a telephone conversation audible to more than one person at either end or to make a tape recording of it (as in many businesses). Often, this is done with the aid of a microphone fitted with a suction cup. This does not work very well, though, whence the present circuit.

Use an old, but still serviceable, telephone set connected across the telephone line in parallel with the receiver to be monitored. Connect a length of screened audio cable across the receiver inset and to an amplifier or tape recorder, as the case may be. As soon as a conversation has to be recorded or amplified, take the receiver from the hook and adjust the input level of the amplifier or recorder as required. Do not set the amplifier gain too high, because this may give rise to howling.

The hook contact of the additional telephone set prevents the bell voltage ( 50 V or more) reaching the audio equipment. Furthermore, the audio equipment is electrically isolated from the telephone line by the \(1: 1\) telephone transformer, \(T\).

In most west European countries it is now allowed for telephone sets to be connected in parallel, in spite of the resulting paucity of the signal quality (primarily caused by the reduced echo attenuation).
[L. Lemmens - 934070]


\section*{CAR INTERIOR LIGHT DELAY}

TThe delay circuit ensures that a car's interior light remains on for about five seconds after all the doors have been closed. This enables the ignition lock to be found easily in the dark (many modern cars have an illuminated ignition lock as standard).

When one of the front doors of the car is opened, the door switch (here, \(\mathrm{S}_{1}\) ) closes. A current will then flow through interior light \(L_{1}\) via \(S_{1}\) and \(D_{2}\). At the same time, capacitor \(C_{1}\) is charged rapidly via \(R_{1}, D_{1}\) and \(S_{1}\). When the door is closed, \(S_{1}\) opens. At the same instant, \(\mathrm{T}_{1}\) is switched on by the low level at the-ve terminal of \(\mathrm{C}_{1}\). After a little while, depending on the value of \(\mathrm{C}_{1}\) and the base current of \(\mathrm{T}_{1}\), the base voltage of \(\mathrm{T}_{1}\) has risen to a level where the transistor ceases to conduct, so that \(\mathrm{L}_{1}\) goes

out.
[A. Rietjens - 934071]
Note. In quite a few modern cars, the circuit described (or one like it) is a standard fitting.
[Editor]

\section*{LOW POWER NBFM TRANSMITTER}

TThe transmitters is a crystal-controlled, battery-powered, one-chip narrowband FM (NBFM) model for operation in the \(27-\mathrm{MHz}\) band, primarily as a wireless microphone*.

The circuit is an application of Motorola's MC2833 single-chip VHF narrowband FM transmitter IC, designed to work in the \(27-\mathrm{MHz}\) band. The transmitter output power is about \(10 \mathrm{~mW}(+10 \mathrm{dBm})\), which, owing to the expected low efficiency of the antenna used, will result in a typical effective radiated power (ERP) of less than 1 mW . The range of the transmitter, therefore, is limited to 10-20 metres (33-66 ft).

The active circuitry contained in the MC2833 includes a microphone amplifier, a voltage controlled oscillator, and two auxiliary transistors which are used for frequency multiplication or RF amplification, depending on the desired output frequency.

Preset \(P_{1}\) is used to adjust the microphone gain, and preset \(P_{2}\) to adjust the deviation. Remember, the transmitter will produce NBFM only, with a maximum deviation of 5 kHz . This means that a narrow-band receiver (such as a typical 27 MHz CB unit) is required for sufficient audio output.

The quartz crystal, \(\mathrm{X}_{1}\), resonates in fundamental mode (here, 9 MHz ), calibrated for parallel resonance with a 32 pF load. The final output frequency is generated by frequency multiplication (here, \(\times 3\) ) within the MC2833.

Construction of the transmitter follows the rules of RF design: keep all

component leads as short as possible, fit the screening as indicated on the printed circuit board, and do not use an IC socket for \(\mathrm{IC}_{1}\).

The transmitter is fairly simple to adjust: simply peak the three trimmers, \(\mathrm{C}_{8}, \mathrm{C}_{9}\) and \(\mathrm{C}_{18}\), for maximum output power delivered to a \(50 \Omega\) dummy load. Alternatively, connect the antenna and an oscilloscope to the transmitter output, and adjust the trimmers for maximum RF voltage. Next, listen to the transmitted signal on a 27 MHz receiver, and adjust the two presets until the best pos-
sible modulation is achieved. Do not set the microphone gain too high, since this will easily cause clipping.

If the transmitter is used as a wireless microphone, the antenna will typically be a piece of flexible wire with a length of about 1 m . The transmitter draws a current of about 7 mA , so it is good practice to keep an eye on the state of the battery.
(J. Barendrecht - 914114)
* This transmitter is not licensable as a wireless microphone in the UK.


Fig. 1. Circuit diagram of the NBFM transmitter.

PARTS LIST

\section*{Resistors:}
\(\mathrm{R}_{1}, \mathrm{R}_{2}=100 \mathrm{k} \Omega\)
\(\mathrm{R}_{3}=2.7 \mathrm{k} \Omega\)
\(\mathrm{R}_{4}=47 \Omega\)
\(\mathrm{R}_{5}=470 \mathrm{k} \Omega\)
\(\mathrm{R}_{6}=1 \mathrm{k} \Omega\)
\(\mathrm{R}_{7}=390 \mathrm{k} \Omega\)
\(\mathrm{R}_{8}{ }^{\prime}=1.5 \mathrm{k} \Omega\)
\(P_{1}, P_{2}=100 \mathrm{k} \Omega\) preset, H

\section*{Capacitors:}

All fixed capacitors are ceramic, un-
less otherwise indicated
\(\mathrm{C}_{1}=4.7 \mathrm{nF}\)


Fig. 2. Block diagram of the MC2833P
\(\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{16}=10 \mathrm{nF}\)
\(\mathrm{L}_{3}, \mathrm{~L}_{4}=330 \mathrm{nH}\)
\(\mathrm{C}_{4}=1 \mu \mathrm{~F}\) мкт
\(\mathrm{C}_{5}=2.2 \mathrm{nF}\)
\(\mathrm{C}_{6}, \mathrm{C}_{12}=56 \mathrm{pF}\)
\(\mathrm{C}_{7}=82 \mathrm{pF}\)
\(\mathrm{C}_{8} . \mathrm{C}_{9}, \mathrm{C}_{18}=60 \mathrm{pF}\) foil trimmer
\(\mathrm{C}_{10}=220 \mathrm{pF}\)
\(\mathrm{C}_{11}=1 \mathrm{nF}\)
\(\mathrm{C}_{14}, \mathrm{C}_{15}=39 \mathrm{pF}\)
\(\mathrm{C}_{17}=47 \mathrm{pF}\)
\(\mathrm{C}_{19}=1 \mu \mathrm{~F}\), tantalum
\(\mathrm{C}_{20}=47 \mathrm{nF}\)
\(\mathrm{L}_{5}=2.2 \mu \mathrm{H}\)

\section*{Integrated circuits:}
\(\mathrm{IC}_{1}=\) MC2833P (Motorola)
Miscellaneous:
\(\mathrm{K}_{1}=\mathrm{BNC}\) socket
\(\mathrm{X}_{1}=\) crystal, 27.005 MHz
\(\mathrm{MIC}_{1}=\) Electret microphone

\section*{Inductors:}
\(\mathrm{L}_{1}, \mathrm{~L}_{2}=1 \mu \mathrm{H}\)


Fig. 3. The printed circuit for the NBFM transmitter (not available ready made).


Fig. 2. Block diagram of the MC2833P
Fig. 3. The printed circuit for the NBFM transmitter (not available ready made).

\section*{INEXPENSIVE VIDEO ENHANCER}

O
ften, a video signal applied to the TV receiver via the SCART or AV input appears rather less well-defined than a signal applied directly from the antenna socket. A considerable improvement may be ontained by connecting an inductor of about \(10 \mu \mathrm{H}\) in series with the input resistor of the SCART or AV socket (this resistor is normally \(75 \Omega\) or \(82 \Omega\) ). The inductor raises the input impedance at higher frequencies, so that these are attenuated less than the lower frequencies. The improvement is particularly noticeable with signals of limited bandwidth (such as from a video cassette recorder): the picture is sharper and the colours are fuller.
\[
\text { [J. Bodewes }(-934120]
\]


\section*{AUTOMATIC TWILIGHT SWITCH}

This is one of the simplest twilight switches ever published in this magazine. When it gets dark, the value of light-sensitive resistor \(\mathrm{R}_{1}\) increases, whereupon \(\mathrm{T}_{1}\) switches off. Transistor \(\mathrm{T}_{2}\) then switches on and this energizes relay \(\mathrm{Re}_{1}\). At the same time a voltage drop of about 1 V develops across \(\mathrm{R}_{4}\) : this is the hysteresis of the switch.

Capacitor \(\mathrm{C}_{1}\) serves to make the switch insensitive to brief changes in ambient darkness, such as caused by a passing car with its headlights blazing.

The only requirement on the transistors is high current amplification, which means the use of C types.

The varistor is a new type (Piher) that is environment-friendly (since it contains no cadmium) and very small: about twice the size of the head of a match. If another type is used, its day-

light resistance should be of the order of a few hundred ohms; this should increase to about \(10 \mathrm{k} \Omega\) at twilight. In any case, the value of \(P_{1}\) may be increased (within reason).

During calibration, unsolder \(\mathrm{C}_{1}\) from earth: the circuit then reacts faster.

The relay should be a 12 V type that needs an energizing current \(\leq 50 \mathrm{~mA}\).; its contact should be able to switch 8 A . The load current, however, should not exceed 4 A . When they are switched on, most lamps, and certainly halogen types, draw a very large current. Keeping the load current down ensures a long life of the relay contacts.

The circuit draws a current of not more than 5 mA plus the relay current.
[K. Walraven - 934040]

\section*{BASIC TIMER (I)}

TWhe time-determining element in the present circuit is capacitor \(\mathrm{C}_{1}\), which is charged via a current source based on \(\mathrm{T}_{1}\). The voltage across the capacitor is, therefore, a ramp. A comparison of this ramp with a preset voltage gives a fairly accurate time indication. With values shown in the present circuit, that time lies between 1 and 10 minutes.

The ramp and reference voltage are compared by \(\mathrm{IC}_{1 \mathrm{a}}\) and \(\mathrm{IC}_{1 \mathrm{~b}}\), both opencollector output types. Ignoring \(\mathrm{IC}_{1 \mathrm{a}}\) for a moment, the output transistor of \(\mathrm{IC}_{1 \mathrm{~b}}\) will be off as long as the set voltage is higher than the potential across \(C_{1}\). If that potential becomes higher than the reference voltage, the output transistor in \(\mathrm{IC}_{1 \mathrm{~b}}\) switches on and \(\mathrm{T}_{2}\) goes off. In practice, this would mean that the buzzer sounds until the set voltage level is exceeded: not exactly ideal. Since the intention is that the buzzer sounds only briefly when the set level is exceeded, \(\mathrm{IC}_{1 \mathrm{a}}\) is needed. This comparator evaluates the reference voltage with a potential that is slightly higher than that across \(\mathrm{C}_{1}\). This off-set is provided by \(\mathrm{R}_{4}-\mathrm{P}_{1}-\mathrm{D}_{3}\). The result is that \(\mathrm{IC}_{1 \mathrm{a}}\) reacts in a different way from \(\mathrm{IC}_{1 \mathrm{~b}}\) : the output transistor in \(\mathrm{IC}_{1 \mathrm{a}}\) is on when the potential across \(C_{1}\) plus that at the wiper of \(P_{1}\) is lower than the reference voltage, and is switched off when the reference voltage is exceeded. Thus, this comparator starts the buzzer sounding for an infinitely long period just before the set time has elapsed.

Summing up the action: one output

actuates the buzzer after a certain period of time has elapsed, while the other output switches the buzzer off again after a slightly longer period of time has elapsed. Thus, the buzzer sounds only during the short overlap of these two periods. The length of this overlap is set with \(P_{1}\). The time period before the buzzer is actuated is set with \(\mathrm{P}_{2}\).

The timer is started when \(\mathrm{S}_{1}\) is pressed.
[A. Rietjens - 934079]


TThe timer, based on EXAR's Type xr2240, is intended for use in photographic and printed-circuit departments, as a standby switch for TV and radio equipment, as a battery charging monitor, and similar applications. The timing can be set between 15 minutes and 24 hours 45 minutes with two BCD (binary coded decimal) switches.

The timing is programmed in steps, \(T\), which are determined by the time constant \(\mathrm{R}_{1}\left(\mathrm{C}_{5}+\mathrm{C}_{6}\right)=15\) minutes. The BCD switches allow up to 255 such periods to be selected. The timer functions are controlled by an internal bistable (flipflop) and switches \(\mathrm{S}_{1}\) and \(\mathrm{S}_{2}\). To keep the period accurate, \(\mathrm{C}_{5}\) and \(\mathrm{C}_{6}\) must be carefully selected.

Diode \(\mathrm{D}_{1}\) lights when the timer is switched on. The voltage at junction \(\mathrm{D}_{1}-\mathrm{R}_{2}-\mathrm{R}_{3}-\mathrm{R}_{8}\) is then so low that \(T_{1}\) remains off. When the set time has elapsed, pin 10 of \(\mathrm{IC}_{2}\) becomes logic high, whereupon the supply voltage exists at the junction. The LED then goes out, \(\mathrm{T}_{1}\) conducts and relay

\(\mathrm{Re}_{1}\) is energized, so that its contact changes over.

The supply voltage to the timer is stabilized by regulator \(\mathrm{IC}_{1}\). Capacitors \(\mathrm{C}_{1}-\mathrm{C}_{4}\) smooth the supply voltage to prevent
the timer being triggered by pulses on this voltage.
[G. Geißler - 934049]

\section*{ELECTRONIC BELL-PUSH}

Asolid-state bell-push is far more robust than the usual mechanical type. The touch contact may be made from an audio socket, which has a high insulation resistance and is practically indestructible.

The inverting \((-)\) input of \(\mathrm{IC}_{1}\) is at half the supply voltage via \(\mathrm{R}_{4}-\mathrm{R}_{5}\), while the non-inverting input is at earth potential via \(R_{3}\). When the contact is touched (less than \(10 \mathrm{M} \Omega\), a light touch is fine), the output of the opamp goes high and the relay (a 9-V or 12-V type) is energized. The relay contact then actuates the (existing) bell. Resistor \(R_{1}\) and capacitor \(C_{1}\) ensure that the bell cannot be actuated accidentally.

The circuit is powered by the rectified bell transformer voltage (or a second bell transformer-for safety's sake, do not use a different type of transformer). A bell transformer can normally provide a current of 1 A , so the first solution is almost

always possible.
The circuit draws a (quiescent) current of only 5 mA if a 741 is used and only 0.5 mA if a TLC271 is used. When the
relay is energized, this rises by 30 mA .
[J. Bosman - 934035]

\section*{PCB DRILL CONTROL}

TThe circuit in the diagram enables the speed of an electric PCB drill to be controlled with only one preset. As an aside, the rotary direction of the drill may be reversed. When the preset is at the centre of its travel, the drill stops.

The power supply delivers (immediately after the bridge rectifier) a voltage of about 12 V for the drill, and, by means of resistors \(\mathrm{R}_{19}\) and \(\mathrm{R}_{20}\), and zener diodes \(D_{6}\) and \(D_{7}\), a symmetrical voltage of \(\pm 5 \mathrm{~V}\) for the electronic circuits. The \(\pm 5 \mathrm{~V}\) voltage is smoothed by \(\mathrm{C}_{6}\) and \(\mathrm{C}_{7}\). Diodes \(\mathrm{D}_{4}\) and \(D_{5}\) prevent the motor of the drill being connected to the \(\pm 5 \mathrm{~V}\) section.

Speed control is effected with \(P_{1}\), while rotary direction is determined by comparator \(\mathrm{IC}_{1 \mathrm{l}}\). This opamp ascertains whether the preset is to the left or to the right of its centre. On the basis of this, relay \(\mathrm{Re}_{1}\) is energized via \(\mathrm{T}_{1}\) or not, and this decides whether the drill turns clockwise or anti-clockwise.

The speed control operates with pulse width modulation. The control (direct)

voltage set with \(P_{1}\) is applied to \(D_{2}\) and \(\mathrm{IC}_{1 \mathrm{~b}}-\mathrm{D}_{3}\). This latter combination functions as a rectifier. Whether the voltage at the wiper of \(\mathrm{P}_{1}\) is negative or positive, it will appear as a positive potential (minus the 0.6 V forward bias of the diode) at the junction of \(D_{2}\) and \(D_{3}\).

