
The art of 
control engineering 
Ken Dutton 

Steve Thompson 

Bill Barraclough 

• • Addison-Wesley 

Harlow, England • Reading, Massachusetts • Menlo Park, California 
New York • Don Mills, Ontario • Amsterdam • Bonn • Sydney 
Singapore • Tokyo • Madrid • San Juan • Milan • Mexico City 
Seoul • Taipei 



Contents 

Preface xi 

1 Introduction 1 
1.1 Preview 1 

1.2 Control engineering - terminology 2 
1.3 A stroll through the field of control 6 
1.4 Conclusions 28 
1.5 Problems 29 

2 An introduction to control system modelling 30 
2.1 Preview 30 
2.2 An introduction to control system modelling 31 
2.3 Lumped-parameter models 32 
2.4 Equations of motion from lumped-parameter models 44 
2.5 Differential equations and Laplace transforms 66 
2.6 Block diagrams 87 
2.7 Some relationships between transfer function and state-space models 96 
2.8 Simple discrete-time models for digital control and simulation 105 
2.9 Concluding remarks 107 
2.10 Problems 110 

3 System responses, stability and performance 116 
3.1 Preview 116 
3.2 Some basic design requirements 117 
3.3 Routh stability 154 
3.4 Performance specifications in the frequency domain 167 
3.5 Frequency response plots 173 
3.6 Responses of discrete-time models 204 
3.7 Time delays (or transport lags) 211 
3.8 Non-minimum-phase transfer functions 213 
3.9 Simple system identification 217 



vi Contents 

3.10 Conclusions 233 
3.11 Problems 233 

4 Single-input-single-output (SISO) design 239 
4.1 Preview 239 
4.2 Preliminaries 240 
4.3 The Nyquist stability criterion 245 
4.4 The root locus method 259 
4.5 Controller and compensator design 275 
4.6 The Smith predictor 295 
4.7 Some notes on controller implementation 298 
4.8 Conclusions 304 
4.9 Problems 304 

5 A first look at state-space and digital control 307 
5.1 Preview 307 
5.2 The time-domain (state-space) approach to feedback compensation 308 
5.3 Controllability and observability 308 
5.4 State variable feedback 318 
5.5 Multivariate systems - links with other topics 334 
5.6 Eigenvectors of the plant matrix, and their contribution to the time response 335 
5.7 More on discrete-time models and simulation studies 340 
5.8 An introduction to digital controllers 347 
5.9 Conclusions 364 
5.10 Problems 365 

6 'On-off' control and practical control devices 369 
6.1 Preview 369 
6.2 'On-off' control 370 
6.3 Ladder logic and PLCs 372 
6.4 Practical 'continuous' controller implementation 375 
6.5 The real world beyond the controller 382 
6.6 Conclusions 385 
6.7 Problems 386 

7 'True'digital controllers 387 
7.1 Preview 387 
7.2 A z-transform representation of a digital control system 388 
7.3 Obtaining the z-transfer function of the controller 397 
7.4 A dead-beat controller 397 
7.5 Kalman's controller algorithm 400 



Contents vii 

7.6 Dahlin's controller algorithm 403 
7.7 Modification for plants with transport lags 407 
7.8 A comparison of the 'true' digital controllers 410 
7.9 Conclusions 412 
7.10 Problems 412 

8 System identification and modelling revisited 413 
8.1 Preview 413 
8.2 The principles of correlation testing 414 
8.3 Practical aspects of correlation testing 420 
8.4 Choice of PRBS parameters 426 
8.5 Another look at Bode identification 427 
8.6 Modelling time delays in multivariable systems 432 
8.7 Conclusions 435 
8.8 Problems 436 

9 Observers and state estimation 438 
9.1 Preview 438 
9.2 Introduction 439 
9.3 Simple observers 440 
9.4 A better estimator - the full-order observer 441 
9.5 Reduced-order observers 450 
9.6 Use of observers in closed-loop systems 456 
9.7 Digital implementation of a tracking feedback system including a reduced-order observer 468 
9.8 The Kalman filter 480 
9.9 Conclusions 495 
9.10 Problems 496 

10 Multivariable systems in the frequency domain 499 
10.1 Preview 499 
10.2 Introduction 500 
10.3 Frequency-domain description of multivariable systems 501 
10.4 Feedback control of multivariable systems - an intuitive approach 507 
10.5 Stability of multivariable feedback systems 512 
10.6 The characteristic locus (CL) method 518 
10.7 The inverse Nyquist array (INA) method 534 
10.8 The Perron-Frobenius (P-F) method 549 
10.9 Points of comparison 554 
10.10 Conclusions 556 
10.11 Problems 557 



viii Contents 

11 Adaptive and self-tuning control 560 
11.1 Preview 560 
11.2 The need for adaptation 561 
11.3 Gain-scheduling 563 
11.4 Self-tuning control 564 
11.5 The controller synthesizer 573 
11.6 The controller synthesizer: self-tuning PID 576 
11.7 Model-reference adaptive control 578 
11.8 Variable-structure control 580 
11.9 Conclusions 581 
11.10 Problems 582 

12 Optimal control 583 
12.1 Preview 583 
12.2 Introduction 584 
12.3 What does 'optimal' mean? 585 
12.4 Dynamic programming 591 
12.5 Other approaches 608 
12.6 Two design examples using MATLAB 608 
12.7 Summary 619 
12.8 Problems 619 

13 An introduction to robust control 621 
13.1 Preview 621 
13.2 Introduction 622 
13.3 The control system design model 623 
13.4 The design problem 627 
13.5 The generally accepted frequency-domain solution 629 
13.6 Modelling model uncertainty 630 
13.7 Robustness - a worst-case analysis 631 
13.8 Defining the H 2 and approach 633 
13.9 Robust stability 638 
13.10 Robust performance 642 
13.11 Concluding comments 643 

14 Nonlinear systems 645 
14.1 Preview 645 
14.2 Introduction 646 
14.3 Nonlinear system elements 650 
14.4 Linearization 657 
14.5 Phase plane analysis 664 



Contents ix 

14.6 Lyapunov's second (direct) method 687 
14.7 The describing function method 697 
14.8 Popov's method 710 
14.9 Zames'circle criterion 714 
14.10 Summary 716 
14.11 Problems 718 

Appendix 1 Matrix algebra relevant to control systems 722 
Appendix 2 Partial-fraction expansions in inverse Laplace transforms 742 
Appendix 3 A brief introduction to MATLAB® and its toolboxes 749 
Appendix 4 A brief introduction to SIMULINK® 769 
Appendix 5 The 'true' z-transform 775 
Appendix 6 Random signals and the Kalman filter derivation 785 
Appendix 7 Derivation of Plackett's algorithm for online least-squares fitting 795 

References 800 

Index 804 





Preface 

The material in this book is based upon undergraduate, postgraduate and industrial 
courses taught at Sheffield Hallam University (England), and at The Queen's 
University o f Belfast (Northern Ireland). I t may be used to take a student from zero 
knowledge of control systems, by easy stages, up to an appreciation o f some 
advanced control schemes. A feature o f the text is that i t considers the 
implementation o f the various control schemes; although it would st i l l be necessary 
to be guided by a good practitioner of the ' A r t o f control engineering', i f 
applications are to be implemented safely and efficiently. Other features o f the text 
are its layered approach to the teaching o f control and its treatment o f the 
mathematics essential to an understanding of the subject. Both o f these aspects are 
expanded later in the preface. In brief, the pragmatic approach and the practical 
comments given throughout the book should prove useful to the student studying 
control, the educator planning a course in control studies and to practising control 
engineers. This preface contains the fo l lowing sections, g iv ing useful information 
about this book, and how it can best be used: 

• A broad overview of the book 

• Mathematics (notes on the book's approach to mathematics, and how it is 
included) 

• Computer-aided control system design (CACSD) and M A T L A B ® 

• How to use the book 

• Acknowledgements (wi th an email address for comments) 

A broad overview of the book 
This book is structured to suit the way control engineering is taught in European 
institutions (but i t is sufficiently flexible to be easily used elsewhere). I t assumes 
li t t le previous knowledge other than familiari ty w i t h basic physics, algebraic 
manipulation and elementary calculus. The major additional topics in mathematics 
necessary to study control engineering (such as the Laplace transform, the z-
transform and matrix algebra) are covered as they are needed. 

I n the past, students who have been motivated to study al l the control 
engineering options (electives) their programme o f study offers, have typically 
needed several textbooks (including, perhaps, texts on classical control, mu l t i -
variable control, digital control and nonlinear control), some of which might be 
used for only a very small percentage o f their course. A n ambitious a im i n wr i t ing 
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this book has been to provide, in a single volume, a complete undergraduate 
coverage of control engineering (and also to cover some postgraduate courses). 

Typically, an undergraduate student undertaking a three academic year course 
of study wi th a high control engineering content might wel l encounter control 
lectures each year. Accordingly, the chapters in this book are aimed at three 
different levels, corresponding roughly to these three years o f study, as indicated in 
Figure P I . This means that some of the major topics might occur in each of the three 
levels. O f course, the higher the level, the greater the depth o f treatment. A further 
benefit of this 'layered' approach is that some of the fundamental divisions o f 
control engineering (such as frequency-domain methods versus time-domain 
methods) are largely overcome, since all these methods are studied side by side at 
each level, thus providing a well-integrated approach to the subject as a whole. 
'Maps' of how some major topics can be followed through the text in a less 
integrated fashion, i f desired, are given later in this preface. 

Level 1 

Chapter 1 
Introduction 

Chapter 2 
System modelling 

Chapter 3 
Responses, stability, 

performance 

Level 2 

Chapter 4 
Single-input-single-

output design 

Chapter 6 
On-off control and 
practical devices 

Chapter 5 
Introductory state-space 

and digital control 

Chapter 8 
Identification, 

more 
modelling 

Level 3 

Figure P I The layered 
approach of the text. 

Chapter 9 
Observers, 

Kaiman 
filter 

Chapter 11 
Self tuning, 
adaptive 
control 

Chapter 10 
Multivariable 
frequency 
domain 
control 

Chapter 12 
Optimal control 

Chapter 13 
Robustness 

Chapter 14 
Nonlinear 
control 

Chapter 7 
Digital control 
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Mathematics 
Control engineering can easily become a highly mathematical discipline (and there 
are several very mathematical control texts on the market). This text is designed 
to be different, although it is inevitable that some parts o f i t w i l l look rather 
mathematical on a cursory inspection. However, even in the most intensively 
mathematical parts, i f the text is read in the order suggested, then sufficient steps o f 
the mathematics are given to allow i t to be fol lowed. 

The mathematics in this text is presented as i t arises naturally, and is usually 
l imited to that which is necessary for an understanding o f the particular topic under 
consideration. For example, the Laplace transform, which is the cornerstone o f the 
frequency-domain approaches, is introduced in a 'user-friendly' manner wi th in the 
text, at the point where it becomes necessary to use i t . 

Sometimes, i f a substantial amount o f mathematical background is considered 
helpful, an appendix is used. For example, Appendix 1 contains all the matrix 
algebra necessary to fol low the time-domain and m u l t i v a r i a t e control methods 
described in the text. In addition, i t treats matrices and vectors in a helpful, 'control-
orientated' manner. 

Our aim, therefore, has been to integrate the mathematics w i th the text, 
since we are, after all , interested in promoting control engineering and, in our 
experience, seemingly abstract mathematics can ' turn o f f many a student. 
Rigorous mathematical proofs are avoided, except where they aid an understanding 
of how to make the best use of the method in question. I n general, the treatment is 
more pragmatic and practical than w i l l be found in many books. Even so, there is 
always sufficient theoretical background to allow an understanding o f each 
technique. 

As one example of a ful l derivation which has been included, Appendix 6 
(combined wi th part of Chapter 9) gives a mathematical derivation o f the Kalman 
filter. To some, this w i l l seem the most complicated mathematics i n the book, but i t 
has been included because the derivation is more complete than that provided by 
any other textbook known to the authors, and is therefore useful background 
material for an undergraduate text. However, 'background' is the appropriate word, 
and illustrates one aspect of the authors' pragmatic approach since, for an 
engineering course (unlike a mathematics course), i t is unlikely that a ful l 
derivation o f the Kalman filter (or any other very complex algorithm) would be 
taught line by line. Rather, it resides in the appendix where interested readers may 
study i t , but only the outline steps would be mentioned in class, as an aid to 
understanding where the algorithm comes from, why i t works and how i t might best 
be used in practice. 

In other places where a proof might be o f interest, but the proof is given 
adequately elsewhere, appropriate references are quoted. However, the text never 
subsequently relies on knowledge of such a proof. 

Each chapter in the book has an introductory section listing any new 
mathematical ideas which w i l l be encountered in that chapter. In this way, the 
student can see where the need for some greater mathematical knowledge is 
imminent. However, since the new mathematics is always integrated wi th the text, 
the motivation for the study o f the new topic w i l l be clear. 
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Computer-aided control system design (CACSD) and MATLAEi® 
No new control engineering text can ignore the extent to which the availability of 
cheap computing power, and powerful software packages, has revolutionized the 
subject. This text acknowledges this by including some relatively modern analysis 
and design techniques which cannot be applied 'by hand' because of the volume of 
calculation involved (see, for example, Chapter 10). The problem is that there are 
many excellent software packages which can be used for control system design 
studies, each having its own particular strengths and weaknesses. In producing this 
text, i t was necessary to opt for just one package, for consistency, and we chose to 
use M A T L A B - see (The Mathworks Inc., 1993a, 1993b) in the references. For 
those readers not familiar wi th the power of modern CACSD software packages, it 
w i l l be helpful to know that M A T L A B was used to produce almost a l l o f the system 
response plots, of every kind, shown in the book. 

On the other hand, i t is not assumed that the reader must have access to 
M A T L A B in order to be able to make use of the book. M A T L A B has been used 
simply as one representative CACSD package. For this reason, fu l l details o f 
M A T L A B code are not given in the text (although ful l details are available in 
Appendix 3, and in the various files on the accompanying disk). What we have done 
is to include some sample M A T L A B code in simple cases, to indicate how each 
design method might be specified for computer assistance. In this way, the reader 
who does not have access to M A T L A B (or, indeed, to any other CACSD 
environment) can sti l l use the vast majority of the text, while simply ignoring all 
references to the files on the disk. 

For those readers who do have access to M A T L A B , several M A T L A B m-files 
are provided on the accompanying disk, which support the written text. Their file 
names generally l ink up wi th the numbers of the figures in the text, so it is easy to 
find the m-file that w i l l generate a particular figure. By modifying copies o f these 
files, the reader is able to experiment wi th controller parameter values, or to try 
other modifications to the various control system designs and simulations presented 
in the book. Several of the m-files thus constitute extremely useful templates for 
many of the techniques of control system design and simulation. Appendix 3 
describes M A T L A B , and the M A T L A B software configuration needed to run these 
m-files. Appendix 4 describes the related package S I M U L I N K ® (The Mathworks 
Inc., 1994a), which is used for digital computer simulation (although most o f the 
simulations on the disk just use M A T L A B ) . The A S C I I text file readme.txt on the 
disk contains further information. 

Details of one suitable philosophy for including M A T L A B - and S I M U L I N K -
based material into the teaching of this text can be found in Dutton and Barraclough 
(1996). 

How to use the book 
Figure P I gives an overview of how the material i n the book is structured. I t also 
shows broadly which chapters contain some material necessary for the study of later 
chapters. A t the introductory level, i t w i l l be necessary to study the first three 
chapters (or parts of them, at least) for most purposes. Conversely, at the highest 
level, Chapters 7 to 14 are almost independent of each other, making it very easy to 
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select topics as required. Also, parts o f some of these chapters can easily be omitted 
i f desired, thus widening the choice even more. The divisions shown between the 
levels can be moved to some extent, to suit any particular programme of study. 

As a guide to the selection o f material for various purposes, we offer the 
fol lowing suggestions (which can be extended or contracted as required, to suit the 
course o f study). Whatever aspects o f control engineering are to be studied, our 
basic belief is that an underlying knowledge o f the frequency-domain techniques 
(often called 'classical control ' ) is the best foundation from which to begin. Even i f 
a course concentrates on the time-domain (state-space) methods, the importance o f 
the ' feel ' which comes from the frequency-domain study o f the input-output 
behaviour o f systems, and of the effects of adding simple controllers into feedback 
loops, cannot be overestimated. This means that, in our opinion, most o f Chapter 1, 
plus a selection o f topics from Chapters 2, 3 and 4, w i l l almost always be desirable. 

I f a course heavily biased towards the frequency-domain methods is required, 
then the selection shown in Figure P2 is suggested. The various optional sections 
indicated can be chosen to suit the time available. The course could terminate at any 
stage after the 'Level 2 ' material. 

For a course biased towards the time-domain methods, taking into account the 
previous comments, Figure P3 suggests a suitable route through the text. Again , the 
course could terminate at any stage after the 'Level 2 ' material. 

For a purely digital control course, i t w i l l s t i l l be necessary to study the 
background of frequency-domain and/or time-domain methods, so as to be able to 
design that which is to be digitally implemented (apart from the purely digital 

Chapter 1 
Omit 1.3.6 if desired 

Level 1 
Chapter 2 

Omit 2.4.5, 2.4.6, 2.5.1, 2.7, 2.8 if desired 
Omit other parts of 2.4 at will, depending on emphasis 

Chapter 3 
Omit 3.6, 3.7, 3.8, 3.9 if desired 

Omit one or more techniques from 3.5 if desired 

Level 2 
Chapter 4 

Omit 4.4, 4.6 if desired 

Chapter 8 
Omit 8.2-8.4, 8.5, 8.6 as required 

For 8.5, 3.5.1 and 3.9 must be studied first 

Figure P2 A mainly 
frequency-domain control 
course. 

Chapter 11 
Omit 11.7,11.8 as desired 

Level 3 

Chapter 10 
Omit 10.6, 10.7, 10.8, 10.9 

as desired (but 10.8 requires 10.7) 
Chapter 13 
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Chapter 1 
Omit 1.3.6 if desired 

T 
Chapter 2 

Although 2.5 is less relevant here, the authors believe that 
the basic ideas of this chapter should be known by all control 

engineers as a prerequisite to time-domain study. 
Sections 2.5.1, 2.6 and 2.7 are essential. 

Omit 2.8 if required 

Chapter 3 
Omit some detail from 3.2 if desired, but 3.2.1 and parts of 

3.2.2 are essential. 3.3 can be omitted if computer assistance 
is used for root-finding (but 3.3.4 contains useful PID tuning 

information). 3.4 and 3.5 can be very much abbreviated. 
Omit 3.6, 3.7, 3.8, 3.9 as desired 

Level 2 

Level 3 

Chapter 4 
Most of this is not directly relevant to time-domain design, 

but the authors believe that students should be familiar with 
the basics of this material first (especially 4.5 and 4.7). 

i 
Chapter 5 

Omit 5.7, 5.8 as desired 

Figure P3 A mainly time-
domain control course. 

Chapter 8 
Section 8.6 

i 
Chapter 9 

Omit 9.7, 9.8 as desired 
Chapter 12 

controllers in Chapter 7). With that proviso, Figure P4 suggests suitable routes. 
Note that Section 9.7 contains some useful comments on general matters o f 
implementation, and these could usefully be extracted, even i f the subject matter on 
which that section is based is not understood. 

Finally, for those requiring a nonlinear control course, Figure P5 illustrates the 
possibilities. Again, i t is necessary to study various basic aspects o f frequency-
domain and/or time-domain control (as indicated in Figure P5) depending upon the 
nonlinear techniques chosen for study. 
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Chapter 1 
(including 1.3.6) 

Level 1 

Level 2 

Figure P4 A digitally 
biased control course. 

Chapter 2 
Select relevant sections as suggested in the previous figures. 

Section 2.8 must be included for digital control. 

Chapter 3 
Select relevant sections as suggested in the previous figures. 

At least some of 3.6 and 3.7 must be included for digital control. 

Chapter 4 
Select relevant sections as suggested in the previous figures. 

Chapter 5 
Sections 5.1 to 5.6 are only relevant if state-space is studied. 

Sections 5.7 and 5.8 essential for digital control. 

Chapter 11 
May require a little background 

from Chapter 8 

Chapter 6 
As required 

Chapter 7 

Level 3 

Chapter 9 
Section 9.7 is ideal, but requires 

all of Chapter 5 and Sections 
9.1 to 9.6 
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1 Introduction 

1.1 PREVIEW 
1.2 CONTROL ENGINEERING-TERMINOLOGY 
1.3 A STROLL THROUGH THE FIELD OF CONTROL 
1.4 CONCLUSIONS 
1.5 PROBLEMS 

1.1 Preview 
Each chapter in this book begins with a section like 
this. Usually (especially in the later chapters) it tells 
the reader what he or she needs to know before 
reading the chapter, in order to be able to understand 
it fully. Generally, once the reader has read Chapter 
1, further chapters will only need knowledge gained 
earlier in the text. These 'preview' sections also 
indicate what the reader should expect to learn by 
studying the chapter. In addition, they list any 
mathematical techniques which will be introduced for 
the first time during the chapter. 

Sometimes, the preface to a book is there 
because people expect there to be a preface. In this 
book, the preface also contains much useful 
information about the structure and use of the book. It 
shows that major topics have been divided between 
several chapters. When this occurs, reference is 
made to the next chapter in which the topic is 
developed. 

In this chapter the reader will learn: 
• the fundamental concepts and terminology of 

control engineering - some of which are 
necessary to understand fully the remaining items 
in this list! 
that models in the form of mathematical equations 
and block diagrams can often be found, which 

adequately describe how a real-world 'system' (yet 
to be defined) behaves 
that these models might be useful in designing a 
control system - which will alter the behaviour of 
the real-world system, in some desired manner 
how the performance of control systems can be 
specified 
that there are very many different aspects of 
control engineering that can be studied. 

NEW MATHEMATICS FOR 
THIS CHAPTER 

Many control engineering 
texts have early chapters 
which introduce all the 
mathematical techniques 

needed in the book. This text is not like that. Instead, we 
do not introduce any mathematical tool until it is needed 
in a control engineering context. In this way, the reader 
only covers the mathematics actually required in order to 
understand his or her chosen set of topics; and covers it at 
the time it is used. Sometimes, the new mathematics is 
introduced in the text, where it is needed. At other times, 
for more complicated or involved aspects of mathematics, 
an appendix is used so as not to upset the flow of the text 
too much. 

There is very little mathematics in this introductory 
chapter, but we do mention one or two mathematical ideas, 
and use one or two equations. To understand this chapter, 
the reader need only be familiar with the basic ideas of 
algebra (forming and manipulating equations) and calculus 
(simple integration and differentiation). Matrix algebra is 
mentioned in passing, but not actually used. I f required, 
Appendix 1 gives a unique slant on matrix algebra from a 
control engineering viewpoint. However, it might be better 
to delay study of that until it is really needed. 



2 Introduction 

1.2 Control engineering - terminology 
I f a dozen control engineers are asked to define 'control engineering', they w i l l 
produce a dozen different answers. Most w i l l probably contain some comment 
about altering the natural behaviour of some system or other, so that i t behaves as 
required. However, due to the vagueness of such attempts at formal definitions, i t is 
perhaps better to let the subject evolve naturally from the consideration o f a control 
problem. As an illustrative system, we choose to consider the control o f an inverted 
pendulum. One version of this problem w i l l be familiar, in that it requires someone 
to balance a broom handle vertically on the palm of his or her hand (Figure 1.1). The 

Figure 1.1 Solving the 
broom-balancing problem. 

task is not particularly difficult. After placing the point of the handle on the palm in 
approximately the required vertical position, appropriate eye-hand coordination, 
which can be achieved by most people after a little practice, produces the desired 
result. Despite the relative simplicity of the task, the mechanisms involved in 
producing the solution are worthy of further examination. Indeed the study o f such 
mechanisms is the theme of all control texts. 

Before looking at the mechanisms, let us look at the broom handle. Its shape is 
fixed. I f its shape changed it would cease to be a broom handle. In control engineering 
terms the handle is the plant (or process) to be controlled. L ike many engineering 
plants and processes, i t evolved. This evolutionary path determined the best material 
and the length and diameter of the handle in order to minimize cost but, not 
surprisingly, gave little thought to the possibility of i t being balanced in a vertical 
position. Fortunately the control mechanisms within humans are very adaptable and 
can compensate for this oversight in the evolutionary development of the handle. 

In general, most industrial control problems (simple examples include 
controlling the speed of a motor, or the level of fluid in a tank, or the temperature 
of a furnace) involve the fitting of controls to plants and processes that started their 
evolution before control concepts were well understood. This invariably 
complicates the control problem and reduces the potential benefits. However, the 
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ingenuity o f the control engineer can often overcome these difficulties and, in most 
cases, produce a well-behaved piece o f equipment. When control becomes an 
integral part of the design process, the ultimate control scheme is invariably less 
complex, simplifying maintenance and reducing operator training. In addition, a 
good control scheme w i l l maximize the plant's efficiency. 

Control engineers like to use block diagrams to simplify the understanding o f 
complex systems by breaking them down into smaller, interconnected subsystems: 
see Figure 1.2. I f the broom handle is the plant, then the controls are all the 

Figure 1.2 
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elements, or blocks in Figure 1.2, which are external to the plant and which are there 
to ensure properly organized behaviour. Given that the objective is to keep the 
handle vertical, the first block to be considered is the detection, or measurement 
element, which indicates the position of the handle. I n Figure 1.1 the measurements 
are made by the eyes which send an appropriate message to the brain. There is a 
communications system, the neurological system which sends messages, or signals, 
from the eye to the brain. In Figure 1.2 the signals are indicated by the connecting 
lines entering or leaving the various blocks. The brain performs two main functions. 
I t compares the measured position o f the handle w i th the desired position (the 
setpoint or reference value), and it calculates the appropriate action to be taken. In 
the language of control, the brain performs the function o f both a comparator and a 
compensator (the two together forming a controller - see below). Finally, the signal 
emanating from the compensator portion o f the brain activates the muscles in the 
arm which position the hand carrying the lower end o f the handle. The arm is the 
actuator, providing both power amplification and motion. 

Comment: Note that strictly, the compensator i n a control loop is the block 
shown as such in Figure 1.2. The controller is taken to include the compensator, the 
comparator and any other blocks and connections added to the plant in order to 
control i t in the required manner. However, while the term compensator is almost 
always used wi th its proper meaning given above, the term controller is very often 
used ( in this book, too!) to refer only to the compensator! This is of only semantic 
importance, as the context should always make the meaning clear, but i t is worth 
noting, in order to save confusion over the common usage of two different words for 
the same thing. 

When looking at Figure 1.2, notice how information circulates around the 
control system. I n this context a control system refers to the plant and all the 
associated blocks (that is, the plant plus the controller). Measurement information 
taken from the plant is, in turn, acted on by the comparator, compensator and 
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actuator, before being fed back to the plant. The resulting control system is called a 
closed-loop system and is characterized by the feedback signal which carries 
information from the measurement device to the comparator. In contrast, an open-
loop control system does not have such a feedback path. 

To show the importance of feedback in control i t is possible to break the 
feedback path in the broom handle balancing problem, Figure 1.1, by blindfolding 
the person balancing the handle. A l l the control system elements are present, but the 
circulation of information is lost and consequently the handle falls. I t may quite 
reasonably be argued that i f the room is still (equivalent to no external disturbance -
see below), and i f the experimenter has a steady hand (equivalent to there being no 
noise signals wi th in the loop - see below), then provided the handle was originally 
vertical it w i l l remain vertical. This is true, and gives the justification for many 
open-loop systems. However, for systems sensitive to noise or disturbances (and the 
broom handle balancing problem is very sensitive to both), feedback control is 
essential. 

Note that 'noise' means unwanted signals corrupting the normal signals wi th in 
the loop. Noise is generally random in nature and w i l l often have frequency 
components much higher than those associated wi th the signal i t corrupts. The most 
common exception to this statement is regular ' hum ' caused by a.c. mains power 
supplies. 

Disturbances are generated externally to the loop and are signals which act on 
the plant to cause definite changes in operation. They may be caused by such things 
as changes in atmospheric conditions, variabili ty in some product entering the 
plant, variations in the power supply, or the ageing of components in the system. 

One o f the signals, the setpoint, or reference value, indicates the desired 
position of the handle. Although this signal is external to the information circulating 
around the closed-loop system, it nevertheless plays an important role. I f the 
setpoint is fixed, that is, the control objective is to maintain the top end o f the handle 
at some fixed point in space, then the control problem is said to be one of regulation, 
and the control system is a regulator. When the control objective is to move the 
handle along a predefined trajectory, the control problem is said to be one of 
tracking, and the system might be called a tracker. These distinctions are discussed 
at greater length in Section 5.4, and in the examples below. 

Wi th these terms defined, there is perhaps sufficient information to start 
looking at familiar pieces of equipment and identifying the various control 
elements. 

Example 1.1 Domestic oven temperature control 
The temperature control o f the oven in an electric cooker is an example o f a closed-loop 
regulatory system. Here, the control objective is to maintain the oven temperature at, or 
near, the manually adjusted setpoint temperature. A sensor wi th in the oven measures the 
oven temperature. The resulting temperature signal is compared wi th the setpoint and a 
very simple compensator provides a signal which is used to switch (actuate) power to the 
oven's heating elements. The heating elements are switched on i f the oven temperature is 
somewhat less than the setpoint temperature, and off i f the temperature is somewhat above 
the setpoint. For a domestic cooker this strategy appears adequate and has, for many years, 
been the main method of oven temperature control. 
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Example 1.2 Domestic washing machine 
f A basic domestic automatic washing machine typifies an open-loop system. Here the pre-
•f set washing cycle activates various washing operations for a set period of time. I t is 
* assumed that i f the set sequence of operations is fol lowed correctly, then the clothes 

inserted into the machine w i l l emerge clean and undamaged. However, because the system 
* is essentially open-loop the manufacturers provide copious instructions to try to deal wi th 
f* all the variables that can occur in a typical wash. 

* Example 1.3 Domestic central heating 
* For those l iv ing in a colder climate, examination o f a domestic central heating system 
m reveals a number of control loops. Water heated by the boiler is continuously pumped 
m round the house. There is invariably regulatory control on the exit temperature of the water 
* from the boiler. I f the boiler is o i l , or gas fired, this temperature control system is similar 
-* to that found in the oven of an electric cooker (Example 1.1). 
^ Solid fuel boilers use a different closed-loop control strategy to regulate circulating 
~ water temperatures. A bimetallic strip, whose ini t ia l position can be set manually, senses 
l M temperature changes. Deflections of this strip are used to open, or close, a damper 
* (basically a flap acting as a throttle valve) altering the flow of air into the combustion 
* chamber. The control signals are mechanical and the control action is continuous (like the 
* handle balancing problem, but unlike the on -o f f control in Examples 1.1 and 1.2). 
* Heat carried by the circulating water is dissipated by means o f heat radiators. When a 

radiator is fitted wi th a thermostatically controlled valve, the heat dissipation process from 
m that radiator is closed-loop. I f the radiator has no means of detecting the room temperature, 
I f the process is open-loop. 

p Example 1.4 The McDonnell Douglas DC-X 
; Aircraft have a large number of control systems. Cabin pressurization and the automatic 

8": pi lot are examples of regulatory control systems, whereas an automatic landing system is 
; ; an example o f a tracking system. Even our old friend the broom handle has a serious 

J l counterpart. During 1993 the unmanned McDonnel l Douglas Delta Clipper Experimental 
*\ ( D C - X ) , a prototype, single-stage-to-orbit launch vehicle, was seen on international 
^ television news rising smartly from its launch pad to an altitude o f 50 metres, where i t 

then stopped in mid-air, moved 100 metres down range and then descended for a perfect 
^ landing. This rocket performed all the functions demonstrated by the handle balancing 
£ problem. However, in the rocket the sensors are more l ike ly to be gyros and 
^ accelerometers, the brain is replaced by a computer w i t h flight and navigational control 
* ; algorithms comprising over 30 000 lines of Ada language code, and the actuators are the 
& rocket motors (unfortunately, the rocket suffered a serious accident at the end o f July 1996, 
1 when one of its four landing 'legs' failed to deploy, and i t toppled over on landing and 

caught fire). 
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1.3 A stroll through the field of control 
This section w i l l introduce many of the concepts and topics developed in the text, 
without the complication of a formal mathematical base. Again the inverted 
pendulum w i l l , when appropriate, be used to illustrate the various subjects. 