The modulator is formed by \(\mathrm{IC}_{1 \mathrm{c}}\). This stage is designed as a rectangular-wave

generator, which causes \(\mathrm{C}_{4}\) to be charged and discharged continuously via \(\mathrm{R}_{11}\). The setting of \(\mathrm{P}_{1}\) determines (via \(\mathrm{Rg}_{9}\) ) in conjunction with \(\mathrm{R}_{10}\) how much additional direct voltage is applied to \(\mathrm{C}_{4}\), and thus the pulse/spacing ratio at the output of \(\mathrm{IC}_{1}\). Inverter \(\mathrm{IC}_{1 \mathrm{~d}}\) enhances the transitions (edges) of the signal, which are thereupon used to switch the power FET ( \(\mathrm{T}_{4}\) )
via \(\mathrm{T}_{1}\).
When the drop across \(\mathrm{R}_{4}\), which is in series with the drill motor, rises to slightly more than 0.6 V (that is, when the current through the motor is about 5 A ), \(\mathrm{T}_{3}\) will switch on, whereupon \(\mathrm{T}_{5}\) will reduce the pulse width slightly.
[H. Bonekamp - 934101]

\section*{BASIC TIMER (II)}

TThe timer is based on the well-known display driver LM3915, which has a logarithmic scale. This may seem strange, but is not because a simple \(R C\) network is used for time measurements. The voltage across this network, \(\mathrm{R}_{6}-\mathrm{P}_{1}-\mathrm{C}_{1}\), has, while \(\mathrm{C}_{1}\) is being charged, an exponential character ( \(\left.U=U_{\text {ref }} \mathrm{e}^{-t / R C}\right)\). When this is applied to \(\mathrm{IC}_{1}\), which takes its logarithm, the time is shown linearly on the display. The values of \(P_{1}\) and \(R_{6}\) have been chosen to enable the timer showing periods of 1-15 minutes.

The timer is reset ( \(\mathrm{C}_{1}\) is discharged) when \(S_{2}\) is closed. Resistor \(R_{1}\) limits the peak value of the discharge current from \(\mathrm{C}_{1}\) to an acceptable value for the switch contacts.

Resistor \(\mathrm{R}_{5}\) compensates the leakage currents of the electrolytic capacitors to obviate the risk of \(\mathrm{D}_{10}\) going out.

If \(\operatorname{pin} 9\) of \(\mathrm{IC}_{1}\) is left open, the display is in the dot mode. The elapsing of time is then shown by only one LED lighting. After a reset, \(D_{1}\) will light first and then, sequentially, all the other LEDS.


The total current drawn by the timer is 20 mA , so that battery supply is possible.

When pin 9 is connected to pin 3 (+ve supply line), the display is in the bar mode. After a reset, all LEDS will light and then
go out in turn, starting with \(\mathrm{D}_{1}\). In this mode, battery supply is not recommended.
[H. Bonenkamp - 934093]

\section*{INEXPENSIVE VOLTAGE DOUBLER}

Voltage doublers are frequently encountered in electronic circuits. The present one is a variation that is of interest since most digital circuits already have a buffered clock (CLK) available or have a spare Schmitt trigger gate. Since in those cases no new IC is needed, the cost of the doubler is much reduced.

If a buffered clK signal is available, only four components, \(\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{D}_{1}\) and \(\mathrm{D}_{2}\), are required to produce a voltage of 10 V from the 5 V supply. If an oscillator needs to be built from a spare gate, two further components are needed: \(\mathrm{R}_{1}\) and \(\mathrm{C}_{3}\).

The most important parameters of the circuit are given in the table. Note that, owing to tolerances in the clock circuit, these data may be slightly different.
[J. Ruiters - 934091]


\section*{SYMMETRICAL POWER SUPPLY}

Asymmetrical power supply may be designed from two standard opamps, but it can only provide a small current (of the order of a few mA ).

In the diagram, the upper half provides the positive voltage. A 3.3 v zener diode, connected to the non-inverting ( + ) input of opamp \(\mathrm{IC}_{1}\), serves as reference. To ensure correct starting of the circuit, the diode is initially powered via \(\mathrm{R}_{1}\) and when the output voltage is sufficiently high via \(D_{1}\). Part of the output voltage is fed back to the inverting \((-)\) input of \(\mathrm{IC}_{1}\) via \(P_{1}\). The lower the feedback voltage, the higher the output.

The supply voltage for the TL071 may be 36 V maximum, so that the output voltage can go up to about 30 V . It is, however, safer to make the supply to the opamp rather lower and accept a slightly lower output voltage.

The lower part of the diagram is a mirror of the upper part: it provides the negative output. Opamp \(\mathrm{IC}_{2}\) needs an additional (negative) supply voltage.

The output voltages may be made

more stable by connecting a \(10 \mu \mathrm{~F}\) electrolytic capacitor across each of the outputs.
[Amrit Bir Tiwana - 934099]

\title{
VIDEO DATA CHANGE DETECTOR
}

The circuit detects a change in video information and uses this to switch on an alarm in a closed-circuit television guard system or a video recorder.

The circuit is usable only where the same picture is shown on the TV monitor for some time. When the picture changes, the average brightness alters and this is detected by a window comparator.

Capacitor \(\mathrm{C}_{1}\) prevents any d.c. component in the video signal reaching the circuit. Opamp \(\mathrm{IC}_{1 \mathrm{a}}\) clamps the signal. On average, the potential at pin 3 of \(\mathrm{IC}_{1 \mathrm{a}}\) is always equal to half the supply voltage.

The potential across \(\mathrm{C}_{2}\) is buffered by \(\mathrm{IC}_{1 \mathrm{~b}}\). The output signal of this opamp is applied to window comparator \(\mathrm{IC}_{1 \mathrm{c}}-\mathrm{IC}_{1 \mathrm{~d}}\) via presets \(\mathrm{P}_{1}\) and \(\mathrm{P}_{2}\).

The reference voltage for the comparator is held at half the supply voltage \(\left(1 / 2 U_{b}\right)\) by \(R_{8}-R_{9}\). Preset \(P_{1}\) is adjusted to make the potential at its wiper slightly higher than \(1 / 2 U_{\mathrm{b}}\), and \(\mathrm{P}_{2}\) to make its wiper voltage slightly lower than \(1 / 2 U_{\mathrm{b}}\). The potentials at the wipers of \(P_{1}\) and \(P_{2}\) are applied to the comparator via fairly long ( \(>10 \mathrm{~s}\) ) time constants \(\left(\mathrm{R}_{6}-\mathrm{C}_{3}\right.\) and \(\left.\mathrm{R}_{7}-\mathrm{C}_{4}\right)\). The smaller the set window, the faster the reactor will change state.

When the level of the input signal rises, the potential across \(\mathrm{C}_{2}\) decreases,

whereupon the levels across \(P_{1}\) and \(P_{2}\) also drop. When the voltage at pin 9 of \(\mathrm{IC}_{1 \mathrm{c}}\) drops below \(1 / 2 U_{\mathrm{b}}\), the output of this stage goes high. This change of state, indicated by the lighting of \(\mathrm{D}_{2}\), is used to give an external apparatus a trigger or start pulse of up to 65 V via the open collector output of \(\mathrm{T}_{1}\). Resistor \(\mathrm{R}_{13}\) serves as a current limiter.

When the level of the input signal decreases, a similar action follows, but in this case \(\mathrm{IC}_{1 \mathrm{~d}}\) changes state, which is indicated by the lighting of \(D_{3}\).

When there is no change in the average input signal, \(\mathrm{T}_{1}\) remains off.

The circuit draws a current of about 12 mA .
[T. Giesberts - 934119)

\section*{COMPLEMENTARY DOORBELL}

It is often not possible to put a second bell in parallel to the existing one, because the bell transformer is normally already fully loaded. The circuit proposed here offers a solution to this problem.

The buzzer sounds after the bell-push has been released, The energy for this is stored in capacitor \(\mathrm{C}_{2}\) while the bell-push is pressed. This causes only a small (and brief) additional load on the bell transformer. At the same time, \(T_{1}\) ensures that \(T_{2}\) is off. When the bell-push is released, \(T_{1}\) is switched off and \(T_{2}\) begins to conduct. As long as the charge on \(\mathrm{C}_{2}\) lasts, the buzzer will sound. The length of the sound depends on the value of \(\mathrm{C}_{2}\) (the higher the value, the longer the sound). Since all the energy is supplied by \(\mathrm{C}_{2}\), the buzzer cannot be replaced by a normal bell or gong, since these draw far too large a current.
[A. Rietjens - 934094]


\section*{STORAGE OSCILLOSCOPE TESTER}

TThe tester generates two different signals for checking a digital storage oscilloscope. The first is a stepped voltage on to which glitches are superimposed; the second is a rectangular 2 kHz signal on to which a 15 Hz analogue signal is superimposed.

The first signal quickly shows whether the oscilloscope eliminates the glitches during signal processing. If it does, the measurements cannot be fully trusted. It can also be used to check the trigger function; if this is poor, it will not be able to cope with the signal properly.

The second signal shows whether at a given setting low-frequency signals remain clearly visible (they should).

The stepped voltage is generated by oscillator \(\mathrm{IC}_{1 \mathrm{a}}\) and a digital-to-analogue converter (DAC)-see diagram. The converter consists of \(\mathrm{IC}_{2}, \mathrm{D}_{1}-\mathrm{D}_{4}, \mathrm{R}_{3}-\mathrm{R}_{6}\), and \(R_{9}\). The signal is buffered by \(T_{1}\). Diode \(D_{5}\) compensates the forward bias of the base-emitter junction of \(\mathrm{T}_{1}\). The spikes are introduced by \(\mathrm{C}_{4}\).

The second signal is produced by switching \(\mathrm{T}_{2}\) in rhythm with the 2 kHz signal and changing the collector voltage with the 15 Hz signal generated by oscillator \(\mathrm{IC}_{16}\).

The circuit needs a supply voltage of \(9-15 \mathrm{~V}\) and draws a current of about 50 mA .
[A. Rietjens - 934116]


\section*{HEXADECIMAL DISPLAY DECODER}

TThe byte-to-hex display decoder was designed because nibble-to-hex decoders are no longer produced commercially. In principle, it is of, course, not difficult to decode a nibble, but from byte to hex is generally more practical and requires fewer ICs. The decoder uses a GAL Type 22V10. This type has an adequate number of inputs and outputs for the present application and may be programmed with the 'GAL programmer' (incl. the extension) published in this magazine \({ }^{1}\). The listing and programming data shown are written in the format that is accepted by the National Semiconductor software and may be converted to a JEDDIC file with the EQN2JED option. Note that although a warning is generated that in the define statements an OR term is used, this is a false alarm, since in the present circuit no fewer than eight or terms are produced.

The circuit has a drawback in that it requires an external clock. Fortunately, this signal can often be derived from the circuit to which the display is connected. The frequency may be between 100 Hz and 100 kHz .

Apart from clocking the bistables at the outputs of the GAL, the clock also serves the multiplexing of the two displays.

Schottky diodes \(\mathrm{D}_{1}\) and \(\mathrm{D}_{2}\) ensure that \(T_{1}\) and \(T_{2}\) switch off fast, so that the transistors are on in turn without any overlap. This prevents 'ghost' segments arising at clock frequencies above 1 kHz .

LT is a lamp-test input with which all segments are controlled. A ' 1 ' at input DPO or DP1 causes the relevant decimal point on the displays to light.

The decoder may serve as an example for the design of a special decoder for another application.
[A. Rietjens - 934036]
\({ }^{1}\) May 1992.

1


2
Hex Decoder / 7-Segment LED Driver GAL file for opal Junior

CHIP hex_7seg gal22v10
c1k do d1 d2 d3 d4 d5 d6 d7 dp0 dp1 gnd it selo sell \(d p d a c b l a g\) vec
, define product terms for each value and each display
Qdefine zero "/d7*/d6*/d5*/d4*/1t*sel0+/d3*/d2*/d1*/d0*/1t*sel1" odefine one adefine two Quefine three edefine four adefine five adefine six adefine seven Quefine eight adefine nine gdefine ten odefine eleven adefine eleven
adefine twelve Qdefine twelve adefine thirteen " \(\mathrm{d} 7^{*} \mathrm{~d} 6^{*} / \mathrm{d} 5^{*} \mathrm{~d} 4^{*} / 1 \mathrm{t}^{*} \mathrm{se} 10+\mathrm{d} 3^{*} \mathrm{~d} 2^{*} / \mathrm{d} 1^{*} \mathrm{~d} 0 * / 1 \mathrm{t} \mathrm{t}^{\mathrm{sen}} \mathrm{sel} 1^{\prime \prime}\) odefine fourteen " d7* d6* d5*/d4*/1t*se10+ d3* d2* d1*/d0*/1t*sel1"

define combined producterms to minimize the total number of terms
adefine or14or15 " d7* d6* d5*/1t*sel0+ d3* d2* d1*/1t*sell Qdefine or11or 15 " d7* d5* d4*/1t*se10+ d3* d1* d0*/1t*sel1"
 Ddefine or2or3 "/d7*/d6* d5*/1t*se10+/d3*/d2* d1*/1t*se11" Bdefine or4or5 */d7* d6*/d5*/1t*se10+/d3* d2*/d1*/1t*sel1" adefine or7or15 " d6* d5* d4*/1t*sel0+ d2** d1* do*/1t* sell" adefine orlor9 "/d6*/d5* d4*/1t*sel0+/d2*/d1* d0*/1t*sel


EQUATIONS
7To minimize product terms the segment selection is done by using the one's that are off, and several options, like 'one+nine', are combined the one's that are one product term, resulting in one term 'orlor9'.
, All outputs are registered and the multiplex frequency is determined by
; the supllied clock frequency


\section*{8-CHANNEL A-D CONVERTER}

TThe converter described is controlled by a small I/O card that has an adequate number of inputs and outputs. It may be built on small piece of prototyping board and connected to the I/O board via \(\mathrm{K}_{1}\). The 12 V supply and the clock ( \(\mathrm{OSC}=14.318 \mathrm{MHz}\) ) which, divided by 16 , is used to clock the converter, are derived from the I/o card. The clock may also be drived from a PC, but that on the I/O card is independent of the computer.

How the converter is operated is shown in the BASIC program, except for one action. The EOC output (which goes high at the end of a conversion) needs a minimum of 0 clock pulses and a maximum of eight clock pulses plus \(2 \mu \mathrm{~s}\) after the leading transition (edge) of the start pulse to go low. This means that with compiled software or machine language routines EOC must be checked in the correct manner (that is looking on line 200 whether EOC is high).
[S. Mitra - 934087]
```

10 CLS
20 CTRLWRD = \&H99: 'Port A is input, B is output, C is input
30 BASEADDR = \&H300: 'base address of 8255
40 PORTA =
BASEADDR
50 PORTB = BASEADDR + 1
60 PORTC = BASEADDR + 2
70 CTRLADDR = BASEADDR + 3
80 CHANNEL = 0
90.
100 OUT CTRLADDR, CTRLWRD: 'initialize 8255
110.
120 OUT PORTB, CHANNEL: 'set input channel address
130 OUT PORTB, (CHANNEL OR \&H8): 'B3 HIGH enable address latch
140 OUT PORTB, (CHANNEL AND \&HF7): 'B3 LOW
150.
160 OUT PORTB, (CHANNEL OR \&H10): 'B4 HIGH start conversion
170 OUT PORTB, (CHANNEL AND \&HEF): 'B4 LOW
180.
190 EOC = 0:
'wait for End of Conversion
200 WHILE EOC<> \&H80 : EOC = INP(PORTC) AND \&H80: WEND
210 '
220 OUT PORTB, (CHANNEL OR \&H27): 'B5 HIGH enable ADC outputs
230 LOCATE 1,1:PRINT "Channel ";CHANNEL;" : ";INP (PORTA);"
240 OUT PORTB, (CHANNEL AND \&HDF): 'B5 LOW disable ADC outputs
250.
260 PRINT : PRINT "Press N for next channel or S to stop"
270 A$=INKEY$
280 IF (A\$="N" OR A $="n") THEN GOTO 310
290 IF (A$="s" OR A\$="S") THEN END
300 GOTO 150
310.
320 CHANNEL = CHANNEL + }
330 IF CHANNEL = 8 THEN CHANNEL =0
340 GOTO 110
934087-12

```


\section*{BATTERY DISCHARGER}

WThen batteries are charged rapidly, the manufacturer usually recommends that after every fifth fast charge there is a 'normal' charge, that is, one at 0.1 C (apacity), That can, however, be done only if the battery is discharged. At the same time, the individual cells must not be discharged too much. If, for instance, one cell is flat and the others are still charged or nearly so, the polarity of the flat cell reverses and that must be prevented to save the battery. As a rule of thumb, a battery should be discharged to an average of 1 V per cell.