1.3.1 Mainly on inputs and outputs 
Looking more closely at the blocks in Figure 1.2, i t can be seen that information 
enters and leaves each element. Information entry points are called inputs and exit 
points are called outputs. Each block could be said to 'transform' its input signal(s) 
into an output signal. Because of this action o f transferring a signal from input to 
output, one of the many possible mathematical descriptions o f a block is referred to 
as a transfer function, but more w i l l be said on this topic in Chapter 2. A t this point 
no explicit assumptions regarding the amount or type o f information circulating in 
the control system have been made (we shall return to this point shortly). 

Once the numbers of inputs and outputs associated wi th the plant have been 
defined, a structure is required for the control scheme we intend to design. For 
closed-loop systems, this structure is often based on that shown in Figure 1.2, 
although other structures are possible. Regardless o f which control structure is used, 
the inputs and outputs associated wi th the controls are defined once the plant's 
inputs and outputs are known. 

Finding the best, or most appropriate, inputs and outputs for a given plant is 
part o f the art of control system modelling. I n general, outputs are the measurable 
quantities to be controlled. In the examples of simple systems mentioned earlier, 
these might include: 

• the position of the top of the inverted broom handle o f Section 1.2 (but see 
Example 1.5, below, for a fuller consideration o f this particular system) 

• the temperature in an oven 

• the water temperature in a washing machine 

• the time for which the washing machine performs various operations (washing, 
rinsing, spinning and drying, for example) 

• the temperature of the water leaving a central heating boiler 

• the temperature of a room containing a central heating radiator 

• the cabin pressure in an airliner 

• the heading maintained by an aircraft 

• the position (flight path) of an aircraft during landing 

• the vertical attitude and height of hover of the D C - X rocket. 

Sometimes the quantity to be controlled cannot be measured directly and must be 
inferred from available measurements (of other signals) using an estimator or 
observer (developed in Chapter 9). 

The inputs o f a plant are the variables which, i f adjusted, would alter the 
measured outputs. When the inputs can be manipulated directly they are called 
manipulable inputs or simply inputs. In the above examples, these might include: 
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• the nerves that cause the arm muscles to operate, for balancing the broom handle 

• on/off signals to the heating elements of the oven and the washing machine; and 
also to the various washing machine motors and water valves 

• on/off signals to the central heating boiler 's fuel source and igni t ion system 

• the rod determining valve position in a thermostatically operated radiator valve 

• control signals to an airliner's cabin pressurization pump 

• control signals to the control surfaces o f an aircraft 

• control signals to the valves determining the amount o f fuel entering the rocket 
motors; and position signals to direct the rocket motors' thrust. 

Inputs that cannot be manipulated directly are called disturbance inputs, or simply 
disturbances. There are many examples o f these for the systems mentioned above. 
Some are: 

• involuntary muscle spasms (for example, sneezing) while balancing the broom 
handle 

• opening of the oven door 

• variation of the amount of clothes, and the material from which they are made, in 
the washing machine 

• variations in the calorific value of the fuel i n the central heating boiler 

• doors or windows being opened in the centrally heated room, or the external 
temperature changing 

• changes of altitude of the pressurized aircraft cabin 

• effects of wind gusts on all the aerospace examples. 

Sometimes there is a choice of output measurements, because measuring 
instruments may be available to measure one signal just as we l l as another, wi th 
l i t t le difference in terms of cost or installation effort. Inputs, however, are normally 
associated wi th actuators providing power amplification (electric drives, hydraulic 
rams, and so on), and therefore tend to be fixed plant items. They also add to the 
running costs. For most processes and plants this means that the number and 
location of the manipulable inputs are fixed, and wel l defined. 

The outline block diagram of Figure 1.2 is a convenient way of picturing a 
control loop, but before continuing it is necessary to consider briefly how (for 
analysis and design purposes) the words in the blocks might be replaced wi th some 
information relating to the behaviour of the real-world elements. Once the various 
blocks and their connecting signals have been identified, i t is the transforming 
action o f each block on its input signals that becomes important. For consistency, 
the transforming action of each block w i l l often be represented using a common 
basis; normally a mathematical one. 

The equation, or set of equations, providing the relationship between the 
block's input(s) and output(s) is called the mathematical model, or simply the model 
(the topic of modelling is considered at many points during the text, but i t is next 
covered in more detail in Sections 1.3.4 and 1.3.8). 
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Linearity and superposition 
I f the describing equations of a block (system element) are linear, that is, they obey 
the superposition principle (explained below), then the block is said to be 
mathematically linear, or simply linear. 

The superposition principle is based upon what happens to the output o f a 
block (or a whole system), when two different signals are applied to its input -
firstly one at a time, and then summed together. Consider a simple electronic 
amplifier wi th an input voltage u, an output voltage y and a voltage gain 
(amplification factor) K. For the present, i t can be assumed that the dynamic 
response o f the amplifier is so fast that i t can be ignored when compared wi th the 
dynamics of other components connected to i t . Even so, the modell ing o f such a 
component may not be as simple as it seems. 

The simplest possible model of this amplifier assumes that the output is given 
by y — Ku. The input-output characteristic of such a model is shown in Figure 
1.3(a). From that figure it is apparent that i f two separate inputs ux and u2 are 

Output y 
A 

y = Ku 

Output y 
k y = Ku + c 

- 1 1 • Input u 
u2 u<\+u2 

Figure 1.3 Illustrations of 
superposition and linearity, 
(a) Input-output 
characteristic of a linear 
system model; (b) input-
output characteristic of a 
nonlinear system model; (c) 
input-output characteristic 
of a more obviously 
nonlinear model. 

(b) 

Input u 

(c) 
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applied, giving rise to outputs yx and y2 respectively, then the output which arises 
when these inputs are superimposed (that is, the sum of the two inputs is applied as 
ux + u2) is equal to the sum of the two individual outputs (yx + y2). Such a system 
model is said to obey the principle of superposition, and is linear. 

I f the amplifier is non-ideal, and adds a constant offset c to the output, so that 
y = Ku + c as shown in Figure 1.3(b), then this property is lost. Even though the 
characteristic is a straight line, and the output equation is the normal mathematical 
equation of a straight line, this system is nonlinear i n a control engineering sense, as 
the principle of superposition does not apply (the output corresponding to the 
superimposed input ux + u2 is clearly not equal to yx + y2 in this case). 

Finally, it is inevitably the case that, i f the amplifier is driven hard enough, a 
maximum output w i l l be reached which cannot be exceeded (the output w i l l be 
l imi ted by the amplifier's power supply voltage). I f this behaviour is introduced into 
the model, the characteristic becomes very obviously nonlinear, as shown in Figure 
1.3(c). Two fairly general requirements for obtaining linear models (ones which 
obey the principle of superposition) are suggested by this simple investigation. 
Namely, offsets must be removed and signal excursions must be small. 

These requirements are more stringent for some systems than for others, and 
Chapter 14 provides a reasonably thorough introduction to nonlinear systems, 
whereas the rest of the text concentrates mainly on linear system models. Strictly, 
we should always use the term 'mathematically' linear, to denote that we may wel l 
use a linear mathematical model o f a plant, even though the real plant w i l l , to some 
degree, inevitably be nonlinear (as noted above, and discussed more thoroughly in 
Chapter 14). Thus, linear models are always approximations to reality but, 
fortunately, often of sufficient accuracy to allow successful use. 

Linear models can be much more complicated than the simple gain 
considered above. They can include the dynamic behaviour o f the system, and 
many other aspects, as we shall see. Traditionally, a study o f control engineering 
starts wi th the study o f linear models of plants, or processes, having one input and 
one output - the so-called single-input-single-output, or SISO, system. The 
majority of the techniques studied for such systems are based on a linear Laplace 
transform model of the plant (the Laplace transform is a very useful mathematical 
technique and is introduced in Chapter 2). On the other hand, a mathematically 
linear plant having more than one input and/or output (called a multi-input-multi-
output or MIMO or multivariable system) may be modelled using a set o f first-
order, ordinary, linear differential equations presented in matrix form. This is 
known as a state-space model and is also introduced in Chapter 2 (such models 
can equally wel l be used for SISO systems). Another representation o f a M I M O 
plant is by a matrix of Laplace transforms, the transfer function matrix form (see 
Chapter 2), but this is used only in more advanced studies (for example, in 
Chapter 10). 

For engineering plant, the physical laws governing the system's behaviour are 
constant, so the (linear) transfer function and state-space models mentioned above 
are interchangeable for many purposes. Furthermore, a SISO system is just one 
special case of the more general M I M O system. However, the authors believe that a 
firm grasp of the concepts involved in the control o f SISO systems is a 
prerequisite for the study of M I M O systems. That is the approach adopted in this 
text, and the reason why M I M O systems are not treated in any great detail unti l 
Chapter 10. 



10 Introduction 

J Example 1.5 Inputs and outputs of the inverted 
I. pendulum 

^ various inputs and outputs. The handle (see Figure 1.4) has six 'degrees o f freedom'. I t 
^ can move up and down, from side to side, backwards and forwards (that is, i t has straight 

m line, or translational, motion) along the z-, y- and x-axes respectively. Further, i t could 
* rotate about any of the three axes. The eye detects all these translations and rotations, so 
* there are at least six measurable outputs. Since the eye also detects the angular and linear 

velocities, accelerations, and so on, many other measurements could be included. 
I To analyse the system, it would be desirable to minimize (for ease o f analysis) the 
^ number of signals coming out of the measurement block in Figure 1.2 and being fed back 
^ to the comparator input. The number of outputs could be reduced by noting that significant 

rotation about the z-axis (vertical) can be ignored, since this would imply that the person 
^ balancing the handle was rotating - a movement which has no effect on the vertical balance. 

Also, translation along the z-axis requires that the hand be raised or lowered, and this could 
^ similarly be ignored from a balancing viewpoint, as it has no effect on the balance. Finally, i t 

might be assumed that motion of the handle in the z -x plane is independent of motion in the 

x z -y plane. For analysis purposes, only one of these planes need then be considered (the model 
* for the other plane being the same), so that the system now has just two measurable outputs 
^ (one displacement and one rotation in the same plane) together wi th their various derivatives. 
^ Turning our attention to the inputs, since whole-body rotations are being neglected, and 

other rotations o f the hand are l ikely to cause the rod to slip and fal l , only the three 
translational inputs would be applied to the base of the handle. As discussed above, the input 

J in the z-axis direction is not required, reducing the number to two. When, for analysis 
purposes, i t is assumed that the handle rotates or translates in a single plane, the system then 
has just one input. I n control terms, i f we wish to control both the rotation and the translation 

** of the handle, the analysis system (model) is S IMO (single-input-multi-output), whereas the 
physical system is M I M O . If , in the analysis system, we only wish to keep the handle vertical 
(that is, to control the rotation without worrying about lateral movements) then the system 

* could be considered to be SISO. I f the handle was being balanced outside, any breeze would 
~ alter the position o f the handle and hence become a disturbance input. 

Figure 1.4 The degrees of 
freedom of an inverted 
pendulum. 

x 



1.3 A stroll through the field of control 11 

1.3.2 On how the plant dictates the controller 
Figure 1.5 shows a standard arrangement known as a two-degree-of-freedom 
feedback configuration (the reason for the name is that the designer has freedom to 
choose the contents of two blocks, P and K). The plant is a physical piece o f 
hardware, and w i l l be assumed to have fixed dynamics. B y this, we mean that its 
response to an input today w i l l be the same as its response to the same input applied 

last week - this is called a stationary system. Note that not al l plants are stationary 
systems in this sense. For example, vehicles whose in i t ia l fuel load is a significant 
proportion of their mass (such as rockets and racing cars) have dynamic behaviour 
which changes as the fuel is used up. Returning to our assumed stationary system, 
its output y is a function of the manipulable input u and any external disturbance d. 
Note that conventionally the disturbance d is shown modifying the plant's output 
signal y (as shown in Figure 1.6, for example). A perfect transducer (one having an 
instantaneous response) measures the output variable at yy this measurement being 

conventionally shown by a dot on the plant output signal (but this is often omitted 
when dealing wi th control theory, rather than practical control engineering 
drawings). Note also, that a transducer is strictly any device that converts one form 
of energy to another. However, in control systems terminology, i t has become 
commonplace to refer to measuring transducers (pressure gauges, flowmeters, 
loadcells, tachometers, accelerometers, voltmeters, current transformers, gyros, and 
so on) simply as 'transducers'; and actuating transducers (motors, hydraulic 
cylinders, solenoids, valves, and so on) as 'actuators'. 

The resulting measurement, which at this stage is assumed to be noise free, is 
fed back to the controller. Ignoring transducer dynamics is permissible so long as 
the speed of response of the transducer is significantly faster than that o f the plant, 
or i f the transducer dynamics are assumed to be included w i t h those o f the plant 
(that is, they are inside the 'Plant' block). A t this point i t w i l l suffice to say that this 
is often the case. The controller consists o f a pre-filter P which modifies the setpoint 
r, a comparator (again shown in its conventional form) and a forward path 
compensator K which generates the plant actuating signal u. 

I n Chapter 2, the modelling o f systems is considered. In the early parts o f the 

Figure 1.5 Standard two-
degree-of-freedom 
feedback configuration. 

Figure 1.6 Standard single-
degree-of-freedom 
feedback configuration. 
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book, the pre-filter P is seldom required, leading to the single-degree-of-freedom 
configuration shown in Figure 1.6. Assume that a plant is actually represented by a 
block G, but that the methods to be studied in Chapter 2 lead to a nominal model of 
the plant called G m . What is not shown in Figure 1.5 is how the nominal plant model 
G m might conceivably be used to design the controller elements P and K. However, 
Section 13.3 analyses Figure 1.5 further, in terms o f the differences that w i l l 
inevitably exist between the real plant G and its model G m . Al though we are not yet 
in a position to understand the analysis of Chapter 13, i t is useful to note that some 
fundamental points arise from it . 

Firstly, the next few chapters show how to design the controller elements 
(typically, the contents of the block K, but also P i f needed), using information 
contained in the plant model G m . The contents o f K (and P) are therefore 
determined by the plant model. I f G m is identical (or close) to the true 
representation G, then the plant dictates the controller. 

The achievable performance of the closed-loop scheme w i l l also be l imi ted by 
the plant, which w i l l have certain maximum signal levels, and maximum allowable 
rates of change of signals. For example, even the world 's most accomplished 
control engineer could not design a physically realizable control system to cause a 
supertanker to adopt a course at 90° to its present one wi th in 10 seconds. For 
example, neither the colossal amounts of energy required from the engines nor the 
effective transmission of that energy to the water would be remotely achievable. 
Note that such a scheme could be designed theoretically on paper, and could even 
appear to work in the simplest computer simulation. However, i f the simulation was 
made to display the demands being placed on the supertanker's engines and its 
propulsion and manoeuvring systems, and these were compared wi th a practical 
study of the limitations of the real-world plant items, the impossibili ty o f the 
operation would immediately become clear. These aspects o f computer simulation 
are encountered in several chapters. 

Chapter 13 shows that, i f the plant model is a perfect representation of the 
plant, the function of the feedback loop is solely to compensate for disturbances, 
while the pre-filter is responsible for the accuracy wi th which the plant output y 
follows changes in the reference input r (that is, the tracking accuracy). O f course, 
in reality, various approximations are always necessary in obtaining plant models 
(as Chapter 2 explains). Therefore, the plant and nominal plant model are never 
identical ( G m ^ G). The result of this is that both plant disturbance and modelling 
errors are fed back, and the compensator must be modified to accommodate the 
additional modelling errors. This indicates the need for 'good' models. To design a 
control system which is tolerant, or robust to modelling errors (or other design 
approximations), is the subject of Chapter 13. 

1.3.3 A simple control philosophy - if it works 
In general, the more stringent the control requirements for a plant, the more 
complex the control system w i l l need to be, and the larger the required number of 
inputs and outputs. A n often-employed control strategy for M I M O systems is 
therefore to assume that the system is linear, and then reduce the complexity by 
assuming that the M I M O system can be treated as a number o f linear SISO systems. 

I f i t works, this simple control philosophy has a number of advantages. 
Techniques for designing linear SISO systems are wel l understood. A few basic 
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compensators may be used to control the majority o f plants and processes 
successfully. Plant operators are familiar w i th SISO controllers and therefore 
operator training time for new plant is minimized. Similarly, plant maintenance is 
simplified and the range of spares minimized. The problem is that i t is sometimes 
not possible to control M I M O systems in this way. 

I n the domestic central heating system, Example 1.3, this strategy is adequate 
and the boiler temperature can be controlled as though it were independent o f room 
temperature. I f the occupants demand a higher room temperature and turn up the 
radiator's setpoint, the water flow rate w i l l increase, and so more heat w i l l be 
extracted from the circulating water. Cooler water returning to the boiler reduces 
the boiler's exit temperature and activates the boiler 's temperature control system. 
When a control action in one loop causes a change in another loop l ike this, the 
loops are said to be coupled, or to interact. M I M O systems invariably interact but 
the question is, 'when do these interactions become unacceptable?' 

Consider again the two-dimensional inverted pendulum of Example 1.5. 
Attempts to bui ld a control scheme for this system consisting o f two separate loops, 
one controlling rotation and the other controll ing translation i n the plane, would 
fa i l . Assume the handle was vertical, but forward o f its desired position. The 
correcting action in the position control loop would be to move the base o f the 
handle backwards. However, this would induce a rotation in the handle (making the 
top fal l forwards) for which the correcting action in the rotation control loop would 
be to move the base of the handle forwards. Wi th each action, the correcting action 
in the other loop would become larger and the handle would soon fa l l . A system in 
which either a disturbance, or a setpoint change, causes ever-increasing control 
actions wi th in the loop is said to be unstable. Instability can occur for reasons other 
than loop cross-coupling, and is common to SISO, S I M O , M I M O and M I S O 
systems. A prime objective of control system design is to produce closed-loop 
systems that are stable. 

The reason why the domestic central heating system can be treated as though i t 
were a number of single loops and the inverted pendulum system cannot, is due to 
the strength of the coupling between the loops. Decoupled, or weakly coupled 
systems, l ike the domestic central heating system, are amenable to SISO control 
strategies, whereas strongly coupled systems, l ike the inverted pendulum, require 
an additional decoupling controller (see Chapter 10), or a truly S I M O , or M I M O , 
control scheme. 

1.3.4 The design problem 
It should now be evident that the first design requirement is a model that describes 
the relationship between a plant's input and output signals. I f we do not have such a 
model, how can we decide on the required control signals to apply to the inputs, so 
as to obtain some desired outputs? In general, the better the model, the more l ikely i t 
is that the actual response of the system w i l l match the designed response. So what 
is a 'good ' model? 

For control system design, a good model must satisfy two basic properties: 

(1) I t must be a representation of the plant that w i l l enhance the abil i ty to 
understand, explain, predict, change and control the behaviour o f the system. 
Normally, the model is a mathematical representation, although graphical 
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representations which show the plant's output(s) to a well-defined input(s), and 
even physical models, can also be used (for example, scale models o f cars, 
aircraft and bridges, for aerodynamic testing in wind tunnels; or transparent 
plastic scale models of furnaces, wi th injected smoke for examining gas flows). 

(2) I t must contain only the essential aspects of an existing plant (or o f a plant that 
is to be buil t) . I f the model is an over-simplified representation o f the plant i t 
w i l l lose the properties indicated in (1). Alternatively, i f the model contains an 
excess o f information, i t becomes unwieldy and complicates the design 
process. Further, constructing highly complex models is uneconomical 
(exceedingly time-consuming) and often impractical. Producing and ensuring 
that a model is a good representation o f the plant can account for over 90 per 
cent o f the effort expended on most control system design studies. The model, 
however, only provides the means by which i t becomes possible to design the 
controls. More is said on this topic in Section 1.3.8. 

Aspects of design - stability of linear systems 
After a 'good' model is obtained, the most fundamental design requirement is that 
the control system is stable. That is, the outputs o f the system and all o f its 
components should exhibit bounded responses to bounded input signals. A 
sinewave having amplitude = A sin cot (see Figure 1.7(a)) is bounded, since i t is 
possible to fix l imits at ± A which w i l l not be exceeded (so A = 2 i n this case). A 
signal which can be described by a negative exponential, amplitude = Ae~xt 

(Figure 1.7(b)), is also bounded; but a positive exponential, amplitude = Azxt 

(Figure 1.7(c)), is unbounded. I n engineering systems, any unbounded response 
invariably means plant misbehaviour, breakdown or component failure, wi th 
inevitable economic and safety implications. 

Ideally the plant should be open-loop stable (that is, stable before the addition 
of any control loops). A stable plant is desirable since loop failure wi th in the closed-
loop system then leaves the stable open-loop plant. Further, i n an emergency, any 
malfunction of the closed-loop system can be corrected by deliberately breaking the 

Figure 1.7 Bounded and 
unbounded signals, (a) The 
signal 2 sin(4r) - a bounded 
signal, (b) The signal 2 e - 0 6 ' 
- a bounded signal, 
(c) The signal 2e° 6 ' - an 
unbounded signal. 

Time 

Time 

Time 
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loop. I t is important to realize that i t is possible for a plant to be open-loop stable, 
but for the closed-loop system in which it is incorporated to be unstable (several 
such examples occur later in the text). Invariably for the engineer, all closed-loop 
control systems must be designed for stability, irrespective of the plant's open-loop 
stability. 

Unstable open-loop plants do occur. Sometimes the plant instability is 
unavoidable, but sometimes the designer deliberately introduces open-loop 
instability into the plant. Wi th some chemical reactions, for example, the reaction 
process is inherently unstable and product manufacture depends on the stabilizing 
influence provided by the closed-loop control system. Note that the unbounded 
nature of the output, often associated wi th rapidly increasing temperatures, 
indicates that the energy of the reaction is increasing. 

Modern fighter aircraft are a further example o f open-loop unstable plant. Here 
the instability is deliberately introduced so that the plane w i l l respond quickly to 
pi lot commands. Since control action is needed continuously to stabilize the 
aircraft, i t follows that a slackening o f that action (induced by the pi lot altering the 
control inputs) causes a rapid and, i f unchecked, unstable response. 

There are a number of ways of examining system stability. Perhaps the most 
intuitive is to apply a bounded input to the system (or, more l ikely, apply a 
simulated bounded input to the system model) and observe the nature o f the 
response. Bounded-input-bounded-output {BIBO) stability investigation normally 
uses a mathematically well-defined input such as an impulse. As the name suggests, 
this effectively gives the system a sudden sharp j o l t which acts over as short a 
period o f time as is physically possible (infinitesimally short, in theory). This is 
used to perturb a system which is in i t ia l ly at rest; that is, the values o f the signals 
flowing round the closed-loop are not changing w i t h time or, to use the language of 
control, the system is ini t ia l ly under steady-state conditions. Note that the term 
'steady state' can also be used in a frequency-domain analysis (Chapter 3) to 
describe a system having a constant (or 'steady') oscillatory response. I n general no 
distinction is made between this form of 'steady' oscillatory motion and a 'steady' 
rest state (zero motion), since this w i l l be clear f rom the context. 

Fol lowing the application of the impulse, if , after some time, the system settles 
at its original steady-state level, then the system is said to be asymptotically stable. 
If , however, the system produces a bounded response other than the original steady-
state level, i t is marginally stable. For linear systems, any other response to an 
impulse input is unstable. B I B O stability is illustrated in Figure 1.8. 

Stability can also be tested by examining the linear equations describing the 
system. Linear dynamic systems are described by ordinary, linear, differential 
equations. A dynamic (or 'dynamical ' ) system is any system in which signal values 
can change wi th time. This means that we can consider not only engineering 
systems, but populations, weather systems, economic systems and so on. The 
fundamental mathematical analysis of any linear, dynamic system w i l l always 
result i n differential equations, containing terms such zsd/dt (signal value), and the 
reader may recall that an entity known as the 'complementary function' crops up in 
the solution of such equations (don't be too alarmed i f this doesn't come to mind at 
the moment). I n control engineering, this complementary function becomes the 
characteristic equation o f the system, as we shall see in Chapter 3. 

For stability, the complementary function must consist o f mathematically 
bounded terms, so we shall have to choose the contents o f our controller to make 
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Plant output 

Figure 1.8 Plant stability, 
(a) An asymptotically stable 
response; (b) a marginally 
stable response; (c) an 
unstable response. 
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this happen, irrespective of whatever else we hope to achieve. Although the 
complementary function (or the system's characteristic equation) of a closed-loop 
control scheme is usually easy enough to find, finding the range o f possible 
solutions for which the system w i l l be stable is more problematic. 

Fortunately, there are techniques for testing a system's characteristic equation 
for variations in control parameters - and hence for establishing ranges o f stable 
solutions. The most commonly used techniques for linear systems are Routh's 
stability criterion, the Nyquist stability criterion and the inverse Nyquist criterion 
(the latter is used mainly for SISO systems having compensators in the feedback 
paths, and for M I M O systems). These are all developed in Chapter 3. There is also 
the Jury stability test, which is specific to digital systems. 

Rules established from these various stability criteria are often incorporated 
wi th in control system design techniques - for example, Bode plots and the polar 
and inverse polar plots (introduced in Chapter 3), Evans' root locus method 
(Chapter 4) and, for M I M O systems, the characteristic locus and inverse Nyquist 
array methods (Chapter 10). 

Aspects of design - stability of nonlinear systems 
Nonlinear systems (systems that fail to obey the principle of superposition) can 
behave very differently from linear systems, to the extent that most o f the 
techniques mentioned so far no longer apply. The classification o f stability for 
nonlinear systems is more involved, and is often achieved using techniques 
originally developed by Lyapunov. Lyapunov stability analysis (discussed in 
Chapter 14) can be used to analyse the stability o f several kinds o f nonlinear 
systems, but is actually based on the pioneering work of Lagrange on conservative 
mechanical systems. These are systems in which energy is conserved - such as a 
pendulum, constructed using a light rigid rod and swinging in a vacuum wi th 
negligible pivot friction, where the energy is repeatedly converted from potential to 
kinetic and back again, as the pendulum swings. Lagrange was able to show that an 
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Figure 1.9 Pendulum 
equilibrium positions, (a) 
Inverted equilibrium 
position; (b) pendant 
equilibrium position. 
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equil ibrium point of such a system (that is, one of the points where it could possibly 
remain at rest - see Figure 1.9) w i l l be stable i f i t corresponds to a local min imum of 
the potential energy function for the system (as in Figure 1.9(b)) and unstable i f the 
local potential energy function is a maximum (as in Figure 1.9(a)). 

These ideas about nonlinear systems are not really used again unt i l Chapter 14, 
although there is one section in Chapter 2 which expands them a l i t t le . This may 
seem strange, as we hinted earlier that all real systems are inevitably nonlinear to 
some extent. However, it turns out that i t is very often possible to work wi th linear 
mathematical models, and the techniques that make this possible are introduced in 
Section 2.4.5. Nevertheless, the reader should be aware that al l linear analysis 
methods are approximations that may break down (for example, i f the system is to 
be operated away from the conditions under which the linear mathematical model 
was obtained). 

Where linear approximations can be used, it is wise to do so, because there are 
standard solution methods to most linear control problems. For nonlinear systems, it 
is more often the case that every system has to be treated on its own merits, so 
methods that w i l l work for one system w i l l not work for another. The study o f 
nonlinear control is therefore conceptually harder than that o f linear control. 

Aspects of design - performance 
Although the dynamics of a plant may be fixed, its apparent behaviour can often be 
changed by incorporating it wi th in a control system. For example, the plant may 
have unstable dynamics, which the addition of a controller might stabilize. 
Alternatively, the response of the plant to input signals may be too slow, and might 
be improved by adding a controller. Another common problem is that the steady-
state value of a plant's output may be incorrect fo l lowing an input change, and such 
a steady-state error might be corrected by adding a suitable controller. 

For the closed-loop system of Figure 1.2, the measurement and actuation 
devices w i l l , to a large extent, be defined by the plant. Indeed, for design and analysis 
purposes, these hardware elements are often assumed to form a non-dynamic part of 
the plant itself. This is the case in Figure 1.5, where these devices do not appear in 
their own right, but are assumed to be inside the block labelled 'Plant' . 
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I t must be stressed that it is physically impossible for a hardware device, such 
as an instrument measuring the output of a plant, or an actuator manipulating an 
input, to respond instantaneously. A l l measurement and actuation devices are 
independent dynamical systems in their own right. Neglecting their dynamics 
simplifies the design process, but occasionally at the cost of producing unexpected 
behaviour when the controls are eventually introduced to the plant. To avoid this, i f 
the sensor or actuator dynamics are significant, they are either included explici t ly as 
blocks in their own right (as in Figure 1.2), or their dynamics can be included in the 
plant model (as in Figure 1.5). However, it is important to realize that the only 
elements that can normally be adjusted by the designer are the compensator and, i f 
present, the pre-filter. 

I t is also evident that the basis of any closed-loop performance requirement 
w i l l be stability. That is, the chosen compensator must eventually return the plant to 
an equilibrium position fol lowing a disturbance. I n general, there w i l l be many 
compensators, each wi th a wide range of parameter settings, that would satisfy this 
requirement. However, stability alone is too vague a requirement since 'eventually' 
could mean years or microseconds and, for most closed-loop systems, both of these 
extremes would be inappropriate. To be of practical value, the desired performance 
must be specified. That is, for a known disturbance, the time taken to reach 
equilibrium and the manner in which the closed-loop system reaches equil ibrium 
must closely approximate that defined by the designer. 

Consider the closed-loop system shown in Figure 1.10. The important 
quantities for measuring closed-loop system performance are e(t), u{t) and y(t). 
The error signal e(t) is the difference between the desired input r(t) and measured 

Compensator 

Figure 1.10 A closed-loop 
control system. 

output y(t). Since the error signal changes wi th time, and can be positive or 
negative, one commonly used performance measure is the area enclosed when the 
square of the error signal is plotted against time, see Figure 1.11. I f the same 

Figure 1.11 A plot of the 
square of the error signal 
with time. The shaded area 
is J0°° e2(t) dt. 
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excitation is used, the integral of the error squared (IES - shaded in Figure 1.11) 
gives a number which quantifies the selected compensator's performance. In theory, 
the smaller the IES, the smaller the error and the better the performance. I n practice, 
controllers that minimize this type of performance criterion can produce very 
oscillatory responses, which makes them of only l imi ted value. Variations exist and 
these w i l l be described in subsequent chapters - particularly in Chapter 12, on 
optimal control. 