The diagram shows a circuit that is suitable for discharging nickel-cadmium (NiCd) as well as nickel-metal-hydride (NiMH) batteries. It is simple and inexpensive, but the components must be matched to the number of cells the battery contains.

As long as \(\mathrm{D}_{2}\) lights, the battery is discharged via \(R_{4}\) and \(T_{1}\). When the battery voltage drops below a value set with \(P_{1}, T_{1}\) no longer gets a base current. The LED will then go out and the discharge circuit may be removed. The battery can then be charged.

The circuit may be tested with the aid of a variable power supply with current limiting. Connect the discharger to the power supply: \(\mathrm{R}_{4}\) may be omit-
ted. Set the output of the supply to the wanted level, whereupon \(T_{1}\) should switch off. Adjust \(P_{1}\) till \(D_{2}\) lights dimly. This sets the voltage to which a battery may be discharged,
- Since the gain is not very high, there is an area where \(D_{2}\) diminishes gradually and where, therefore, the discharge current decreases gradually. This does not affect the circuit, however.

If the range is too small, the value of the zener diode should be reduced or increased.

The value of \(R_{4}\) is calculated for a discharge current of about 0.5 A . This value is not critical. That is, if a resistor of \(6.8 \Omega\) proves difficult to obtain, a \(4.7 \Omega\) or \(10 \Omega\) resistor may be used without detriment. Since the voltage of the cells is monitored, it is not necessary to sta-
bilize the discharge current.
[K. Walraven - 934057]

\begin{tabular}{cccc}
\hline No. of cells & \(\mathrm{D}_{1}[\mathrm{~V}]\) & \(\mathrm{R}_{3}[\Omega]\) & \(\mathrm{R}_{4}[\Omega]\) \\
\hline 3 & \(1.2[2\) diodes \(]\) & 150 & \(6.8[5 \mathrm{~W}]\) \\
4 & \(2.4[3\) diodes \(]\) & 270 & \(10[5 \mathrm{~W}]\) \\
5 & 3.3 & 330 & \(12[5 \mathrm{~W}]\) \\
6 & 3.9 & 470 & \(15[10 \mathrm{~W}]\) \\
7 & 4.7 & 560 & \(15[10 \mathrm{~W}]\) \\
8 & 5.6 & 680 & \(18[10 \mathrm{~W}]\) \\
9 & 6.8 & 680 & \(22[10 \mathrm{~W}]\) \\
10 & 8.2 & 820 & \(22[10 \mathrm{~W}]\) \\
\hline
\end{tabular}

\section*{POWER BOOSTER FOR SLIDE PROJECTORS}

TWhe lamp in slide projectors is normally controlled with the aid of a triac in series with it. This method reduces the brightness of the lamp appreciably, since the triac drops about 1.5 V . which is more than \(6 \%\) of the nominal lamp voltage. To compensate this loss, the mains voltage to the projector should be increased by that percentage. The transformer and ventilator can cope easily with that kind of increase, and so can any electronic circuits, since these are invariably powered via a regulator.

The a.c. voltage to the projector may be increased by connecting the secondary winding of a mains transformer in the live wire of the mains. The voltage developed across this winding is then added to the mains voltage (provided that the transformer is connected correctly as regards phase).

The voltage the secondary winding must deliver is calculated as follows. The current through the winding depends on the number of projectors and their rating.


Assuming there are four, each rated at 250 W (power consumption: 300 W ), the total power consumption during normal operation is 1200 W . With a mains voltage of 240 V , the current will be 5 A . Since the projectors do not all use full power simultaneously, the secondary winding may be rated at 6 A . The secondary voltage, \(U_{\mathrm{s}}\), should be the ratio of the loss across the triac and the nominal lamp voltage times
the mains voltage, that is,
\[
U_{\mathrm{s}}=1.5 / 24 \cdot 240=15 \mathrm{~V}
\]

Fuse \(F_{1}\) should be rated at \(1.25 \times\) the maximum current of all projectors. Assuming the earlier stated values, that is,
\[
I_{\text {fusel }}=1.25 \cdot 1200 / 240=6.25 \mathrm{~A} \text {, }
\]
or, rounded off to the next standard value, 6.3 A (delayed action). The rating of fuse \(\mathrm{F}_{2}\) is calculated from
\[
I_{\text {fuse } 2}=1.25 \cdot U_{\mathrm{s}} \cdot I_{\mathrm{s}} / 240=487 \mathrm{~mA} \text {, }
\]
or, rounded off upwards, 500 mA .
The circuit should preferably be fitted in a man-made fibre enclosure.

If the output voltage is lower, rather than higher, than the mains voltage, the connections to either the pirmary or the secondary of the additional transformer must be interchanged.
[A. Rietjens - 934058]

\section*{NiMH BATTERY CHARGER}

Nickel-metal-hydride (NiMH) batteries have now become widely available. A typical one is the 120AAH, which has a capacity of 1.2 Ah in size AA (MN1500; LR6). This type does not lose more than \(45 \%\) of its capacity through self-discharge over a period of 25 days at a temperature of \(20^{\circ} \mathrm{C}\). Recommended fast charging instructions are charging with a current of 0.3 C for not more than 2.5 hours, or until the cell voltage has risen to 1.49 V , or until the cell temperature rises above \(40^{\circ} \mathrm{C}\). The cell is then charged up to \(75 \%\) of its capacity, after which it should be charged with a current of 0.1 C , which it can stand for long periods. The circuit shown enables these instructions to be adhered to.

Output CT13 of \(\mathrm{IC}_{2}\) goes high after \(21 / 2\) hours, whereupon charging stops. At the same time, the output of \(\mathrm{IC}_{\text {la }}\) goes high when the battery voltage rises above 1.49 V per cell. This output then toggles, which also stops the charging.

The number of cells contained in the battery to be charged is set with the value of \(\mathrm{R}_{14}\) : for 1 cell, the resistor is omitted; its value for 2 cells is \(100 \mathrm{k} \Omega\); for 3 cells, \(2 \times 100 \mathrm{k} \Omega\) in parallel \((=50 \mathrm{k} \Omega)\); for 3 cells, \(3 \times 100 \mathrm{k} \Omega\) in parallel; and so on.

The third way of ending the charging is by means of the temperature measured with \(\mathrm{IC}_{5}\). When the temperature rises above \(40^{\circ} \mathrm{C}, \mathrm{IC}_{1 \mathrm{~b}}\) terminates the charging.

The three charging outputs are formed into OR gates by \(\mathrm{D}_{2}-\mathrm{D}_{4}\). Since these are low-current LEDS, it is immediately visible on what basis charging has been discontinued.

The charger is switched from 0.3 C to 0.1 C (that is, off), te control input of current source \(\mathrm{IC}_{4}\) is connected to earth via thyristor \(\mathrm{Th}_{1}\). The output potential of \(\mathrm{IC}_{4}\)

can then not rise above 1.2 V . Since this is lower than the battery voltage, \(\mathrm{D}_{5}\) will be reverse-biased. Further charging of the battery is then via \(R_{15}\). The value of this series resistor (in \(\Omega\) ) is obtained by dividing the difference (in V ) between the supply voltage and the battery voltage by 0.12 . The quotient should be rounded off to the nearest standard value (the exact value is not terribly important).

The level of the supply voltage depends
on the number of cells contained in the battery to be charged. Its minimum value is 4 V plus the number of cells times 1.5 V .

It is necessary to mount \(\mathrm{IC}_{4}\) on a small ( \(10 \mathrm{~K} \mathrm{~W}^{-1}\) ) heat sink.

Two keys must be pressed to switch the charger on: \(S_{1}\) resets timer \(\mathrm{IC}_{1}\) and \(\mathrm{S}_{2}\) switches off thyristor \(\mathrm{Th}_{1}\). These switches could be combined, but double-pole key switches are not generally available.
[K. Walraven - 934117]

\title{
BATTERY VOLTAGE MONITOR
}

Philips' ic Type TEA1041T is intended primarily for monitoring the voltage of \(1.8-4.0 \mathrm{~V}\) batteries. Internal trigger and timing logic prevent a circuit from reacting to brief breaks in the supply voltage caused by pulses on the load current. One or two LeDs may be used to indicate when the voltage drops below a preset level.

A circuit with two LEDS is shown in Fig. 1. Potential divider \(R_{1}-R_{2}\) determines the voltage level below which the LEDs indicate that the battery is charged. The divider should give a voltage of exactly 1.25 V at pin 1. Give \(R_{2}\) a value between \(1 \mathrm{k} \Omega\)
and \(100 \mathrm{k} \Omega\) and calculate \(\mathrm{R}_{1}\) from
\[
\mathrm{R}_{1}=\mathrm{R}_{2}\left(U_{\mathrm{th}} / 1.25-1\right) \quad[\Omega]
\]
where \(U_{\mathrm{th}}\) is the wanted voltage level. The values of \(R_{3}\) and \(R_{4}\) are 100-220 \(\Omega\), depending on the battery voltage.

The TEA1041T is enabled when pin 3 is at ground level. If the voltage at pin 1 drops below 1.25 V , a digital counter runs for about 2 s . If the level at pin 1 remains \(<1.25 \mathrm{~V}\), the IC goes into the alarm state: \(D_{1}\) lights and continues to do so even when the voltage at pin 1 reaches 1.25 V
again. If in this condition \(S_{1}\) is opened, both LEDS flash for about 4 s . After that, the ic reverts to the standby state, in which it draws a current of about \(10 \mu \mathrm{~A}\), which constitutes only a minute a load on the battery.
Figure 2 shows how the ic can be incorporated in an existing apparatus: \(D_{2}\) is omitted and pin 3 is permanently at ground level. The monitor is connected across the load as long as \(S_{1}\) is closed. The Ic performs as described earlier, but the LED does not flash after the reset.

If the supply voltage is higher than 4 V ,
connections must be made as shown by the dashed lines in Fig. \(2\left(\mathrm{R}_{1}\right.\) to \(\mathrm{R}_{5}\) and \(D_{3}\) and \(C_{3}\) to earth). The supply voltage
is then lowered to 3.3 V by \(\mathrm{D}_{3}\). The potential divider is connected across the full supply voltage.

Source: Philips Data Sheet TEA1041T: Battery Low-level Indicator.
[G. Kleine - 934089]


\section*{MICROCONTROLLER-DRIVEN UART}


This project demonstrates how a microcontroller fills the bill when it comes to reducing the size and component count of complex digital circuits. Here, one such circuit, the otherwise awesome UART (universal asynchronous receiver/transmitter), is formed by an ST62E10 8-bit controller and a handful of passive parts.

\author{
Design by B. Kainka
}

MANY computer links require ser-ial-to-parallel or parallel-to-series conversion of data formats. Traditionally, this function is performed by a universal asynchronous receiver/transmitter (UART), the best known of which is the AY-3-1015. Unfortunately, this device is not easily programmed from a computer system, since it requires quite a few DIP switches to set up the communication protocol, handshaking, etc. By contrast, the microcontroller used here, an ST62E10 from SGS-Thomson, has a number of registers that allow the PC to use 10 parallel lines as digital inputs or outputs, analogue inputs, or even a mix of these. This 'intelligent' UART is controlled by the PC via the RS232 port, with the registers acting as the software equivalent of DIP switches.

The use of the 20-pin version of the ST62xx microcontroller allows the
number of external components to be kept to a minimum, while the current consumption remains limited to a modest 2 mA or so. The extra I/O capacity ( 8 lines) of the next larger controller in the family, the 28 -pin ST62 \(\times 5\), is tempting, but not really required for the present application.

\section*{Introducing the ST6210}

Considering that it would be too easy, on the one hand, to treat the microcontroller in the circuit as a black box, while, on the other hand, a full description of all the bells and whistles of the device is beyond the scope of this article, a short description is given of the ST6210 architecture, with reference to Fig. 1.

The ST62xx family of microcontrollers is based on a so-called macro cell structure, which consists basically of a central unit, ROM or EPROM,

RAM, and some peripheral circuitry. The latter comprises:
- a timer with an 8 -bit counter and a 7-bit programmable prescaler;
8 or 16 digital input/output lines, or analogue input lines;
- a digital watchdog (DWD).

The only difference between the ST621x and the ST622x is the size of the ROM, which is 2 KByte in the ST621x, or 4 KByte in the ST622x. On both controllers, 220 bytes of the ROM space is reserved for the system.

A detailed diagram of the 8-bit core of the ST62xx controller is given in Fig. 2. Here, you find the classic ingredients of modern microcontrollers: CPU, ROM, RAM, etc.
The ST62Exx is the family member with EPROM instead of ROM. The advantage of EPROM over conventional ROM is that the memory is erasable and re-programmable, which for the obvious reason of easier debugging. makes it just the thing for application developers. To complete the ST62xx family picture, we should mention the one-time programmable (OTP) version, designated ST62Pxx.

The difference between the ' \(T\) ' and ' \(E\) ' version of the ST62xx controller is that two memory areas, 0800 H to 087 FH , and 0 FAOH to 0 FEFH , are not usable (reserved) in the ' \(T\) ' device, while they are available in the ' \(E\) ' device. In many cases, these 200 -odd bytes come in handy to the programmer.

Mixed I/O use is allowed on the microcontroller's port lines, i.e., lines may be programmed individually to function as an input or an output. The input or output function is programmed via the command register contained in the RAM area of the processor. This register is externally programmable, giving full control over all the features offered by the microcontroller. This allows device parameters such as the I/O lines definition, to be held externally (for instance, on a PC ), for writing into the ST62xx, while the microcontroller runs a 'fixed' program, reading the parameters from its RAM area as required.

The ST62E10 is connected to a PC via an RS232 link, which keeps the number of I/O lines used down to two. Since the microcontroller proper does not contain an RS232 interface, this function is realized in software, i.e., by appropriate routines that arrange the data transfer to and from the PC.
Port line AO functions as a the TxD (transmitted data) input, and port line

A1, as the RxD (received data) output. Since the UART we are about to describe belongs functionally in the DTE (data terminal equipment) class, TxD is an input, and RxD , an output.

\section*{Circuit description}

If you like simple circuits, this one is for you, because the circuit diagram in Fig. 4 shows only one integrated circuit and seven passive parts. Not surprisingly, this simplicity can be achieved only by a certain amount of 'intelligence' which, you guessed it, resides in the microcontroller. Actually, the intelligence is formed by a chunk of machine code program held in the on-board EPROM.

The microcontroller is clocked by its on-board oscillator, which operates with an external \(4-\mathrm{MHz}\) quartz crystal, \(\mathrm{X}_{1}\), as the frequency determining component. The controller's port lines are connected to two sockets, K1 for the computer link, and K2 for the parallel equipment. Zener diode D1 keeps the swing of the signal received on port line PAO within safe limits. Capacitor C1 decouples the microcontroller's supply voltage, while resistors R1 and R2 act as current limiters on the PAO and PA1 port lines.

It will be noted that the interface does not contain buffers. The baud rate is fixed at 19,200, and determined by the \(4-\mathrm{MHz}\) quartz crystal. The baud rate may be doubled to 38.4 Kbaud simply by fitting an \(8-\mathrm{MHz}\) quartz crystal. Similarly, a \(2-\mathrm{MHz}\) crystal gives a baud rate of 9,600.

\section*{Software considerations}

Since the microcontroller's clock frequency is divided internally by 13 , a maximum of 16 machine cycles is available for each bit. For example, at a clock of 4 MHz :
\(4,000 \mathrm{kHz} / 13=307.692 \mathrm{kHz}\)
\(307.692 \mathrm{kHz} / 16=19.231 \mathrm{bits} / \mathrm{s}\)
Because the length of the processor instructions varies between two and five machine cycles, a bit on the serial link must be recognized or generated in no more than 4 instructions (typically). This means that the programmer can not make use of loops to create serial (RS232) signals. Consequently, each of the 8 bits transmitted has its own set of instructions. Similarly, the instructions that form the 'receive' routine must be in keeping with the chronological order dictated by the 16 machine cycles, irrespective of whether the received information is a 0 or a 1 . This is achieved by inserting 'dummy' instructions where necessary. The same goes for the 'transmit' routine.