The changes in the actuation signal u(t) are a measure o f the energy expended 
i n compensating for a given disturbance. They can therefore indicate the monetary 
costs associated wi th a particular control action. Monetary costs o f control action 
alone are a poor indicator of performance, since zero change in the control action 
produces the least cost. For this reason, i f a function o f the actuation signal is to be 
included, i t is invariably added to the previously defined error-based performance 
function. For example, an oscillatory response gives a low IES, but increases the 
required actuation (and monetary) cost, whereas a sluggish response gives a high 
IES value, but a low actuation cost. A controller that minimizes a combined 
actuation and error-based performance measure should, in theory, produce an 
acceptable system response. In practice, minimizat ion o f these combined 
performance measures can be difficult (see Chapter 12). 

From experience, i t is known that the way a system responds can be quantified, 
and hence specified, by examining the output response y(t) produced when the input 
r(t) suddenly changes from one steady level to another at some point in time. Such a 
change in the input is referred to as a step change, and i f the input changes from zero 
to one it is called a unit step. The change this produces in y(t) is known as a unit step 
response, see Figure 1.12. Also shown in Figure 1.12 are some of the performance 
criteria associated wi th a unit step response, namely steady-state error, settling time 
ts, peak overshoot ( y ( i p ) — y s s ) , time to peak overshoot tp, frequency o f oscillation 
and rise time tr (which is usually measured between the times corresponding to 10 
and 90 per cent o f the steady-state value). These parameters are usually specified in 
terms of maximum or min imum values, and can be used to define preferred 
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response characteristics. I t should be noted that they are not independent. For 
example, a fast rise time is usually obtained by making the system more oscillatory. 
However, an oscillatory system w i l l tend to have a large peak overshoot. 

Choosing performance criteria is an important aspect o f control system design. 
Too tight a set o f specifications may be impossible to attain, or lead to control 
systems which are too costly to realize. Conversely, an incorrectly specified set o f 
performance criteria results in a system which is inadequate. Remember that the 
plant dynamics are normally fixed and the object of control system design is to find 
a compensator that w i l l manipulate the plant's input so as to produce acceptable 
output behaviour. That is, the plant, and to a lesser extent the compensator, dictate 
the possible range of closed-loop behaviour. 

1.3.5 Compensators 
Most modern compensators are realized using digital equipment which either 
mimics analog control components, or can provide unique discrete control actions 
having no analog counterpart. The compensator shown in Figure 1.10 operates on 
the error signal, e(t), and generates the actuation signal, u(t), which drives the plant. 
I t may be noted that although this is by no means the only possible control system 
structure, it is the most common. Also, in order to understand the function of the 
compensator, i t is simpler to deal wi th a SISO rather than M I M O system. 

Although an infinite number of compensator types can be imagined, a typical 
analog compensator w i l l have three basic modes of operation (some, or al l , of 
which may be present): proportional action (often referred to as P-action) in which 
the actuation signal is proportional to the error signal, integral action (or l-action) 
when the actuation signal is proportional to the time integral of the error signal and 
derivative action (D-action) where the actuation signal is proportional to the time 
derivative (rate of change) of the error signal. The combination o f these actions 
gives the ubiquitous PID (or 'three term') controller, which is discussed more ful ly 
in Section 4.5.2. 

When a proportional compensator is used, the closed-loop system's response 
can often be wel l behaved and reasonably fast relative to that o f the open-loop 
plant; that is to say, it can have improved steady-state error and rise times. 
Typically, low values of proportional gain (low gain) w i l l give rise to a heavily 
damped response and a large steady-state error (for example, i f a unit step is 
applied, the plant output may settle a long way away from unity). Increasing the 
gain w i l l speed up the response by reducing the damping (hence making the system 
more oscillatory), and reduce the steady-state error. Further increases in gain w i l l 
further reduce the steady-state error but can make the system too oscillatory. Too 
high a gain can produce continuous oscillations in the closed-loop system, or may 
result in instability. 

When too large a steady-state error becomes a problem, this can be eliminated 
wi th the addition of integral action. However, introducing I-action slows the closed-
loop response, that is, it increases the system's settling and rise times. Because of 
the detrimental effect of integral action on response times it is seldom used on its 
own for compensation purposes. In industry the vast majority o f controllers w i l l 
employ a combination of proportional and integral action, the so-called PI 
controller. 

The final compensator action, D-action, has no effect on steady-state error 
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(because then the derivative, that is, the rate o f change of error, is zero) but during a 
transient i t w i l l tend to speed up the response times. Derivative action is never used 
on its own. I t is most often used to complement proportional and integral action to 
give the fu l l PID control action and occasionally w i th proportional control to 
produce PD-action. Derivative action must be used wi th care, since any noise on the 
error signal w i l l be amplified (because signal noise typically has high rates of 
change) and produce erratic behaviour in the measured system response. 

Wi th analog components, proportional and integral action can be realized, but 
pure derivative action is impossible and therefore approximations are used. This 
inabil i ty to implement pure derivative control is explained properly, w i th 
supporting mathematics, in Chapter 4. For the present, al l we can say easily is 
that i t effectively takes two values of a signal to calculate its rate o f change by either 
analog or digital means, so that the exact value o f the derivative at any point in time 
cannot be known. I t may be thought that this could be circumvented by the use of a 
sensor to measure the derivative directly where possible (a tachometer measuring 
angular velocity, which is the rate of change of angular position, for example). 
Although this is done, and does help, such a sensor is also a real device, having its 
own dynamics of response, so again the output would not be exactly equal to the 
derivative at any given time point. 

These derivative approximations, often called lead compensators, do have the 
properties associated wi th derivative action, that is, they tend to speed up the 
system's response times and amplify noise. However, the increase in speed and the 
susceptibility to noise w i l l be less than that of pure derivative action. Similarly, a 
lag compensator approximates integral action by reducing (but not eliminating) 
steady-state error and increasing response times. Since the designer can select the 
amount of speed-up in a lead compensator, or the reduction in steady-state error 
provided by lag compensation, these elements are extremely useful. They are also 
discussed in Chapter 4. 

Example 1.6 Time responses of PID compensator 
terms 
Assume that a compensator can have either proportional action u(t) = Ke(t), or integral 
action u(t) = J e(t).dt, or derivative action u(t) = de(t)/dt. What is the compensator 
output when the input is (a) a unit impulse, (b) a unit step and (c) a sinewave o f the form 
e(t) = Asincoi? 

(a) A n impulse may be thought of as a transient perturbing signal. A unit impulse, see 
Figure 1.13, has an amplitude A, which tends to infinity, and a duration T, which tends 

Figure 1.13 A rectangular 
pulse of amplitude A and 
duration T. 0 T 
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to zero, such that the enclosed area AT is unity. I f a unit impulse enters a proportional 
compensator, the output is an impulse wi th enclosed area equal to the constant o f 
proportionality K. Wi th I-action the output is a unit step (because the integral o f the 
impulse is the area under i t ) . Wi th D-action the output signal is a positive-going impulse 
coinciding wi th the rising edge of the applied impulse, followed after the time T by a 
similar negative-going impulse on the falling edge of the impulse. I n theory, all these 
impulses are o f infinite amplitude and zero width, so the actual output cannot be specified. 

(b) When a unit step enters a compensator having P-action, the output is a step o f amplitude 
equal to the constant o f proportionality K. The integral action compensator produces a 
ramp of K units s - 1 , see Figure 1.14, and the D-action compensator a unit impulse, 
coinciding wi th the rising edge of the step. 

(c) Wi th proportional action and a sinewave input, the output from the compensator is 
u(t) = KA sin cor. The I-action compensator produces the output u(t) — -A cos cot = 
A sm(cot - n/2). That is, the output lags the input by 90° (that is, by n/2 radians) and 
consequently an I-action compensator is a lag compensator. D-action gives the output 
u(t) = A cos cot = A sm(cot + n/2) and the output leads the input by 90° . 

Figure 1.14 A ramp input 
of gain K units s~ l. 

1.3.6 Digital control 
Most newly implemented controllers w i l l now be digital i n nature; that is, they w i l l 
be implemented wi thin a digital computer which controls the plant. In a digital 
compensator, the error signal e{t) of Figure 1.10 is formed inside a computer 
program. I t therefore consists of a stream of sequential (or discrete-time) data, 
usually in binary form. This enters the compensator, which uses a numeric 
algorithm (within the computer program) to process the data. The limitations on the 
algorithm's complexity are dictated only by the memory size o f the processor and 
its speed of computation. This means that discrete compensators are, in theory, 
much more versatile than their analog counterparts. In practice there are a few 
useful digital SISO compensators that do not have a continuous analog counterpart, 
such as the Dahlin and Kalman controllers (see Chapter 7). However, many digital 
controllers are ' s imply ' computer implementations of analog controller designs, as 
discussed towards the end of Chapter 5. The main advantage of discrete computer-
based systems is then their ability to provide additional information which can be 
used for plant monitoring, fault detection and alarms, and also their flexibility in 
terms of ease of program modification. This becomes particularly important wi th 
M I M O plant, or systems having a large number o f control loops. 

To control the inverted pendulum, the person balancing the handle is 
performing the measurement, comparison, compensation and actuation tasks 
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simultaneously. That is, he or she is involved in the parallel processing o f analog 
information. I t is a function that comes naturally and consequently is taken for 
granted. However, most digital computers work sequentially, using digital signals 
sampled at discrete time instants. In addition, there is a set o f instructions (that is, 
the program) which the computer systematically obeys, one at a time, starting wi th 
the first and ending wi th the last. This means that a single computing element 
cannot, for example, observe a measurement and provide an actuation signal at the 
same time. I t is the examination of this discrete, or sequential, mode o f operation 
exhibited by digital computers that gives the impetus for studying digital control. 

Assume that the person balancing the handle is in a dark room and that a 
stroboscopic light flashes briefly once every half-second. I n control terms, the 
position of the handle is sampled every half-second. This process of sampling an 
analog signal in order to obtain a digital signal is known as A-D (pronounced A- to-
D ) conversion. Using the sampled measurement signal i t is, w i th practice, sti l l 
possible to balance the handle. However, i f the period between flashes is gradually 
increased, a point is reached when it becomes impossible to maintain balance. 
Stability in digital systems is therefore not only a function o f the closed-loop system 
parameters, but also of the sampling rate. See Chapter 5 for further details. 

When a signal is sampled there is a loss o f information; but is all the 
information in a signal required for closed-loop control? Clearly not, as the 
experiment wi th the stroboscope demonstrates. What is required is sufficient 
information to reconstruct the signal. Figure 1.15 shows the same sampled sine-
wave using different sampling rates. Remember that once sampling has taken place, 
al l information between the sampling intervals is lost - all we know is the value of 

Figure 1.15 The effects of 
varying sampling rate when 
generating a discrete-time 
signal from a continuous-
time one. (a) Original 
sinewave given by 
y(t) = sin cot; (b) sampled 
sinewave - fast sample rate; 
(c) sampled sinewave -
slow sample rate; 
(d) aliasing. 
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each sample. Wi th a relatively fast sampling rate (Figure 1.15(b)) the original 
sinewave (Figure 1.15(a)) is apparent. As the sampling rate is decreased (so that the 
time between samples is increased) more information is lost. When the sampling 
rate equals the frequency of the oscillation (Figure 1.15(c)), the signal appears to be 
of constant amplitude. Wi th longer sampling periods, the apparent frequency o f 
oscillation appears lower than that of the original signal (Figure 1.15(d)), a 
phenomenon known as aliasing. The problem of signal reconstruction from 
samples is dealt wi th in Chapter 5. 

Digi ta l control systems have the same closed-loop elements as analog control 
systems. In the context of real-world control engineering, the plant is always l ikely 
to be o f a continuous-time nature. The terms 'd ig i ta l ' and 'analog' therefore 
distinguish between control systems that have some discrete-time (or digital) 
signals and those in which every signal is a continuous-time (or analog) one. 
Typically, a measurement sampled in a computer-based digital control system 
passes sequentially through a set of instructions which perform the comparison and 
compensation functions. The discrete output signal from the compensator is then 
converted to analog form (D-A conversion) for the actuator. Since the computer is 
operating sequentially, the control action resulting from a given measurement is 
delayed by a period of time approximately equal to the measurement sampling 
interval. Note that digital sensors and actuators are gradually becoming available, 
which remove the need for A - D and D - A conversion. 

Further, the process of analog signal reconstruction w i l l also introduce delays. 
Assume that a sinewave is sampled and then fed directly to a D - A converter. The 
converter only has past information and, under normal circumstances, could not 
predict into the future. In this situation, one solution is for the D - A converter to 
hold the current sample until the next sample appears, see Figure 1.16. Comparing 
the output wi th the input w i l l show that moving from a digital to an analog signal 
therefore introduces a delay. Also, the analog output is not smooth. I f a smooth 
signal is required, the necessary filtering could result in further delays, compared 
wi th the 'instantaneously reconstructed' output in the figure. 
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Figure 1.16 Sampling 
delays. 

- - Original sine wave 
Sampled sine wave 
The instantaneously reconstructed sine wave 

Despite the accumulation of delays and loss of information associated wi th 
sampling, which adds a level of complexity to the design process, most digital 
design techniques are based on continuous linear system strategies. What changes 



1.3 A stroll through the field of control 25 

when using the various techniques is the interpretation o f the results. Also, because 
there is the possibility o f using a computer to implement the controls, digital control 
is more flexible and often superior ( in terms of achievable performance 
characteristics) to analog control. 

1.3.7 Beautiful theories and ugly facts 
I n this stroll in the field of control i t was generally assumed that the model, usually a 
linear mathematical model, was a true representation o f the plant and its associated 
measurement and actuation equipment. A n y mismatch between the model and plant 
could be ignored since the modelling errors would somehow be compensated for by 
the controls. Stability and performance of the controlled model were both necessary 
and sufficient to guarantee the closed-loop behaviour o f the physical (real-world) 
system. This concept of control system design, which was prevalent for many years, 
also assumed that any small discrepancies between the predicted and actual 
responses could be eliminated by minor online adjustment of the controls. 

The various techniques mentioned in Section 1.3.4 o f this chapter, for the 
analysis and design of linear systems, were developed broadly between 1920 and 
1950. They are loosely called frequency-domain methods, because they work by 
investigating the behaviour of the system as frequency changes. This w i l l probably 
seem an unusual concept at present, but i t w i l l be explained in Chapter 3. As you 
w i l l discover later in the text, they are largely based on graphical design techniques, 
which are therefore expected, from the outset, to be used wi th inherent 
approximation. They work very wel l for well-behaved plants which are passably 
linear, and they are sti l l routinely applied to such plants al l over the wor ld . The PID 
controller, for example, is to be found in the vast majority of factories, laboratories 
and similar installations where there are industrial control loops. That is why i t was 
mentioned in more detail than might be expected i n this introductory chapter. 

The methods used in designing controllers by these approaches are called true 
design (or analysis) methods, as the process is an iterative one involv ing design 
decisions by the engineer at every stage. The designer typical ly makes an ini t ia l 
design decision, based upon viewing various graphical plots arising from an 
analysis o f the system. The effects o f the design on these plots are then noted, and 
an improved design is developed. This process is repeated unt i l satisfactory results 
are achieved. 

The iterative process is greatly aided by computer-aided control system design 
(CACSD) software packages. Indeed, one such package, M A T L A B (The 
Mathworks Inc., 1993a, 1993b - see reference list, and Appendix 3), together 
wi th its Control Systems Toolbox, is used extensively throughout the text. I t was 
used to produce most of the response plots in the book, and is necessary to run all 
the files on the accompanying computer disk - which allow the reader to repeat and 
modify the examples. Although the uses o f M A T L A B (or another CACSD package) 
suggested throughout the text can definitely help the reader's understanding o f 
several aspects of control engineering, we do not actually rely on the reader being 
able to use CACSD at any point (except i n a few end-of-chapter problems). The 
reader can therefore use the text whether or not he or she has access to M A T L A B . 

I n the 1960s and 1970s a rapid new development o f control theory began, 
based upon more analytical methods which directly use the differential equation 
models of the plant. These are time-domain methods, because they are concerned 
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wi th the behaviour of the system as time passes. They are broadly called state-space 
methods, and are described in several chapters o f the text, beginning wi th Chapter 
2. Many books call the frequency-domain techniques 'classical control ' and the 
state-space-based methods 'modern control ' . However, the original 'modern' 
control is not very 'modern' now and, besides, these terms introduce a false 
distinction between the approaches. The authors' view is that al l the approaches 
have their own advantages and disadvantages. A knowledge o f as many approaches 
as possible, together wi th some knowledge of digital and nonlinear control, 
contributes to a well-rounded control engineer, who is then able to make an 
informed decision as to the best methods to use in any given situation. 

Part of the impetus for the development o f the state-space methods was to try 
to solve more difficult control problems, for which the previous methods had often 
proved inadequate (for example, multivariable control). These methods, in contrast 
to the earlier analysis methods, might be called synthesis methods, because they 
directly synthesize the required controller from the plant model and information 
about the required performance. In other words, one plugs the details of the plant 
and the required performance into a suitable CACSD program, and out pops the 
required controller. This is obviously of great appeal - i f i t works. However, the 
growth in these strategies and their use in academic institutions was not matched by 
a similar growth in their use by industry, w i th a few exceptions such as the 
aerospace industry. Perhaps the main reason for this technology gap was that the 
beautiful theories had ignored some ugly facts. Only in the past 10-15 years has 
much effort been made to correct this. 

The first ugly fact is that the implic i t assumption that model-plant mismatch 
could be easily catered for by online tuning, is false. Furthermore, plants are not 
linear, instrumentation is not perfect, actuators invariably have a l imi ted operating 
range and, for maintenance and development purposes, control strategies should be 
easily understood. 

To study the effects of model-plant mismatch opens up the subject o f robust 
control, see Chapter 13. For now, suffice i t to say that i t is often possible to allow for 
the effects o f inaccuracies in a plant model when designing a controller using the 
nominal model. I t may be possible to design a controller that maintains stability and 
performance for a range of models (obtained for operating conditions which deviate 
from those for which the nominal model was found). The controller then has in 
built robustness and tolerance of modelling errors. 

To avoid clouding the development o f the 'normal ' design process, however, 
this matter is not often mentioned explicit ly except in Chapter 13, and in frequent 
reminders that models are only approximate, and should not therefore be trusted too 
far. For the interested reader, the basic ideas of modelling errors (Sections 13.1 and 
13.2) can be understood without reading more of the text first (although one or two 
details might remain vague). 

1.3.8 Mathematical modelling 
Amongst other things, Section 1.3.7 considered (briefly) the problem of mismatch 
between the plant and its nominal model. However, this begs the question o f how to 
obtain the nominal model in the first place, and how to ensure its suitability. 

As previously stated (Section 1.3.4), ensuring that a control model is a 'good' 
representation of the plant can account for over 90 per cent of the effort expended 
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on a control system design study. Without a 'good' model, most control system 
designs are doomed to fai l , or at best to produce a performance significantly inferior 
to that predicted using simulation. Simulation is effectively the art o f programming 
a computer to solve the equations which make up the mathematical model o f the 
plant and the designed control elements. The predicted response to various inputs 
(including disturbances and modell ing errors) can then be viewed on the computer 
screen, before expensive errors are made on the real-world plant. W i t h the ready 
availability o f CACSD software, this is now standard practice. Most o f the time-
response plots in this text were produced by digital computer simulations. Most o f 
the M A T L A B files that did this are on the disk accompanying the book, and more 
details are given throughout the text. 

To complicate matters further, mathematical modell ing is not an exact science, 
in that it depends on the skills and experience o f the modeller. The purpose o f this 
section is therefore to provide the reader wi th some insight into the subject area 
before dealing wi th i t in more detail i n Chapter 2. 

Mathematical modelling for control system design studies could be thought o f 
as consisting o f a number of distinct stages: 

(1) Understanding the plant. 

(2) Identifying the various inputs, outputs and disturbances. 

(3) Producing an idealized representation of the plant in terms o f elements which 
can be described mathematically. 

(4) Developing the equations (that is, the model) which describe the idealized 
representation. Ini t ial ly, linear approximations w i l l be made here in the 
interests of simplicity and ease of future analysis and design. 

(5) Obtaining data, often by performing experiments, i n order to establish 
unknown parameter values. 

(6) Checking and adjusting the model (stages 3-5) , unt i l i t produces responses 
which satisfactorily represent the plant behaviour. W i t h this stage o f the 
modell ing process there is no substitute for experience. However, as a rule of 
thumb, the more demanding the design specifications, the greater the amount o f 
modell ing detail required. I f linear models finally fai l to give satisfactory 
results, nonlinear behaviour w i l l have to be introduced. 

(7) Finally, simplifying the model for the proposed control study. This can include 
linearizing the equations of a nonlinear model about a specified operating point 
and/or removing redundant information. 

Although the above list suggests that the modell ing process is progressive, i n 
practice it is iterative wi th several stages often being performed in parallel. The 
understanding of a plant, or process, w i l l be improved by performing the other 
modell ing stages. For complex plant having many inputs, those that should be used 
for control purposes and those that should be considered disturbances are often not 
obvious. I n a complex plant i t may sometimes take many years and some external 
factor, such as the need for improved efficiency, before the best inputs and outputs 
for achieving a particular control objective are established (the need to make 
efficiency savings being necessary to justify the high cost o f such an investigation). 
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Selecting the number of idealized elements to include in a model, and the 
interconnections between them in order to represent the plant, is also a matter o f 
choice. 

Also, the level of complexity of the elements themselves (lumped-parameter 
models versus distributed-parameter models, for example) is again a matter o f 
choice. A lumped-parameter model is one in which certain aspects of the system 
being modelled are imagined to be lumped (concentrated) at a single location. For 
example, in Figure 1.9, we imagine the pendulum rod to be relatively massless, and 
we say that the entire mass of the system is lumped at a point at the end of the rod. 
Such simplifications make modelling a much easier proposition. To make an 
extremely accurate model of the pendulum, we would need to consider that the rod 
also has mass, and that this mass is distributed along the rod, not concentrated at a 
single point. Representation of this kind of information requires a distributed-
parameter model, and usually leads to relatively complex models involving partial 
differential equations and being notoriously difficult to solve. 

A n examination of the remaining modelling stages also demonstrates the need 
for experience and judgement. In this respect, modelling is an art rather than a 
science. Chapter 2 w i l l concentrate on simple lumped-parameter models which can 
be used to represent various kinds of plant. 

1.4 Conclusions 
In this chapter, the basic ideas of control engineering have been introduced, and 
w i l l be much extended in subsequent chapters. Block diagram representations have 
been mentioned together with mathematical models of systems. Real engineering 
systems are nonlinear and have distributed parameters, but by using linear 
approximations and lumped-parameter assumptions in generating models, the 
control system design problem can be simplified. Basic ideas about the stability o f 
systems, and other aspects of system performance influenced by adding closed-
loop control, have been introduced. There are different approaches to control 
system design, each of which has its own advantages and disadvantages, and some 
of these approaches have been mentioned in readiness for further study. 

I t was noted that computer-aided control system design (CACSD) software 
can assist in the design process, and that M A T L A B (The Mathworks Inc., 1993a, 
1993b), as a representative CACSD environment, is used throughout the text. There 
are many files on the computer disk accompanying the text, which can be run via 
M A T L A B and its Control Systems Toolbox. 

The subsequent chapters build on these introductory ideas by first establishing 
simple lumped-parameter models for the basic building blocks of standard system 
components. Techniques are then provided which show how the equations 
describing these lumped-parameter models may be found. By manipulating these 
equations into one of a number of standard forms (continuous-time models, 
Laplace transformed models, discrete-time models or state-space models, for 
example), it becomes possible to standardize the control system design procedures. 
For this reason, the chapters dealing wi th control system design w i l l often take as 
their starting position one of these standard forms. This does not l im i t the proposed 
design techniques, since most of the various standard model forms are 
interchangeable. 

: 
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1.5 Problems 
Problems 1 and 2 are intended for discussion. In both 
cases the problem descriptions are deliberately vague, so 
that the reader may explore different scenarios. 

1.1 Assume that an archer fires an arrow at a target. 
(a) Identify the plant. 
(b) Identify the reference value(s), input(s), 

disturbance(s) and output(s). Would there be any 
system noise, i f so what? 

(c) Is the system closed- or open-loop? Would it make 
any difference i f the archer fired two arrows at the 
target? Would it make any difference i f the archer 
repeatedly fired at the target? 

(d) Is the system tracking or regulating? 
(e) Is the system continuous or discrete? 

1.2 A conductor directs the orchestra at a public venue 
to play Ludwig van Beethoven's Symphony No 3, 
'Eroica'. 
(a) Is the system consisting of the conductor and 

orchestra open- or closed-loop? 
(b) Identify the reference value(s), input(s), 

disturbance(s) and output(s). Would there (in the 
control sense) be any system noise, i f so what? 

(c) Is this system continuous or discrete? 
(d) Is there a larger system which includes the 

audience? Is this system open- or closed-loop? 
Do the two systems interact? 

(e) Is this larger system continuous or discrete? 

1.3 For the level control system shown in Figure PI.3, 
the operator is attempting to maintain a constant 
head h of liquid in the tank. For this system: 
(a) define the elements which make up the plant, 

actuator, measuring device, comparator and 
controller. 

i 1 fi 

. Sight tube 

3—Flu id c 

Valve 

(b) Is the system S1SO or multivariable? 
(c) Define the input(s), output(s) and reference 

value(s). 
(d) Why is the fluid inlet a disturbance input? 

1.4 Figure PI .4 shows a counterflow heat exchanger which 
uses cooling water to reduce the oil temperature in a 
piece of machinery. There is ample cooling water, 
although the mean inlet temperature wil l fluctuate. 
Also, the flow rate and temperature of the hot oil 
flowing into the heat exchanger can vary significantly. 
(a) What are the disturbance and manipulable inputs? 
(b) What are the measurable and controllable outputs? 
(c) Describe a control scheme which might be used 

to maintain a constant outlet oil temperature. 

Cooling 
water inlet 

Hot oil 

V n 

Water 
outlet 

Cool oil 

Figure P1.4 Counterflow heat exchanger for Problem 1.4. 

1.5 A typical industrial flow control scheme is shown in 
Figure PI .5. Draw a block diagram of the system, using 
a schematic notation similar to that used in Figure 1.2. 

Set point 

Signal 
conditioning M 

pressure 
transducer 

Controller 

4-20 m A 

Orifice 

Current-to-
pressure 
converter 

Control 
Y valve 

• 3 

Figure P1.3 Level control system for Problem 1.3. 

Figure P1.5 Industrial flow control scheme for Problem 1.5. 

1.6 (a) Test the equations for the three terms in a PID 
controller (given in Example 1.6), to show that 
they are all linear. Hint: Reread the note about 
the superposition principle in Section 1.3.1. 

(b) Does this mean that the entire PID controller, 
whose output is always the sum of these three 
terms, is therefore a linear system element? 

(c) Would you change your opinion in the case of a 
controller whose output was the product of two 
of the terms (it is not suggested that such a 
controller would be a useful one)? 
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2.1 Preview 
Chapter 1 stressed that a model of a system is 
required for use in controller design. Mathematical 
models were mentioned (an equation, or set of 
equations, which adequately describes the behaviour 
of the system). In particular, 'lumped-parameter' 
models were briefly discussed, in which the equations 
making up the model are derived after some 
simplifying assumptions which 'lump' certain 
parameters of the system together at some point. 

In the vast majority of control system design, 
lumped-parameter models are used for simplicity. This 
chapter introduces the formation of this type of model. 
However, it must not be forgotten that other kinds of 
model are possible. Chapter 1 mentioned distributed-
parameter models. Also, physical modelling (by the 
construction of scale models) was briefly discussed. 

There are yet more possibilities, but these are not 
discussed in this text. For example, fuzzy logic control, 
which has appeared in items as diverse as cars, cameras 
and washing machines, allows the blurring of sharp 

values - so a system might be required to maintain a 
temperature of 'about 60 degrees' rather than the 
precise requirement, '60 degrees', which is usual when 
using mathematical models. 

Some material in this chapter is marked as 
optional. The rest follows a logical sequence and, if 
studied in order, should present few difficulties. 

In th is chapter, the top ics covered are: 
an overview of mathematical modelling 
simple, linear, lumped-parameter modelling 
modelling of basic electrical, mechanical, 
hydraulic and thermal systems 
linearization of some nonlinear equations 
state-space and Laplace transform model 
representations 
block diagram representation of linear models 
block diagram algebra and reduction 
model formulation for continuous-time and 
discrete-time models 
the conversion of models from one form to 
another. 

NEW MATHEMATICS FOR 
THIS CHAPTER 

In addition to the basic 
algebra and calculus 
already assumed in 
Chapter 1, some 

elementary matrix algebra is used. The Laplace 
transform is introduced, as an alternative means of 
handling the differential equations which constitute a 
mathematical model. These topics are fully covered by 
the text and by Appendices 1 and 2. Some knowledge of 
complex numbers will also be needed for the later parts. 
For the optional section on Taylor series expansion of a 
general function, some elementary knowledge of partial 
derivatives is necessary. 
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2.2 An introduction to control system modelling 
Control system modelling is a subject in its own right. Essentially, there are two 
approaches to finding the model. In the first, the system is broken down into smaller 
elements. For each element a mathematical description is then established by 
working from the physical laws which describe the system's behaviour. The 
simplest such technique is lumped-parameter modelling, which is considered in this 
chapter. 

The second approach is known as system identification (introduced in Section 
3.9), in which i t is assumed that an experiment can be carried out on the system, and 
that a mathematical model of the system can be found from the results. This 
approach can clearly only be applied to existing plant, whereas lumped-parameter 
modell ing can additionally be applied to a plant yet to be buil t , working purely from 
the physics of the proposed plant components. 

Control system modelling is a specialization o f the more general area of 
mathematical modelling. L ike all mathematical models, a control system model 
provides insight into the operation o f the system and defines the cause and effect 
relationships between variables. I n a control system model, the important 
relationship is that between the manipulated inputs and the measurable outputs. 
Ideally this relationship should be linear (see Section 1.3.1), and capable of being 
described by an expression o f low order (that is, an equation, or a set o f equations, 
containing as few terms as possible). Most commonly, a low-order, linear 
differential equation model is used. 

The basis for the development o f any mathematical model is provided by the 
fundamental physical laws describing the behaviour o f the system. For control 
system modelling, i t is usual to analyse an idealized equivalent of the physical 
system, in order to simplify the task. In this ideal equivalent system, each element 
has a single property or function. For example, an actual mass becomes a mass 
concentrated at a point, wi th no compressibility (stiffness) or damping effects 
associated wi th i t . A n electrical inductor is assumed to have pure inductance wi th 
no resistance or capacitance. I f the resistance is significant, i t must be represented 
by a separate model of a pure resistor. The advantage o f considering such an 
idealized (or lumped-parameter) system is that each element has only one 
independent variable (time), so that the system can then be described using an 
ordinary differential equation model. I f more than one independent variable is 
considered, partial differential equations arise, making the modell ing procedure 
much harder. 

Probably the most important task in lumped-parameter modell ing is 
determining which assumptions can val idly be made. Obviously an extremely 
rigorous model that includes every phenomenon in microscopic detail would take a 
long time to develop and might be impossible to solve. I t might also prove very 
difficult to achieve. For example, a vast amount o f effort has been expended on 
atmospheric modelling for weather forecasting. The resulting models are extremely 
complex, requiring the ultimate in computing power to run. Nevertheless, the 
results are st i l l imperfect. 

On the other hand, an over-simplified model might bear no dynamic 
resemblance to the original system. In practice, the amount o f detail incorporated 
tends to be a function of the available resources in t ime, funding, solution 
techniques and hardware. Nevertheless, any assumption that is made should be 
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carefully considered and listed, since i t w i l l impose limitations on the model, which 
must be borne in mind when evaluating the system's predicted behaviour. 