- not avallable on St6210/E10, ST6220/E20
(1) ST6210. ST6215
(2) ST6220, ST6225

930073-12

Fig. 1. ST62xx microcontroller family architecture (courtesy SGS-Thomson Microelectronics).


Fig. 2. ST62xx microcontroller core architecture (courtesy SGS-Thomson Microelectronics).


Fig. 3. Pinouts of the devices in the ST62xx family of microcontrollers.


Fig. 4. Circuit diagram of the microcontroller-driven UART.

The main program contains a loop in which data is received, interpreted and processed further. To enable this to be done, the following protocol has been set up: to read the contents of a register, the PC transmits the register
address (between 128 and 255). whereupon the microcontroller reads the byte contained at this address, and transmits the information back to the PC. To be able to write to an address, bit 7 must be made 0 , i.e, the write ad-


Fig. 5. Artwork for the miniature PCB designed for the UART.
dresses of the registers are 0 through 127. The databyte that follows the 'write' address is written into the register. The databyte should come within a certain period after the register 'write' address. If not, the watchdog is alerted, and causes the ST62E10 to be reset.
The interface can be used only if the functions of certain registers in the microcontroller are known. The function of the I/O lines is defined by the following registers: 'ddr' (data direction register), 'ior' (interrupt option register) and 'dr' (data register). Each of the ports A, B and C (ST62x5 only) has its own set of ddr, ior and dr registers. The table below gives the most frequently used options. As already mentioned, each port line can be programmed individually.
\begin{tabular}{|llll|}
\hline ddr & ior & dr & function \\
0 & 0 & 0 & input with pull-up \\
0 & 0 & 1 & input without pull-up \\
0 & 1 & 1 & \begin{tabular}{l} 
analogue input, except \\
for PAO-PA3 and
\end{tabular} \\
& & & PCO-PC3 \\
1 & 0 & \(x\) & open-drain output \\
1 & 1 & \(x\) & push-pull output \\
\hline
\end{tabular}

The microcontroller used in this project is available ready-programmed through our Readers Services under order code 7151.

\section*{Interface driver demo}

The listing in Fig. 6 shows a Turbo Pascal program to demonstrate the operation of the UART. The addresses of the most important registers are set up in the 'declarations' preamble of the

```

program st6_Register;
uses Crt ;
const ddra = \$c4; { direction register a.c. }
ddrb = \$C5;
ddrc = \$C6;
ora = \$CC; { option register a..c }
orb = \$CD;
orc = $CE;
 dra =$C0; { data register a..c }
drb = \$C1;
drc = \$C2;
adcr = \$D1; {A/D control register }
adr = \$DO; {A/D data register }
var N, BA : Integer;
procedure Transmit (charact : Byte);
begin
while (Port[BA+5] And 32) = 0 do; {Transmit register empty? }
Port[BA]:=charact; { 32 or 64 or even 96??? }
end;
function Receive :Byte;
var i :Word;
begin
i:=0;
while ((Port[BA+5] And 1)=0) And (i<3200) DO Inc(i);
if i < 3200
then Receive:=Port [BA]
else begin
Delay(10);
Receive := 0;
end;
end;
procedure Init:
var i :Word;
begin
BA:=\$2F8; {\$3F8=COM1, $2F8=COM2 }
 Port[BA+3]:=128;
 Port[BA+0]:=6; { 6 for 19200 Baud, 3 for 38400 Baud }
 Port [BA+1]:=0;
 Port[BA+3]:=7; {8-Bit, n-Parity, 1 Stopbit}
 Port[BA+1]:=0; { no Interrupts }
 Port[BA+4]:=3; { DTR = 1, CTS = 1 }
 i:=POrt[BA]; {Input buffer empty }
 Transmit (0);
 Transmit (0);
end;
procedure Regout (Address,Datum : Byte);
 begin
 Transmit (Address AND 127);
 Transmit (Datum);
 end;
function RegIn (Address : Byte): Byte;
 begin
 Transmit (Address);
 Regin := Receive;
 end;
{ 1st Example: Transmit and read back digital Data from Port B }
begin
 Init;
 RegOut (darb,$FF); {Port B: Output }
RegOut (orb,\$FF); {Push-pull}
repeat
for n:= 1 to 255 do begin
RegOut (drb,n);
if RegIn (drb) <> n then writeln ('Error');
write (RegIn(drb));
end;
until keypressed
end.
{ 2nd Example: Analogue Input to Port BO }
begin
Init;
RegOut (ddrb,$00); { Port B: Input }
 Regout (orb,$FF); {亩 {苃 {ogue }
Regout (arb,\$01); {B0 is present input }
repeat
RegOut (adcr,\$30); { Start measuring }
writeln (RegIn (adr)); { Read measured value
delay (100);
until keypressed
end.

```

Fig. 6. An interface demo written in Turbo Pascal.
program. The function of each port line must be indicated when the ports are used for digital input or output. Next, it is possible to program a continuous exchange of data between the data register and the relevant port.

To be able to use the analogue-todigital converter (ADC) contained in the microcontroller, it is necessary to first program one of the port lines as an input. This is achieved via the port register. The actual conversion is started via the ADC command register. The conversion is pretty fast at only \(140 \mu \mathrm{~s}\), after which the result may be read from the ADC data register.

\section*{Construction}

The artwork of the printed circuit board designed for the microcon-troller-driven UART is given in Fig. 5. There are very few components to fit, and construction should not present problems. Start by fitting the smaller parts: the resistors, the diode, the crystal (vertically mounted) and the capacitors. Next, mount an IC socket in position IC1, followed by the two connectors.

The UART is connected to the RS232 port on the PC via a 9-way cable. One end of this cable should have a 9 -way sub-D plug, the other, a 9 -way sub-D socket. The cable should be a 'straight through' type, i.e., no crossed wires for the TxD and RxD pins. If you want to go round making your own cable, go out and buy a socalled Hercules monitor extension cable. These are often cheaper than two 9-way sub-D connectors!

\(11 \mathrm{k} \Omega\)
R2
Capacitors:
\(14 \mu \mathrm{~F} 7 / 16 \mathrm{~V}\)
C1
\(1 \quad 15 \mathrm{pF}\)
C2,C3

\section*{Semiconductors:}

1 zener 4V7/500mW D1
1 ST62T10 (order code 7151; see page 110)

Miscellanaeous:
14 MHz quartz crystal

\title{
FIGURING IT OUT
}

\section*{PART 11 -QUADRIPOLES}

\author{
By Owen Bishop
}

\begin{abstract}
This series is intended to help you with the quantitative aspects of electronic design: predicting currents, voltage, waveforms, and other aspects of the behaviour of circuits.

Our aim is to provide more than just a collection of rule-of-thumb formulas.
We will explain the underlying electronic theory and, whenever appropriate, render some insights into the mathematics involved.
\end{abstract}

Quadripoles, otherwise known as 4-terminal networks, or 2port networks, are the final excursion into network analysis in the present series. The essential features of a quadripole are illustrated in Fig. 90. The network is linear, its outputbeing directly proportional to its input and varying continuously with it. Current \(I_{1}\) enters Port 1 by one terminal and leaves by the other. Current \(I_{2}\) enters and leaves Port 2 . The behaviour of the network at any given frequency, and as seen from the outside, may be completely specified by reference to four impedances, known as the open-circuit impedance parameters, or z-parameters. Current \(I_{1}\) produces a pd across Port 1 as the result of its flowing through \(z_{11}\).It also produces a pd across Port 2, for which the relevant impedance is \(z_{21}\). Similarly, \(I_{2}\) produces pds across Ports 1 and 2 , as the result of flowing through \(z_{12}\) and \(z_{22}\) respectively. Summing these pds at each port:
\[
\begin{array}{ll}
U_{1}=z_{11} I_{1}+z_{12} I_{2} & \text { [Eq. 69] } \\
U_{2}=z_{21} I_{1}+z_{22} I_{2} & \text { [Eq. 70] }
\end{array}
\]

These two equations define the \(z\)-parameters. With Port 2 opencircuited, so that \(I_{2}=0\), we find:

From Eq. 69: \(z_{11}=U_{1} / I_{1}\)
[Eq. 71]
From Eq. 70: \(z_{21}=U_{2} / I_{1}\)
[Eq. 72]
With Port 1 open-circuited, so that \(I_{1}=0\), we find:

From Eq. 69: \(z_{12}=U_{1} / I_{2}\)

From Eq. 70: \(z_{22}=U_{2} / I_{2}\)
[Eq. 74]
As an illustration, consider the T -section resistance network of


Figure 90


Figure 91


Figure 92


Figure 93

Fig. 91. Mesh current analysis (Part 4) provides equations from which the \(z\)-parameters may be calculated:

Mesh 1: \(U_{1}=(3+2) I_{1}+2 I_{2}\); Mesh 2: \(U_{2}=2 I_{1}+6 I_{2}\).

Note that, instead of defining all currents as clockwise, as we
usually do, \(I_{1}\) is clockwise and \(I_{2}\) is anticlockwise. This eliminates negatives from the equations. Comparing the coefficients in the mesh equations with those in Eq. 69 and 70, we see that:
\[
\begin{aligned}
& z_{11}=5 \Omega \\
& z_{12}=z_{21}=2 \Omega \\
& z_{22}=6 \Omega
\end{aligned}
\]

All \(z\)-parameters are expressed in ohms.

\section*{\(z\)-parameter model}

Based on the \(z\)-parameters, a quadripole may be represented by the model of Fig. 92. \(z_{11}\) and \(z_{22}\) are represented as impedances in series with the ports. \(U_{1}\), the pd produced at Port 1 as a result of \(I_{2}\), is represented by a controlled voltage source, \(z_{12} I_{2}\), accounting for the last term of Eq. 69. Similarly, the last term of Eq. 70 is represented by the controlled voltage source \(z_{21} I_{1}\). Figure 93 shows the T-network of Fig. 91 as a \(z\)-parameter model. This model can be used to predict the behaviour of the network when connected to external circuits. If we know the voltages at the ports, we use Eq. 69 and 70 to calculate the currents. Conversely, given the currents, we can calculate the voltages. Example. In the network of Fig. \(91, I_{1}=2 \mathrm{~A}, I_{2}=3 \mathrm{~A}\). Calculate \(U_{1}\) and \(U_{2}\).
From Eq. 69:
\[
U_{1}=5 \times 2+2 \times 3=16 \mathrm{~V}
\]

From Eq. 70:
\[
U_{2}=2 \times 2+6 \times 3=22 \mathrm{~V} .
\]

\section*{Determining parameters}

If the circuit of the quadripole is known, \(z\)-parameters may be calculated by the usual network
techniques, as we did for Fig. 91. These are open-circuit parameters, which means that the ports can be considered in turn as open circuits to simplify the calculations. As an example, take the \(\pi\)-network of Fig. 94. With Port 2 open-circuited, \(I_{2}\) flows through \(R_{1}\) in parallel with \(R_{3}\) and \(R_{2}\). Their combined resistance is \(4.167 \Omega\). From Eq. 71 :
\[
z_{11}=U_{1} / I_{1}=4.167 \Omega
\]

The current flowing through \(\mathrm{R}_{2}\) is:
\[
\begin{aligned}
& I_{\mathrm{R}}=I_{1} \times \mathrm{R}_{1} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}\right) \\
& =5 I_{1} / 30=I_{1} / 6
\end{aligned}
\]

This generates a pd across \(\mathrm{R}_{2}\) :
\[
U_{2}=15 I_{1} / 6=2.5 I_{1} .
\]

Now we can calculate \(z_{21}\), using Eq. 72 ;
\[
z_{21}=U_{2} / I_{1}=2.5 \Omega
\]

With Port 1 open-circuited, similar calculations show that:
\[
\begin{aligned}
& z_{12}=2.5 \Omega ; \\
& z_{22}=7.5 \Omega .
\end{aligned}
\]

Now suppose that \(R_{3}\) is replaced by a \(10 \mu \mathrm{~F}\) capacitor (Fig. 96a). If \(\omega=10^{4}\), then \(X_{C}=-1 / \mathbf{j} \omega C\) \(=-\mathbf{j} 10 \Omega\). We can use this in place of the resistance of \(\mathrm{R}_{3}\) in the calculations above. The combined impedance of \(\mathrm{R}_{2}\) and \(X_{C}\) is \((15-\mathbf{j} 10) \Omega\). In parallel with \(5 \Omega\), the total resistance is
\[
\begin{aligned}
& 5(15-\mathbf{j} 10) /(5+15-\mathbf{j} 10) \\
&=(15-\mathbf{j} 10) /(4-\mathbf{j} 2) \\
&= 18.03 \angle-33.69^{\circ} / 4.47 \angle-26.57^{\circ} \\
&= 4.03 \angle-7.12^{\circ} . \\
& z_{11}=4.03 \angle-7.12^{\circ} \Omega .
\end{aligned}
\]

Techniques for handling complex numbers are described in Part 8.

Current flowing through \(\mathrm{R}_{2}\) is:
\[
I_{\mathrm{R}}=I_{1} \times 5 /(20-\mathbf{j} 10) .
\]

The pd across \(\mathrm{R}_{2}\) is:
\[
U_{2}=I_{\mathrm{R}} \mathrm{R}_{2}=75 I_{1} /(20-\mathbf{j} 10)
\]
\[
=I_{1} \times 75 / 22.36 \angle-26.57^{\circ}
\]
\[
\therefore z_{21}=U_{2} / I_{1}
\]
\[
=75 / 22.36 \angle-26.57^{\circ}
\]
\[
=3.35 \angle 26.57^{\circ} \Omega \text {. }
\]

From these two parameters we can calculate the gain of this network, assming that it is lightly loaded. With a high-impedance load, \(I_{2} \approx 0\).


Figure 94


Figure 95 a


Figure 95b


Figure 96


Figure 97

The Port 1 voltage source \(z_{12} I_{2}\), and \(z_{22}\) may be omitted from the model (Fig. 95b). Then, from Eq. 69 and 70:
\[
\begin{aligned}
& \text { gain }=U_{2} / U_{1}=z_{21} / z_{11} \\
& =3.35 \angle 26.57^{\circ} / 4.03 \angle-7.12^{\circ} \\
& =0.83 \angle 33.69^{\circ} .
\end{aligned}
\]
pass filter network.

\section*{Practical technique}

The \(z\)-parameters of a complicated network may be measured indirectly. By leaving the appropriate port open-circuit, we can make either \(I_{1}\) or \(I_{2}\) equal to zero. Then, measurements of the other current and the voltage are substituted in Eq. 71-74. Once these values are obtained, we use them to predict the behaviour of the quadripole under other input and output conditions.
Example. At a given frequency, and with Port 2 open-circuited (so that \(I_{2}=0\) ) and 10 V applied to Port 1, measurements made on an unknown network are:
\[
\begin{aligned}
& U_{1}=10 \mathrm{~V} \\
& U_{2}=5 \mathrm{~V} ; \\
& I_{1}=0.25 \mathrm{~A} .
\end{aligned}
\]

With Port 1 open-circuited (so that \(I_{1}=0\) ) and 10 V applied to Port 2, measurements made are:
\[
\begin{aligned}
& U_{1}=0.2 \mathrm{~V} \\
& U_{2}=10 \mathrm{~V} \\
& I_{2}=0.02 \mathrm{~A} .
\end{aligned}
\]

With Port 2 open-circuited, substituting in Eq. 69 and solving for \(z_{11}\) :
\[
z_{11}=10 / 0.25=40 \Omega .
\]

Substituting in Eq. 70 and solving for \(z_{21}\) :
\[
z_{21}=5.0 / 25=20 \Omega .
\]

Similarly, with Port 1 open-circuited:
\[
\begin{aligned}
& z_{12}=0.2 / 0.02=10 \Omega \\
& z_{22}=10 / 0.02=500 \Omega .
\end{aligned}
\]

Figure 96 shows these results incorporated in the \(z\)-parameter model. The parameters may now be used to predict network behaviour with other values of pd or current at the same frequency.

\section*{Other parameters}

The \(z\)-parameters show how the voltages are determined by the currents and impedances as defined in Eq. 69 and 70. We can write a corresponding pair of equations showing how the currents are determined by the voltages and anotherset of parameters, the \(y\)-parameters. This is another instance of duals(see Part5), so it should come as no surprise to find that the \(y\)-parameter model of a quadripole has an admittance in parallel with each port, and a pair of controlled current
sources(Fig. 97). As might be expected from the duality, \(y\)-parameters are calculated or measured by short-circuiting one or the other of the ports. The equations for \(y\)-parameters are:
\[
\begin{aligned}
& I_{1}=y_{11} U_{1}+y_{12} U_{2} ; \\
& I_{2}=y_{21} U_{1}+y_{22} U_{2} .
\end{aligned}
\]

The \(y\)-parameters are admittances, so their unit is the siemens (S). They are used in calculations similar to those above, if working with admittances is more convenient.

A third set of parameters consists of the \(h\)-parameters. The \(h\) stands for 'hybrid', because these parameters are based on a mix of \(U_{1}\) and \(I_{2}\), the pd across Port 1 and the current through Port 2:
\[
\left.\begin{array}{l}
U_{1}=h_{11} I_{1}+h_{12} U_{2} \\
I_{2}=h_{21} I_{1}+h_{22} U_{2}
\end{array} \quad \text { [Eq. 75] }\right] \text { [Eq. 76] }
\]

We will find the \(h\)-parameters for the circuit of Fig. 91. With Port2 short-circuited, as in Fig. 98a, (so that \(U_{2}=0\) ), from Eq. 75:
\[
h_{11}=U_{1} / I_{1} .
\]

But \(U_{1} / I_{1}\) equals the resistance of the network when Port 2 is short-circuited: this is \(3 \Omega\) in series with \(2 \Omega\) and \(4 \Omega\) in parallel. This gives a total resistance of \(4.33 \Omega\). Thus, \(h_{11}=4.33 \Omega\). The unit of \(h_{11}\) is ohms.

From Eq. 76, we have:
\[
h_{21}=I_{2} / I_{1} .
\]

Figure 98b shows the shorted network redrawn to make flow of current easier to visualise. The pd across \(A B\) is:
\[
\begin{aligned}
U & =2\left(I_{1}+I_{2}\right)=-4 I_{2} ; \\
\therefore I_{1} & =-3 I_{2} .
\end{aligned}
\]

Substituting in the equation for \(h_{21}\) :
\[
h_{21}=-1 / 3 .
\]
\(h_{21}\) is a ratio between two currents: it is a pure number without units.

With Port 1 open-circuited, as in Fig. 91, so that \(I_{1}=0\), we have from Eq. 75:
\[
h_{12}=U_{1} / U_{2}=2 / 6=1 / 3 .
\]

Here, the 4 -ohm and 2 -ohm resistors act as a potential divider, and \(U_{2}\) is divided by 3 to provide \(U_{1}\). Again, this is a ratio with no units.

\(930010 \cdot \times 1-20\)
Figure 98


Figure 99


Figure 100


Figure 101a


Figure 101b

From Eq. 76:
\(h_{22}=I_{2} / U_{2}=1 / 6 \mathrm{~S}\).

This is the admittance of the 4 -ohm and 2 -ohm resistors in series; its unit is the siemens.

We now have all the parameters and can set up the model(Fig. 99). Use this to make predictions. For example, evaluate the currents if \(U_{1}=10 \mathrm{~V}\) and \(U_{2}=5 \mathrm{~V}\). On the Port 1 side, the current through the resistor is the result of the pd across it, which is:
\[
\begin{aligned}
& 10-h_{12} U_{2}=10-U_{2} / 3 \\
& =10-5 / 3=8.333
\end{aligned}
\]
\[
\therefore I_{1}=8.333 / 4.333=1.923 \mathrm{~A} \text {. }
\]

On the Port 2 side, the current through the 6 -ohm resistor (equivalent to \(1 / 6 \mathrm{~S}\) admittance) is \(5 / 6 \mathrm{~A}\). The current from the controlled source is \(-I_{1} / 3=-1.923 / 3=\) -0.641 A. \(I_{2}\) equals the current through the 6 -ohm resistor plus the current produced by the source, which, being negative, flows in the opposite direction to the arrow:
\[
I_{2}=5 / 6-0.641=0.1923 \mathrm{~A} .
\]

The current gain of this network is \(I_{2} / I_{1}=0.1\).

This simple example has the merit that its results can be checked easily by mesh analysis of Fig. 91, with applied voltages of 10 V and 5 V . The reader may care to work this as an exercise, and confirm that the \(h\)-parameter technique gives the correct results.

\section*{Extending \(h\)-parameters}

Consider the model of Fig. 100, the circuit details of which are not relevant for the moment. It receives input \(U_{1}\) from a variable pd source and its output \(U_{2}\) is fed to load resistor \(R\). The \(h\)-parameters are marked on the figure. By Ohm's law:
\[
\begin{equation*}
I_{2}=-U_{2} / R=-U_{2} / 1000 \tag{Eq.77}
\end{equation*}
\]

Also, from Eq. 76:
\[
\begin{aligned}
& I_{2}=h_{21} I_{1}+h_{22} U_{2} \\
& =10 I_{2}+0.0012 U_{2} .
\end{aligned}
\]

Substituting the value of \(I_{2}\) from Eq. 77 :
\[
\begin{aligned}
& -U_{2} / 1000=10 I_{2}+0.0012 U_{2} \\
\therefore & \mathrm{I}_{1}=-\left(0.0012 U_{2}+U_{2} / 1000\right) / 10 \\
& =-U_{2}(0.0012+0.001) / 10 \\
& =-U_{2}(0.0022) / 10 \\
& =-0.00022 U_{2} .
\end{aligned}
\]

Substituting this value and the values of the \(h\)-parameters in Eq. 75:
\[
\begin{aligned}
& U_{1}=-0.00022 U_{2} h_{11}+h_{12} U_{2} \\
& =-0.00022 U_{2} \times 50+0.005 U_{2} . \\
\therefore & U_{1} / U_{2}=-0.011+0.005 \\
& =-0.006 .
\end{aligned}
\]

The pd gain of the network is the reciprocal of this:
\[
U_{2} / U_{1}=-1 / 0.006=-167
\]

That is, the pd gain is \(\mathbf{- 1 6 7}\). The network is an inverting voltage amplifier. It has the features of a common-emitter amplifier based on an n-p-n bipolar junction transistor (Fig. 101a). In the figure we show a pd source \(U\), but omit biasing resistors, which can be considered to be part of the pd source. Comparing the two parts of this figure, we see that \(I_{1}\) is the base current \(I_{\mathrm{b}}\), while \(I_{2}\) is the collector current, \(I_{\mathrm{c}}\). The \(h\)-parameters are given special subscripts to relate them to the operation of the transistor:
\(h_{11}\) becomes \(h_{\text {ie }}\), the input resistance;
\(h_{21}\) becomes \(h_{\text {fe }}\), the forward current ratio, or gain;
\(h_{12}\) becomes \(h_{\text {re }}\), the reverse feedback voltage ratio;
\(h_{22}\) becomes \(h_{0 \mathrm{oe}}\), the output admittance.

The ' \(e\) ' in each subscript refers to the fact that the transistor is in the common-emitter configuration. Each of these parameters is measurable for a given transistor, or can be obtained from a data sheet. \(h_{\text {ie }}\) and \(h_{\text {fe }}\) are measured with the transistor output short-circuited; \(h_{\text {re }}\) and \(h_{\mathrm{oe}}\) are measured with an open-circuit input. Given these parameters, the behaviour of the amplifier can be predicted, provided that it is operating in the linear part of its range, and with small signals.

The values of \(h_{\mathrm{re}}\) and \(h_{\mathrm{oe}}\) for most transistors allow some simplification of the model. Figure 102 shows a commonemitter amplifier with typical values for the \(h\)-parameters. We have omitted the controlled voltage source, because \(h_{\text {re }}\) is typically only 0.0001 , with the result that the voltage source can usually be ignored. \(R\) is the load resistor in the collector circuit. In the model, we are specifying that the controlled current source is drawing the collector current through that resistor, ultimately from the negaive rail through the low impedance of the power supply. We can say this because


Figure 102
the collector current is virtually independent of supply voltage. The current is split between \(h_{0 \mathrm{e}}\) and \(R\), which are in parallel. By the rules of current division:
\[
\begin{aligned}
& I_{\mathrm{L}}=-h_{\mathrm{fe}} I_{\mathrm{b}} \times \frac{1 / h_{\mathrm{oe}}}{1 / h_{\mathrm{oe}}+R} \\
& =-h_{\mathrm{fe}} I_{\mathrm{b}} /\left(1+h_{\mathrm{oe}} R\right) .
\end{aligned}
\]

\section*{Current gain is}
\[
\left.I_{\mathrm{L}} / I_{\mathrm{B}}=-h_{\mathrm{fe}} /\left(1+h_{\mathrm{oe}} R_{\mathrm{L}}\right)\right)
\]
[Eq. 78]
Given the values of Fig. 102 ( \(h_{\mathrm{oe}}=10^{-5}\) ), the current gain is
\[
\begin{aligned}
& -150 /\left(1+10^{-5} \times 10^{3}\right) \\
& =-150 / 1.01=-148.5 .
\end{aligned}
\]

This is a large current gain, as is typical of a common-emitter amplifier. The negative sign indicates that it is \(180^{\circ}\) out of phase with the input signal.

In practice, it is reasonable to simplify the model further without undue loss of precision. The output admittance is small (only a few microsiemens), so \(h_{o \mathrm{oe}}\) can usually be omitted, too. Given that \(h_{\mathrm{oe}}\) is very small, the term \(h_{\mathrm{oe}} R\) can be omitted from Eq. 78, so that
current gain \(\approx-h_{\mathrm{fe}}=-150\).
Other characteristics of the amplifier are calculated in a similar way by making suitable assumptions and analysing the network with the use of techniques described in previous parts. Equations may become involved, but the mathematics is simple. For example, to calculate voltage gain, we first consider the left-hand mesh of Fig. 102:
\[
U_{\mathrm{in}}=h_{\mathrm{ie}} I_{\mathrm{b}}
\]

In the right-hand mesh, ignoring \(h_{\mathrm{oe}}\) :
\[
U_{\text {out }}=-h_{\mathrm{fe}} I_{\mathrm{b}} R .
\]
nal is in phase with the input signal. Typically, \(h_{\mathrm{ib}}\) is small, around \(20-30 \Omega\).

In the common-collector (emit-ter-follower) model, \(h_{\text {ic }}\) is large ( \(1 \mathrm{k} \Omega\) or more), and \(h_{\mathrm{fc}}\) is typically -100 , giving large current gain with no phase shift (one of the main purposes of using a c-c amplifier). \(h_{\text {rc }}\) is 1 , giving unity voltage gain, as required in an emitter follower, while \(h_{o c}\) has a moderate value.

TO BE CONTINUED
Voltage gain \(=U_{\text {out }} / U_{\text {in }}\)
\[
\begin{aligned}
& =-h_{\mathrm{fe}} I_{\mathrm{b}} R / h_{\mathrm{ie}} I_{\mathrm{b}} \\
& =-h_{\mathrm{fe}} R / h_{\mathrm{ie}} .
\end{aligned}
\]

In Fig. 102, the voltage gain is
\[
\left(-150 \times 10^{3}\right) / 10^{3}=-150
\]

The output signal is \(180^{\circ}\) out of phase with the input signal.

\section*{Other amplifiers}

The models for common-base and common-collector amplifiers have the same layout as that of the common-emitter amplifier. The subscripts on the parameters end in 'b' or 'c', but otherwise the diagrams are the same. The typical values of the parameters are not necessarily the same as in the common-emitter model. For example, the absolute value of \(h_{\mathrm{fb}}\) is a little less than unity, typically -0.99 . Together with the fact that \(h_{\mathrm{ob}}\) is exceedingly low (a few hundred nanosiemens, equivalent to over \(1 \mathrm{M} \Omega\) ), this means that current gain is very slightly less than 1 in any practical com-mon-base amplifier. Also, since \(h_{\mathrm{fb}}\) is negative, the output sig-

\section*{Test yourself}
1. Calculate the \(z\)-parameters for Fig. 91, given \(R_{1}=10 \Omega\), \(R_{2}=14 \Omega\) and \(R_{3}=6 \Omega\).
2. Calculate \(z_{11}\) and \(z_{21}\) for Fig. 95a, given that \(R_{1}=10 \Omega\), \(\mathrm{R}_{2}=12 \Omega, C=1 \mu \mathrm{~F}\) and \(\omega=10^{4} \mathrm{rad} / \mathrm{s}\). What is the voltage gain of this network?
3. In an unknown quadripole circuit, \(U_{1}=1 \mathrm{~V}, U_{2}=3 \mathrm{~V}\), \(I_{1}=20 \mu \mathrm{~A}\) and \(I_{2}=2.5 \mathrm{~mA}\). Calculate the \(h\)-parameters.

\section*{Answers to}

Test yourself (Part 10)
1. \(I_{1}=0.56 \mathrm{~A} ; I_{2}=0.04 \mathrm{~A}\); \(I_{3}=0.32 \mathrm{~A} . \operatorname{In} 3 \Omega: 0.9408 \mathrm{~W}\); in \(2 \Omega: 0.0032 \mathrm{~W}\); in \(4 \Omega\) : 1.0816 W ; in \(1 \Omega\) : 0.0576 W ; in \(7 \Omega\) : 0.7168 W .4 V source: \(2.24 \mathrm{~W} ; 2 \mathrm{~V}\) source: 0.56 W . Total for resistors \(=\) total for sources \(=2.8 \mathrm{~W}\).
2. 40 W .
3. (a) 0.547 W ; (b) 0 W .
4. 1.627 mW .
5. 12 mW .
6. \(X_{L}=\mathbf{j} 6 ; X_{C}=-\mathbf{j} 6\). Power factor \(=0.944\).


\title{
PHOTOGRAPHIC WORKSHOP LIGHT
}

\section*{This article describes a low-cost alternative to the normally pretty expensive lamp used to light the photographic darkroom. It consists of an array of yellow \\ LEDs (light-emitting diodes), which emit a wavelength to which (colour) photographic paper is highly insensitive.}

\author{
Design by F. Stolpe
}


AS far back as the days of black-and-white photography, photographic paper was already made insensitive to light of a certain colour. This was done to enable the photographer to see what he was doing in the darkroom while taking the photographic prints through the developing process. The colour red was chosen, and a normal bulb was painted red because the exact colour was not so important. With the introduction of colour photography things became a little more difficult, because the photographic paper has to be sensitive to all colours in the visible spectrum. None the less, this type of paper has been made insensitive to one specific colour, of which the wavelength is fairly accurately defined between 580 nm and \(600 \mathrm{~nm}\left(\mathrm{~nm}=\right.\) nanometres; \(10^{-9}\) metres). This wavelength was chosen be-


Fig. 1. Light spectrum as emitted by different colour LEDs (source: Siemens Optoelectronics Databook 1990).
cause a special type of sodium lamp has two spectral lines in this range, one at 588.99 nm , and one at 589.59 nm . The disadvantage of this lamp is its rather high price. Less expensive alternatives to the sodium lamp are normal bulbs with a narrowband filter. Unfortunately, these lamps still cost well over \(£ 20\).

The wavelength of light emitted by yellow LEDs is typically around 590 nm (see Fig. 1). The spectrum of the LED lamp is not as narrow as that of a sodium lamp, but that is of little consequence since this disadvantage also applies to the filter lamp. The width of the spectrum emitted by a yellow LED depends on the type and manufacturer. That is why you have to do an exposure test using the LED lamp and a sample strip of photographic paper to make sure that the lamp has no effect on the paper (see further on in this article).

Another problem is the low light intensity produced by an LED (10 to 20 milli-candela for normal LEDs, and about 100 milli-candela for high-efficiency LEDs). Fortunately, this problem is simple to solve by using a large number of LEDs.

\section*{The LED lamp}

Obviously, to keep the cost of the LED lamp below that of a ready-made lamp, the number of components used (apart from the LEDs) must be kept as small as possible. Also, the design should be based on commonly available, inexpensive parts. With this in mind, it will not come as a surprise that a mains transformer has been omitted from the design. As shown by the circuit diagram in Fig. 2, it is possible to use the rectified mains voltage if a maximum of 156 LEDs are connected in series. The number of LEDs to be connected in series is determined by their colour and maximum forward voltage drop (see Table 1). Here, the darkroom demands yellow LEDs; the other colours given in the table are for different applications, of which more further on.