When fundamental physical laws are applied to the lumped-parameter model, 
the resulting equations may be nonlinear (see Sections 1.3.1 and 1.3.4), in which 
case further assumptions may have to be made in order to produce an ordinary 
linear differential equation model which is soluble. In such cases, i t is not unusual to 
assume that system operation w i l l be restricted to small perturbations about a given 
operating condition. I f the assumed operating region is small enough, most 
nonlinear plants may be adequately described by a set o f linear equations. I f these 
assumptions cannot be made, nonlinear control techniques may be appropriate 
(Chapter 14). 

Once all the equations of the mathematical model have been written, i t is a 
good idea, particularly wi th complex systems of equations, to make sure that the 
number of variables equals the number of equations. I f i t does not, the system is 
either under-specified or over-specified and something is wrong wi th the 
formulation of the problem. This kind of consistency check may seem tr iv ia l , but 
it can save many hours of frustration and confusion. Checking that the units (or 
dimensions) of all terms and all equations are consistent is perhaps another t r iv ia l 
and obvious step, but one that is often overlooked. 

Finally, one of the more important parts of model development is that o f model 
validation. In this context, validation is the art of testing that the mathematical 
model does indeed describe the real-world situation. Sometimes this cannot be done 
at the design stage, because the system has not yet been built . However, even in this 
situation, there is usually either a similar existing system, or perhaps a pi lot plant, 
from which some experimental data can be obtained for comparison purposes. 

2.3 Lumped-parameter models 
This section expands on the ideas developed in Section 1.3.8. In particular, i t w i l l 
define some simple elements which can be used to produce an idealized 
representation of the plant or process. The entities considered are the basic 
components of many physical plants and include masses, springs, dampers, 
resistors, capacitors, conductors, inductors, cross-sectional areas of fluid tanks and 
thermal capacities. The approach taken is one that can be applied to the modelling 
of many simple systems, provided that the system is: 

Linear. I t must obey the principle of superposition as outlined in Section 1.3.1. 
That is, i f an input I x (t) causes an output Ox ( f) , and an input I2(t) causes an output 
02(t), then an input Ix{i) + / 2 ( 0 causes an output Ox(i) + 02(t) i f the system is 
linear. Consider the element shown in Figure 2.1 which has an input and output. I f 
the element described a translational damper (such as an automobile shock 
absorber) then the input would be chosen as the force applied to the damper ( in 
newtons, N) and the output would be the change in velocity across the damper (in 

Figure 2.1 A general 
input-output element. 

Input Output 
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metres per second); that is, the equation for the damper is given by v(f) = (1 /B)f(t), 
where B is the damping coefficient in units of N / (m s" 1 ) , or N s m " 1 i f preferred. 
If , however, the element in Figure 2.1 described an electrical resistor, the input 
could be defined to be the current i(t) ( in amperes, A ) and the output the potential 
difference across the resistor v(r) ( in volts, V ) . The describing equation would then 
be v(t) = Ri(t)9 where R is the resistance in units of ohms (Q). 

In either case, the principle of superposition holds. In the case o f the resistor, 
for example, i f an input of 1 A produced an output o f 3 V, and an input of 2 A 
produced an output of 6 V, then an input o f 3 A would produce an output o f 9 V. 

Stationary (or time invariant). The parameters inside the element, for example the 
resistance or damping, must not vary wi th time. In other words, an input applied 
today must give the same result as the same input applied yesterday or tomorrow. A 
vehicle that burns large masses of fuel, such as a racing car or a space vehicle, is an 
example of a system which is not stationary in this sense (or in any other sense!). Its 
dynamic behaviour w i l l alter significantly as its mass decreases. 

Deterministic. The outputs of the system at any time can be determined from a 
knowledge of the system's inputs up to that time. In other words, there is no random 
(or stochastic) behaviour in the system, since its outputs are always a specific 
function of the inputs. The term causal is also used for such systems. The precise 
arrival time of a bus (to wi th in 30 seconds, say) is an example of a stochastic (that 
is, non-deterministic) event, because it is unpredictable from past behaviour. 
Industrial systems in which measured input and output signals are corrupted wi th 
large amounts of noise, thus making the measured values uncertain, are also 
stochastic systems. 

Consider an element representing an idealized component such as the resistor 
shown in Figure 2.2. I f the resistor is linear then 

i ( f ) = ^ v ( f ) (2.1) 

where 

i(t) — the current ( A ) 

v(/) = the potential difference ( V ) 

R — the resistance (Q) 

Note that the currents at both a and b are equal to i(t). I t is possible to think of the 
current as flowing through the resistor and hence to define the current as a through 
variable. The voltage (or, to be pedantic, the potential difference) is measured 
across the resistor and can therefore be defined as an across variable. Since the 
voltage at point b w i l l be less than the voltage at a, this is illustrated by an arrow 
from b to a as shown in Figure 2.2. 

v(t) 

Figure 2.2 An ideal 
resistor. 
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Figure 2.3 An ideal 
damper. 

Now consider an element representing an ideal damper as shown in Figure 2.3. 
For this damper: 

where 

f(t)=Bv(t) (2.2) 

f(t) = the force (N) 

v(t) = the velocity difference across the damper ( m s - 1 ) 

B = the damping coefficient ( N / ( m s - 1 ) ) 

The force / ( r ) on either side of the damper must be the same and hence force could 
be thought of as a through variable. Due to the rate o f change of compression o f 
the damper, there w i l l be a change in velocity across the damper, which may be 
represented by the arrow from b to a as shown i n Figure 2.3. Equation (2.1) 
describing the resistor is similar to Equation (2.2) describing the damper, i n that 
both have the form: 

(through variable) = (constant) x (across variable) (2.3) 

Since Equation (2.3) could be used to describe either the resistor or the damper, 
these two elements may be thought of as being analogous to each other. Further, 
Equation (2.3) is clearly a linear equation in that i t obeys the superposition 
principle. Any element that can be described by Equation (2.3) w i l l itself be linear 
and produce linear equations. 

What has been developed here is one type o f element in the so-called ' force-
current analogy'. Other analogies are possible, in particular the force-voltage 
analogy. However, in this text only the force-current analogy w i l l be considered. 

Now consider elements which can be described by an equation of the form: 

(through variable) = constant x j (across variable) dt (2.4) 

Equation (2.4) is again linear and can be used to describe many different elements. 
For example the spring shown in Figure 2.4 is described by the equation: 

m = K jv(o dt 

where 

K = the spring stiffness ( N m 1 ) 

W A A A A A W — w w v — 
Figure 2.4 An ideal spring. K 
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Figure 2.5 An ideal 
inductor. 

The inductor shown in Figure 2.5 is described by the equation: 

where 

L = the inductance in henry (H) 

So both fall into this category. 
Some elements can be described by a linear equation of the form: 

(through variable) = constant x (across variable) (2.5) 

Both a perfect mass (Figure 2.6) and a perfect capacitor (Figure 2.7) fal l into this 
Figure 2.6 An ideal mass. category. The equation describing the mass is given by: 

«, m = M d - v [ t ) (2.6) 

Figure 2.7 An ideal 

where 

M — the mass (kg) 

and the capacitor is described by: 

capacitor. d 
i(t)=C-v(t) (2.7) 

where 

C = the capacitance in farads (F) 

A t this stage, three idealized electrical elements (the resistor, inductor and 
capacitor) have been modelled, and shown to be analogous to three idealized 
mechanical elements (the viscous damper, spring and mass respectively). B y 
grouping the electrical and mechanical elements as shown in Tables 2.1 and 2.2 the 
force-current analogy becomes evident. 

The analogies developed in Tables 2.1 and 2.2 can be extended to rotational 
mechanical systems. In rotational systems the through variable is torque and the 
across variable is angular velocity. Using Newton's second law for rotational 
systems gives, for a constant inertia, the equation: 

T{t)=l±Mt) (2.8) 
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Table 2.1 Ideal electrical system elements. 

Across variable: potential difference v (V) 

Through variable: current / (A) 

Component Circuit symbol Defining equation 

Resistor W * ^ = v(r) 

Inductor 
= J - \ v { t ) . d t 

Capacitor *W * ^ ^ ^ ^dv(t) 

C(F) 

Table 2.2 Ideal rectilinear (translational) mechanical system elements. 

Across variable: linear velocity v ( m s _ 1 ) 

Through variable: force / (N) 

Component Circuit symbol Defining equation 

Linear damper 
(viscous friction too) 

Linear spring 
(stiffness also) 

Mass 
(rectilinear motion) 

fit)* 

— 
v(0 
I 

fit) 

^ ( N / m s - 1 ) 

v(0 

K ( N m - 1 ) 

fit)* 
v(0 

M (kg) 

/ ( f ) = Bvit) 

f(t) = K¡v(t).dt 

dvit) 
fiO = M ^ -
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where 

T(t) = the torque ( N m) 

co(t) = the angular velocity (rad s - 1 ) 

/ = the moment of inertia (kg m 2 ) (or N m / ( r a d s~ 2 )) 

Again it is evident that Equation (2.8) is a particular realization o f Equation (2.5) 
and therefore inertia could be considered analogous to both mass and capacitance 
(cf. Equations (2.6) and (2.7)). 

The stiffness of an elastic shaft is given by the equation: 

T(t)=^0(t) (2.9) 

where 

G = the modulus of rigidity ( N m ~ 2 r a d - 1 ) 

I p = the polar second moment o f area. For a circular shaft of 

ndA 

diameter d ( m ) , / p is given by ( m 4 ) 

/ = the length of the shaft (m) 

0(f) = the angle of twist (rad) 

In terms of the angular velocity, Equation (2.9) becomes: 

T{t)=^j<o(t)dt 

and therefore becomes a special case of Equation (2.4). This means that the 
torsional spring is analogous to the linear spring and the inductor. 

Similarly, an ideal linear torsional damper (that is, one offering only viscous 
friction) can be described by an equation o f the form: 

r ( f ) = Bco(t) 

where 

B = the torsional damping ( N m / ( r a d s - 1 ) ) 

and, as such, is a special case of Equation (2.3). Again all these elements and their 
defining equations are summarized in Table 2.3. 

Further extensions to the tables of analogies are possible which w i l l encompass 
simple fluid and thermal elements as shown in Tables 2.4 and 2.5. The tank shown 
in Figure 2.8 is an example of fluid capacity. For this system, assuming the fluid 
density is constant, the conservation of volume equation states tha t 4 the time rate of 
change of fluid volume wi th in the tank is equal to the volumetric flow rate into the 
tank less the volumetric flow rate from the tank'. Therefore, for Figure 2.8: 

— ^ = qM-q0{t) (2.10) 
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Table 2.3 Ideal rotational mechanical system elements. 

Across variable: angular velocity co (rad s _ 1 ) 

Through variable: torque T ( N m) 

Component Circuit symbol Defining equation 

Damper 
(viscous coupling, 
bearing friction) 

co(t) 

B (Nm/rads- 1 ) 

T(t)=Bo)(t) 

Torsion spring 
(shaft stiffness also) 

<o(t) 

K ( N m r a d - 1 ) 

T(t) = K\(o(t).dt 

Inertia 
(any rotating mass) 

/ (Nm/rads - 2 ) 

da)(t) 

Table 2.4 Ideal fluid system elements. 

Across variable: pressure head h (m) 

Through variable: volume flow rate q ( m 3 s _ 1 ) 

Component Circuit symbol Defining equation 

Fluid resistance 
(in pipes and valves) 

h(t) 

/ ? ( s r r r 2 ) 

Fluid capacity 
(e.g. stored f lu id in 

accumulator or tank) 

«7(0 + 
— * 1| 

A ( m 2 ) 

(cross-sectional area) 

at 

where 

V(t) = the tank fluid volume ( m 3 ) 

qi(t) = the volumetric flow rate into the tank ( m 3 s *) 

q0{t) = the volumetric flow rate out o f the tank ( m 3 s ! ) 

but 

V(t)=Ah(t) 
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Table 2.5 Ideal thermal system elements. 

Across variable: temperature difference 6 ( K ) 

Through variable: heat f low rate q ( W ) 

Component Circuit symbol Defining equation 

Thermal resistance 
(of interfaces too) 

Thermal capacity 
(ability to store heat 

energy) 

0(0 

« ( K W ^ X o r ' C W - 1 ) 

Bit) 
q(t)o  
^ II  

C ( J K - ' ) 

q{t) = C 
dSjt) 

dt 

Figure 2.8 A simple tank 
system. 

h(t) 

/|\ 

(cross-sectional 
area of tank) 

Va® 

where 

A = the tank cross-section area ( m 2 ) 

h{t) = the head of fluid in the tank (m) 

and hence Equation (2.10) may be writ ten as 

, dh{t) 

dt 
= q{t) 

where 

«7(0 = «7,(0 - <7oW 
= the net volumetric flow rate into the tank (m s ) 

The flow from the tank q0(t) w i l l be dependent on h{t), the head of fluid in the 
tank. For small changes in head the flow from the tank can be expressed as: 
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where 

R is the resistance to fluid f low, due to the pipework ( s m 2 ) 

R is therefore analogous to mechanical damping or electrical resistance. 
Finally, for thermal systems, the first law of thermodynamics may be used to 

determine the temperature changes in a body; that is, 'the rate o f change of a body's 
internal energy is equal to the flow of heat into the body less the flow of heat out o f 
the body' . This may be expressed as 

c ^ = „ (0 -^ (0 
where 

C = thermal capacity of body (joules per kelvin) ( J K l ) 

T(t) = temperature ( K ) 

q{t) = heat flow rate (watts) ( W ) 

The thermal capacity of a body may be found from the equation: 

C = MS 

where 

M = mass of body (kg) 

S — specific heat capacity of the material (J ( k g K ) - 1 ) 

The heat flow rate through a body is a function o f the thermal resistance o f the 
body. This is normally assumed to be linear, and therefore: 

where 

R = thermal resistance ( K W - 1 ) 

T{(t) — T2(t) — temperature difference across the body ( K ) 

thus giving the elements shown in Table 2.5. 
In engineering systems there are sources o f energy, which are either across 

variable sources (voltage, velocity, pressure head or temperature gradient), or 
through variable sources (current, force, torque, fluid flow rate or heat flow rate). 
The symbols for both the across and through variable generators are shown in Table 
2.6. 

Note that other analogies are possible. For example, an electrical transformer, 
a lever, a gearbox and a hydraulic jack could all be considered analogous. However, 
the use of analogies in modelling is rather l imited, and is only included to 
demonstrate the use of linear differential equations across a spectrum of 
engineering disciplines. 
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Table 2.6 Ideal through and across variable generators. 

Electrical Translational Rotational Hydraulic Thermal 
systems systems systems systems systems 

Across 
variable 

generator 

„ v v <x> « e Across 
variable 

generator 
•< -o 

•n  -o O o-
Through 
variable 

generator 

T 
• < D -

Example 2.1 An automobile suspension system 
Consider the development of a lumped-parameter model for the suspension system of the 
automobile shown in Figure 2.9. 

The first stage, according to the procedure listed in Section 1.3.8, is to understand the 
plant. In this case the suspension system defines the movement o f the car body relative to 
the movement of the wheels. I f the motion of the body is deemed unsatisfactory (perhaps 
it oscillates for too long after hitt ing a bump), then the suspension system (that is, the 
springs and dampers used to support the car body on the wheels) must be adjusted unt i l 
the system gives the appropriate ride or change of position. 

Stage 2 requires the identification of the various inputs, outputs and disturbances. 
Clearly the output to be controlled is the motion o f the car body relative to the wheels. 
The input, i n this case a disturbance input, is caused by undulations in the road which w i l l 
alter the wheel positions on the car. There w i l l be no forcing input, unless an actuator is 
used which w i l l apply an additional force, or forces, to the car body (for example, an 
active suspension system). 

Stage 3 requires the production of an idealized representation of the plant which can be 
described mathematically. This is the lumped-parameter model. I t w i l l be assumed that the 
total mass o f the car body can be grouped into one lump, as shown in Figure 2.10. A l l the 
stiffness and damping effects provided by the various shock absorbers are lumped into the ideal 
spring and dashpot (or damper) respectively, shown in Figure 2.10. Also shown in this figure is 

I a forcing function which represents the force which could be supplied by an actuator. Clearly 
s the car of Figure 2.9 and the lumped-parameter model shown in Figure 2.10 bear l i t t le 

resemblance to one another. However, it is anticipated that the lumped-parameter model w i l l 
contain the essential dynamic information relating to the car, and therefore by analysing this 
simple system the motions, or some of the motions, exhibited by the car may be inferred. 

The next stage of the analysis, Stage 4, is to produce the equations of motion which 
describe this idealized representation (or lumped-parameter model) and this is the topic 
covered in Section 2.4. 
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Figure 2.10 A lumped-
parameter model for an 
automobile suspension 
system. 

I Example 2.2 An internal combustion engine's 
I inlet manifold - emissions reduction 

Reduction of vehicle emissions is an area of increasing importance, particularly for the 
< : : automotive control engineer. I t can be shown that emissions are related to the in-cylinder 
^ air to fuel ratio which, in turn, is determined by the amount of fuel and air leaving the 
$> engine's inlet manifold. This example w i l l develop a lumped-parameter model for the inlet 

v manifold o f a spark ignited internal combustion engine. 

h According to Section 1.3.8, the first requirement in lumped-parameter modell ing is to 
understand the plant. In this case this leads to the simple manifold schematic shown in 

s Figure 2.11. I n this system, the pumping action of the engine produces a vacuum wi th in 
>, the manifold, thus drawing air through the manifold and into the cylinder. The flow of air 
* through the manifold and into the cylinder is regulated by the throttle valve. Fuel is 

injected into the air stream. I t is assumed that some of the fuel entering the manifold w i l l 
^ immediately vaporize due to the reduced pressure levels, and then flow wi th the air stream 
c directly into the cylinder. The fraction of injected fuel not vaporizing, impacts w i th the 
* manifold wal l to form a puddle which, due to the elevated temperature o f the manifold 

wal l , w i l l eventually evaporate and then jo in wi th the air-fuel mixture flowing into the 
, cylinder. I t is impl ic i t ly assumed that the cylinder valves, not shown, do not affect the 

flow of air and fuel into the cylinder, and that the fuel is injected in a constant stream. 

Fuel 

Air 

Figure 2.11 An engine 
inlet manifold schematic 
diagram. 

Manifold ^ 

V 
/ Air f low w Cylinder V w qa(t) Fuel flow qffi: 

Cylinder 

\ 
Throttle 

Cylinder 

\ 
Throttle O 
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Reading Section 1.3.8 further, the various inputs and outputs need to be identified 
next. I n the manifold, the output is the air to fuel ratio entering the cylinder since, for 
emissions reduction, this is the quantity that must be controlled. The input to the system is 
the fuel injection rate, and the quantity of injected fuel can be freely manipulated. Throttle 
position, which is normally manipulated by the vehicle driver to adjust the engine speed, 
regulates the air flow. Therefore, for this application, air flow (or throttle movement) is a 
disturbance input. 

To develop the lumped-parameter model, use w i l l be made of the fluid elements 
depicted in Table 2.4. Note that for this application, the air to fuel ratio is normally 
calculated in terms of mass flow rates. Therefore both sides o f the defining equations in 
Table 2.4 w i l l eventually need to be mult ipl ied by the fluid density to convert from 
volumetric flow to mass flow. 

A i r flow past the throttle valve might be represented by a modified fluid resistance, 
having a defining equation of the form: 

i 
8 

or 

where 

* k is a constant relating pressure head to throttle angle (m rad ) 

X h{t) is the pressure head (m) forcing the air into the cylinder 

j£ I n fact, to assume that the air flow past the throttle valve is a linear function o f the throttle 
| i angle is a gross over-simplification, and this assumption needs to be noted carefully. Its 
H val idi ty can only be assessed by a more thorough attempt at modell ing, or by comparing 
H the model and plant responses (Stage 4 of Section 1.3.8). 
H N o w consider the fuel dynamics. The injected fuel splits into two streams, one 
| vaporizing and entering the cylinder directly, and the other impinging wi th the manifold 
jj wal l to form a puddle. The puddle could conceivably be represented by a tank similar to 
| that shown in Figure 2.8. The outflow from the ' tank' would be the evaporation rate from 
| the puddle, and could be assumed to be related only to the size o f the puddle. That is, i n 
II the lumped-parameter model, i t w i l l be related to the head o f fluid in the ' tank' . 
H Consequently, evaporation can be represented by a linear valve restricting the flow o f fluid 
g from the ' tank' . 
jg The lumped-parameter model is completed by defining three more elements: one 
H which splits the injected fuel into the two streams, another which w i l l add the vaporized 
|j and evaporated fuel entering the cylinder, and the third element which w i l l divide the air 
H mass flow rate by the total amount of fuel in the cylinder. These additional elements 

complete the lumped-parameter model o f the manifold shown in Figure 2.12. When 
examining this figure, note that the amount o f vaporized fuel q^t) is assumed to be a 
function o f the throttle angle 6(t). This is perhaps reasonable, since the amount o f 
vaporized fuel w i l l largely depend on the manifold pressure, which in turn is related to 
throttle angle. Also note that since there are two nonlinear elements, the split element and 

B the division element, the resulting model w i l l be nonlinear. 
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Throttle 
<tit> <7*W + Q.W 

• 

Figure 2.12 A lumped-
parameter engine inlet 
manifold model. 

Vf<t) 

m 

Split element 

<7/(f) 

1.1 — ̂ i ^ r 
<7e(f> 

2.4 Equations of motion from lumped-parameter models 
Since each engineering discipline has its own techniques for finding equations of 
motion, i t is appropriate first to show how a lumped-parameter model, based on one 
set of elements, can be converted into an equivalent model using another set of 
elements. There are some restrictions, particularly wi th thermal and fluid elements 
for which the equivalents of the spring or inductance have not been defined here (for 
example, there is a concept of 'inertance' in fluid dynamics which models the 
inertial tendency of a moving plug of fluid to continue moving, and is roughly 
analogous to inductance). 

2A. 1 Drawing equivalent circuit diagrams 
This approach may be appreciated most by readers wi th an electrical or electronic 
bias (Sections 2.4.3 and 2.4.6 give approaches which may find more favour wi th 
mechanically biased readers). Nevertheless, i t is worth all readers gaining an 
appreciation o f the behaviour of the 'analogs' discussed here. The idea of this 
approach is that systems represented by collections of the simple lumped-parameter 
models discussed above can be represented as something very l ike electrical circuit 
diagrams - even i f they are not electrical systems. I f this can be achieved, the 
models can be analysed by the usual techniques of analysing electrical circuits 
(even i f they are mechanical or thermal models, for example). One suitable 
approach, which follows a systematic procedure, is given below and then illustrated 
by an example. 

(1) Draw a reference node representing the reference value o f the across variable. 
A 'node' in this context is simply a point to which the terminals o f two or more 
system elements w i l l be connected in the drawing, and therefore has a single 
value of across variable associated wi th i t . The reference node is therefore 
l ikely to be the OV line in an electrical circuit, or a similar 'datum l ine ' 
representing zero velocity in an equivalent circuit for a mechanical system, for 
example. Everything else is modelled wi th respect to this reference node. 
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(2) Provide a generator to supply the through or across variable o f interest, that is, 
to generate the voltage, current, force, velocity etc. that drives the system, and 
which is the cause of the system response. This generator w i l l usually (but not 
always) have one end connected to the reference node. 

(3) Identify groups of element terminals in the system which experience the same 
value of across variable (voltage, velocity and so on). Connect each group to 
one node in the equivalent circuit. There w i l l therefore be as many nodes 
(connection points) as there are different values of across variable in the 
system. 

(4) A l l element terminals not yet connected to anything after step 3 should be 
connected to the reference node. 

Point 4 needs some explanation. Firstly, note that as each ' f loat ing' connection is 
tied to the reference node, it must be verified that this is indeed correct and that 
something has not been overlooked in step 3. 

Secondly, there is a conceptual problem wi th masses and inertias in 
mechanical systems. When analysing electrical systems, fluid systems or thermal 
systems, the analogous elements to mass and inertia (that is, the various 
capacitances) clearly have an identifiable value o f across variable at each side of 
the component; that is, there is, as expected, a value o f across variable across them. 
This seems obvious, but i t is not the case for masses and inertias since these are 
rigid, and each side of them therefore moves w i th the same velocity. 

As a result, when constructing the equivalent circuit (step 3), one end o f the 
symbol for each mass or inertia is connected to a node having the correct value of 
velocity associated wi th i t , but the other end w i l l always be left ' f loat ing' . Step 4 
then indicates that all these 'floating' connections be tied to the reference node, 
which implies that one end o f the symbol for every mass or inertia i n a system w i l l 
always be connected to the reference node. This is, in fact, correct. The way to 
visualize why, is to regard the entire mass, or inertia, as moving wi th a certain 
velocity wi th respect to the reference node. One end o f the symbol for each mass 
and inertia w i l l therefore be connected to the reference node, and the other to a node 
having the correct velocity for the element in question. This is clarified in the 
fol lowing example. 

Example 2.3 An equivalent electrical circuit for a 
mechanical slipping clutch 
Figure 2.13 shows a simple mechanical coupling wi th input velocity C0j(t) and output 
velocity co0(t). I t might represent a torque converter, or a mechanical automobile 
speedometer without the restraining spring. Find an analogous electrical circuit. 

B T(t) 

Figure 2.13 A torsional 
coupling. co,(r) 
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p For this mechanical rotational system, Table 2.3 gives the through variable as torque 
jf and the across variable as angular velocity. Applying the steps given above, and using the 
f§ symbols from the table, the system circuit diagram of Figure 2.14(a) is obtained. The steps 
H o f the procedure are: 

jjjjjj Step 1 Draw a reference node to represent zero angular velocity. 

| Step 2 The input variable is co^t), so draw an across variable generator to apply this wi th 
§ respect to the reference node (see Table 2.6). 

Step 3 There is only one other value of across variable in the system, namely co0(t), so there 
w i l l be a node in the equivalent circuit having this value o f across variable. The 
components to be connected to this node are those that move wi th velocity co0(t) i n the 
lumped-parameter model, that is, one end of the damper and one end o f the inertia. The 
other end o f the damper moves wi th velocity co^f), so i t w i l l be connected to the node 
having that value of across variable, as shown. 

§ Step 4 There are no more nodes (different values of across variable) in the lumped-parameter 
1 model, so now tie any 'floating' connections to the reference node (wi th careful 
H consideration in case anything has been overlooked). In this case, there is only one such 
|§ connection - the spare end of the inertia symbol. As discussed before, i t is correct to tie 
I this to the reference node, and the system circuit diagram (Figure 2.14(a)) is complete. 

i 
i 

To apply electrical circuit analysis techniques to this system, the defining equations in 
column three o f Tables 2.1 and 2.3 show that the damper may be regarded as a resistor of 

1 value l/B and the inertia as a capacitor of value / . This gives Figure 2.14(b). 
1 Equally, the inertia-damper system of Figure 2.13 could be regarded as being a 
1 mechanical analog of the electrical R - C circuit of Figure 2.14(b). 

Figure 2.14 (a) System 
circuit diagram for the 
torsional coupling, (b) 
Equivalent electrical circuit 
diagram for the torsional co(f) = 0 
coupling. (b) 
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I t has been shown that physical systems can be represented by lumped-parameter 
models and that, for simple systems, analogies exist. These analogies permit 
conversion of lumped-parameter elements from one system type to another. 
However, once the lumped-parameter model is fixed, the equations o f motion 
describing that lumped-parameter model (not the physical system) need to be 
extracted. In the fol lowing subsections, a variety o f techniques for finding the 
equations of motion from lumped-parameter models is presented. 

In electrical systems, Kirchhoff ' s current law (stating that the currents f lowing into 
a node sum to zero) provides the continuity equations, and applies to through 
variables in general. Kirchhoff ' s voltage law (which, stated loosely, says that the 
voltages around a closed path sum to zero), provides the compatibil i ty equations 
which similarly apply to across variables. The continuity and compatibil i ty 
equations which define the laws governing the system, together wi th the physical 
laws o f the elements, are combined to produce the mathematical model. 

Example 2.4 An electrical lead compensator 
Find the mathematical model for the lumped-parameter lead compensator network shown 
in Figure 2.15. The lead compensator ( in mechanical, electrical, electronic or pneumatic 
form) is one o f the basic building blocks of controller design, and is discussed in Section 
4.5.4. For the present, i t is simply used as an example system for analysis. 

The input to this network is shown as a voltage source v,(r) and the output is the 
voltage v0(t) across resistor R2. From Table 2 .1 , the element equations are: 

2.4.2 Mathematical models for electrical systems 

(2.11) 

(2.12) 

(2.13) 

R. 

vfi) 

Figure 2.15 A passive 
electrical lead compensator. 
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The compatibil i ty equations are: 

V/(0 = v /?1(0 + vo(0 
v^(0 = vcW (2.14) 

The continuity equation is: 

k2 = ' c + ^ (2-15) 

Substituting the element equations into the continuity equation and then using the 
compatibili ty equations to eliminate v c ( f ) and vRi(t) gives the ordinary linear differential 
equation: 

RXR2C j t v0(t) + (i?, + tf2)v0(f) = RXR2C j ( v,( i) + K 2 v ; ( r ) (2-16) 

which is a mathematical model relating v0(t) to vf-(r). 

2.4.3 Mathematical models for mechanical systems 
Most mechanical systems consist of masses and/or inertias, which are connected 
together by springs and dampers. For simple systems, there is no reason why the 
methods of Example 2.3 should not be followed directly by those o f Example 2.4, to 
find the required model. However, for more complex systems this approach is 
insufficient. 

Perhaps the simplest structured analytical method for finding the equations o f 
motion is that based on free-body diagrams. In this method, each mass or inertia is 
imagined to be displaced from its equilibrium position, and then isolated from the 
surrounding system. Each individual mass or inertia is then drawn, and the forces or 
torques driving it back to its equilibrium position are indicated. Newton's second 
law o f motion is then applied to each body to yield the required equations of motion. 
Since the method assumes that the masses and inertias are displaced from an 
equil ibrium position, i t is normal to work wi th displacements rather than velocities. 
That is, in Table 2.2, since velocity is the time rate of change of the displacement 
x(t) (m), v(t) is replaced by dx(t)/dt. Similarly, in Table 2.3 co(t) is replaced by 
dO(f)/dt, where 6(t) is the angular displacement (rad). 

For a rectilinear (that is, translational) system having constant mass, Newton's 
second law indicates that, for a consistent system of units: the sum of forces equals 
the mass times the acceleration. 

In the SI system of units, force is measured in newtons (N) , mass in kilograms 
(kg) and acceleration in metres per second squared (m s~ 2). 

For a rotational system Newton's second law becomes: the sum of the 
moments equals the moment of inertia times the angular acceleration. 

The moment, or torque, has units of newton-metres ( N m), the inertia units o f 
kilogram metres squared (kg m 2 ) and the angular acceleration units o f radians per 
second squared (rad s - 2 ) . 

When there are no masses or inertias in the system, the mechanical impedance 
method is often used. In this method, the object is to replace a system of mechanical 
elements by an idealized element Z such that 

I 

f = Zx 
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where 

/ = the force acting on the system 

Z = the impedance o f the system 

x = the displacement across the system 

There are two rules, one for mechanical elements in series, and one for mechanical 
elements in parallel. 

Mechanical series laws 
From Newton's third law (to every action there is an equal and opposite reaction) 
the force acting on each element equals the total force applied to the series system. 