As already mentioned, the LEDs are supplied directly from the mains voltage, which means that you have to pay special attention to insulation and safety. The mains voltage (live and neutral) is connected to PCB terminal block K1, and arrives at a bridge rectifier, D1-D4, via fuse F1. The circuit is connected to the mains via a PCB


Fig. 2. The circuit diagram is simplicity itself: a rectifier, a current source and LEDs, lots of LEDs.
mount terminal block because that is the simplest way of connecting the mains cable in a safe manner. The fuse automatically removes the mains voltage from the circuit in the event of a fault, thus eliminating a fire risk. Resistors R1 and R2 limit the power-on surge current through \(\mathrm{C}_{1}\) to about 0.5 A . This is done to prevent unnecessary burning out of the fuse. The voltage across \(\mathrm{C}_{1}\) is about 335 V , which equals the peak value of the mains voltage ( \(240 \mathrm{~V}_{\mathrm{rms}}\) in the UK). The smoothing capacitor, \(\mathrm{C}_{1}\), is shunted by resistors R4 and R5, which remove the capacitor's charge in a few seconds after the lamp is switched off. Of course, the LEDs also help to do this, but R4 and R5 ensure that no dangerous voltage remains across \(\mathrm{C}_{1}\) when the circuit is switched off. R4 and R5 may not be replaced by a single \(1-\mathrm{M} \Omega\) resistor. This is because most small resistors ( \(0.25-\mathrm{W}\) and \(0.33-\mathrm{W}\) types) are rated to only 200 V , which is too low for the 335 V which exists across
\begin{tabular}{|lllc|}
\hline Colour & \begin{tabular}{l} 
Forward drop \\
typ.
\end{tabular} & Max. number \\
max.
\end{tabular}

Table 1. Forward voltage of different types of LED, and the maximum number that may be accommodated on the printed circuit board.

C1. By connecting two identical resistors in series, the voltage across \(\mathrm{C}_{1}\) is distributed equally, so that it is possible to use two ordinary low-power resistors.

Voltage regulator \(\mathrm{IC}_{1}\) is connected as a current source. This is based on the tendency of the device to maintain a voltage difference of \(1.25-\mathrm{V}\) between its control input and output. Consequently, the voltage across R3 and \(\mathrm{P}_{1}\) is always 1.25 V . The indicated values of R3 and P1 allow the current drawn by the LEDs to be set to a value between 9 mA and 32 mA with the aid of \(\mathrm{P}_{1}\).

Since IC1 keeps the current through the LEDs constant, variations of the mains voltage and/or the forward voltage of the LEDs have no effect on the light intensity produced by the lamp. It does, however, affect the voltage across IC1. In particular, the voltage drop across the LEDs is a considerable factor, which is not surprising in view of the number of LEDs used. A deviation of 0.1 V per LED, for instance, gives a total error of more than 10 V . Such deviations are quite common, see the data in Table 1. Moreover, the voltage across IC1 varies appreciably as a function of the lamp intensity setting (with \(\mathrm{P}_{1}\) ). To prevent this from causing an overload condition in the regulator, a TL783C is used instead of the perhaps more familiar LM317. The TL783C is capable of withstanding a voltage difference of 125 V between its input and output. By comparison, the 35 V specification of the LM317 is on the low side for this application.

\section*{Construction}

The artwork designed for the printed circuit board used to build the LED lamp is shown in Fig. 3. To be able to fit the board into the transparent plastic enclosure stated in the parts list, notches have to be cut in the edges, at about the height of C 1 . Also, a rectangular clearance has to be cut in which C 1 is seated. This reduces the mounting height of \(\mathrm{C}_{1}\), and enables the enclosure to be shut. The mains cable is fitted with a strain relief clamp at the inside of the enclosure.

\section*{The LEDs}

Each number of LEDs given in Table 1 is rounded off to a multiple of 13 so that only whole rows of LEDs are fitted on to the board. Non-used rows must be bridged start-to-end by a wire. If you want to fit as many LEDs as possible, make sure that the voltage drop across the LED array remains below 290 V .

If you mount fewer LEDs, the voltage across \(\mathrm{IC}_{1}\) rises. To prevent the voltage drop exceeding 125 V , the voltage across the LEDs may not drop below 210 V . With some colours, the maximum number of LEDs that can be fitted on to the PCB (156) is given, instead of the number the circuit would be capable of driving. If you choose not to build the circuit on the indicated printed circuit board, the actual maximum number of LEDs that may be used is fairly simple to calculate.

The circuit is, in principle, designed for yellow LEDs. When another colour is used, the number of LEDs that can be fitted changes, as indicated in Table 1. Note, however, that the current supplied by IC1 is geared to normal' LEDs - by contrast, the maximum current that may be used for low-power or high-efficiency LEDs is much lower. In that case, R3 and P1 must be changed ( \(I=1.25 /(\mathrm{R} 3+\mathrm{P} 1)\) ). The reverse applies to infra-red LEDs, which require a higher current (typically around 100 mA ).

The above goes to show that the circuit is eminently suited to driving all kinds of LED. Before choosing a particular colour and type, however, it is wise to check its typical operating current, and the voltage drop at different currents.

Apart from a darkroom light, there are a number of other applications of the LED lamp. Many possibilities are created just by changing the shape of the LED array. Infra-red LEDs allow the lamp to be used as a spotlight for infra-red photography, or to assist a CCD (charge-coupled device) camera when making pictures or recordings in the dark, for instance, of animals which are active during the night only.


Fig. 3. The size of the PCB matches the inside dimensions of a transparent Type 'Profi' enclosure from Heddic.

\section*{COMPONENTS LIST}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Resistors:} \\
\hline 2 & \(330 \Omega 2 \mathrm{~W}\) & R1;R2 \\
\hline 1 & \(39 \Omega\) & R3 \\
\hline 2 & 470ks & R4;R5 \\
\hline 1 & \(100 \Omega\) potentiometer w. plastic spindle & P1 \\
\hline \multicolumn{3}{|l|}{Capacitors:} \\
\hline 1 & \(47 \mu \mathrm{~F} 350 \mathrm{~V}\) & C1 \\
\hline 2 & 100 nF 400 V & C2;C3 \\
\hline \multicolumn{3}{|l|}{Semiconductors:} \\
\hline 4 & 1N4004 & D1-D4 \\
\hline \multirow[t]{2}{*}{15} & 63 mm LED & D5-D160 \\
\hline & \multicolumn{2}{|l|}{(max. number, see Table 1)} \\
\hline 1 & TL783C & IC1 \\
\hline \multicolumn{3}{|l|}{Miscellaneous:} \\
\hline 1 & 2-way PCB terminal block, pitch 7.5 mm & K1 \\
\hline \multirow[t]{2}{*}{1} & PCB mount fusehold & \\
\hline & w. 100 mA slow fuse & F1 \\
\hline 1 & Enclosure, e.g., Hed & ddic Profi \\
\hline
\end{tabular}

\section*{Exposure test}

Before actually using the LED lamp as a darkroom light, it is necessary to make sure that it does not affect the photographic paper. Before the test,
mount the lamp at the desired position in the darkroom. Next, put a piece of photographically sensitive paper where you would normally be working, and then closest to the lamp. A part of the paper is covered, and the other, 'exposed' for two minutes to the light emitted by the LED lamp. Next, the paper is developed in the usual way. If everything is in order no difference may be visible between the exposed and the unexposed part of the paper. If differences are noticed, the intensity of the lamp must be reduced with \(\mathrm{P}_{1}\), or different types of yellow LED must be fitted. In both cases, the exposure test must be repeated.

A simpler alternative to the above test is to connect a few LEDs in series with a resistor, power them from a \(9-\mathrm{V}\) battery, and suspend them above the photographic paper. After developing the paper you have a clear indication of the LED type that has the smallest effect.

\section*{LIGHT-EMITTING DIODES (LEDs)}

Like the normal diode, the lightemitting diode, or LED, consists of a piece of semiconductor material with an ' \(n\) ' and a ' \(p\) ' layer. If a forward current flows through the semiconductor material, the recombination of electrons in the barrier junction between the ' \(n\) ' and the ' \(p\) ' layer gives rise to photon emission; in other words, light is emitted. This form of light emission is called p-n barrier luminescence. The same effect also occurs in normal germanium and silicon diodes. In these semiconductor materials, however, the p-n barrier luminescence efficiency is so small that it can not be put to practical use. The semiconductor material galliumarsenide (GaAs), however, is far better suited to producing LEDs - a high intensity is achieved at fairly low currents already (a few mA). LEDs emit virtually monochromatic light, which means that all light energy is contained in a narrow band of the spectrum. A GaAs LED produces light with a wavelength of 868 nm (red light). Similarly, other semiconductor materials are used to generate colours such as green, orange and even blue.


\section*{SCART SWITCHING BOX}


\begin{abstract}
Now that the camcorder is here to stay as the mobile complement to the trusty video recorder, a problem has come about: selecting between different video signals that can be applied to the SCART input on the TV set. This article describes a simple three-input switching unit for video sources with mono sound. Provision has been made for copying between video recorders connected to the SCART switching box.
\end{abstract}

\author{
Design by L. Pijpers
}

SOME twenty to thirty years ago, the situation with audio equipment was, in a way, similar to that as it exists for video equipment today. In the old days, one had a radio with one input for a record player ('pickup'). Today's 'video' equivalent would be a TV set and one video recorder. In the course of time, the tape recorder appeared on the scene, and what was once known as a radio set gradually 'fell apart' into a tuner and an ampli-
fier. This gave rise to a number of switching options required to connect the signal sources to the amplifier and/or the available recorders. Although a video installation with a switching layout similar to modern hifi sets will not be with us for a few years, it is not unusual for video and

TV lovers to have one or two video recorders and a camcorder. Unfortunately, a TV set with two video inputs is not a complete solution, since it does not allow copying between the recorders. The SCART switching box described in this article enables you to enjoy all switching possibilities that you have come to appreciate from your audio equipment, for video!

\section*{Block diagram}

The SCART selector could not be simpler: switches are used to establish and break connections - see the block diagram in Fig. 1. The switches used here are locking buttons which are coupled such that only one switch can be pushed in at a time. The advantage of the switch unit is that it allows you to determine the number of positions of the assembly ( 1 to 10 ), while the individual switches are available with 2 , \(4,6,8\) and 10 change-over contacts. In this respect, the push-button assembly is much more flexible than the perhaps more usual rotary switch. Moreover, the switch assembly may be mounted directly on to the printed circuit board, which eliminates wire links between the switches and the PCB. On the down side, the push-button assembly is more difficult to fit into a front panel than a rotary switch, which requires only one hole to be drilled.


Fig. 1. Block diagram showing how the connections between the equipment are established and broken.


Fig. 2. Circuit diagram of the SCART switching box. The number of components has been kept as small as possible.


\section*{The circuit}

The circuit diagram of the SCART switching box is shown in Fig. 2. To keep the circuit as simple as possible, it was decided not to wire the switching box for S-VHS or Hi8 and stereo sound. This limitation reduces the switching work to one video and one audio signal per connection. Actually, since the audio and video links run side by side, Fig. 2 is just a double implementation of the block diagram in Fig. 1.

To increase the practical possibilities of the SCART switch, the camcorder connection (phono sockets K5 and K 6 ) is connected in parallel to SCART socket K3, to which a third recorder may be linked. Note, however, that this third recorder can be used in 'play' mode only - K3 does not supply a signal that can be used for recording. This makes the K3 socket ideal for connecting a video player.

Most video recorders supply a switching signal which enables a TV or monitor to automatically change to the video signal supplied by the recorder. This switching signal is conveyed via the SCART link between the recorder and the TV. Diodes D1, D2 and D3 form an OR function for the three switching signals, and prevent the recorders from interfering with one another. Remove jumper JP1 if you prefer to switch your TV to 'audio/visual' (AV) manually.

As a finishing touch, the TV sound which arrives on \(\mathrm{K}_{4}\) is connected to two phono sockets (since it was extremely simple to realize, this has been done in stereo). In this way, the TV sound is readily connected to the audio rack.

\section*{Construction}

The layout of the printed circuit board designed for the SCART switching box is given in Fig. 3. Construction is simple since the circuit consists mainly of switches and SCART sockets. Start by fitting the wire links, the diodes, the jumper and the terminal pins to which the phono sockets are connected. Next, fit the SCART sockets on to the board. These sockets should be types with straight solder pins (angled pin types are more commonly found, but unfortunately can not be used here).

The push-button block has to be assembled before it can be mounted on to the board. Fortunately, assembling the unit is relatively straightforward and almost self-evident from the construction of the individual parts. For the sake of clarity, the assembly is shown in Fig. 4. The function of the drivebar spring (part FRV) may not be immediately evident. This tiny but es-


Fig. 3. Printed circuit board for the SCART switch (available ready-made through the Readers Services).

\section*{COMPONENTS LIST}

Semiconductors:
3 1N4148
D1;D2;D3

\section*{Miscellaneous:}

4 PCB mount SCART socket with straight solder pins
4 Panel mount cinch socket

K1-K4
K5-K8
3 Coupled switches Components:
3 off 4-way switch F-4U/EE
1 off front frame 3F17,5
1 off drive bar 3F17,5
FS4

1 off drive bar spring FR37

3 off button 8.8 mm dia, black FGO

1 Jumper 0.1 in JP1
1 Enclosure o.d. \(102 \times 191 \times 29 \mathrm{~mm}\), e.g. Pactec \({ }^{2}\) type HPLkit.

1 Printed circuit board 930122 (see page 110).
\({ }^{1}\) ITT MultiComponents (0753) 824131.
\({ }^{2}\) OK Industries Ltd. (0703) 650055.
sential part serves to secure the drivebar which locks and unlocks the switches. The spring is fitted on to the right-hand side (viewed from the front side) of one of the switches. As shown in the drawing, the T-shaped part of the spring is pushed into the slot in

the corner between the top and the side of the switch. Next, secure the switch just like the other two by bending the protruding cams to the front and to the back. The switch assembly is then ready to be mounted on to the printed circuit board. The push-buttons may be fitted later when the completed PCB has been mounted into an enclosure. The centre-to-centre distance of the three holes that must be drilled for the push-buttons is 17.5 mm .


Fig. 4. Illustrating the assembly of switches S1, S2 and S3.


Fig. 5. Suggested front panel layout shown at true size (not available ready-made).
\(\overleftarrow{\sigma}\)

amplifier?). The output pulse is picked up by a microphone and fed back into the IMP where it is digitized and then fed into an IBM (compatible) computer via the printer port. The IMP software then analyses the input via Fourier transforms and outputs the results on to the computer screen in graphical form in the shape of amplitude and phase response curves. Full control is via the PC. The amplifier output can be sampled via a probe to correct for errors in the pulse spectrum and amplifier response.

IM P allows the collection and analysis of 12-bit analogue data up to 4,095 samples in length and sample rates are selectable at either 61.441 kHz or 1.92 kHz which, along with the internal filtering, allows measurements from several hertz to 20 kHz .

Further information from Falcon Acoustics Ltd, Tabor House, Norwich Road, Mulbarton, Norfolk NR14 8JT, England. Telephone +44 (0)508 78272; fax +44 (0)508 70986 .

\section*{CORRECTIONS}

\section*{DIGITAL DIAL (January 1994)}

An attentive reader has drawn our attention to the fact that the digital dial can not be used in conjunction with the receiver illustrated (a Yaesu Type FRG-7) since the IF of that receiver is much too high for the dial. Sorry for that oversight!
[Editor]

VHF/UHF TUNER (Oct/Nov 1993)
The tuner module used in this design is no longer in production with Philips and its availability will thus become a problem. Fortunately, the Type UV916H is an excellent alternative. The snag is, however, that this unit is slightly smaller than the UV816,
so that the antenna connector no longer protrudes from the enclosure. This can be overcome by terminating the antenna cable into a coaxial plug and making the entrance hole slightly larger. Moreover, one of the two earth tags of the UV916H must be connected at a different position.

\section*{LETTERS}

\section*{SCART SWITCHING BOX}
(December 1993)
I have a few problems with this project, which I believe have to do with the connections. Pin 1 of one connector is linked to pin 2 of the other. The same is true of pins 3 and 19 , which are linked to pins 6 and 20 respectively. All other pins are interlinked as one would expect, i.e., pin 5 to pin 5, pin 10 to pin 10, and so on.
L. Bastiaenssen

In a SCART cable, the wires for the video and audio connections are always crossed. That is why the video output (pin 19) at one end of the cable is linked to the video input (pin 20) at the other end. This arrangement ensures that the input of one piece of equipment is always connected properly to the output of another. There is, therefore, nothing wrong with your cable.

Note that two pieces of equipment must never be connected simultaneously to \(\mathrm{K}_{3}\) and \(K_{5} / K_{6}\). Use SCART connector \(K_{3}\) or the phono plugs \(K_{5} / K_{6}\), but not both at the same time!
[Editor]

\section*{PRECISION CLOCK FOR PCs}
(November 1993)
I have encountered a problem with the Precision
clock for PCs. I have an IBM (compatible) PC486 and have, as stated in the article, complemented the CONFIG.SYS file with the following (last) line:

\section*{DEVICE C: MSDOS DCFCLOCK.SYS.}

I should be pleased if you would tell me: 1. Whereto should the files of the software provided (DCFCLOCK.ASM, DCFCLOCK.DOC and DCFCLOCK.SYS be copied? To the root, the MSDOS or a separate directory?
2. Once the files have been loaded, how is the program called up to initialize the driver and to fill the options P, I, S, B and D?
(M. Meersschaut)

The file DCFCLOC.ASM is the assembler listing of the program, which you no longer need (it is of interest only to dyed-in-thewool programmers). The file \(D C F\) CLOCK.DOC contains the instructionsfor the program, which you can read with a word processing program. It is not necessary to store this file on a hard diksk.

The only program that you need to copy to the hard disk is DCFCLOCK.SYS. Place this file in the directory containing the DOS commands (e.g., C:\DOS).Add a line that indicates where the computer can find that program to CONFIG.SYS (in C:\\), e.g.DEVICE \(=C: D D O S D C F C L O C K . S Y S\). Other suffixes may be added for changing certain settings (see DOC file), but even without these the system should work correctly.

Note, however, that the receiver circuit must be connected to the COM port 2 and that the computer must be restarted after the software has been installed. The program will then automatically set the correct time in the internal clock of the PC every minute.
[Editor]

\title{
CHOOSING COMPONENT VALUES FOR L-C RESONANT TANK CIRCUITS
}

\begin{abstract}
Resonant 'tank' circuits consist of combinations of inductance ( \(L\) ) and capacitance \((C)\) elements configured in such a manner that a single frequency - or more correctly a very narrow band of frequencies - is selected, while frequencies removed from the selected frequency are rejected.
\end{abstract}

\author{
By Joseph J. Carr
}

THE selection of a specific frequency occurs when the inductive reactance \(\left(+X_{\mathrm{L}}\right)\) and capacitive reactance ( \(-X_{\mathrm{C}}\) ) have equal magnitude, so therefore cancel each other. Figure 1 shows two forms of \(L C\) resonant tank circuit, and a plot of impedance versus frequency. The parallel resonant form is shown in Fig. 1a, while the series resonant form is shown in Fig. 1b. The following rules apply to these forms (see Fig. 1c):
1. a parallel resonant circuit has a maximum impedance at its resonant frequency \(\left(F_{0}\right)\); and
2. a series resonant circuit has a minimum impedance at its resonant frequency \(\left(F_{0}\right)\).

In some cases, one of these types is clearly preferred over the other, but in other cases either could be used if it is used correctly. For example, in a wave


Fig. 1. a) Parallel resonant tank circuit; b) series resonant tank circuit; c) impedance-vs-frequency curves for series and parallel tank circuits.
trap - i.e., a circuit that prevents a particular frequency from passing - a parallel resonant circuit in series with the signal line will block its resonant frequency while passing all frequencies removed from resonance; a series resonant circuit shunted across the signal path will bypass its resonant frequency to common (or 'ground'), while allowing frequencies removed from resonance to pass.
\(L C\) resonant tank circuits are used to tune radio receivers; it is these circuits that select the station to be received, while rejecting others. A superheterodyne radio receiver (the most common type) is shown in simplified form in Fig. 2. According to the superhet principle, the radio frequency being received ( \(F_{\mathrm{RF}}\) ) is converted to another frequency, called the intermediate frequency ( \(F_{\text {IF }}\) ), by being mixed with a local oscillator signal ( \(F_{\mathrm{LO}}\) ) in a non-linear mixer stage. The output of the untamed mixer would be a collection of frequencies defined by:
\[
\begin{equation*}
F_{\mathrm{IF}}=m F_{\mathrm{RF}} \pm n F_{\mathrm{LO}} \tag{1}
\end{equation*}
\]

Where \(m\) and \(n\) are either integers or
zero. For the simplified case which is the subject of this article, only the first set of products ( \(m=n=1\) ) are considered, so the output spectrum will consist of \(F_{\mathrm{RF}}, F_{\mathrm{LO}}\), [ \(F_{\mathrm{RF}}-F_{\mathrm{LO}}\) ] (difference frequency), and \(\left[F_{\mathrm{RF}}+F_{\mathrm{LO}}\right]\) (sum frequency). In older radios, for practical reasons the difference frequency was selected for \(F_{\mathrm{IF}}\); today, either sum or difference frequencies can be selected depending on the design of the radio.

There are several \(L C\) tank circuits present in this notional superhet radio. The antenna tank circuit ( \(\mathrm{C} 1-\mathrm{L} 1\) ) is found at the input of the RF amplifier stage, or if no RF amplifier is used it is at the input to the mixer stage. A second tank circuit ( \(L_{2}-C 2\) ), tuning the same range as \(L_{1}-C_{1}\) is found at the output of the RF amplifier, or the input of the mixer. Another \(L C\) tank circuit ( \(L 3-C 3\) ) is used to tune the local oscillator; it is this tank circuit that sets the frequency that the radio will receive.

Additional tank circuits (only two shown) may be found in the IF amplifier section of the radio. These tank circuits will be fixed tuned to the IF frequency, which in common AM broadcast band \((\mathrm{BCB})\) radio receivers is typically


Fig. 2. \(L C\) tank circuits in a superheterodyne receiver.
\(450 \mathrm{kHz}, 455 \mathrm{kHz}, 460 \mathrm{kHz}\), or 470 kHz depending on the designer's choices (and sometimes country of origin). Other IF frequencies are also seen, but these are most common. FM broadcast receivers typically use a 10.7 MHz IF, while shortwave receivers might use a 1.65 MHz , \(8.83 \mathrm{MHz}, 9 \mathrm{MHz}\) or an IF frequency above 30 MHz .

\section*{The tracking problem}

On a radio that tunes the front-end with a single knob, which is almost all receivers today, the three capacitors ( \(C 1, C 2\) and \(C_{3}\) in Fig. 2) are typically ganged, i.e., mounted on a single rotor shaft. These three tank circuits must track each other; i.e., when the RF amplifier is tuned to a certain radio signal frequency, the LO must produce a signal that is different from the RF frequency by the amount of the IF frequency. Perfect tracking is probably impossible, but the fact that your single knob tuned radio works is testimony to the fact that the tracking isn't too terrible.

The issue of tracking \(L C\) tank circuits for the AM broadcast band (BCB) receiver has not been a major problem for many years: the band limits are fixed over most of the world, and component manufacturers offer standard adjustable inductors and variable capacitors to tune the RF and LO frequencies. Indeed, some even offer three sets of coils: antenna, mixer input/RF amp output and LO. The reason why the antenna and mixer/RF coils are not the same, despite tuning the same frequency range, is that these locations see different distributed or 'stray' capacitances. In the U.S.A., it is standard practice to use a 10 to \(365 \cdot \mathrm{pF}\) capacitor and a \(220 \mu \mathrm{H}\) inductor for the 540 to 1600 kHz AM BCB. In some other countries, slightly different combinations are sometimes used: \(320 \mathrm{pF}, 380 \mathrm{pF}, 440 \mathrm{pF}\), 500 pF and others are seen in catalogues (see, for instance, the Maplin Electronics catalogue. Address: P.O. Box 3, Rayleigh, Essex SS6 2BR, England).

Recently, however, two events coincided that caused me to examine the method of selecting capacitance and inductance values. First, I embarked on a design project to produce an AM DXers receiver that had outstanding performance characteristics. Second, the AM broadcast band was recently extended so that the upper limit is now 1700 kHz , rather than 1600 kHz . The new 540 to 1700 kHz band is not accommodated by the now-obsolete 'standard' values of inductance and capacitance. So I calculated new candidate values.

\section*{The RF amplifier/antenna tuner problem}

In a typical RF tank circuit, the inductance is kept fixed (except for a small adjustment range that is used for


Fig. 3. Parallel resonant tuning circuit.
overcoming tolerance deviations) and the capacitance is varied across the range. Figure 3 shows a typical tank circuit main tuning capacitor ( \(C_{1}\) ), trimmer capacitor (C2) and a fixed capacitor (C3) that is not always needed. The stray capacitance \(\left(C_{\mathrm{s}}\right)\) includes the interwiring capacitance, the wiring to chassis capacitance, and the amplifier or oscillator device input capacitance. The frequency changes as the square root of the capacitance change. If \(F_{1}\) is the minimum frequency in the range, and \(F_{2}\) is the maximum frequency, then the relationship is:
\[
\begin{equation*}
\frac{F_{2}}{F_{1}}=\sqrt{\frac{C_{\max }}{C_{\min }}} \tag{2}
\end{equation*}
\]
or, in a rearranged form that some find more congenial:
\[
\begin{equation*}
\left(\frac{F_{2}}{F_{1}}\right)^{2}=\frac{C_{\max }}{C_{\min }} \tag{3}
\end{equation*}
\]

In the case of the new AM receiver, I wanted an overlap of about 15 kHz at the bottom end of the band, and 10 kHz at the upper end, so needed a resonant tank circuit that would tune from 525 kHz to 1710 kHz . In addition, because variable capacitors are widely available in certain values based on the old standards, I wanted to use a 'standard' AM BCB variable capacitor. A 10 to 380 pF unit from a vendor was selected.

The minimum required capacitance, \(C_{\min }\), can be calculated from:
\[
\begin{equation*}
\left(\frac{F_{2}}{F_{1}}\right)^{2} C_{\min }=C_{\min }+\Delta C \tag{4}
\end{equation*}
\]

Where:
\(F_{1}\) is the minimum frequency tuned; \(F_{2}\) is the maximum frequency tuned; \(C_{\text {min }}\) is the minimum required capacitance at \(F_{2}\);
\(\Delta C\) is the difference between \(C_{\text {max }}\) and \(C_{\text {min }}\).

\section*{Example}

Find the minimum capacitance needed to tune 1710 kHz when a 10 to 380 pF capacitor ( \(\Delta C=380-10 \mathrm{pF}=370 \mathrm{pF}\) ) is
used, and the minimum frequency is 525 kHz .

\section*{Solution:}
\[
\begin{aligned}
& \left(\frac{F_{2}}{F_{1}}\right)^{2} C_{\min }=C_{\min }+\Delta C \\
& \left(\frac{1710 \mathrm{kHz}}{525 \mathrm{kHz}}\right)^{2} C_{\min }=C_{\min }+370 \mathrm{pF} \\
& 10.609 C_{\min }=C_{\min }+370 \mathrm{pF} \\
& C_{\min }=38.51 \mathrm{pF}
\end{aligned}
\]

The maximum capacitance must be \(C_{\text {min }}\) \(+\Delta C\), or \(38.51+370 \mathrm{pF}=408.51 \mathrm{pF}\). Because the tuning capacitor ( \(\mathrm{C}_{1}\) in Fig. 3) does not have exactly this range, external capacitors must be used, and because the required value is higher than the normal value additional capacitors are added to the circuit in parallel to \(C 1\). Indeed, because somewhat unpredictable 'stray' capacitances also exist in the circuit, the tuning capacitor values should be a little smaller than the required values in order to accommodate strays plus tolerances in the actual - versus published - values of the capacitors. In Fig. 3, the main tuning capacitor is \(C_{1}\) ( 10 to 380 pF ), \(C_{2}\) is a small value trimmer capacitor used to compensate for discrepancies, C3 is an optional capacitor that may be needed to increase the total capacitance, and \(C_{\mathrm{s}}\) is the stray capacitance in the circuit.

The value of the stray capacitance can be quite high, especially if there are other capacitors in the circuit that are not directly used to select the frequency (e.g., in Colpitts and Clapp oscillators the feedback capacitors affect the \(L C\) tank circuit). In the circuit that I was using, however, the \(L C\) tank circuit is not affected by other capacitors. Only the wiring strays and the input capacitance of the RF amplifier or mixer stage need be accounted. From experience I apportioned 7 pF to \(C_{\mathrm{s}}\) as a trial value.

The minimum capacitance calculated above was 38.51 , there is a nominal 7 pF of stray capacitance, and the minimum available capacitance from \(C_{1}\) is 10 pF . Therefore, the combined values of \(C_{2}\) and \(C 3\) must be ( \(38.51-10-7 \mathrm{pF}\) ), or 21.5 pF . Because there is considerable reasonable doubt about the actual value of \(C_{8}\), and because of tolerances in the manufacture of the main tuning variable capacitor \(\left(C_{1}\right)\), a wide range of capacitance for \(C_{2}+C 3\) is preferred. It is noted from several catalogues that 21.5 pF is near the centre of the range of 45 pF and 50 pF trimmer capacitors. For example, one model lists its range as 6.8 pF to 50 pF , its centre point is only slightly removed from the actual desired capacitance. Thus, a 6.8 to 50 pF trimmer was selected, and C3 is not used.

Selecting the inductance value for \(L_{1}\) (Fig. 3) is a matter of picking the frequency and associated required capaci-
```

00 Progrin to calculate L-C tank circuit values
A color sonitor is needed for thia program. If no color monitor is
IN I* used, then delete Line Nos. 140 and 150.
SCREEM g
\Start of progran
IF SCR ; O THEN COLOR 1,7:
N
NOCATE f,15:PRINT \#ot desired frequency range and variable capacitor"
N
INPUT F15:' Obtain value of lovest frequency zero
IF P12 =0 THEN BEEP InPut of
LOCNE 12,15:PRINT Enter MAXIMUM Frequency (F2) in N11ohertz (KHz):*;
*)

```

```

 lol
 lol
 LNCATE 14,15:PRINT "Select Capacitor Values..."
 LNCATE 14,15:PRINT "Select Capacitor values....
 NPUT CMINS (CMINS)
 CMIN = VAL, (CHINS)
 IF CNIN = O THEN 360 ELSE 420
 M,
 MPUTCMAXS
 MAX OVAL(CMAXS)
    ```

```

 M,
 CLS:'Clear screen and print al1 entered values
 LCATE 7,15:PRINT "Maximun frequency (F2);*;F2;" KHz"
 LOCATE 9,15:PRINT "MInImus capacitance in C1: "CMIN;", pF"
 *)
 CRAT10 FFMTIO'2:'C
 M,
 M,
 M,
    ```

```

 M,
 IF TRIMCAP & O THEN GOSUB 1580 ELSE
 LNCNTE 15,15:PRINT Trimser Capacitance needed: ";
 M,
 LUH - 1/(4*P1***F1*2*)OUX*10*-12)
 LOCATE 16,MG:PRINT INductance needed: "
 PRINT USIMG "OT/H,/f";LUH;:PRINT " UH"
 *)
 CLS:Clear screen for nev nessage
 LOCATE 10,15:PRINT "The trimmer capacitance will include all capacitances"
 No,
 NOCATE 13,15:PRTNT "oscl11ator circuits, especlally Colpitts and clapp"
 LNCAEE 14,15:PRINT "oscillators, the other capacitances are large"*
 LNCAEE 16,15:PRINT "intorn
 LN
 NOCATE 13,15:PPINT "(E) nd Program?"
 CHOTES = INPUTS(1)
 CHOTES = INPUTS(1)
 IF CHOICES = "d" THEN CHOICE = 1
 *)
 IF CHOICE>2, THEN 880 ELSE 970 (%)
 O
 CLS:LNCATE 12,20: PRINT "Progran Ended...Coodbye"
 O TIM
    ```