From the geometric constraints, the total displacement o f the series system is 
equal to the sum of the individual displacements across each element. 

Mechanical parallel laws 
Again from Newton's third law, the sum of the forces acting on the various elements 
must equal the total force applied to the parallel system. 

From the geometric constraints, the displacement o f the parallel system is 
equal to the displacement of each element. 

Example 2.5 Mathematical model of an 
accelerometer 

m The lumped-parameter model of a simple mechanical accelerometer is shown in Figure 
3 2.16. The displacement x(t) o f the mass M w i th respect to the accelerometer casing is 
i related to the acceleration of the case, k is the spring stiffness and b the damping 

coefficient. Determine the relationship between the displacement x(t) and acceleration 
d1y(t)ldtl. Note that the time dependence of x and y w i l l now be omitted to aid clarity. I t 

^ may be assumed that al l motions take place in the directions shown. 
The input to the system is the acceleration d2y/dt2 o f the accelerometer casing, and 

' : the output is the deflection x o f the mass. Since the accelerometer mass M is constrained 
. to linear motion, the system has one degree o f freedom (that is, one measurement is 

^ y ( f ) , d2y(t) 
dì2 

k b 

A W V - M 1 

Figure 2.16 A mechanical 
transitional accelerometer. 

* -y ( f ) , dfyW 
dt2 
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sufficient to specify the position of all elements in the system) and so one free-body 
diagram is required. Giving the mass M a displacement x from its equil ibrium position 
produces the free-body diagram shown in Figure 2.17. Note that the distance between the 
mass and the casing (x0) is equal to x plus some fixed init ial displacement. 

Apply ing Newton's second law of motion gives 

Ma -kx — b 
dx 
dr 

where a is the acceleration of the mass relative to the earth and is given by: 

_d2x d2y 

Substituting for a gives the required equation of motion (mathematical model) as: 

d2y d2x dx 

dt2 dt 
kx = M 

dt2 

Note that each term in the above equation has units of newtons (N). 

x(t) 

Figure 2.17 Free-body 
diagram for the 
accelerometer mass. 

M M 
dx 

'dt 

Example 2.6 Modelling a rotational system with 
two inertias 
A rotational system wi th two degrees of freedom is described by the lumped-parameter 
model shown in Figure 2.18. The shafts have torsional stiffnesses kx and k2 ( in units of 
N m r a d " 1 ) , while the linear dashpot has an operating radius r (metres) and damping b ( in 
N / ( m s - 1 ) ) . The system is forced by the input torque T(t) and has two outputs 6l(t) and 
62{t), which are the angular displacements of inertias I x and I 2 respectively. Find the 
equations of motion. 

Figure 2.18 A rotational 
system. 
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Two free-body diagrams are required as shown in Figure 2.19: one for inertia I u 

which is given an angular displacement 9x(t), and the other for inertia / 2 , w i th its angular 
displacement 92(t). 

The dashpot acting on inertia / , produces a linear retarding force of b x (linear 
velocity). The linear velocity is equal to the tangential velocity o f the inertia I x . Combining 
these, the linear retarding force is br d9x/dt. For inclusion in the torque equations, this linear 
force must be mult ipl ied again by r, to give the resulting retarding (damping) torque. 

Apply ing Newton's second law of motion for rotational systems to both free-body 
diagrams yields the two equations of motion as: 

d20x x dQx , 
92) = r(0 

and 

d2e2 

dt2 
+ k292 -kx(9x-92) = 0 

I n this example there are two output variables, 9x(t) and 0 2(O> a n d t w o equations of 
motion. Note also that each term in each equation has units o f N m. 

Figure 2.19 Free-body 
diagrams for the rotational 
system of Figure 2.18. 

Example 2.7 Modelling a mechanical lag-lead 
compensator 
Find the equations of motion for the mechanical lag-lead compensator shown in Figure 
2.20. (Lag-lead compensators are control system elements whose design and purpose are 
discussed in Section 4.5.4. For the present, it simply provides a useful mechanical system 
example for analysis - think of it as part of a suspension system.) The input to the 
compensator is the displacement u(t) and the output is the displacement y ( r ) , so a model is 
required which gives the relationship between these quantities. 

Consider the mechanical impedance Zx of the parallel dashpot bx and spring kx. From 
the first parallel mechanical law, the force equation is: 

/ „ = / * , + / * , (2-17) 

and from the second parallel law 

(W ~y)system z{ ~ (U 3>)]dashpot b] ~ (U >0spring kx 
(2-18) 
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T 

Figure 2.20 A mechanical 
lag-lead compensator. 
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The equations for the parallel elements are: 

d 

fkx = k\{"-y) 

(u-y) (2.19a) 

(2.19b) 

Substituting the element Equations (2.19) into the force Equation (2.17) and noting the 
geometric constraint Equation (2.18), the impedance Zx o f the parallel elements may be 
found such that: 

fzx =z\{u-y) (2.20) 

Now consider the series impedance Z 2 o f dashpot b2 and spring k2. Let x(i) be the 
displacement at the point between the dashpot b2 and spring k2. The first series law for 
forces indicates that: 

f fzx fb2 fk2 

and the second series law that 

u = {u-y) + (y-x)+x (2.21) 

The element equations are Equation (2.20) together wi th : 

and 

fk, = k2* 

(2.22a) 

(2.22b) 

Solving Equations (2.20) and (2.22) for u - y, y - x and x and then substituting the results 
into the second series law, Equation (2.21) w i l l , after some manipulation, produce an 
equation o f the form 

f = Zu (2.23) 
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The required relationship between y(t) and u(t) is obtained by eliminating / from 
Equation (2.23) by substitution of Equation (2.20). 

A t this point, the reader may wonder how the dashpot equation is solved to give the 
relationship between / and y - x, and how Equation (2.20) is obtained to find the 
relationship between / and u - y. Fortunately, such problems are easily dealt w i t h using 
Laplace transforms, which are described in Section 2.5. 

2.4.4 Mathematical models for fluid and thermal systems 
Fluid systems 
Many fluid systems consist of tanks connected together by pipes and valves. The 
equations describing such systems are found by applying the fundamental laws of 
fluid mechanics. By making various simplifying assumptions, the idealized 
lumped-parameter components found in Table 2.4 can be generated. The system 
equations are then obtained from the system geometry and the lumped-parameter 
component equations. 

Example 2.8 Modelling a two-tank hydraulic 
system 
Determine the equations describing the fluid system shown in Figure 2.21, in terms o f the 
relationship between the inflow q{ and outflow q0. 

In Figure 2.21 Rx and R2 are the resistances o f the valves and pipework indicated, Cx 

and C 2 are the capacitances (cross-sectional areas) of the two tanks wi th f luid heads hx and 
h2 respectively, and qx is the flow between the tanks. For tank 1, the rate of change of 
fluid volume in the tank is equal to the flow in minus the flow out (the fluid capacity 
equation in Table 2.4): 

dVx 

But, since Vx = volume of tank 1 = Cxhx, then 

C , ^ = 9 , - i , (2-24) 

Inflow 

Figure 2.21 A 
representative fluid system. 
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The flow between the tanks is given by 

which, on substitution into Equation (2.24) yields 

For tank 2 the continuity equation is 

(2.25) 

(2.26) 

Also 

(2.27) 

Substituting into Equation (2.26) for q{ and qQ produces 

/ ? 1 C 2 / ? 2 ^ + / ? 1 / i 2 + i ? 2 / z 2 = i ? 2 / i 1 

Equations (2.25), (2.27) and (2.28) are the required system equations. 

(2.28) 

Thermal systems 
Thermal systems include such things as the mix ing of hot and cold streams, heat 
transfer, combustion and chemical reactions. Most systems have some thermal 
component, and the various modelling techniques are wel l covered in the literature. 

For simple, lumped-parameter models, the first law of thermodynamics may be 
used to determine the temperature changes in a body. One statement o f this law is 
that the net heat supplied to a system from its surroundings is equal to the net work 
done by the system on its surroundings. Application o f this law and the law 
governing thermal resistance produces the components and equations given in 

Example 2.9 Modelling a simple thermal system 
The insulated tank of water shown in Figure 2.22 is heated by an electrical element. 
Develop an equation for the rise in water temperature. 

Assume that the water has a uniform temperature and that there is no heat storage in 
the insulation. Let: 

Table 2.5. 

Tw = temperature of the water (K) 

Ta = temperature of the air (K) 

q = rate of heat supply (W) 

qQ = rate of heat loss (W) 
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Figure 2.22 A simple 
thermal system. 

nsulation 
(thermal 
resistance R) 

From the thermal capacity equation (Table 2.5), 

dTu, 
C 

dt q - q 0 

where 

C = thermal capacity of the water ( J K T 1 ) 

but, from the thermal resistance equation (Table 2.5) 

lo 
T - T 

R 

where 

Hence 

+ Ll = i + Ll 
dt RC C RC 

which is the required equation. 

2.4.5 Linearization 

R = thermal resistance of the insulation ( K W 

dl\ 

Advanced sect ion 
This section may be omitted, but it contains necessary background material for a study of Chapter 14. 

A l l the system components found in Tables 2.1 to 2.5 have been linear, and i t has 
been assumed, wi th the exception of Example 2.2, that these components 
interconnect to form lumped-parameter models using linear connections. The 
mathematical models resulting from these lumped-parameter models are also 
linear, and must therefore satisfy the superposition principle (see Section 2.3). A n y 
equation that is not linear is said to be nonlinear and any system that has a nonlinear 
equation in its mathematical description is also said to be nonlinear. 

In general, most lumped-parameter modell ing o f physical systems w i l l involve 
the use of some nonlinear components and nonlinear connections. However, as 
indicated in Chapter 1, there is considerable advantage i f a physical system can be 



56 An introduction to control system modelling 

modelled using linear differential equations, since this permits use o f the many 
powerful linear control system design techniques to be studied later. Fortunately, 
linearization of many kinds of nonlinear equations is fairly straightforward. 

The procedure begins with the choice of a set of steady-state input value(s) 
together wi th the corresponding steady-state output value(s), representative o f the 
normal operating condition of the system (often simply called the operating point). 
The nonlinear functions which form the system model are then expanded using 
Taylor series expansion around the selected operating point. Impl ic i t in the analysis 
is the fundamental assumption that the linearized model is only going to be used in 
the vicini ty of the operating point. This means that all deviations from the operating 
point should be small (although the acceptable definition of ' smal l ' changes from 
system to system). 

A Taylor series expansion is written in terms of deviations from the operating 
point, and consists of an infinite series of terms in which these deviations are linear, 
squared, cubed and so on as the series progresses. By neglecting al l terms higher 
than first order (because the small deviations, raised to any power higher than unity, 
are assumed to be relatively insignificant) an approximate linear equation, 
representing the full nonlinear series, is obtained. 

Assume, for example, that a model comprising some nonlinear function /(JC, y) 
of the process variables x and y has been obtained, and that the original steady-state 
values o f these variables are x0 and yQ respectively. 

Since, in this example, the function / = / ( x , y) is a function of two variables, 
the Taylor series expansion w i l l include terms which are the partial derivatives o f / 
wi th respect to x and y. Performing the expansion around the steady-state operating 
point, and truncating the Taylor series after the first partial derivatives, gives the 
required linear approximation thus: 

f(x,y)=f(xoiy0) + 

+ 

+ dy2 

dx 
(x - x0) + 

Ö 2 / 

x0iyo 

+ ••• + 

dx2 

df 

2 

xoiy<} 

(y-yoY . a 3 / 
2! ¿ y 

W o 

W e 

(x-x0f  
2! 

(y-y0) 
xoiy0 

3! + • 

Or, on neglecting terms higher than first order: 

/(*.?)«/(*„, y0) + Yx 

w „ 
X°) + dy-

(y-y0) (2.29) 

where f(x,y) is the approximate linearized model at some new operating point 
represented by x and y. 

The first term on the right-hand side (RHS) of Equation (2.29) is the value off 
at the original operating point (x0,y0) and w i l l be a constant. The second term on 
the RHS is read as, 'the partial derivative o f / wi th respect to JC, evaluated at the 
original operating point, and multiplied by the deviation of x from its original 
operating point value'. The effect of this may be easier to visualize in another way. 
The partial derivative is actually the slope o f the graph of / vs. x (wi th y held 
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constant at ya) at the operating point x0. I t thus gives us a tangent to / at x0. M o v i n g 
along this tangent by an amount x — xa (which is impl ied by mul t ip ly ing the slope 
by (x - xj) therefore predicts the change in the value of / from its value at the 
operating point. When the first term in Equation (2.29) is taken across to the LHS, 
as below, this is precisely what is required. See also Example 2.10. The third RHS 
term is the obvious rewording of this for y. 

In practice, the system performance relative to the new operating point (x, y) is 
required, rather than that relative to the original point (x0,y0). Therefore, Equation 
(2.29) is rewritten as: 

[f(x,y)-f(x0,y0)] 
df_ 
dx 

(x~x0) + 
d[_ 
dy (y-y0) 

Example 2.11 illustrates the importance of this modification. 

Example 2.10 A linearized model of a simple 
pendulum 
A lumped-parameter model of such a pendulum comprises a massless, rigid rod of length 
/ ( m ) , hinged at one end to a frictionless bearing which is fixed in space, as shown in 
Figure 2.23(a). The other end of the rod is attached to a point mass m ( k g ) . 

To obtain the mathematical model, it is assumed that the pendulum can oscillate only 
in the plane of the paper. Wi th this constraint, only one coordinate - the angular 
displacement of the rod, 9 (rad) - is required for a complete specification of the 
pendulum's geometric location. Such a mechanical system is said to have one degree of 
freedom. A further assumption is that the only force acting on the system is gravitational. 

There is no input that can be manipulated, but there are two possible disturbance 
inputs: the ini t ia l angular displacement of the rod and the ini t ia l angular velocity. 

The free-body diagram in Figure 2.23(b) shows the rotational mechanical system 
displaced by an angle 9 from its equil ibrium position. There is a moment of — mgl sin 9 
due to the displacement of the mass and the gravitational force mg (where g is the 

Figure 2.23 (a) A simple 
pendulum - lumped-
parameter model, (b) A 
simple pendulum - free-
body diagram. 
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acceleration due to gravity, g « 9.81 m s ~ 2 ) . The negative sign indicates that the direction o f 
the moment is in the opposite direction to 9. From Newton's second law for rotational 
systems: 

d29 
I — —mgl sin 6 

Noting that, for this system, the moment of inertia, / , is given by / = ml2, then: 

m -jg- + - y - sin 9 = 0 (2.30) 

Equation (2.30) is nonlinear because of the sinusoidal term, but i t may be linearized by 
assuming that only small perturbations (swings) w i l l occur about the operating point. 
Selecting the equilibrium position 9 = 0 rad, and making a Taylor series expansion o f 
sin#, gives: 

3! 5! 

Hence, for small angles measured in radians, sin 9^9. Using a calculator to test this 
approximation shows that, for small angles in radians, i t is indeed the case that sin 9^9. 
I t also shows that the resulting model w i l l be at least 10 per cent in error by the time 9 
reaches ±n/4 radian (45°). 

To visualize what is happening here, sketch a plot of sin 9 vs. 9 (for 9 i n radians) and 
draw a straight line of unity slope through the origin (9 = 0). The sinewave represents the 
ful l nonlinear equation, while the straight line is the approximation sin 9 « 9. I t becomes 
obvious that the further from the operating point (the origin) one moves, the less accurate 
the linear model becomes. 

Making the proposed substitution sin# w 9 in Equation (2.30) gives the linear model: 

dt2 I 

Checking the units for consistency indicates that each term has units of rad s - 2 . 
Since the operating point was at zero, there was no constant offset to complicate things. 

I t is interesting to note that the standard equation of a straight line, y = mx + c, fails the 
superposition test, and is therefore nonlinear according to the given definition. To linearize 
y = mx + c, the constant offset c must be removed. This is easily achieved by redefining y in 
terms of its deviations from c, which is effectively shifting the origin to the point (0, c), that 
is, (y — c) = mx. In the general case, this is what happens when the first RHS term of 
Equation (2.29) is moved to the LHS. Example 2.11 offers further clarification. 

Example 2.11 A linearized model of fluid flow 
through a valve 
From Bernoulli 's law the flow through a valve q ( m 3 s _ 1 ) is related to the pressure head 
across the valve h (m) by the fol lowing equation, in which g is the acceleration due to 
gravity, and Cd is the coefficient of discharge ( m 2 ) : 

q = Cd^/{28~h) 
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Find a linear relationship between q and h (at present, the square root makes i t nonlinear). 
For this equation, the truncated Taylor series expansion o f q around the steady-state 

value o f h, namely ha, is found using Equation (2.29) wi th x = h and y = 0 (since q is a 
function o f one variable only in this case): 

<l\h ~ t\h. + 
dq 

dh 
(h ~ K) 

(h ~ K) 

Notice that the above equation defines a straight line, since the term mul t ip ly ing h - hQ is 
a constant and q\h is a constant, equal to the value o f q evaluated at hQ, that is 

q\K = Cd v ^ A j 

To produce the required linear flow equation, the constant q\ho is moved to the L H S to 
give: 

Vi\h - ?L (h - K) 

When h = hQ, there is no change in the head (that is, no deviation from the original 
operating point) and hence no change in flow from the value q\h . This may also be stated 
(using Ah to represent a change in h and so on) as, when Ah = 0 then Aq = 0. For clarity, 
the A is usually omitted and the linearized flow model about the operating point h0 is 
simply written as: 

where it is to be understood that q and h now represent deviations (changes) from their 
operating point values. 

Example 2.12 Linearizing a product of two 
variables 
Linearize the model consisting of the product of two dependent variables x and y, such 
that 

f(x,y) =xy 

Directly from the Taylor series of Equation (2.29), we obtain: 

xy^x0y0+y0(x-x0)+x0(y- yQ) 

which has converted the nonlinear product into a 'straight l ine ' function in x and y. Again, 
i f the first term on the RHS is moved over to the L H S , everything is expressed in terms o f 
changes from the original operating point, and the result becomes linear. 
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2.4.6 Lagrange's equations 
Advanced section 
This section is typical of the approaches normally used to model mechanical translational and rotational systems. It is, 
however, optional if the emphasis is on control system design, rather than control system modelling. 

As the number of components in a lumped-parameter model increases, the 
techniques described so far in Section 2.4 become more unwieldy. Alternative 
techniques do exist. One such technique is based on Lagrange's equations, which 
provide a very powerful means of determining the equations o f motion o f a 
dynamic system. They are easily shown to be based on Hamilton's principle, 
which can be loosely interpreted as: 
For a dynamic system in which the work of all forces is accounted for in the 
Lagrangian (see below), an admissible motion between specific configurations of 
the system at times tx and t2 is a natural motion if, and only if, the energy of the 
system remains constant. 

Although this is phrased in terms o f 'forces' and 'motions ' , the underlying 
ideas are concerned wi th energy, and are therefore equally applicable to electrical 
systems. 

For conservative systems (see Section 1.3.4), Lagrange's equation may be 
written as 

d_ idL\ _ d L _ Q 

dt \dqj dqt ~ 

where 

L = T - V is the Lagrangian (T and V are the kinetic and 

potential energies in the system, respectively) 

q{ = generalized coordinates (see below) 

For more general systems (that is, ones including power dissipation): 

d fdL\ dL dP „ 

where 

P = power function, describing the dissipation o f energy by the 

system 

Qi = generalized external forces acting on the system 

As seen in the previous examples, the number o f degrees of freedom of a body is 
the number o f independent quantities that must be specified i f the position o f the 
body is to be uniquely defined. Any unique set o f such quantities is referred to as a 
set of generalized coordinates for the system. In Example 2.5, the position o f the 
mass o f the accelerometer is defined by the displacement x and therefore x is a 
generalized coordinate for this system. The system in Example 2.6 has two degrees 
of freedom, and so two generalized coordinates are required; these could be 9X and 
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Table 2.7 Energy expressions for electrical and mechanical elements. 

Energy type Mechanical Electrical 

Kinetic energy 

Potential energy 

V 

Dissipative energy 

Mass 

H 
T= y2mx2 

Spring 

V = V 2 kx2 

Gravitational 

H 
V = mgh 

Damper 

H E * 
p = y 2 bx2 

Inductor 

L 

T=V2Lq2 

Capacitor 

H H -

Resistor 
R 

P=xl2Rq2 

82, the angular displacements of the two inertias. Clearly, from Section 2.4.1, there 
must be an electrical analogy. Loop currents (or, more usually, the charges in the 
various loops) could form a set of generalized coordinates. 

The various energy forms for linear mechanical and electrical elements are 
summarized in Table 2.7. Note that the current / is expressed in terms of charge q as 

dq 
i = n = q 

and that linear velocity v is expressed in terms of displacement x as 

dx . 
v = — = x 

dt 

(2.32) 

(2.33) 

Lagrange's equations have many modell ing applications, although the intention in 
this section is to demonstrate their effectiveness in developing mathematical 
models for electromechanical systems. 

Example 2.13 A model of a capacitor microphone 
The lumped-parameter model of a capacitor microphone is shown in Figure 2.24. I n the 
equil ibrium position and wi th no external force applied to the moving plate, there is a 
charge qQ (coulombs) on the capacitor. This charge results in a force o f attraction between 
the plates which pre-tensions the spring. A sound wave applies a force to the moving 
plate, resulting in displacement x (m) from the equil ibrium position. This motion alters the 
capacitance C o f the capacitor and results in a change in charge. This example uses 
Lagrange's equations to produce a mathematical model for this lumped-parameter system. 
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Fixed plate 

Figure 2.24 A capacitor 
microphone. 

m 

f(t)\ < ^ > X S X ^ Moving plate 

The system has two degrees of freedom, one mechanical and the other electrical. Two 
coordinates are therefore required, and the charge q and displacement x from equil ibrium 
are selected. 

The kinetic energy function for the system must contain a term for the electrical 
equivalent of 'kinetic energy' as well as the more usual mechanical component, and is: 

1 , 1 , 
- LA +-mv¿ 

1 
i -2 
Leq 

1 
(2.34) 

where 
S 
ïïi' 

è 

L e = the inductance of the arrangement (H) 

i = the current flowing in L e (A) 

m = the mass of the moving plate (kg) 

v = the velocity of the moving plate ( m s - 1 ) 

the dot notation is used to represent the time derivative, q dt 
etc. 

The potential energy function is also required. The mechanical part of this is found by 
integrating the force stretching or compressing the spring, over the deflection of the spring. 
This yields units of N m , which are easily shown to have the dimensions of energy. Thus: 

kx dx kx1 

where k = the spring stiffness ( N m - 1 ) 
The electrical part of the 'potential energy' function is found as follows. I f C (F) = 

the capacitance between the plates, then the voltage appearing across the plates is given 
by v c = q/C. A t the same time, the current in the circuit is given by i = dq/dt. The 
instantaneous power is therefore vci = {q/C) dq/dt. Power is rate of energy expenditure, so 
the energy is found by integrating this expression with respect to time as follows: 
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The potential energy function is therefore: 

However, the capacitance C is a function o f plate separation xQ — x given by: 

eA 

where 

C 

A = area of plates ( m 2 ) 

e = dielectric constant of air ( F m _ 1 ) 

so: 

V = ^ A { x ° ~ x ) q 2 + \ k ^ ( 2 3 5 ) 

Since this system is not conservative (the resistance R(Q) and the damping b ( N / ( m s - 1 ) ) 
dissipate energy) a power dissipation function for the system is required. This comprises 
the integral o f the voltage across the resistor wi th respect to current (thus giving units o f 
watts for the electrical part of the system), and the integral o f the force exerted by the 
damper wi th respect to velocity (thus giving units o f watts for the mechanical part o f the 
system): 

P=\Ri di + | bv dv =l-Ri2+ X- bv2 

Changing from / and v to the chosen coordinates using Equations (2.32) and (2.33): 

P=l-Rq2 + l-bx2 (2.36) 

Apply ing Lagrange's equation (2.31) to the coordinate x gives: 

d (dL\ dL dP , . , , 

dt{irx)-d-x + m = f { t ) ^ 

where L = T — V and f(t) is the external force at x. Hence from Equations (2.34) and 
(2.35): 

L=l-Leq2 + l-mx2-^x(x0-x)q2-l-kx2 (2.38) 

From Equations (2.36) and (2.38), the terms needed for Equation (2.37) are: 

dL . dL q2 , j dP , . 
-— = mx, — = -—-kx and — = bx 
ox ox 2sA ox 

Lagrange's equation (2.37) therefore yields: 

mx + bx + k x - ^ q 2 = / ( / ) (2.39) 
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Similarly, applying Lagrange's equation to coordinate q yields 

Lq+Rq + -L(x0-x)q = f(t) (2.40) 

; Equations (2.39) and (2.40) form the required mathematical model. 

2.4.7 Models of interconnected systems 
With complex systems, a sensible modelling technique is to reduce the system to a 
number o f manageable lumped-parameter elements, which are interconnected. The 
mathematical model for each element is then determined, and an overall system 
model developed by combining all the equations for all the elements in a way which 
represents the interconnections. However, when adopting this approach, care 
should be taken to ensure that one element does not interact wi th , or load, another in 
the real plant. In Example 2.8 (Figure 2.21), the two tanks do interact wi th each 
other, since the head of fluid in tank 1 is partially dependent on the head of fluid in 
tank 2. The mathematical model describing the changing head in tank 1 thus 
requires a feedback of information from the head of fluid in tank 2 (see Example 
2.22). I f the tanks were non-interacting (that is, i f the outlet flow from tank 1 simply 
poured into tank 2, as in Figure 2.25), then the two tanks could be modelled 
independently. 

In general then, i f elements are non-interacting, the output from one stage 
becomes the input to the next. When interactions occur they must be accounted for 
in the model, which usually requires the feedback of information from a later stage 
to an earlier stage. 

i i 

f IXI 

°2 

i 
R2 

1 IXI 1 

Figure 2.25 Two non-
interacting tanks. 
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Example 2.14 Modelling an interconnected 
network - incorrectly 
Demonstrate that the electrical network shown in Figure 2.26(a) cannot, i n general, be 
modelled by the independent networks shown in Figures 2.26(b) and (c). Under what 
conditions could independent modelling be carried out? Assume that the line L carries no 
current. 

The equation relating the input voltage v, to the output voltage v0 i n Figure 2.26(a), 
for no current flow along L , is given by (proof o f which is left as an exercise for the 
reader - see Problem 2.1): 

R* 
For Figure 2.26(b) the equation relating v, and v is: 

For Figure 2.26(c) the equation relating v0 and v, again for no current flow in L , is: 

R2+Ri 

v 0 = v 
L 

R^ 

(2.41) 

(2.42) 

- r 

v/f> 

(a) 

(b) 

Figure 2.26 (a) A complete 
electrical circuit, (b) First 
subsystem of the circuit of 
Figure 2.26(a). (c) Second 
subsystem of the circuit of 
Figure 2.26(a). 

v(t) 

(c) 
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Eliminating v from Equations (2.41) and (2.42) yields 

^ ( * 2 + * 3 ) C - 5 - + - ^ - V 0 = V, 

which demonstrates the inadequacy of independent modelling for interacting systems, as it 
does not agree wi th the original (correct) model. 

The two modelling procedures would give identical results i f the resistance R3 were 
made very large. Under these conditions there would be a negligible flow of current 
through R3 and, since by definition there is no current flow through L , the circuit in Figure 
2.26(c) would then not load the circuit in Figure 2.26(b) - that is, the two circuits would 
not interact. 

2.5 Differential equations and Laplace transforms 
From the preceding sections, it is evident that a mathematical model, describing 
small perturbations about a system's operating point, usually consists o f ordinary 
linear differential equations. The solution o f these differential equations yields the 
system's dynamic and steady-state characteristics. Unfortunately it is not easy to 
deal wi th differential equations directly. Although it may be useful to solve the 
equations and hence find the system's response (or responses) to a given input (or 
inputs), such a solution provides little information about the changes required to the 
system i f the responses are unsatisfactory. 

For this reason, alternative systematic methods of solution have been 
developed, which are also capable of providing the basis for various analysis and 
design techniques. This section w i l l concentrate on two such methods, namely, the 
state-space and Laplace transform methods of representing system models, and the 
relationship between these methods. 

2.5.1 An introduction to state-space models 
The differential equation model found in Example 2.14 is said to be of first order, 
because it involves only a first derivative. On the other hand, the total model o f 
Example 2.13 is of fourth order, because i t involves two separate equations, each of 
which contains a second derivative. In general, the order o f a model w i l l be equal to 
the number of separate energy storage mechanisms in the system being modelled. 
In Example 2.14, there was just one - the capacitor. In Example 2.13, there were 
four - the capacitance of the microphone plates, the inductance o f the electrical 
circuit, the spring acting on the moving plate and the mass of the moving plate 
(which 'stores' potential energy). Note that all the elements mentioned store energy, 
but that electrical resistance and mechanical damping do not - they dissipate i t . 
Theoretically, i f an electrical circuit could be built containing only parallel 
capacitance and inductance, i t would be a conservative system and would oscillate 
continuously. Since there is no resistance in the circuit, all the energy would be 
continuously exchanged between the inductor and the capacitor. Similarly, a 
theoretical mass-spring system (one wi th zero damping, friction and air resistance) 
would also continuously oscillate, since the energy would repeatedly be exchanged 
between the mass and the spring without loss. 
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I t is possible to solve ordinary, linear, first- and second-order differential 
equations directly. However, complex systems such as aircraft and chemical plants 
(for example) can easily reach orders o f several tens (or hundreds) and direct 
solutions become impractical. Even computers are not very good at reliably solving 
a lOOth-order equation directly - i t is a difficult problem from a numerical analysis 
viewpoint. I t follows that, in the analysis and design o f control schemes, a 100th-
order differential equation could not easily be dealt w i th directly. For these reasons, 
a systematic approach, such as the state-space methodology, is required. 

The state-space approach to modell ing works by replacing high-order 
differential equations wi th a set of simultaneous first-order differential equations. 
For example, a lOOth-order differential equation is replaced by a set of 100 
simultaneous first-order differential equations. This might not seem much of a step 
forward, but i t actually provides a sound framework both for obtaining solutions 
and for control system analysis and design. Computers are very good at solving any 
number of first-order simultaneous equations. Furthermore, simultaneous first-order 
differential equations can be written in a standard vector-matrix form, providing a 
compact notation wi th which to work. This means that matrix algebra is the primary 
analytical tool for this approach. Appendix 1 gives a unique viewpoint of matrix 
algebra for control engineering and should contain all the information required. In 
particular, Section A 1.1 is sufficient for the present chapter. 

The remainder of this section gives a definition o f the standard state-space 
model of all linear systems (Equations (2.43) and (2.44) below), fol lowed by some 
methods of generating such models, and a couple of examples. Section 2.5.2 then 
begins the study of the alternative Laplace transform approach. 

The state of a system 
The state o f a system may be thought o f as a vector quantity. I n the context of 
control engineering, the state is specified by a set of variables arranged in vector 
form (Appendix 1). Specifically, the state vector of a system is defined as a set of 
variables (the state variables), the choice o f which is free so long as they obey the 
fo l lowing general rules: 

• They must be linearly independent. That is, one cannot simply be a mult iple of 
another, or a weighted sum of two others, for example. 

• They must be sufficient in number to specify completely the dynamic behaviour 
o f the system. 

• They may not be system inputs, or linear combinations o f system inputs (since 
inputs are impressed from outside the system, and are therefore not states o f the 
system itself) . 

I t transpires that, for an «th-order system, at least n state variables are needed. In 
practice, it is usual to choose precisely n state variables, so as to avoid possible 
computational difficulties. 

There are many ways of choosing the state variables. Some lead to states 
which are physically meaningful and measurable in the real wor ld . Others lead to 
states which are abstract (that is, they do not correspond to physically measurable 
signals), but give the resulting model neat mathematical forms which are easy to 
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work wi th . In this chapter, both approaches are introduced. I n any case, the states 
for an nth-order system are conventionally called xx, x2, x3,...,xn, and are written 
as the column vector x = [xx x2 x3 ... JC„] t (note the transpose operator). 

Similarly, i f the system has m inputs and p outputs, then the input and 
output vectors u and y are the column vectors u = [ux u2 u3 ... um)T and 

y = [y\ yi y?> • • • yP\ • 
A state-space model of any delay-free, linear system, o f any order, is then 

made up o f the fol lowing pair of time-domain, differential, vector-matrix equations 
(a pure time delay affecting a signal can only be included in a state-space model 
approximately - see Chapter 8 - but is easily handled by Laplace transform 
methods): 

x = Ax + Bu (2.43) 

y = Cx + Du (2.44) 

Equation (2.43) is the state equation and Equation (2.44) the output equation. The 
vector x is the time derivative of JC, comprising the derivative o f each individual 
element. The quantities A,B,C and D are all purely numerical matrices, as listed 
below. 

x = the n x 1 state vector for an nth-order system 

u = the m x 1 input vector for a system wi th m inputs 

y = the p x 1 output vector for a system wi th p outputs 

A = the n x n system (or plant) matrix for an nth-order system 

B = the n x m input matrix for an nth-order system wi th m 

inputs 

C — the p x n output matrix for an nth-order system wi th p 

outputs 

D = the p x m feed forward matrix for a system wi th p outputs 

and m inputs 

Equation (2.43) (the state equation) describes the dynamic behaviour o f the 
system's states in response to applied inputs (and ini t ia l conditions - see Sections 
3.2.1 and 3.6.2). Equation (2.44) (the output equation) is non-dynamic, and simply 
maps the state variables and inputs onto the outputs. 

Equations (2.43) and (2.44) are two of the most important in control 
engineering. The whole of the time-domain expansion o f control theory since the 
1960s is based upon them. One o f the attractive aspects o f the state-space 
approach is that Equations (2.43) and (2.44), wi th no alteration whatsoever, 
describe all linear systems. The only things that change from system to system are 
the sizes o f the matrices and vectors (according to the list above) and the numerical 
contents of A, B, C and Z>, none of which affects the appearance of Equations (2.43) 
and (2.44). 

Conversion of a system's mathematical model, described by ordinary linear 
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Figure 2.27 The 
relationship between 
w(f),z(f) and y(f). 

"(f) z{t) y(t) 

^ — — • 

differential equations, into a state-space model can be illustrated by considering the 

equation: 

'2" du d3y d2y dy 
dt2 + b\ -r + M (2.45) 

which represents a third-order system (the highest derivative o f the output is third 
order) wi th one output y(t) and one input u(f) - the dependency on t is omitted 
from the analysis for clarity. As part of a systematic conversion approach, consider 
an intermediate variable z(f) such that the system is conceptually split into two 
blocks as shown in Figure 2.27. Note, however, that the approach to be described 
is never actually followed by hand. Once it has been used to prove the method, the 
result can be found by inspection o f the differential equation model (such as that o f 
Equation (2.45)), as described below. Returning to Figure 2.27, the first block 
produces an output z(t) from the input u(t). This intermediate output z(f) then 
becomes the input to the second block which produces the required output y(t). 
Therefore 

dh 

~d£ 

d2z dz 

Jt 
+ a3z = u 

and 

, d2z , dz , 
y = b ° ^ + b>dt + b 2 Z 

(2.46) 

(2.47) 

Equations (2.46) and (2.47) can be derived by various means. Use o f the Laplace 
transform, studied next in this chapter, is perhaps the easiest, so the reader might 
l ike to return to the derivation of these two equations after studying i t (see Problem 
2.2). For the moment, the important thing to notice is the form of the resulting 
equations, and their relationship to the original model (Equation (2.45)). Since the 
system is third order, three state variables are required, and these may be selected 
according to the fol lowing systematic pattern (for example): 

(2.48) 

(2.49) 

z 

x \ — x2 ~ Z 

x 2 — x3 — Z 

Differentiating x3 and using Equation (2.46) yields: 

i 3 = z — -a3xx — a2x2 — axx3 + u (2.50) 

Wri t ing Equations (2.48) to (2.50) as the three rows o f the state equation gives: 

0 

0 

-a. 

1 0 

0 1 

-a2 -ax 

~ x \ ~ "0" 

x2 + 0 

_*3_ 1 

(2.51) 
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The output equation is obtained from Equations (2.47) to (2.49) and xx = z, and is: 

y = \bi b \ *o] + [0]K (2.52) 

This particular state-space realization has various names. The A matrix is in a 
canonical form, sometimes known as the companion form or the controllable 
canonical form for reasons which w i l l emerge in Chapter 5. In this form, the state 
variables are the intermediate variable z and its derivatives. 

Note that there is no unique state-space model o f any given system. The 
canonical form of Equation (2.51) has some mathematical advantages. However, 
there is actually an infinite number of other possible state-space models of the same 
system. These are obtained by choosing different sets of states, o f which some are 
even more mathematically convenient (for example, the A matrix can be made 
diagonal by suitable choice of the states, thus making certain types o f analysis 
relatively easy). 

The main advantage of Equations (2.51) and (2.52) over other forms is that by 
comparing the ordinary linear differential equation, Equation (2.45), w i th the state 
Equation (2.51) and the output Equation (2.52), i t can be seen that the differential 
equation can be converted into this canonical form by simple substitution of the 
differential equation coefficients into the matrices A and C. The conversion can be 
performed by inspection, wi th none of the intervening mathematics being 
necessary, provided that in Equation (2.45) the order of the differential expression 
containing the output is greater than the order of the differential expression 
containing the input (this should always be the case for real-world systems, for 
reasons which are explained in Section 4.5.2). If , in an approximate model, the 
orders of the two differential expressions are the same, then a further substitution is 
required as shown in Example 2.15. It w i l l never be the case, for a believable model 
of a real system, that an equation of the form of Equation (2.45) has an input 
polynomial of higher order than the output polynomial. 

The rules for obtaining Equations (2.51) and (2.52) from Equation (2.45) by 
inspection, for a SISO system, wi th a higher order output than input are as follows: 

• Ensure that the differential equation of the system is o f the form of Equation 
(2.45), and that the coefficient of the highest order term in the output {on the 
LHS) is unity (divide the entire equation by i t , i f this is not ini t ia l ly the case). 

• The required sizes of A, b and c (d w i l l always be a scalar zero under these 
circumstances) are found from the list fo l lowing Equation (2.44). b w i l l always 
be a single column vector, because there is a single input, c w i l l always be a 
single row vector for a single output, A is always square. The unspecified 
dimension of all these is always equal to the order o f the system, n. 

• A always takes the form of a square matrix of zeros, except for a diagonal of 
unity elements above the leading diagonal (the leading diagonal runs from the 
top left-hand corner to the bottom right), and a non-zero last row. The last row 
comprises the coefficients of the LHS (output terms) of Equation (2.45) 
(excluding the first coefficient, which is why it must be unity) , written down in 
reverse order, and wi th their signs changed. I f any term is absent from Equation 
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(2.45), a zero coefficient must be inserted. For first-order systems, a becomes 
scalar, and is regarded as a single-element 'last r ow ' . 

• b is always a column vector of zeros, except for the last element, which is always 
unity. 

• c is a row vector comprising the coefficients o f the RHS (input terms) of 
Equation (2.45), written down in reverse order, but w i th the signs preserved. 
Again, i f any term is absent from Equation (2.45), a zero coefficient must be 
inserted. 

The only major disadvantage of this form of state-space model is that the states are 
not physically meaningful. There is no reason why the variable z(t) and its 
derivatives should either correspond to any meaningful signal in the real wor ld , or 
be physically measurable. Nevertheless, i f no mistakes have been made, the 
resulting state-space model should replicate the input-output behaviour o f the 
modelled system. From that viewpoint, the states are not particularly important, as 
they are purely a matter of how we choose to represent the internal behaviour o f 
the system (but they become important when measurements of them are needed for 
control purposes, which w i l l be the case in Chapter 5). 

Example 2.15 A state-space model of an electrical 
lead compensator 
Find a set of state-space equations for the lead compensator o f Example 2.4 and Figure 
2.15 which is described by the ordinary differential equation (from Equation (2.16)): 

dvJt) /?! +/?2 / x dvAt) 1 / N 

° y • + ^ - r r 1 Voit) = - ^ r 1 + T ^ T V M dt CRXR2 dt CR} 

(2.53) 

The controllable canonical state-space form is obtained analytically ( i f desired) by 
introducing an intermediate variable z(t) thus: 

dz(t) Rx+R2 / N , , 

dt CR, 

(2.54) 

(2.55) 

By letting xx(t) = z(t) and u(t) — v,-^) then from Equation (2.54), the state equation is 
given by 

Rx +/?2 

CRXR2 

xx + [l]u (2.56) 

Substituting y(t) for v0(t) and xx(t) for z(t) in Equation (2.55), and replacing dz/dt by the 
expression for xx (t) from Equation (2.56), yields the output equation: 

y 
1 

CR2 

xx + [\}u (2.57) 

Note that in this particular realization the system state (xx(t) = z(t)) has no direct physical 
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value, and cannot be identified in Figure 2.15. In fact, analysis o f Equation (2.57), together 
wi th Figure 2.15, shows that xx(t) = CR2vc(t). Also notice that the 'by inspection' rules, 
given above, need modifying for this system, since the output and input portions o f 
Equation (2.53) are o f the same order. 

When there is a term in the input of the original differential equation model which is 
o f the same order as the highest order term in the output, proceed as follows. Let b_x be 
the coefficient of the new highest-order term in the input of the differential equation model 
(for example, in Equation (2.53), b_x = 1). The rules for A and b are unchanged, c is 
obtained as before, but then b_x times the last row of A is added to i t . d w i l l be a scalar, 
equal in value to The reader should try to obtain Equations (2.56) and (2.57) using 
this method. 

Example 2.16 An alternative state-space model 
for Example 2.15 
Demonstrate that other state-space realizations are possible, by letting the state variable in 
the lead compensator o f Example 2.4 be the voltage across the capacitor (see Figure 2.15). 
In many ways, this is a more important example than the last one, because it begins to 
show how the engineer can often choose system states to be physically meaningful and 
measurable quantities. In practical control system design, as opposed to theoretical 
analysis, i t w i l l usually be desirable to have access to the state variables for use in control 
schemes (see Chapter 5), so this w i l l almost always be the approach used in selecting the 
states. 

Hence, let: 

xx = vc(t) 

Now using this in Equations (2.12) and (2.15), 

The currents can be eliminated by using the element equations (2.14), (2.11) and (2.13) 
thus: 

Cxx = ^ v 0 ( t ) - ^ x x (2.58) 
K2 Kx 

but the compatibility equation states that 

voW = v,(0-vc(0=v,(r)-*, (2.59) 
Setting y(t) = v0(t), u = v,-(r) and then substituting Equation (2.59) into Equation (2.58) 
gives the state equation 

Rx +R2 

CRXR2 

1 

CR 2J 
(2.60) 

The output equation is obtained directly from Equation (2.59). 

y = -[l]xx + [1]K (2.61) 

Equations (2.60) and (2.61) are the required state and output equations. They are clearly 
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different from Equations (2.56) and (2.57), but note that the A matrices' (cf. Equation 
: (2.43) - but they are scalars in this case) are identical. This is to be expected i n a first-

order system because it is this quantity which fixes the system dynamics, which ought to 
be unchanged between the two representations. ( In a higher order system, i t turns out to be 
the eigenvalues o f A which remain constant between different state-space models o f the 
same system; but that is a matter for later.) In this new realization, the state variable is the 

> voltage across the capacitor and therefore should be measurable. This may we l l be a useful 
attribute for use in a control system. 

It may occur to the reader that, since it was shown in Example 2.15 that 
xx(t) = CR2vc(t), the present example could equally we l l have been solved by making that 

: substitution into Equations (2.56) and (2.57), and then relabelling v c ( f ) as the new x^t). 
While this is true for this simple example, in general such a line o f attack would not be 

* worth pursuing. 

Various aspects of state-space models are pursued further in Section 2.7 and in the 
problems. Problems 2.9 and 2.11 address the combination o f state-space models in 
series and parallel. 

2.5.2 Laplace transforms 
Whereas the state-space model is the most widely used time-domain model for 
linear systems, the Laplace transform provides the mathematical foundation for 
most o f the frequency-domain control techniques, that is, most control analysis and 
design techniques developed in the West prior to the 1950s, plus more modern 
frequency-domain methods such as the inverse Nyquist array and characteristic 
locus. ( In the former Eastern bloc countries, t ime-domain methods had generally 
been preferred, due to different historical areas o f work. I n fact, i t was largely the 
success o f the Soviet Sputnik space programme in 1957 that caused the renewal of 
interest in time-domain analysis in the West, and thus led to the development of the 
state-space methods.) 

The Laplace transform method is a substitutional one, i n which the linear 
differential equation model of the system is transformed into the complex 
frequency, or Laplace domain. This greatly simplifies the mathematics, since the 
operation o f integration associated wi th the time-domain solution is replaced by 
algebraic manipulation of the transformed equations. After this manipulation, the 
required time-domain solution is obtained by making the inverse Laplace 
transformation. This process is shown schematically in Figure 2.28. 

When using Laplace transforms, the requirement is a good set o f Laplace 
transform tables. I t is useful to know how these tables are formulated, but such 
knowledge is not essential. Each entry in the table could be derived afresh by the 
engineer, but the important thing is the application o f the tables to specific 
problems. 

This section, together wi th Appendix 2, defines the Laplace transform and 
examines its operations in order to demonstrate how tables o f Laplace transforms, 
such as Tables 2.8 and 2.9, are produced. Also, and possibly more importantly, 
the derivations should aid in the understanding o f how these tables are to be 
applied. 
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Definition of the Laplace transform 
The basic Laplace transform of a time s igna l / ( f ) is defined as: 

poo 
F(s)=\ f(t)e-stdt (2.62) 

Jo 

and written symbolically as 

f(s) = <e\m} 

Table 2.8 Laplace transform operations. 

Operation / ( O F{s) 

1. Transform integral m f(t)e~stdtoxS£7(f) 
0 

2. Linearity /,(/)±/2(0 Fl(s)±F2(s) 

3. Constant multiplication afU) aF(s) 

4. Complex shift theorem e±a'f{t) F(s =F a) 

5. Real shift theorem /(' ~ T) e-TsF(s)(T>0) 

6. Scaling theorem fit/a) aF(as) 

7. First derivative s F i s ) - m 

8. «th derivative 
r=\ U l 

9. First integral [' m dt 
Jo 

I F{S) 

10. Convolution integral f / i M / i C - T ) * 
Jo 

Fi{s)F2(s) 
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Table 2.9 Laplace transforms of common functions. 

Time function Laplace transform 

1. S(t): unit impulse 

2. u(t): uni t step 
3. t 

4. f 

5. eat 

6. cos cot 

7. sin (Dt 

8. e~at cos cot 

9. sin co/ 

10. 

11. - ^ — r e - ^ s i n [ c V ( l - i 2 ) / ] 
v o - n 

l 

13. 1 — cos cot 

12 

14. 1 - e -t/T 

15. i - £ ± I ^ 

16. 
x / O - i 2 ) 

<T C G ) i s i n f oVO ~ f + 

where 0 = tan va - n 
-c 

l 

l/s 

l/s2 

n\/s"+[ 

\/{s-a) 

s/(s2 + co2) 

co/(s2 + w2) 

s + a 

(s + a)2 + co2 

CO 
(s + a ) 2 + CO2 

1 
(s + a)(s + b) 

co2 

s 2 + 2(cos + co2  

1 
( 1 + J 7 T 

.,2 
j ( j 2 + CO2) 

1 
5(1 + 75) 

l 
5(1 + tt)2 

5C02 

5 2 + 2£co5 4- co2 

I t is common practice to use a capital letter F which is a function o f the new 
variable s (see below) for the transform of the time signal f(t). Also, i t is assumed 
that f(t) is zero for all times before t = 0. 

In Equation (2.62) the exponent st must be dimensionless, otherwise the 
expression e~st is meaningless. Thus the variable s has dimensions o f 1/time, which 
is the dimension of frequency. Since s is also a complex quantity, i t is often referred 
to as the complex frequency. 

Two useful properties fol low directly from the definition o f Equation (2.62). 
These are the properties of linearity and constant mult ipl icat ion, respectively: 

^[/. (0 + /2(0] = ̂ [/.W] + ^[/2W] 
and 

se[qf(t)\ = ase[f(t)\ 
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Such properties are referred to as Laplace transform operations. A list o f such 
operations is given in Table 2.8. 

Laplace transforms of some common functions 
The Laplace transforms of a number of common functions are given in Table 2.9. 
For example, Equation (2.62) may be used to find the Laplace transform of 

f(t) = e« 

as 

f° 
g[eat] = 

Jo 

'00 
eate~ 

or 

POO 
F(s) = *-<*-«)' dt 

Jo 

which becomes 

F{s) = — [*-(*-«>']~ 
s-a* J o 

Since s is complex, the term within the square brackets w i l l approach zero for 
increasing t provided the real part of s — a is positive, leaving 

F ( i ) = - L (2.63) 

which, from entry 5 of Table 2.9, is the expected solution. 
Equation (2.63) may be used to find other standard transforms. I f the constant a 

equals zero, then 

S£ [e0t] = i f [1] = - (2.64) 
s 

Since it is assumed that f(t) is zero for all time before t = 0, Equation (2.64) 
defines a unit step (see entry 2 of Table 2.9). 

Setting a = jco in Equation (2.63) gives 

J?[ej0)t} = 1 

Since 

then 

s -jco 

eJ(Dt = cos cot + j sin cot (2.65) 

i f [cos cot + j sin cot) = —Ì-^— (2.66) 
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Apply ing the property of linearity to the left-hand side of Equation (2.66) and 
rationalizing the right-hand side produces 

S CO 
J^icos cot] + jSe[sin cot] = - r - — ~ +j - = - — ~ (2.67) 

1 S + CO 5 -h CO 

Equating the real and imaginary parts o f Equation (2.67) gives entries 6 and 7 of 
Table 2.9. 

Further useful results are obtained i f a is set equal to unity in Equation (2.63). 
Then 

(2.68) 
s - 1 

Now, both sides of Equation (2.68) have power series expansions, namely 

and 
s - 1 S Sz SJ 

Using the property of linearity and equating corresponding terms in the two series 
produces entries 3 and 4 in Table 2.9. 

To generate further entries for Table 2.9, the best procedure is to bui ld on 
previous results in preference to applying the defining integral. To this end, further 
Laplace transform operations are required. 

Laplace transform operations 
Apart from linearity and constant mult ipl icat ion, there are a number o f other useful 
Laplace transform operations (see Table 2.8) which can be used to establish other 
entries in Table 2.9. Each of the operations listed in Table 2.8 follows from the 
Laplace transform definition. Rather than proving each entry, this section 
concentrates on a few of their applications. 

B y the complex shift theorem, for example, the Laplace transform of e~3t sin At 
becomes 

<£\e~3t sin At] = % 
L ( 5 + 3 ) 2 + 16 

which agrees wi th entry 9 of Table 2.9. 
The real shift theorem is useful for systems containing a time delay. T ime 

delays, or dead times, are frequently encountered in chemical engineering systems 
in which a process stream is flowing through a pipe in essentially plug flow. I f an 
individual element of fluid takes time T to flow from the entrance to the exit o f a 
pipe, the pipe acts as a time delay. More is said on time delays in subsequent 
chapters. 

For control purposes, entries 7 and 8 of Table 2.8 are probably the most 
frequently used operations. They are best illustrated by means o f an example. 
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Assume that the mathematical model of an unforced (that is, there is no dr iving 
input) lumped-parameter system is given by 

d2x _ dx 
^ + 5 - + 6 , = 0 (2.69) 

In general, the response of a system consists of two parts: the, forced response due 
to the applied input (there is none in this example), and the free response due to the 
ini t ial conditions. For the sake of this illustration let the ini t ia l conditions be: 

*(0) = 0 

and 

Using linearity to find the Laplace transform of each term in Equation (2.69) 
together wi th the constant multiplication and derivative operations, yields 

(s2X(s) - sx(0) - j t ( 0 ) ^ + 5{sX(s) - x(0)) + 6X(s) = 0 

which, wi th some algebraic manipulation, becomes 

w x s + 5 . . 1 dx , . 
x ( i ) = ? T 5 7 T 6 ^ 0 ) + 7 T 5 i T 6 ^ ( 0 ) 

Inserting the init ial conditions gives 

7 
X(s) = -. — — (2.70) 

The corresponding time response can, in this case, be obtained directly from Table 
2.9 (entry 10) as 

x ( f ) = 7 
e-2t _ e-3t 

3 - 2 

or 

x(t) = le~2t - le~3t 

Clearly the Laplace transform technique is very powerful, as this solution was 
found much more easily than by directly solving Equation (2.69). The ability to 
convert a constant-parameter, ordinary linear differential equation in x into an 
algebraic equation in s simplifies the solution procedure considerably. Broadly, 
derivatives are replaced wi th multiplications by s, while integrals are replaced wi th 
divisions by s. 

For control system design using frequency-domain techniques, however, most 
of the design procedure is actually performed in the complex frequency domain (or, 
more loosely, the Laplace domain, or simply, as above, the frequency domain) using 
the Laplace transform model itself. Only when a design is deemed acceptable in the 
Laplace domain should the solution of the equations be sought in the time domain. 
However, rather than follow a chronological design sequence, subsequent sections 
consider the various techniques that are used to find time-domain solutions. 
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Poles and zeros 
The poles o f a Laplace function, such as that i n Equation (2.70), are the particular 
values of s that make the function evaluate to infinity. They are therefore equal to 
the roots of the denominator polynomial of the function. For example, the function 
of Equation (2.70) has two poles, one at s = —2 and one at s — —3. 

The zeros of a Laplace function, such as that in Equation (2.70), are the 
particular values of s that make the value of the function go to zero. They are 
therefore equal to the roots of the numerator polynomial of the function. Equation 
(2.70) apparently has no zeros of this type, because there are no terms in s in the 
numerator. However, i f the order of the numerator is lower than that o f the 
denominator, then such a function always has one or more zeros at s = oo. This is 
because i f s — oo, the denominator becomes infinite and so the entire function tends 
to zero. Equation (2.70) could therefore be said to have two zeros at s = oo, one 
corresponding to each denominator s. In general, the number o f such zeros at 
infinity is equal to the number of poles minus the number of numerator zeros. 
Further, in such a Laplace function, the total number of zeros (including those at 
infinity) w i l l always equal the number of poles. 

The formal definition of the inverse Laplace transform, which converts F(s) to the 
corresponding time function / ( f ) , is 

This integral is difficult to evaluate directly, and the normal procedure is to 
manipulate F(s) into one of the standard forms for which the inverse Laplace 
transform is known. Table 2.9, for example, provides a number of Laplace 
transforms for common functions. This table can be used in either direction: just 
as, given / ( f ) , i t is possible to find F(s) so, given F(s), i t is possible to find/(f). 
The amount and type of manipulation applied to F(s) depends on the proposed 
method of solution - graphical, hand calculation or by computer. Heaviside's 
partial-fraction expansion method (see Appendix 2) provides the basis for the 
development o f all three approaches. 

Example 2.17 Time solution of a Laplace function 
Use Tables 2.8 and 2.9 to find the time functions corresponding to the transforms 

2.5.3 Inverse Laplace transforms 

and is written symbolically as 

f(t) = J?-'[F(s)} 

10 
and 

2e~2s 

s2 + 9 s + 3 
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Wi th reference to Table 2.9, the first function can be manipulated into the transform of 
sin3r wi th the mult iplying factor 10/3. The corresponding time function is therefore: 

- l 10 

3 s 2 + 3 2 

1 0 • o 
—- sin 3t 
3 

The second transform can be seen to be that for 2e 3 t mult ipl ied by e 2 s , and the inverse 
Laplace transform then follows from the real shift theorem as: 

f(t) = 2e-*+V 

Example 2.18 Another inverse Laplace transform 
Find the inverse Laplace transform of 

s + 5 F(s) 
s2 + 2s + 5 

This example demonstrates that manipulation is often required to change the transform into 
a standard form. As it stands, i t is not to be found in the tables (but could perhaps be 
found in more comprehensive tables). In this transform the denominator can be rewritten 
to give 

or 

( s + l ) z + 4 

( j + i ) z + 4 ( j + i r + 4 

The complex shift theorem and the standard forms for sine and cosine functions in Table 
2.9 then allow the inverse transform to be found by inspection: 

i f - 1 [F(s)] = <T' cos 2t + 2e~l sin 2t 

Partial fractions 
The Laplace transform solution of an ordinary linear differential equation often 
takes the form of a rational polynomial: 

F ^ = W) ( 2 7 1 ) 

where N(s) and D(s) are polynomials. Hence Equation (2.71) could be rewritten as 

F(s) 
sn+an_{sn-1 + - - - + a 0 

For many purposes, this rational polynomial must be strictly proper - that is to say, 
the degree m o f the numerator must be less than the degree n o f the denominator. I f 
m is equal to n, then the system is said to be proper. I f m is greater than or equal to 
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n, the numerator can always be made of lower degree by div id ing the denominator 
into the numerator. Such a division process w i l l produce a proper rational 
polynomial , plus a remainder polynomial . However, for engineering systems, the 
Laplace transform solution is almost always a strictly proper rational polynomial , 
and the problem is one of finding the inverse transform. To do so, a partial fraction 
decomposition of F(s) into a sum of simpler terms is required. This can be 
illustrated by considering the terms 

The inverse transform of Equation (2.72) may be obtained directly from Tables 2.8 
and 2.9. However, i f Equation (2.72) is writ ten w i th a common denominator - that 
is, in rational polynomial form - then 

F(S) = -r —r 
w s3 - As2 + s + 6 

and the inverse transform is not immediately obvious. 
The normal procedure for dealing wi th a rational polynomial is first to 

factorize the denominator polynomial D(s) and then to split i t into partial fractions. 
The particular type o f partial-fraction expansion to be employed is determined by 
the types o f root involved and is discussed (wi th worked examples) i n Appendix 2. 

2.5.4 The convolution integral 
The convolution integral (entry 10 of Table 2.8) is defined by 

<?-x[Fx{s)F2{s)} = f Mx)f2(t-T) dx (2.73) 
Jo 

where Fx(s) and F2(s) are the transforms of fx{t) and f2(i) respectively. Proof of 
this equation may be obtained from the definition o f the Laplace transform 
(Equation (2.62)), and w i l l not be given here. I t is, however, instructive to examine 
a graphical interpretation of the convolution process. 

Suppose, for the sake of illustration, that fx{x) and / 2 ( T ) are the time signals 
shown in Figure 2.29. The term f2(t - T ) in Equation (2.73) is obtained by delaying 
/ 2 ( T ) by a time t to give / 2 ( T - t), fol lowed by reflection about a vertical axis at 
T = r, as shown in Figure 2.30. The convolution integral involves the product o f 
fx(x) and f2(t - T ) . Figure 2.31 shows this product for various values o f t. I n this 
figure, the shaded areas represent the values o f the convolution integral for the two 
signals at the specified times. Combining all the values for each time instant allows 
the convolution integral to be generated, as shown in Figure 2.32. 
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Figure 2.31 The product 
fi ( T ) / 2 ( r - T ) f o r various 
values of t. 

Figure 2.32 The 
convolution integral 
J / l W / 2 ( i - T ) dx. 

Convolution and the related technique of deconvolution are particularly useful 
in signal processing and in some forms of identification (Chapter 8). However, i t 
has been introduced here for two reasons: to illustrate that the inverse transform of a 
Laplace transform product is not the product of the individual time functions, and to 
demonstrate the use of the integral in finding inverse transforms. 
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Example 2.19 An inverse Laplace transform via 
the convolution integral 
Find the inverse Laplace transform of 

2 
F(s) 

(s + 3)(s 2 + 4) 

using the convolution integral. 
Let F(s) = F{(s)F2(s), where 

and 

Fx (s) = — w i t h inverse fx (t) = e 3 t  

s + 3 

2 
f2 (s) — — — - wi th inverse f2 (t) = sin 2t 

s ~\~ • 

The convolution integral indicates that 

&~l[Fi(s)F2(s)] = f s i n 2 i ^ 3 ^ dx 
Jo 

= e~3t [ s in2 i6> 3 T dT 
Jo 

Integrating by parts twice gives 

f{t) = ^ (2e~3t + 3 sin It - 2 cos It) 

This answer may be checked by expanding F{s) by partial fractions (see Appendix 2). 

2.5.5 Initial and final value theorems 
These two further properties of Laplace transforms are useful for checking the 
solution of a differential equation, and also for extracting information about, for 
example, the steady-state response o f a system without having to perform the 
inverse Laplace transform operation. 

Initial value theorem 
Suppose f(t) and F(s) are a Laplace transform pair. Then, provided the l imi t of 
sF(s) as s —> co exists, the ini t ia l value o f the time function is given by 

/ ( 0 ) = l i m [ / ( , ) ] = l i m \sF(s)} (2.74) 

Final value theorem 
Suppose f(t) and F(s) are a Laplace transform pair and that F(s) is stable. (Stability 
is dealt wi th in Chapter 3, but essentially the restriction implies that f(t) is bounded 
- that is, i t does not become infinite as t tends to infinity.) Under these conditions 

/ ( o o ) = l i m [f(t)\ = l i m [sF(s)} (2.75) 
/-•co s—>0 
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* Example 2.20 Initial and final value theorems 
Find the init ial and final values of the time function whose Laplace transform is 

tf+75 + 4 
W s(s + 2)(s+l) 

From the ini t ial value theorem, Equation (2.74), 

y(0) = l i m [sY(s)} 
s—*oo 

Hence 

2s2 + 7^ + 4 
y(0) = l i m 

5 - > O G [{s + 2)(s+l)_ 

which, on dividing the numerator and denominator by s2 and letting s —> oo, gives 

y(0) = 2 

4 The final value theorem applies, since the poles of Y(s) are non-positive (one is zero), and 
: w i l l therefore not give rise to unbounded terms in y(t). Hence, from Equation (2.75): 

y (oo) = l i m [sY(s)] = 2 

* I f a partial-fraction expansion (Appendix 2) is performed on Y(s), the resulting inverse 
transform is found to be 

?; y(t) = 2 - e - 2 t + e-t 

* Lett ing t = 0, and then t — oo, produces results that agree wi th those already obtained. 

2.5.6 Transfer function models 
A transfer function model is usually obtained from the linear differential equations 
representing the lumped-parameter model. For a system having a single input w(i) , 
and a single output y ( i ) , the transfer function model is defined as the Laplace 
transformed output Y (s) divided by the input U(s), such that 

or, alternatively, Y(s) = F(s)U(s). I n the general block diagram element o f Figure 
2.1 , the block would contain the transfer function F(s), the output would be Y (s) 
and the input U(s). The block diagram now contains all the information given in 
the transfer function model, that is, 'output = contents x input'. This is why F(s) 
is called a transfer function - it shows how the input o f the block (and, hopefully, 
the real system element represented by the block) is transferred to the output. 
Section 2.6 takes this idea further. 