```

 lol
 LINE (450,200)-(100,200), (B:'Draw inductor L2
 LINE (175,180)-(165,120),
 LINE (175,180-2z)-(165,180-2z)
 zz =22+5
 GONO 1090, (200)-(250,153):'Drav C1 (main tuning capacitor)
 INE (250,200)-(250,153):'
 l
 L,
 L,
 L,
 L,
 1290 LINE
 lugh LINE
*)
LOCATE 11,40:PRINT "C2"
LNCAE 11,49:PRINT "Stray* main tuning capacitor*
LNCAE 17,15:PRINT "S2 is triser, fixed capocitors" other"
lol
N
*)
LNCATE 19, 15:GOSUB 1630:'Go get press any key subrout,
*)
*)
LOCTE 22,15:COSUB 1630:', Go get press, sny key (%)
, RETUBN: End of Subroutine
cls
CLS (l)
LDCATE 7,15:PRINT "Maximum
lol
lol
M, LECMTEN 14,15:GOSUB 1630:'Co get
M,
lol
lol
LOCATE 12,15:PRINT -Enter MAXINEMN
LOCATE 6.15:PRINT "Minimun frequency (F1):";F1;" KHz"
LOCATE ',15:PRINT "Kaximus frequency (F2);";92;", KHz"*
lo CLS
\/ (2)
lol

```




```

 SE 880
 0
 rails
 Draw stray capo
 180-zz)
 \,1,8
 \,
 apacitances
    ```


```

 LNEE
 lo,
 LINE (352,1
 l
 LNCATE
 LOCATE 17,15:PRINT "C2 is trimner t fixed capacitors"
 *)
 GESUB 1530:'Clear screan and
    ```


Fig. 5. Parallel resonant tank circuit using the padder capacitor method.
overlap at the ends, but are awful in the middle. There are two cures for this problem. First, use a padder capacitor in series with the main tuning capacitor (Fig. 5). Second, use a different-value cut-plate capacitor.

Figure 5 shows the use of a padder capacitor \(\left(C_{\mathrm{p}}\right)\) to change the range of the LO section of the variable capacitor. This method is used when both sections of the variable capacitor are identical. Once the reduced capacitance values of the \(C_{1} / C_{\mathrm{p}}\) combination are determined the procedure is identical to above. But first, we have to calculate the value of the padder capacitor and the resultant range of the \(C 1 / C_{p}\) combination. The padder value is found from:
\[
\begin{equation*}
\frac{C_{1} \max C_{\mathrm{p}}}{C_{1 \text { max }}+C_{\mathrm{p}}}=\left(\frac{F_{2}}{F_{1}}\right)^{2}\left(\frac{C_{1_{\text {min }}} C_{\mathrm{p}}}{C_{1_{\text {min }}}+C_{\mathrm{p}}}\right) \tag{6}
\end{equation*}
\]


Fig. 6. MathCAD 3.1 plot of RF, LO (ideal) and LO (actual) tuning as a function of capacitor shaft angle.
\(\ldots\) and solving for \(C_{p}\). For the values of the selected main tuning capacitor and LO:
\[
\frac{(380 \mathrm{pF}) C_{\mathrm{p}}}{\left(380+C_{\mathrm{p}}\right) \mathrm{pF}}=(4.88)\left(\frac{(10 \mathrm{pF}) C_{\mathrm{p}}}{\left(10+C_{\mathrm{p}} \mathrm{pF}\right)}\right)
\]

Solving for \(C_{\mathrm{p}}\) by the least common denominator method (crude, but it works) yields a padder capacitance of 44.52 pF . The series combination of 44.52 pF and a 10 to 380 pF variable yields a range of 8.2 pF to 39.85 pF . An inductance of
\(661.85 \mu \mathrm{H}\) is needed for this capacitance to resonate over 980 kHz to \(2,165 \mathrm{kHz}\).

A practical solution to the tracking problem that comes close to the ideal is to use a cut-plate capacitor. These variable capacitors have at least two sections, one each for RF and LO tuning. The shape of the capacitor plates are especially cut to a shape that permits a constant change of frequency for every degree of shaft rotation. With these capacitors, when well done, it is possible to produce three-point tracking, or better.

\section*{Books from Elektor Electronics (Publishing)}

The following books are currently available:
\begin{tabular}{lrr} 
301 Circuits & \(£ 9.95\) & \(\$ 14.50\) \\
302 Circuits & \(£ 9.95\) & \(\$ 14.50\) \\
303 Circuits & \(£ 10.95\) & \(\$ 17.90\) \\
304 Circuits & \(£ 12.95\) & \(\$ 23.95\) \\
305 Circuits† & \(£ 14.95\) & \(\$ 27.70\) \\
SMT Projects & \(£ 9.95\) & \(\$ 14.50\) \\
Microprocessor Data Book & \(£ 10.95\) & \(\$ 19.90\) \\
Data Sheet Book 2 & \(£ 9.95\) & \(\$ 18.50\) \\
Data Book 3: Peripheral Chips & \(£ 10.95\) & \(\$ 19.95\) \\
Data Book 4: Peripheral Chips & \(£ 10.95\) & \(\$ 19.95\) \\
Data Book 5: Application Notes & \(£ 10.95\) & \(\$ 19.95\)
\end{tabular}
address, see order form on p. 79) or direct from our Dorchester office (private customers only*) on the order form on page 79 .
* Orders other than from private customers, for instance,
bookshops, schools, colleges, should be sent to

\author{
Gazelle Book Services Ltd \\ Falcon House \\ Queen Square \\ Lancaster LA1 1RN \\ England \\ Telephone (0524) 68765; Fax (0524) 63232 \\ \(\dagger\) Not available until late December/early January
}

The books may be obtained from bookshops*, Old Colony
Sound Lab (USA and Canadian readers only-for

\title{
\(I^{2} \mathrm{C}\) POWER SWITCH
}

\begin{abstract}
A module is described that enables a mains powered device of up to 275 VA to be controlled by a PC via the \({ }^{2} \mathrm{C}\) bus. Since a direct connection to the mains voltage exists in the circuit, great attention has been given in the design to your electrical safety, as well as to protection of the expensive PC.
\end{abstract}

\author{
Design by K. Walraven
}


WHEREVER a PC is used to switch mains powered apparatus on and off, great care must be exercised with regard to safety, since even a small error can have disastrous consequences. And yet, being able to switch lamps and other (small) nonreactive devices powered from the mains appeals to many PC users. The power switch described in this article enables mains powered, nonreactive, devices of up to 275 VA to be controlled in a safe manner. Provided the user keeps to the construction notes, the electrical insulation provided by the circuit should afford the PC and its user adequate protection against dangerous voltage levels.

\section*{The electronics}

The small circuit shown in Fig. 1 is designed to minimize the risk of connecting a PC to devices which are powered from the mains. Safety is achieved essentially with the aid of a solid state relay (SSR) which contains an optoiso-
lator. The heart of the circuit is an 8 bit quasi bidirectional I/O port Type PCF8574 from Philips Semiconductors. This IC is driven via the \(\mathrm{I}^{2} \mathrm{C}\) bus (the associated PC interface card is described in Ref. 1). The PCF8574 comes in two versions: the 'plain' PCF8574 with base address 40 H , and the PCF8574A with base address 70 H . Since each IC can be located at eight different addresses with the aid of three jumpers ( \(\mathrm{JP}_{1}, \mathrm{JP} 2\) and JP 3 ), up to 16 of these circuits can be connected simultaneously to a single \(\mathrm{I}^{2} \mathrm{C}\) bus.

For the sake of safety, the module is fitted into a compact mains adaptor case with a moulded mains plug and socket. This is also the reason for having only one relay per module. The PC and the module communicate via a short length of 5 -way cable. The two mini-DIN sockets on the module are typical of all \(\mathrm{I}^{2} \mathrm{C}\) circuits published so far in this magazine (see the catch the \(\mathrm{I}^{2} \mathrm{C}\) bus' inset), and allow modules to be 'chained'. The 5 -way cable carries the two digital signals SDA and SCL as well as the supply voltage.

Only one of the eight digital I/O ports contained in the PCF8574 is used in every module. Here, output PO is used to drive the LED in the solidstate relay, ISO1. After an automatic power-on reset, all I/O lines of the PCF8574 are logic high, which means that they function as inputs. Consequently, the power on/off LED and the LED in ISO1 are off after a reset. The triac contained in the electronic relay does not start to conduct until output PO of IC1 is made logic low. LED D1 then also lights to indicate that the mains load is switched on. The triac in the SSR is shunted by a so-called snubber network. This con-


Fig. 1. Circuit diagram of the power switching module, which is driven via an \(\mathrm{I}^{2} \mathrm{C}\) bus.
sists of R4 and C3, and serves to limit the voltage changes \((\mathrm{d} U / \mathrm{d} t)\) across the triac. Without this network, there is a real chance of the triac starting to conduct spontaneously when fast voltage changes occur.

A neon lamp with built-in series resistor is connected across the \(R C\) network to indicate that the mains voltage is present in the module when it is plugged into a mains outlet. Fuse F1 is included to ensure that the current through the triac can not exceed 1.25 A . In this way, the triac is protected against overloading because the maximum continuous current through the solid-state relay is 1.5 A .

Al other components in the circuit are passive; two capacitors, \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\), which decouple the supply voltage of IC1; resistors R1 and R2, which act as current limiters on the SDA and SDL lines; and three jumpers, JP1, JP2 and JP3, which are used to set the three least significant address bits.

\section*{From theory to practice}

The copper track layout and the component positioning on the printed circuit board shown in Fig. 2 afford a high degree of safety provided you work neatly and use the right compo-

\section*{COMPONENTS LIST}
\begin{tabular}{|ll} 
Resistors: \\
2 & \(330 \Omega\) \\
1 & \(56 \Omega\) \\
1 & \(100 \Omega 2 \mathrm{~W} 5\)
\end{tabular}

\section*{Capacitors:}
\begin{tabular}{lll}
1 & 100 nF & C 1 \\
1 & \(10 \mu \mathrm{~F} 16 \mathrm{~V}\) & C 2 \\
1 & 100 nF 630 V & C 3
\end{tabular}
\begin{tabular}{lll} 
Semiconductors: & \\
1 & green LED & D1 \\
1 & PCF8574(A) & IC1
\end{tabular}

Miscellaneous:
2 PCB-mount 6-way mini-DIN socket
2 2-way PCB terminal block, pitch 7.5 mm

R1;R2 R3 R4

S201S02 (Sharp)
1A25 fast fuse with PCB mount holderF1

1 Neon lamp with internal resistor for mains voltage

La1
1 Enclosure with moulded mains plug and socket; size approx. \(120 \times 65 \times 50 \mathrm{~mm}\), e.g. Bopla SE432 DE
1 Printed circuit board 930091 (see page 110)

\section*{CATCH THE \({ }^{2}\) C BUS}

The Philips \(I^{2} \mathrm{C}\) bus offers an extremely simple way of interconnecting and controlling complex integrated circuits. A wide variety of \(I^{2} \mathrm{C}\) bus compatible ICs is available, while prices of these devices are relatively low because of mass production to cater for the need of consumer electronics. Elektor Electronics has published a number of articles that describe the operation and practical application of \(I^{2}\) C compatible ICs, complete with suitable software for IBM PCs and compatibles. If you have not already done so, catch the \(I^{2} \mathrm{C}\) bus with the following articles in Elektor Electronics:
\begin{tabular}{ll} 
Inter-IC communications & September 1990 \\
Video digitizer & July/August 1991 \\
\(1^{2}\) C interface for PCs & February 1992 \\
\(1^{2}\) C LED display & June 1992 \\
Speech/sound memory & December 1992 \\
\(1^{2}\) C alphanumerical display & July/August 1993 \\
\(1^{2}\) C bus fuse & July/August 1993 \\
\(1^{2}\) C opto/relay card & February 1993
\end{tabular}
nents. Start the construction by cutting off the two corners and the notch in the PCB. Next, fit the four wire links on the board, and then the components. The neon lamp (LA1) is optional, and may be omitted. Set the jumpers to give the desired address. A ' 0 ' is se-
lected when the jumper is at the side of the fuseholder, and a ' 1 ' when the jumper is at the side of the IC. To reduce the risk of touching the mains voltage while the circuit is not fitted into the enclosure, it is recommended to fit the plastic cap that comes with


Fig. 2. Track layout and component mounting plan of the single-sided printed circuit board designed for the \(\mathrm{I}^{2} \mathrm{C}\) power switch.


Fig. 3. Overview of data exchange between the PC and the I/O IC.
the PCB mount fuse holder.
Two holes are drilled in the mains adaptor enclosure to enable the DIN plugs to be inserted into the sockets on the board. Next, the PCB is secured into the enclosure with the aid of two screws. When the enclosure stated in the parts list is used, the two holes near the PCB terminal block may not be used for metal bolts. If you still want to fix the PCB at these locations, use nylon bolts instead.

Next, fit LED D1 into the cover of the case, and connect it to the PCB. Finally, connect the PCB to the integral plug pins and the socket terminals. Fit the cover onto the case, and secure the fixing screws. The circuit is then ready for testing.

One final remark on the electronic relay. The S210S02 contains a zerocrossing detector, and is only suitable for switching nonreactive loads. If you want to switch reactive loads also, use the S201S01, which switches randomly, and therefore does not cause


Fig. 4. This oscilloscope screendump clearly indicates the position of the acknowledge pulse. The signal level is not quite to specification because it is generated by the receiving IC.
problems with capacitive or inductive loads.

\section*{Reading and writing}

Once the hardware is finished, it is time to concentrate on the software. The base address of the PCF8574 is 40 H , or 70 H when the PCF8574A is used. The address set with the aid of the jumpers is added to this base address. Further, the LSB (least significant bit) determines the direction of the data: reading (1) or writing (0). Writing a logic 1 to an output bit causes the line to be switched to output'. If you wish to use a bit as an input, initialize it by writing a ' 1 ' to it. Once this is done, the relevant bit may be used as an input for the rest of the time.

Figure 3 shows the drive signals of the PCF8574 as reproduced from the Philips Semiconductors databook. The position of the jumpers is clearly seen in the address \(\left(\mathrm{JP}_{1} / \mathrm{JP}_{2} / \mathrm{JP}_{3}=\right.\) A2/A1/A0). A ' 0 ' for the eighth address bit indicates a write action to the IC, while a ' 1 ' indicates that data is read from the IC. The latter option is useful with regard to the \(\mathrm{I}^{2} \mathrm{C}\) power switch because it allows the PC to interrogate the on/off status of the load. Writing 00 H into the I/O port causes the load to be switched on, while writing 01 H switches it off.

The digital oscilloscope screendump in Fig. 4, finally, shows a nice example of the signals present on the SDA and SCL lines during a write command to the IC. Since \(330-\Omega\) protection resistors were inserted in the lines during the measurement, the voltage level on the SDA line was strongly dependent on the transistor that happened to be switching at a particular instant. The advantage is that the acknowledge pulse is clearly discernible in the scope picture. The switching level is clearly different from that which arises when

\section*{\(\mathbf{I}^{2} \mathrm{C}\) ON THE ACORN PC}

By virtue of the \(I^{2} C\) interface on the podule bus, owners of an Acorn PC (also know as Acorn Archimedes) do not need a special insertion card to be able to use all the \(I^{2} \mathrm{C}\) application modules described in Elektor Electronics. What's more, all software needed to communicate with \(1^{2} \mathrm{C}\) devices is implemented in the Acorn operating system.
The circuit below shows how to connect the \(\mathrm{I}^{2} \mathrm{C}\) modules to the Acorn PC. The SDA and SCL signals are on pins C20 and C19 respectively of the podule bus. The SWI called
IIC_Control may be used to drive the hardware. Information on the use of this SWI in programs may be found on page 1-944 of the RISC OS3 Programmer's Reference Manual. The resistors and diodes in the circuit protect the computer hardware against damage caused by errors during experimenting.
Users of the video digitizer (Elektor Electronics July/August 1991) may find the necessary signals directly on the podule, where the \(I^{2} \mathrm{C}\) bus is used to program I/O ports (PCF8574) and a DAC for picture intensity control (PCF8591). The fixing bracket of the podule will no doubt have some spare room to accommodate an extra mini-DIN socket. That is all there is to making an external \(\mathrm{I}^{2} \mathrm{C}\) interface on the Archimedes.


Our thanks are due to Mr. J.P. Hendrix of Dongen, the Netherlands, for this useful tip.
the computer is busy switching. This variation may come in handy during faultfinding: the closer you measure to the port that generates the acknowledge pulse, the closer the signal level is to the ground potential.

\section*{Reference:}
1. \(\mathrm{I}^{2} \mathrm{C}\) interface for PCs, Elektor Electronics February 1992.

```