For real physical systems the function F (s) is a rational polynomial such that 
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with the order of the denominator polynomial D(s) being greater than or equal to 
the order of the numerator polynomial N(s). I f the denominator polynomial is 
extracted and set equal to zero, that is 

D(s) = 0 

the resulting equation is called the system's characteristic equation, since i t can be 
shown to characterize the system's dynamics (see Chapter 3). Its roots (or zeros) 
are the poles of F(s) (the values of s that make the rational polynomial infinite). 
The roots of the numerator polynomial N(s) are the zeros o f F(s) (the values o f s 
that make the rational polynomial zero). 

Both the poles and zeros of F(s) can be complex values o f s and, as such, w i l l 
have real and imaginary parts. When only physical engineering systems are being 
considered, any complex pole or zero must have a complex conjugate. In general 
any root w i l l be of the form 

s = o + jco 

and may therefore be plotted on an Argand diagram. Such a plot, w i th o on its real 
axis and co on its imaginary axis, is referred to as an s-plane plot. I t is common 
practice to identify poles of F(s) by a superimposed cross and zeros by an 
enclosing circle. A l l the pole-zero plots in this book fol low this convention. 

For many design applications, i t is desirable to present the transfer function, 
Equation (2.76), in factored form. The standard (or 'root locus') form (see Chapter 
4) is 

K(s + zl)(s + z2)."(s + zm) 
sr{s+px)(s+p2)--(s+pn_r) 

= (2.77a) 

1=1 

z{ and —pi are the non-zero finite zeros and poles respectively 
of F(s). This transfer function represents a type r system. The type number o f a 
system is defined as the number of poles at the origin o f the s-plane (s = 0). Since 
a division by s is equivalent to the time-domain operation o f integration, i t is also 
equal to the number of pure integrators (that is, open-loop integrators) in the 
forward path of the system. 

The system is also said to be o f rank R, where R — m — n, the difference 
between the total number of poles and zeros. This rank number is equal to the 
number o f zeros at infinity (see Section 2.5.2). However, i t must not be confused 
wi th the rank of a matrix, used later in the state-space sections. 

The importance of the type number is that i t indicates a stable closed-loop 
system's steady-state response to various forcing inputs (see Chapter 3). Rank is 
important in producing Bode and Nyquist plots (see Chapter 3) and root locus 
diagrams (Chapter 4). 

F(s) = 

or 

F(s) 

where m < n, and 
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The Bode form of the transfer function F(s) is obtained by factoring out all the 
zz and Pi in Equation (2.77a) to give 

F(s) 

/=l v 

(2.77b) 

In this form the coefficient KB is called the Bode gain. Bode plots are covered in 
Chapter 3. 

Finally, when a system has several inputs and/or outputs the transfer function 
matrix form can be used. For example, for a system having p outputs and m inputs: 

Y2(s) 
= 

Yp(s). 

> n W Fn(s) 

Fpl(s) ••• 
Fij(s) 

FM 

Fpm(s) 

Ux(s) 

U2(s) 
(2.78) 

where the element F,y(s) is a rational polynomial giving the relationship between 
output y , ( i ) and input Uj(s), such that: 

Uj(s) 
= F,j(s) (2.79) 

Example 2.21 A transfer function model of the 
lead compensator of Example 2.4 
Find the transfer function model for the lead compensator described in Example 2.4. 
Taking the Laplace transforms of Equation (2.16) and assuming zero ini t ial conditions 
gives 

sR{R2CV0(s) + (R{ +R2)V0(s) = sR^CV^s) + R ^ s ) 

and after some algebraic manipulation 

(2.80) 

where 

Ri 
Rx +R2 

and T = R{C 

Since a must be less than one, Equation (2.80) defines a lead compensator and has the 
pole-zero plot shown in Figure 2.33. 

Again, Equation (2.80) can be represented by the block diagram of Figure 2 .1 , wi th 
V0(s) as output, V^s) as input, and the RHS of Equation (2.80) as the block contents. This 
is a great step forward in simplicity, compared wi th Equation (2.16). 
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A" 
J CD 

o 

Figure 2.33 Pole-zero plot 
of a lead compensator. 

i l i l 
aT T 

2.6 Block diagrams 
Previous sections have covered modelling and the mathematical foundation of the 
Laplace transform method. In this section the concepts of a transfer function and its 
related block diagram are developed. 

Block diagrams provide a pictorial representation o f a system and its 
associated control structure and compensators. The application of block reduction 
techniques, or 'block diagram algebra', condenses the Laplace transform system 
equations, together wi th any controller equations, into a form suitable for either 
design studies, or inverse transformation to investigate responses in the time 
domain. Block diagram algebra may also be used to demonstrate many of the 
advantages of feedback control systems. 

The transfer function concept, introduced in Section 2.5.6, can be extended by 
considering the electrical circuit shown in Figure 2.34. Assume the current response 
i{t) due to a change in applied voltage v(r) is required. 

Application of Kirchhoff 's voltage law around the circuit gives 

2.6.1 Transfer functions and block diagrams 

Ignoring init ial conditions, this equation transforms to 

V(s)=RI(s)+^- + LsI(s) (2.81) 

and Equation (2.81) may be rearranged to give 

(2.82) 

R 
C 

electrical circuit. 
Figure 2.34 An R L C 

L 
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In general, any system model ought to predict the behaviour o f the system in 
response to the applied forcing input. However, a system w i l l also exhibit an 
additional transient response due to any non-zero ini t ial conditions existing at the 
time the input is applied. 

Control system studies are usually concerned more wi th the forced response 
than wi th the transient due to the init ial conditions. I f a linear system is stable, the 
influence of the init ial conditions on the output becomes negligible as time 
progresses. It is therefore common practice to assume all the ini t ial conditions to be 
zero, in which case any system model could be written as the ratio o f output over 
input. Hence Equation (2.82) may be written as 

I(s) _ Cs 

V(s)~ CLs2 + CRs+l ( 2 * 8 3 ) 

and represented pictorially as in Figure 2.35. 

Figure 2.35 A block 
diagram of the RLC circuit 
of Figure 2.34. 

V(s) ^ Cs l(s) _ 

CLs2 + CRs + 1 

Note that in a nonlinear system, it does not fol low that the response as time 
increases is independent of the init ial conditions (see Chapter 14). Also, linear 
systems wi th non-zero init ial conditions cannot be arranged in the form of Equation 
(2.83), because the inverse Laplace transform then gives rise to non-vanishing 
terms in /(0) and di(0)/dt in Equation (2.81), which would prevent this. 

Recall from Section 2.5.6 that the transfer function of a constant linear system 
is defined as 

_ i f [output]  
[ ) i f [input] 

wi th all ini t ial conditions set to zero. The input-output relationship defined by 
Equation (2.83) and the block diagram in Figure 2.35 provide the same transfer 
function information. Note that it is only possible to draw the single-block 
arrangement of Figure 2.35 because the ini t ial conditions were assumed to be zero. 
I f this is not the case, then Equation (2.83) w i l l have output contributions both 
from the input (as shown) and from the ini t ial conditions. This gives rise to two 
separate LTF blocks, whose outputs must be added together. The two inputs would 
be V(s) and the init ial value /(0) . In state-space methods, the ini t ia l conditions are 
included automatically (see Sections 3.2.1 and 3.6.2). 

Most complex modelling exercises result in a number of subsystems, each of 
which has a transfer function representation. The use of block diagrams is a 
convenient method of pictorially grouping these subsystems such that the system is 
represented in a mathematically meaningful way, and this is best demonstrated by 
an example (see Example 2.27, too). 
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Example 2.22 A block diagram model for 
Example 2.8 
Figure 2.36 shows a system of coupled tanks (the same system that was analysed in 
Example 2.8). Derive an equation for each of the three subsystems - the two tanks and the 
outflow - and put them into block diagram form. Combine the three diagrams to form a 
block diagram of the overall system. 

For tank 1, the governing equation is 

C l R , ^ - + H1(t)=RiQi(t)+H2(t) 

and wi th zero ini t ia l conditions its Laplace transform is 

(l+CiRls)Hl(s)=RlQi(s)+"i(s) 

or 

Equation (2.84) has one output, Hx(s), and two inputs, Qi(s) and H2(s). The block diagram 
representation o f this element is shown in Figure 2.37. The circle w i th a cross in i t 
represents a comparator, which takes the sum of the incoming signals. The two plus signs 
indicate the sign of the signals. Sometimes they might be drawn beside the connections to 
the comparator, rather than inside the symbol. 

For tank 2, the governing equation is 

R1C2R2 + RlH2(t) + R2H2(t) = R2Hl(t) 

Inflow 

Figure 2.36 A system of 
coupled tanks. 

^7 ••• ••' ; ••• 

*• 
c 2 

R2 

i 

y 

», *• R2 

i 

y r I X I 1 r _ J ^ l _ 

<7r 

0,0 , (3) 

Figure 2.37 Block diagram 
for tank 1 of Figure 2.36. 

1 

; > 1 + C 7 f l 7s • ì 
H,(s) 

HJs) 
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Its Laplace transform form, wi th zero init ial conditions, is 

+ R2 + C2RxR2s)H2{s) = R2HX (s) (2.85) 

The block diagram representation is shown in Figure 2.38. The equation describing the 
outflow from tank 2 is 

^ = & , ( * ) (2.86) 

and may be represented by the block diagram in Figure 2.39. 
A l l three block diagrams may now be combined into a single diagram for the system, 

as shown in Figure 2.40, from which the transfer function for tank 1, for example, is 
obtained as: 

Hi(s)= 1  
Ex(s) 

where 

El{s)=RlQl(s)+H2(s) 

This could, of course, have been obtained directly from Equation (2.84). However, i f the 
transfer function between Q0(s) and Qt(s) were required, Equations (2.84), (2.85) and 
(2.86) would have to be manipulated algebraically. The advantage of the block diagram 
representation of transfer functions is that i t makes possible a structured approach to the 
manipulation of such system equations. 

Figure 2.38 Block diagram 
for tank 2 of Figure 2.36. 

H,(s) R2 H2(s) 
Ri + R2 + CyîjRjS • 

Figure 2.39 Block diagram 
for the outflow equation of 
Figure 2.36. 

HJs) 

Figure 2.40 Complete 
block diagram for Figure 
2.36. 

A 1 + C7fî7s 

H7(s) 
> 

HJs) 0o(s) 

R1+R2 + C2R1R2s 

HJs) 

2.6.2 Block diagrams and block diagram algebra 
In the examples given so far, block diagrams have been used to represent the 
Laplace transform equations for the plant. However, the technique is easily 
extended to include the control equipment and its associated feedback paths, as 
shown in Figure 2.41, which contains all the basic elements associated wi th a 
single-input-single-output control system. This figure uses a standard notation for 
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Command 

Figure 2.41 Block diagram 
of a general feedback 
control scheme. 

Reference 
input 
R(s) 

Error signal 
E(s) 

Pre-filter 

Primary 
feedback'' 

B(s) 

Manipulate 
variable 

U(s) 

Control 
elements 

Gc(s) 
Plant 
Gp(s) 

Feedback 
elements 

H(s) 

Indirectly 
controlled 
system 

Measured 
output Y{s) 

paths and elements: R(s) denotes the Laplace transform of the actual reference or 
demand signal applied to the system; E(s) is an error signal, or the output o f a 
comparator ( in this case E(s) is the difference between R(s) and the feedback 
signal, B(s))\ U(s) and Y(s) are, respectively, the Laplace transformed versions of 
the plant's manipulable input and its measured output. A l l forward path elements 
are denoted by G. The subscripts used to distinguish between the various blocks, for 
example the control element and the plant, are denoted by Gc(s) and Gp(s) 
respectively in Figure 2.41. Similarly, all feedback blocks are denoted by H and 
distinguished by means of subscripts. Typically, al l the Gs and Hs are rational 
polynomials. Note that all of the equations are in the Laplace domain - there is no 
time-domain signal in the figure. 

For control purposes, a representation w i th only one block between some input 
and output is often all that is required. So, for example, i f the object were to design 
the compensating elements Gc(s) in Figure 2.41, an open-loop transfer function 
between U(s) and B (s) would be needed. If , however, a closed-loop time response 
were required, a single block would be required which would give the relationship 

Table 2.10 Block diagram reduction rules. 

Rule Original diagram Equivalent diagram Equation 

1 Blocks 
in series GXG2 

y = GxG2u 

2 Blocks in 
parallel 

+ y 
A- GX±G2 

y = (Gx±G2)u 

3 Blocks in u + 
a feedback—5$ * 
loop 

1 + G j G 2 

y = Gï(u±G2y) 
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Table 2.11 Block manipulation rules. 

Manipulation Original diagram Equivalent diagram Equation 

10 

11 

12 

Moving a summing 
point ahead of an 
element 

Moving a summing 
point beyond an 
element 

Moving a take-off 
point ahead of an 
element 

Moving a take-off 
point beyond an 
element 

Removing an 
element from a 
forward path 

Inserting an 
element in a 
forward path 

Removing an 
element from a 
feedback path 

Inserting an 
element in a 
feedback path 

Rearrangement of 
summing points 

Interchange of 
summing points 

Moving a take-off 
point ahead of a 
summing point 

Moving a take-off 
point beyond a 
summing point 

U2 

U 4-
G 

H 

u +_ 
HS 

*2 

1/G 

+ y 

l/G 

G2W 
+ y 

- n a - * 

G^GjHHXHÎ 

H H 

y = G u r u 2 

y = G(u r u 2 ) 

y = Gu 

y = Gu 
u = y/G 

y = (G r G 2 )u 

y = GjU-u 

Gu 
1+GH 

G,u 

4 i Ac* y 

-XX) Hg) • 

+~ y 

y ^ 

1 u, 

1+G, 

y = u,-u 2+u 3 

y = u , -u 2 + u 3 

y = u i - u 2 

y = u r u 2 

u, = y + u 2 
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between the command input and the output o f the indirectly controlled variable. 
The technique of condensing a number of blocks into a single block is called block 
reduction. 

Block reduction techniques are based on three simple rules. The first deals wi th 
the combination of two blocks on the same path, the second wi th the combination o f 
two blocks, both of which are on forward paths and the third w i th the combination 
of two blocks, one of which is on a feedback path. These rules are summarized in 
Table 2.10 where, for convenience, the variable s has been omitted and, for clarity, 
signals are given lower-case letters. Note that, for each rule, the governing equation 
must hold for both the original and the equivalent diagram. 

Block reduction occasionally requires some block manipulation. Table 2.11 
shows most of the manipulations that are l ike ly to be encountered in practice. 
Again, the variable s has been omitted and, contrary to normal convention, the 
Laplace domain signals are given lower-case letters. 

A n alternative to block reduction is block diagram algebra. Using this 
technique, the procedure involves the fo l lowing steps: 

(1) Label the output from each comparator: Ex(s), E2(s),... 

(2) Establish a transfer function equation for each system output and comparator 
output. 

(3) Eliminate those variables which are not required. 

In step 2, the transfer function equations are obtained by tracing the signal, or 
signals, back to either a comparator or an output position. This, and the block 
reduction method are best illustrated by examples. 

Example 2.23 A block diagram reduction exercise 
The block diagram of a multiple-loop feedback control system is shown in Figure 2.42. 
Use block diagram reduction to simplify this to a single block relating Y(s) to R(s). Note 
that, for clarity, the dependency upon s has been omitted from the transfer functions wi th in 
the blocks. 
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This system contains a feedforward loop G 5 , as wel l as a positive feedback loop 
GAG6HX. The first step is to combine Gx and G 2 using entry 1 in Table 2.10, and to move 
the summing junction of the feedforward loop in front o f the G 4 block, as shown in Figure 
2.43 (the latter manipulation may not be immediately obvious: it is the result of combining 
entries 1 and 10 from Table 2.11). 

Block diagram manipulation rules can be combined in any convenient way. Indeed, 
any manipulation or combination of manipulations is valid, so long as the overall effects 
along the various paths between input and output, and feedback paths back to comparators, 
remain unchanged. 

A t this stage blocks G 4 and G 6 may be combined and the feedback loop G4G6HX 

reduced using entry 3 in Table 2.10. Also, from entry 2 of Table 2.10 the parallel blocks 
G 5 / G 4 and G 3 may be combined, as shown in Figure 2.44. The forward path blocks may 
now be combined and the feedback loop H2 eliminated to produce the required solution, 
which is shown in Figure 2.45. 

R(s) 

Figure 2.43 First step in 
reducing the block diagram 
of Figure 2.42. 

*(s) 

Figure 2.44 Next step in 
reducing the block diagram 
of Figure 2.42. 

G3 + G5/G4 
<*4<*e 

H 0 

Y(s) 

Figure 2.45 Input-output 
transfer function for the 
block diagram of Figure 
2.42. 

R(s) G i G 2 G

6 < G 3 G 4 + G 5> Y(s) 

(7 - Q/3J1,) + G,G2G6H2(G3G4 + Gj) 
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Example 2.24 Block diagram algebra for 
Example 2.23 
Use block diagram algebra to solve Example 2.23. 

In Figure 2.42, there are three comparators, wi th outputs Ex(s), E2(s) and E3(s), and 
one system output, Y(s). The four transfer function equations are therefore 

Y(s) = G6E3(s) (2.87) 

£ , ( s ) =R(s) -H2Y(s) (2.88) 

E2(s) = G3G2GxEx{s) +HlY(s) (2.89) 

£3(5) = G4E2(s) + G5G2GlEi(s) 

The comparator outputs El(s), E2(s) and E3(s) may now be eliminated, as fol lows. First, 
E3(s) is eliminated from Equation (2.87): 

Y(s) = G6G4E2(s) + G6G5G2GXEX (s) (2.90) 

Next, Equations (2.88) and (2.89) are substituted for Ex(s) and E2{s) i n Equation (2.90): 

Y(s) = GMG&GW) -H2Y(s)} +H{Y(s)} + G ^ G ^ ^ s ) - H2Y(s)} 

Grouping terms gives 

{G6GAG3G2GXH2 - G 6 G 4 / / , + G6G5G2G{H2 + l)Y(s) 

= (GtGtG&Gi+GtG&G^Ris) 

from which the required solution is obtained as 

Y(s) _ GXG2G6{G3GA + G5) 

R(s) (1 - G 6 G 4 / / , ) + GXG2G6H2(G3G4 + G 5 ) 

Example 2.25 Block diagram manipulation using 
superposition for multiple inputs 
This example shows how superposition may be used to handle systems wi th more than one 
input: determine the output Y(s) in the system shown in Figure 2.46. 

Figure 2.46 Block diagram 
of a two-input system in the 
Laplace domain. 

R(s) 

A 
s + 3 

D{s) 

s+1 

Y(s) 
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Setting D(s) = 0 gives the transfer function between Y(s) and R(s) as 

Y(s) _ 2K 

R{s) ~ s(s + 3) + 2K(s+ 1) 

Setting R(s) =0 gives the transfer function between Y(s) and D(s) as 

Y(s) = 2{s + 3) 

D(J) ~ s{s + 3)+2K(s+\) 

Since a Laplace transfer function is a linear operator, the principle o f superposition is 
used to generate the overall output as the sum of the two input contributions: 

= 2KR{s) 2(s + 3)D(s) 
U s(s + 3) + 2K(s - h i ) ^ ( i + 3) + 2K(s + 1) 

or 

= 2 / ^ ) + 2(* + 3)£>(s)  
U J(J + 3) + 2 Ì : ( Ì + 1 ) 

2.7 Some relationships between transfer function and state-
space models 

The technique used in Section 2.5.1 to transform an ordinary linear differential 
equation representing a SISO system into an equivalent state-space equation is 
easily modified to transform a transfer function equation into a state-space equation. 
Hence, the transfer function 

F(s) 
sn+axsn-x-\ \-an 

m < n 

(which would be the transfer function for Equation (2.45) i f m = 
may be transformed by inspection into the state-space equations: 

(2.91) 

2 and n = 3), 

0 
0 

0 

1 

0 
0 
1 

0 
~<*n-2 

0 0 • -0-
0 0 0 

Jt + 
0 1 0 

-a2 - a x . . 1 . 

and 

K ]Jm-\ b0]x 

Note that this only works for transfer functions of the precise form of Equation 
(2.91), wi th the highest order denominator coefficient equal to unity. Zero entries 
must be made in place of any absent a or b terms. The rules are those listed in 
Section 2.5.1, wi th the 'output' and ' input ' of Equation (2.45) replaced by the 
denominator and numerator of Equation (2.91) respectively. 
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To transform the general state space equation 

x(t) = Ax(t) + Bu{t) (2.92) 

and 

y{t) = Cx(t)+Du{t) (2.93) 

into transfer function form is achieved by taking Laplace transforms of Equations 
(2.92) and (2.93). In the ensuing text, when Laplace transforms are taken, the 
upper-case notation X(s), U(s) and Y(s) could be used. However, the lower-case 
notation for vectors (as opposed to upper-case for matrices) takes precedence here, 
so the dependency on (s) is included for clarity in this case. Taking Laplace 
transforms of Equation (2.92) (zero ini t ial conditions) gives: 

sx(s) = Ax(s) + Bu(s) so [si - A]x(s) = Bu(s) 

or 

x(s) = [si - A}'1 Bu(s) (2.94) 

Substitution of Equation (2.94) into the Laplace transform of Equation (2.93) 
yields: 

y(s) = {C[sI-A]-lB + D}u(s) (2.95) 

For M I M O systems, this may be written in the shortened form: 

y(s) = G(s)u{s) (2.96) 

where G(s) is the transfer function matrix o f the system, having one row per 
output, and one column per input. For SISO systems, a division by U(s) can be 
carried out, leading to the usual rational SISO transfer function: 

Ij& = c[sI-A}-lb + d (2.97) 

Note that, for SISO systems, c and b are row and column vectors respectively, and 
d is a scalar, so the overall result is scalar, as expected. 

Example 2.26 Converting a state-space model to a 
transfer function 
Find the transfer function for the SISO system having the state-space model: 

" - 6 - 1 1 - 6 ' " 1 " 

1 0 0 0 

0 1 0 _0_ 
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First, for use in Equation (2.97), note that: 

~s + 6 11 6 

[s!-A]-l = s 0 
-1 s 

-1 

1 

s 3 + 6s 2 + l i s + 6 

- l i s - 6 - 6 s 

(s + 6)s 6 

s + 6 s2 + 6 5 + 1 1 

(see Section A l . 1.3 for definition of the inverse). 
Now, from equation (2.97) 

U(s) 

Hence 

= c[sI-A]~ib + d 

1 m =  
U(s) s 3 + 6 s 2 + l l s + 6 [0 1 6] 

s 2 - l i s - 6 -6s 

s (s + 6)s 6 

1 s + 6 s2 + 6s + 11 

V 

0 
o_ 

+ 0 

or 

s + 6 m =  

U(s) s 3 + 6 s 2 + l l s + 6 

which is the required transfer function. 

A system introducing some aspects of control 
This introductory material on state-space and transfer function models ends wi th a 
model of a system to be used at several points during the text. In the interests o f 
tractability, some aspects of the model are approximate. Nevertheless, i t is useful to 
have one model of appropriate complexity, on which various techniques can be 
tried. The lack of modelling rigour in no way affects the application of the various 
control methods used - but i t would affect the accuracy of control achieved on the 
real system. 

Figure 2.47 shows an open-loop arrangement for controlling the azimuth 
(rotational position) of a satellite receiving aerial. The basic scheme is typical of 
many remote-positioning systems, including steerable satellite dishes used by 
domestic television receivers, systems for manoeuvring ships and aircraft, 
screwdown (thickness control) systems on metal rol l ing mil ls , head positioning 
in computer disk drives, automatic camera focus, or cable-free throttle control in 
automobiles. The power involved in moving such systems varies from a fraction of 
a watt to several kilowatts, depending upon the application, but the basic block 
diagram is the same. 

In the particular system of Figure 2.47, the motor drive electronics converts the 
mains electricity supply into a suitable supply for the motor, and sets the level of 
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Figure 2.47 A satellite 
antenna azimuth control 
scheme - open loop. 

Speed setting 

Amplifier 

Aerial dish 

Power supply 

1 
Motor drive 
electronics Motor Gearbox 

this supply according to the 'speed setting' knob. The motor drives a gearbox, 
which turns the aerial. 

In order to obtain a desired aerial position, a human operator w i l l have to take 
several factors into account. Not the least o f these is the fact that nothing in the real 
wor ld happens instantaneously. In particular, i f the aerial is large, and thus 
possesses significant inertia, it w i l l take an appreciable time both to accelerate from 
rest, and to decelerate to rest. Depending on the type o f gearbox construction 
(p in ion drive vs. worm drive, for example), the operator may therefore have to 
advance the speed control setting from zero, wait a while for the aerial to accelerate, 
and then reduce the speed setting to a smaller value in anticipation o f the 
deceleration time of the aerial, finally reducing the setting to zero such that the 
aerial comes to rest at the correct position. Clearly, i t w i l l not be easy to achieve 
rapid and accurate position control in this way. In particular, i f a tracking system is 
required, in order to follow a non-geostationary satellite (or other vehicle) 
accurately, some form of automatic closed-loop control must be used. 

In order to design a controller using the methods described in this book, a 
mathematical model of the system is required. Converting Figure 2.47 into a 
suitable block diagram model, as shown in Figure 2.48(a), is the first stage in 
modelling the system. 

I n this figure the 'positioning signal' indicates the desired position of the aerial 
and, as such, replaces the operator's speed setting knob. A voltage signal which is 
proportional to the desired angular position o f the aerial has been assumed, and this 
could very easily be generated using a simple potentiometer. 

The 'drive system' block includes the amplifier, the motor drive electronics 

Positioning 
signal Torque Velocity Position (V) Drive (Nm) Load (rad s ) Integration (Rad) 

system dynamics 
Integration 

(a) 

Figure 2.48 (a) Simplified 
block diagram model for the 
system of Figure 2.47. (b) 
Numerical values for a 
frequency domain (LTF) 
model of Figure 2.47. (b) 

Drive Torque Load Velocity Position 
system (Nm) dynamics (rad s"1) (Rad) 

5 1 1 X 1 
5 + s 1 +s s 
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and the motor. To assume that all these elements can be represented by a single 
block having a simple transfer function is a gross over-simplification. However, the 
speed of response of the amplifier is l ikely to be as fast as (or faster than) that of the 
drive electronics which, in turn, w i l l be much faster than the speed of response o f 
the motor. For this reason, the dynamics of the amplifier and drive electronics have 
been ignored. Furthermore, i f the aerial is large, the response o f the motor w i l l , i n 
turn, be much faster than the load dynamics of the mechanical elements in the 
gearbox and the aerial inertia, and this should be reflected in the model o f Figure 
2.48(b). The response of both the drive and load blocks has been assumed to be o f 
an overdamped appearance, leading to approximate first-order models for both. 

The final integrator block converts the aerial's speed of rotation into angular 
position. Note that the measured angular position (not explici t ly shown in the 
figure) would be represented by a proportional voltage signal (from a 
potentiometric transducer, perhaps) compatible wi th that used as the 'positioning 
signal'. 

Although the various simplifications w i l l have produced a model o f l i t t le 
practical value, it is nevertheless of value for demonstrating various control system 
design techniques at a level of complexity which permits hand calculation o f the 
results. Wi th computer assistance, more realistic models of higher order could 
simply be substituted for the model used here, but the design and analysis methods 
would remain the same. 

Figure 2.48(b) shows the same block diagram as Figure 2.48(a), but wi th the 
appropriate Laplace transfer functions (LTFs) inserted (suitably approximated to 
nearest integers, as the primary purpose of this particular model is in demonstrating 
control principles later on). These Laplace transfer functions could be obtained 
either by modelling the components of lumped-parameter models o f the various 
parts o f the system, using the methods of this chapter, or from the results o f tests on 
the real plant, as outlined in Chapter 3. Note that, conventionally, the input has 
become the signal u (but it remains a controlling voltage signal), and the output 
position becomes the signal y. 

Since this is a third-order system (comprising three cascaded first-order LTF 
blocks which, of course, mult iply together to give the overall LTF - Section 2.6), 
three independent state variables are needed for a state-space description. Indicated 
in Figure 2.48(b) are three meaningful and measurable signals labelled xx, x2 and x3. 
Any other suitable signals may be selected, provided that they are independent (that 
is, one is not a combination of some others) and are not equal to the input signal 
(because that is not an internal state of the system). 

The overall transfer function of the system of Example 2.27 (from Figure 
2.48(b)) is: 

m = 5 = 5 
U{s) J ( J + 1 ) ( J + 5) s 3 + 6s 2 + 5s K ' J 

and w i l l be used to apply the frequency-domain analysis and control methods o f 
later chapters. I t is worth noting that all the information which the block diagram 
contained about the internal structure of the system has been lost. For example, 
from Equation (2.98), it is not possible to say how the motor torque or the load 
velocity w i l l behave, because they do not appear in the equation. Only the output 
(load position) and input (control voltage) appear. This is a general feature of 
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frequency-domain methods - they use input-output models. However, as indicated 
in the subsequent text, a state-space description can maintain the internal 
information too. 

In addition, without extra work, Equation (2.98) does not reveal how the 
system w i l l respond i f the ini t ial conditions are not zero (for example, i f the system 
is already in motion when the control voltage is changed). This is also a general 
feature o f frequency-domain methods, and arises because ini t ia l conditions are 
often set to zero when deriving LTF models. Non-zero ini t ia l conditions may be 
included in the model of Figure 2.48(b), only by including them as disturbance 
signals acting on the plant (see Example 2.25). For use i n control system design, i t is 
not easy to decide how to handle LTF models w i t h several inputs and/or outputs (see 
Chapter 10). The state-space model automatically includes in i t ia l conditions 
(Sections 3.2.1 and 3.6.2), and caters for mult iple inputs and outputs (Section 
2.5.1). 

From such comments, i t seems that the state-space model 'w ins ' every time. 
This is what the early workers in the 1960s thought, and it led to a lot o f controversy 
about the 'best' methods. There are, however, some balancing disadvantages of 
using state-space models, which are listed in Section 2.9, and it is really a matter of 
knowing sufficient to be able to choose the best approach for the system in hand. 
I t transpires that, in general, state-space methods work we l l (for example) in 
aerospace and in some other areas where system models are relatively accurate, but 
frequency-domain methods work better in many other industrial plants. 

Example 2.27 A state-space model of the 
antenna-positioning system - by inspection 
A state-space equivalent ( in the form of Equations (2.43) and (2.44)) to the frequency-
domain model o f Figure 2.48(b) may be obtained by inspection, as outlined at the 
beginning of Section 2.7. This method is called direct programming, because i t is used to 
program analog computer simulations. 

Equation (2.98) gives the overall LTF of the system, and it is in an appropriate form, 
in that the numerator is of lower order than the denominator (that is, i t is strictly proper) 
and the coefficient o f the highest-order denominator term is unity. App ly ing the rules given 
in Section 2.5.1 yields the fol lowing model (note that the system for this example (Figure 
2.48(b)) was first used in an excellent text by Blackman (1977) which is now out o f print. 
However, he did not attach to it any physical function, but presented it as a purely 
numerical example. A n equally excellent current text specialising in state-space methods is 
Friedland (1987)). 

c=[5 0 0] , d = 0 (2.99) 

This is a perfectly val id and easily obtained state-space model o f the system. However, i t 
shares the disadvantage o f the LTF model, in that any information about the originally 
chosen internal states has been lost. The states i n the model o f Equation (2.99) are 
different from those in Figure 2.48(b). 

"0 1 0" "0" 

A = 0 0 1 * = 0 

0 - 5 - 6 1 
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To illustrate these points consider Figure 2.49(a), which depicts a general block 
diagram of any state-space model of any SISO system defined by Equations (2.43) and 
(2.44). In such figures, the thick lines represent multivariable signal paths, and the thin 
lines single variables. Blocks such as integrators and summers in multivariable paths are 
taken to act individually on each signal in the path, while matrices and vectors perform 
multiplications on the signals in the path as a set (vector), as described in Section A 1.1.1. 
Thus, for example, the forward path integral represents a set o f independent integrators, 
one per signal in the state vector, generating the state vector from its derivative. 

This particular form of block diagram, containing only integrators, summers and gain 
elements, is known as a simulation diagram, because it is used in programming dynamic 
system simulations on analog computers (which contain these very elements). 

Figure 2.49(b) is the specific simulation diagram corresponding to Equation (2.99). In 
drawing i t , i t is only necessary to realize that an integrator is required to convert the 
derivative of a variable into the variable itself. Otherwise, the structure follows naturally 
from the equations. 

Note that x3 i n this model does not represent any measurable signal on the plant, 
while in this particular case, xx and x2 are 1/5 of the position and velocity signals (x{ and 
x2 would normally also turn out to be unmeasurable in a general case). Problem 2.3 shows 
that the input-output relationship remains unchanged. 

Figure 2.49 (a) General 
simulation diagram for a 
SISO state-space model, (b) 
A simulation diagram for 
direct programming of 
Figure 2.48(b). 
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Example 2.28 A state-space model of the 
antenna-positioning system - preserving the 
states 
In Figure 2.48(b), a physically meaningful state vector is indicated as: 

"V " angular position (rad) 

X = x2 = velocity ( r a d s - 1 ) 

_*3_ torque ( N m ) 

To generate a state-space model which preserves these states w i l l be more complicated 
than the direct programming method (Example 2.27). The method to be presented is 
generally applicable, relying on the fact that a LTF block can be writ ten as 
output = contents x input. Init ial ly, the dependence of the variables on time (r) and the 
Laplace operator (s) is indicated, but i t is dropped later for reasons o f clarity, once the 
context is clear. 

The integrator which converts load angular velocity to position can be writ ten as: 

Xl(s)=-sX2(s) 

therefore sX^s ) = X2(s). From Table 2.8, mult iplication by s in a LTF is equivalent to the 
time-domain operation of differentiation (wi th zero ini t ia l conditions), and therefore, 
transforming to the time domain: 

dt 
= x2{t) or x2 

(2.100) 

For the block representing the load dynamics: 

1 
X2(s) 

1+s 
X 3 { s ) 

therefore X2 + sX2 = X3, and so inverse Laplace transforming gives: 

x2 (t) +x2{t)=x3 (t) or x2 = -x2 + x3 

Similarly, for the drive system: 

5U 
X, 

5 + s 
so, as above, x3 = — 5x 3 + 5u 

(2.101) 

(2.102) 

Equations (2.100) to (2.102) are the state equations for the system. Arranging in the usual 
form (Equation (2.43)): 

"V "0 1 0" ~0" 

= 0 - 1 1 x2 + 0 u 

_*3_ 0 0 - 5 _ _*3_ _5_ 
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This can be written in the more compact form, as required: x = Ax + bu, w i th 

"0 1 0" ~0~ 

A = 0 - 1 1 and b = 0 

0 0 - 5 5 

(2.103) 

In this case, the output equation is simply y = x{. However, to conform wi th Equation 
(2.44): 

y=[\ 0 0] 
l 

* 3 j 

or y = cx where c = [1 0 0] (2.104) 

Equations (2.103) and (2.104) now constitute a different state-space model o f the system. 
Note that the d quantity does not exist in either model, as there is no direct coupling from 
input to output. A simulation diagram corresponding to this model appears in Figure 2.50. 
Replacing the integrators by 1/s, and performing a block diagram reduction exercise, shows 
that the transfer function relating the input and output is identical to that of Equation 
(2.99) (see Problem 2.4). 

Figure 2.50 A simulation 
diagram for a state-space 
model of Figure 2.48(b), 
maintaining the specified 
states. 

Different state-space models 
Two state-space models for the system of Figure 2.48(b) have been generated. The 
freedom of choice of state variables suggests that by swapping around the positions 
of xx, x2 and x3, there are immediately five other possible state-space descriptions o f 
the system. Each of these would have a set of measurable and meaningful state 
variables, which is an advantage. However, they all have the disadvantages that 
their derivation is tedious, and the resulting form of the quantities A, b and c arising 
in such a model is random. For example, there is no particular pattern in the contents 
of the A matrix in Equation (2.103), which might assist in future analysis. The form 
of A, b and c is dependent entirely upon the layout o f the original system. 

Often, for the sake of easier mathematical manipulation, and a more intuitive 
form of model, i t is convenient i f these quantities (especially the A matrix) have 
some particular predefined structure. For example, a diagonal A matrix (Appendix 
A 1.1.3) would represent a system whose state variables are non-interacting. It is 
very easy to transpose, invert, or find the determinant of such a matrix; and it also 
turns out to have other useful properties (discussed later). 

Apart from direct programming, there are two other analog computer 
programming techniques (parallel programming and iterative programming) 
which give other definite forms to the state-space model. These are not described 
here, but their existence confirms that there are many possible choices o f state-
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space model (parallel programming is outlined in Problem 2.5). In fact, using a 
linear algebra device known as the 'similarity transform' (see Section A1.6) an 
infinite number of different models can be generated. However, apart from the six 
possible models obtained by rearranging the order o f the states in Figure 2.48(b), 
none would have a complete set of physically meaningful states. 

Finally, note that Problem 2.6 introduces the use of M A T L A B for performing 
such model conversions. 

2.8 Simple discrete-time models for digital control and 
simulation 

A l l the time-domain models discussed so far have contained continuous functions 
of time. That is, their time responses to (say) a step input w i l l be smooth curves, 
similar to those in Figure 1.12. Many (probably most) modern control systems are 
implemented using digital computers and, as indicated in Section 1.3.6, the digital 
control algorithms use samples o f the continuous data taken at discrete instants in 
time (because the time between the samples is required for digital processing and to 
send the calculated control signals to the plant). Section 1.3.6 also noted that care is 
needed in selecting the rate at which signals are sampled. To design such control 
systems directly (see, for example, Chapters 7, 9 and 12), or to carry out digital 
computer simulations of continuous-time designs, discrete-time models o f the 
systems are required. 

Often, a discrete-time model is obtained by converting the differential 
equations of the continuous-time model into difference equations. Essentially, time 
is divided into discrete intervals, or steps, w i th a sample o f the signals taken only at 
the start and end o f each time step. Discrete-time models then allow the latest values 
of the system outputs (or states) (that is, at the present discrete-time step) to be 
calculated from the known values of the outputs and inputs at previous time steps. 
They are called difference equations because ( in the simplest conversion technique) 
the derivative in a continuous-time model is replaced by the difference between 
successive samples, divided by the sampling period (which is assumed constant). 
This approximates the slope of the continuous response at the sampling instant, as 
shown in Figure 2.51: 

dy 

dt 
Ay = y k - y k - \ 
At h 

This approach has the drawback of only giving a series o f 'snapshots' of the 
behaviour of the system rather than a continuous representation. A f i lm or video 
recording, however, suffers from the same deficiency; but the lack o f intermediate 
information is not a problem, provided that the time between samples is short enough. 
Figure 1.15 in Chapter 1 demonstrated one consequence of getting i t wrong. 
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Output 

Figure 2.51 The simplest 
continuous-time to discrete-
time conversion method. 

Slope approximates 
tangent at step k 

\ w ^ ^ 
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2.8.1 Difference equation models 
A difference equation model is normally expressed in the form: 

yn = A\yn-\ + Aiyn-2 + A3yn_3 + • •• + B0un + Bxun_x 

+ B2un_2 + ... 

where the A and 5 values are constants, y is the output and u is the input. The wth 
output or input is the latest one, the {n - l ) t h is the previous one, and so on; the 
meanings of the symbols are further explained by Figure 2.52. This type of model 
is known as an A R M A model (Auto-Regressive Moving Average) because the 
coefficients A give a dependence on previous outputs (the auto-regressive part) 
and the coefficients B give a dependence on present and past inputs (the moving-
average part; it is, in fact, a weighted average). In Figure 2.52, it is assumed that 
the latest sample of the input u (namely un) has been taken at a time t equal to 3 
seconds, resulting in an output value at that time of yn. The sampling interval has 
been assumed to be 0.25 s for demonstration purposes, so the previous samples o f y 
and u relate to the previous sample times at 2.75 s (n - 1), 2.5 s (n - 2), 2.25 s 
(n — 3), and so on. 

2 

1.5 

5 1 

Q. 
o 0.5 "D C 

Q. 
l - o , 
(D 

I -1 CO 
-1.5 

Figure 2.52 Illustration of _2 
sampled-signal 0 0.5 1 1.5 2 2.5 3 3.5 
terminology. Time (s) "Now" = 3.0 
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How such models work w i l l be demonstrated by calculating their time 
responses in Chapter 3 (this is the basis of digital computer simulation). Methods o f 
converting from a continuous-time representation to a discrete-time one are 
discussed in Section 5.8.2 and the alternative numerical-integration approach is 
discussed in Sections 3.6.1 and 5.7. 

A l l the state-space models considered so far have been continuous-time models, 
involving time derivatives of the state variables. However, a discrete-time model of 
a system, which fulfils the same functions as a state-space model, would be of 
advantage for the design of digital computer-based controllers. Such models exist, 
and are used in the state-space control system analysis and design methods 
developed in later chapters. In fact, such models are readily derived from 
continuous-time state-space models and, for some problems, have considerable 
advantage (see for example Section 9.8 and Chapter 12). 

For the present, note that the discrete-time state-space model is a recursive 
model, in which the state vector at any given sampling instant (instant k+ 1, say) 
depends only on the input vector and state vector at the previous instant (instant k). 
The general form of the model is: 

The output equation (Equation (2.106)) is identical to the continuous-time version 
(Equation (2.44)). The new matrices tf> and A in the state equation (Equation 
(2.105)) are functions o f the continuous-time A and B matrices (Equation (2.43)), 
and the sampling interval h (where h = tk+i — tk, as in Figure 2.51). The derivation 
of <P and A is given in Section 3.6.2. Once such a model is obtained, i t can be 
initialized using x0 and u0 (that is, the values o f x(t) and u(t) at the start of the 
simulation), and then repeatedly applied to generate the state and output responses 
as time passes, one sampling instant after another. 

This chapter has introduced simple lumped-parameter modell ing and generated 
linear differential equation models to represent lumped-parameter models 
mathematically. Further, it has been shown how these models may be converted 
into Laplace transfer function models (for use in the frequency domain) or state-
space models (for use in the time domain). These two forms of model cover the 
requirements for most of the continuous-time analysis and design of control 
systems. For discrete-time designs, the basic ideas of difference equation models 
have been introduced. 

Linearization of nonlinear models and Lagrange's technique for finding 
mathematical models from lumped-parameter models have also been covered. 
However, these topics might be considered optional in a 'first course' i n control. 

Given a LTF or state-space model, it has been shown how the system can be 
represented as a block diagram. These diagrams may be manipulated to obtain 
different forms of model, or relationships between given signals in the model. 

2.8.2 Discrete-time state-space models 

yk+i = Cxk+\ +Duk+X 

(2.105) 

(2.106) 

2.9 Concluding remarks 
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With regard to state-space models, there is an infinite number o f possible 
models for a given system, of which some w i l l have physically meaningful states, 
and some w i l l not. There are certain constant mathematical attributes which l ink 
all state-space models of the same system, and these w i l l be studied further in 
Section 3.2.1. Also, whatever state-space representation of a system is used, the 
input-output relationship between u and y (for example, the LTF) is the same. 
Therefore, i f only the system's input-output behaviour is o f interest, the most 
easily obtained, or the most mathematically tractable state-space model should be 
used. How to select this model w i l l be revealed in later chapters. 

The fol lowing list summarizes the major differences between LTF and state-
space models: 

• A LTF model relates only the system output and input. Any internal structure and 
behaviour of the system is lost. State-space representations can preserve such 
internal information, i f the state variables are appropriately chosen. 

• When working wi th LTFs, one may have to solve high-order equations. In the 
state-space approach, only first-order equations appear in the model. However, 
for a tenth-order system, 10 first-order equations must be solved simultaneously. 
The solution of simultaneous first-order differential equations is, however, wel l 
understood, and can be performed using standard computer packages. It could be 
argued that a tenth-order LTF equation could also be solved easily by computer 
packages, but in terms of the numerical methods used, the balance swings in 
favour of the simultaneous first-order equations as the order increases. 

• The LTF approach as it existed in the early 1960s (that is, using LTF models wi th 
the intention of using frequency-domain methods) was only easily applicable to 
SISO systems. For a multivariable system having many inputs and/or outputs 
( M I M O ) , there would be a transfer function relating each input to each output. 
Thus for a system with four inputs and five outputs there would be an 
arrangement of 20 transfer functions. This is not easily used in designing 
controllers, although Chapter 10 addresses the problem using more recent 
techniques. In the state-space approach, the system model is arranged in a 
vector-matrix form. It therefore matters lit t le how many inputs or outputs a 
system has, the matrices just change in size. 

• A Laplace transfer function model is only defined for zero ini t ia l conditions. To 
include ini t ia l condition effects in frequency-domain analysis, one must go back 
a step to the original differential equations, and include the ini t ial condition 
terms rigorously when taking the Laplace transforms. The resulting block 
diagram model then has disturbance inputs appearing which represent the effects 
of the ini t ial conditions. Again this is then difficult to handle from a frequency-
domain standpoint. The state-space approach uses the differential equations 
directly, so all init ial conditions are automatically included (Sections 3.2.1 and 
3.6.2) and are simply set to zero i f not required. 

• A l l o w i n g the contents of the A, b, C and/or D quantities to be time-varying 
enables the state-space model to handle time-varying systems, whereas a LTF 
model is only for stationary systems. 

But there are drawbacks to state-space models, some of which can be serious: 

• Many processes involve pure time delays which, although readily accommo-
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dated using LTFs (because the Laplace transform of a time delay is linear), are 
difficult to handle using continuous-time state-space models (see Chapter 8). 

• The methods of control system design based on frequency-domain models are true 
design methods. A controller is designed, and its effects may be investigated using 
one of the standard frequency-domain methods to be studied later. The controller 
is then repeatedly refined unti l the results appear acceptable. Control system 
design using state-space models, on the other hand, tends to use synthesis methods. 
That is to say, an algorithm w i l l exist for designing a certain k ind of controller 
(these w i l l also be studied later). The designer simply plugs the system model (A, 
B, and so on) into the algorithm, and out comes the design o f the controller - it is 
synthesized from the model parameters. This sounds an excellent approach, but it 
relies on having very good plant models - i f the model is wrong, the controller w i l l 
be wrong. In practice, it is hard to get good models o f many industrial plants. 

• Since the LTF methods tend to be graphical, and work on the plant model's 
inputs and outputs, the approximations involved are apparent. Further, the results 
tend to be robust in the face of poorly modelled plants and unexpected 
disturbances. The state-space synthesis methods depend not only upon the 
correct input-output model, but also on correctly modelled internal behaviour. 
State-space solutions to real control problems therefore tend to be more 'fragile ' . 
A lot o f the more recent research is aimed at overcoming this deficiency of the 
state-space approach. 

• The mathematical techniques of Laplace transforms are widely known, and the 
use of frequency response plots (Chapter 3) can be easily tied in wi th system 
behaviour which is readily visualized. Frequency-domain controllers can often be 
tuned using 'rules of thumb', and a li t t le engineering intui t ion. Frequency-domain 
control is therefore a relatively accessible discipline, w i th many practitioners. 

• The matrix algebra required for state-space methods is, perhaps, less wel l known 
(but not intrinsically difficult); and the relationship of the numbers in a matrix 
to physically measurable effects is less clear than using frequency-response 
plots. I f a controller is designed which is effectively just a matrix of coefficients, 
tuning it requires an in-depth understanding of how a variation o f any given 
parameter w i l l affect the plant. 

These factors, together wi th the pragmatic observation that frequency-domain 
control seems able to cope wi th the majority of real control problems, have led to a 
generally slow rate of introduction of the state-space techniques. Nevertheless, in 
areas where plant models are good (such as aerospace), state-space-based control 
has found ready acceptance and wide application. There are also many problems 
which are unapproachable by frequency-domain methods, such as large M I M O 
systems, or systems whose dynamics vary significantly w i th time. Again , state-
space methods have found wide application in such areas. 

As a gross generalization, frequency-domain control is l ikely to be the best 
solution to those problems to which it is readily applicable (that is, most SISO 
loops, some multivariable systems using the methods of Chapter 10, some systems 
wi th significant time delays, some systems where the models are uncertain), 
whereas state-space methods can be tried for all other systems (any system where 
the models are trustworthy, M I M O systems in general, systems corrupted by 
significant noise (see Chapter 9), and so on). 
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2.10 Problems 
2.1 Prove that the model of the system of Figure 2.26(a) 

is given by the equation preceding Equation (2.41). 

2.2 Use Laplace transforms to derive Equations (2.46) 
and (2.47) from Equation (2.45), with z defined 
according to Figure 2.27. 

2.3 (a) In Figure 2.49(b), replace the integrators with the 
Laplace domain equivalent (\/s) and use block 
diagram reduction techniques to prove that the 
overall Laplace transfer function relating y to u is 
correct (compare your result with Equation 
(2.98)). 

(b) Use Equation (2.97) to obtain the same result. 

2.4 Repeat Problem 2.3 for the system of Figure 2.50. 
Confirm that the results are identical not only with 
each other, but with the results of Problem 2.3. 

2.5 (a) Use the parallel programming approach (given 
below) to obtain a state-space representation of 
the L T F model of Equation (2.98). What do you 
notice about the form of the resulting model? 

(b) Repeat Problem 2.3(a) using the simulation 
diagram from part (a), and 2.3(b) using the model 
parameters (A, b, c, d) from part (a). 

The parallel programming approach is carried out as 
follows: 

• Split the L T F (Equation (2.98)) into partial 
fractions. 

• Carry out a direct programming operation on 
each of the individual (first-order) partial-
fraction terms. 

• Draw a separate simulation diagram for each of 
the direct programming results. 

• Connect these first-order simulation diagrams 
(three of them for this problem) in parallel - all 
the inputs will be connected to w, and the 
outputs must be algebraically summed to give y 
according to the partial-fraction expansion. 

• Label the integrator outputs as the state 
variables, and hence construct the state and 
output equations from the diagram. 

2.6 Throughout the text, M A T L A B is used as a 
representative C A C S D (computer-assisted control 
system design) environment. Appendix 3 introduces 
M A T L A B , and this problem suggests some use of it 
relevant to Chapter 2. If you do not have access to 
M A T L A B and its Control Systems Toolbox, skip this 
problem. 

Write an m-file, to check that Examples 2.15 
and 2.16 give the same L T F model, and that it agrees 
with that of Example 2.21. Read Appendix 3 for 
details of how to write the m-file. Assume 
component values as follows: C = 1 uF, 
Rx = 330 kQ and R2 = 510 k i l 

Mathematical statements * , / , + , - and so on are 
written more or less as you would on paper, with 
parentheses ( ) to force the order of execution where 
it differs from that just given, for example, 
alpha = r2/(r\ + r 2 ) . 

The M A T L A B ss2tf command will give the 
L T F s from the state-space models (use help ssltf). 

To get the numerator and denominator of the 
L T F in Example 2.21, write the vector explicitly, for 
example, num21 = alpha*[tau 1]. 

Some of the following problems also make use 
of M A T L A B . 

2.7 Using the direct programming rules, obtain state-
space models of the following systems. (If M A T L A B 
and the Control Systems Toolbox are available, check 
the results using your state-space models in the ss2tf 
command - but note that trying to use the 
complementary tf2ss command to find the state-space 
models in preference to doing the direct 
programming will give unexpected results - see 
Problem 2.8.) 

(a) 

(b) 

(c) 

(d) 

(e) 

U(s)-

m. 
U(s) 

m 
U(s)-

m 
U(s) 

m 
U(s)' 

s3 + s2 + 6s + 2 

1 

= s3 + As2 + 8 

4 
" 2s2 + 5s + 4 

3 ^ + 1 

" 6s2 + s + 4 

5 2 + l 
' s 2 - 1 

2.8 Despite appearances, M A T L A B is not required to do 
most of this question. 

(a) M A T L A B also uses a direct programming ('by 
inspection') method to obtain its state-space 
models. However, it uses a different approach to 
that given in the text. M A T L A B starts with the 
direct programming simulation diagram of (for 
example) Figure 2.49(b), but numbers the states 
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in reverse order (that is, left to right, rather than 
right to left). 

Using this information, obtain the state-
space model MATLAB would obtain for the 
antenna-positioner (Figures 2.48(b) and 2.49(b)). 
Deduce the rules that MATLAB uses to obtain 
SISO state-space models from LTF models by 
inspection. Check your result (if you have 
MATLAB) as in part (b), below, 

(b) Repeat Problems 2.7(a) to 2.7(e) using the 
MATLAB direct programming rules derived 
above. If MATLAB and the Control Systems 
Toolbox are available, check the results using the 
tflss command. The method is illustrated here 
for (d): 
ynum = [ 3 0 1 ] ; 

yden = [6 1 4]; 
y[a,b,c,d] = tf2ss(num,den) 

2.9 

% note the zero 
coefficient of s 

% no semicolon, 
so results are 
displayed 

Obtain a state-space model of the plant in Figure 
P2.9(a), using the signal between the blocks as one 
of the state variables. Note that for the third-order 
block, three more states must be introduced. Use 
approaches (a) and then (b), given below: 

(a) Choose the output as one of the states, and use 
the rule 'output = contents x input' on each 
block. For each block, cross-multiply and then 
take inverse Laplace transforms with zero initial 
conditions. This will give the state equation of 
the first-order block directly. 

For the third-order block, get rid of all 
derivatives higher than the first, by defining two 
extra states x2 and j c 3 (assuming xx has been 
chosen at the output). For example, let xx = x2 

and x2 — x3 (so xx — j c 3 ) . 

u 6 3s + 2 
s + 3 s 3 + 2s 2 + 4s + 8 

(a) 

AvBvC,.Di A2, B2, C 2 , D 2 AvBvC,.Di A2, B2, C 2 , D 2 

(state vector x.,) (state vector x 2 ) 
(b) 
Figure P2.9 (a) System for Problem 2.9, part (a), (b) Series 
connection of two state-space models. 

Combine the simulation diagrams of the 
first- and third-order blocks and hence obtain the 
overall (fourth-order) state-space model, 

(b) Use the same method as (a) for the first-order 
block, but use direct programming on the third-
order block. Then show that the series 
connection of two state-space models, as 
depicted in Figure P2.9(b), is given by (see 
Section A 1.3 on partitioned matrices): 

i l M i 0 

A B2CX A2 lX2. LB2DU 

and 

y=[D2Cl\C2] + D2D{u 
Substitute the separate state-space models of the 
two blocks into this to obtain the overall model. 

2.10 (a) Draw the simulation diagram corresponding to 
the system model: 

A = 

1 0 

-1 1 

0 - 5 

"0 2' 

, B = 0 0 

5 1 

"0 1" 

, D = 
"0 1" 

0 0 

1 0 0' 
0 0 1 

Note that this is an extension of the model of 
Equations (2.103) and (2.104), so the result can 
be compared with Figure 2.50. In this way, 
confirm that the extra column in B represents 
the addition of an extra input, and the extra row 
in C represents the addition of an extra output. 
Also, show that the non-zero element in D 
represents direct input-output coupling (as in 
Figure 2.49(a)). 

(b) Use Equation (2.95) to obtain a transfer function 
matrix model of the system of part (a). Compare 
the result with that of Problem 2.4(b). Hint: It is 
possible to reuse a lot of the working of 
Problem 2.4(b). 

(c) By comparing the TFM model of part (b) with 
the block diagram of part (a), confirm that 
gn(s) (which should be the same as Equation 
(2.98)) is the correct L T F relating output 1 to 
input 1. Similarly confirm that g22(s) is the LTF 
relating output 2 to input 2. 

(d) Use block diagram reduction techniques on the 
result of part (a) to confirm the results for gi2{s) 
and g 2i (s) m part (b). 

2.11 (a) Obtain separate state-space models of the 
systems in Figure P2.11(a), using the indicated 



112 An introduction to control system modelling 

state variables (plus one extra state for the 
second-order block), 

(b) Show that the parallel connection of two state-
space models, as shown in Figure P2.11(b), is 
given by (see Appendix A 1.3 on partitioned 
matrices): 

r- r A n 1 % 
X2 

and 

'¿1 0 

A 0 A2 

0 

0 B2 

(c) Using a slightly modified form of the result of 
part (b), and the state-space models of part (a), 
obtain an overall state-space model of the 
system shown in Figure P2.11(c). 

2.12 Obtain a state-space model for the system shown in 
Figure P2.12, using the indicated state variables 
wherever possible. Notice that the sizes of the 
matrices in the model should confirm the 
descriptions in Section 2.5.1. 

y = \cl\c2] 
L- l 2j 

2j 

+ [Dl\D2] 

u 1 x 2 3 
s + 1 s + 2 

s + 5 s + 3 

s + 1 
s 2 + 5s + 6 

s + 3 

A _ 2>(f^) > 6 1 > ( ^ ) > y F i g U r e P 2 , 1 2 M u l t i v a r i a b l e s y s t e m f o r Problem 2.12. 

(a) 

(state vector x.,) 

2.13 Determine the equations of motion for the 
mechanical systems shown in Figure P2.13. In each 
case the input displacement is w(r), and the output 
displacement is y(t). 

(state vector x 2 ) 
(b) 

s + 1 s + 2 

lu(t) 

7777777777Z 
(b) 

fu(t) 

i 

6 
s 2 + 3s + 2 

'y(f) 

(c) (c) 

Figure P 2 . l l (a) Two systems for Problem 2.11, part (a), 
(b) Parallel connection of two state-space models at their 
outputs, (c) System for Problem 2.11, part (c). 

Figure P2.13 (a) Mechanical lag compensator; (b) 
mechanical lead compensator; (c) mechanical lag-lead 
compensator. 

http://P2.ll
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2.14 Determine the equations relating the input voltage 
V/(r) to the output voltage vQ(t) of the electrical 
networks shown in Figure P2.14. Loading may be 
ignored. 

vff) 

(a) 

vfi) 

-9 
A 

" 0 W 

2.16 The tank shown in Figure P2.16 consists of three 
compartments. Compartment 1 is heated electrically 
to a constant temperature Tx, and compartments 2 
and 3 are at temperatures T2 and T3 respectively. 
Heat can flow only from compartment 1 to 
compartments 2 and 3, as shown. 

There will be an exchange of heat between 
compartments 2 and 3, both of which can also lose 
heat to the environment, which is at temperature Ta. 

Develop equations for the change in 
temperature of fluid in tanks 2 and 3, given that 
their respective thermal capacities are C2 and C 3 . 

Figure P2.16 A three-compartment heating tank. 

2.17 Using the current-force analogy, find the 
mechanical system equivalent to the electrical 
circuit shown in Figure P2.17. 

(b) 
H M 

fi, <L3 

vff) 
C i 

- o 
A 

" 0 W 

Figure P2.17 Electrical circuit for Problem 2.17. 

2.18 The loudspeaker model shown in Figure P2.18 is 
based on an ideal moving coil transducer, a device 
which converts electrical energy into mechanical 
energy without loss. A change in current on the 
electrical side produces a change in force on the 
mechanical side. Given that the magnetic energy 
for the transducer is 

(c) 1 
L(x)q2 

Figure P2.14 (a) Electrical lag compensator; (b) electrical 
lead compensator; (c) electrical lag-lead compensator. 

2.15 Show that the corresponding pairs of mechanical 
and electrical compensators shown in Figures P2.13 
and P2.14 are analogous. Figure P2.18 A loudspeaker model. 
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where q = charge = current x time, produce a 
mathematical model for this system relating the 
current / to the displacement x. 

2.19 Find the inverse Laplace transforms of the 
following functions: 

YAs) 

Y2(s) 

1 
s(s + 2) 

10 

Y3(s) = 

{s + 4)(s -MO)' 

1 
s2 + 2s + 3 

2.20 Calculate the initial and final values of the 
functions having the following Laplace transforms: 

F2(s) 

2 ( 5 + 1 ) 

5(5-h3)(5 + 5 ) Z 

4 
5 3 + 55 2 + 125 + 1 

Check that the values are correct by finding the 
inverse Laplace transforms and evaluating them at 
t = 0 and t = co. 

2.21 Use Laplace transforms to find the responses of the 
systems governed by the following equations: 

, d2x ^ dx ^ 
( a ) ^ + 3 * + 2 * = 1 

given that x(0) = 1 and i(0) = 1, and 

d x , dx dy 
( b ) — + 4 — + 4;c = 3 - f + 2y 

dt2 dt dt 

given that x(0) = i(0) = 0 and y = e~3t for 
r > 0 . 

2.22 The following equations represent various systems, 
each having an input r(t) and output y(t). Put these 
equations in block diagram form. 

( b ) ^ + 6 $ + 3 y = 5^ + 4, 
dt2 dt dt 

d2r dr 

, , v dy , d2v n dv „ dr ^ 
(d ) - f + Ay = v and — T + B — = C — + Dr 

dt dt2 dt dt 
2.23 A simplified model of an aircraft's pitch control 

system is shown in Figure P2.23. In this model the 
pitch angle is 90(s), 6{(s) is the pilot's input signal 

Figure P2.23 Aircraft pitch control system - simple model. 

and Vv(s) is the vertical velocity. Determine the 
differential equation relating 0o(t) and 

2.24 A two-input, two-output multivariable plant 
together with its controller and feedback loops is 
shown in Figure P2.24. The controller consists of 
two dynamic compensators, C{(s) and C2(s), and 
two forward path gains, Kx and K2. In this 
arrangement the compensators are used to decouple 
the open-loop plant - that is, for the decoupled 
plant a disturbance at E^s) produces a response 
only at output Y^s) (i = 1 or 2), and the other 
output is unaffected. In this way the multivariable 
plant behaves as though it were two independent 
single-input, single-output plants. The forward path 
gains act as simple proportional controllers which, 
together with their corresponding feedback loops, 
are used to control the decoupled plant. 

For this system, find the transfer function 
equations Cl(s) and C2(s), which decouple the 
plant. Also determine the closed-loop transfer 
functions for both decoupled loops, and reduce each 
transfer function to its simplest form. Although 
Chapter 10 discusses the design of such controllers, 
this problem can be answered at this stage by 
writing the open-loop transfer function to each 
output from each error signal, and choosing the 
contents of Cl(s) and C2(s) to remove the 
interaction. 

R,(s) 

R2(s) 

Plant 
Controller input ; u ( s ) 

i®-p 

H ^ H , , Ir: Plant 
input 

Output 
Y,(s) 

Output 
Y2(s) 

Figure P2.24 A multivariable system with decoupling 
compensator. 
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2.25 Determine the overall transfer function of the 
multiloop control system shown in Figure P2.25. 

2.26 Show that for zero initial capacitor charges, the 
Laplace transformed loop equations of the network 
shown in Figure P2.26 are 

- C D -

Figure P2.25 Control system for Problem 2.25. 

' 1 \~ 1 r-

Figure P2.26 Electrical network for Problem 2.26. 

Vi(S)=RlIl{s)+— (/,(*)-/2(*)) 

0 = c h { ' 2 { s ) ~7i ( s ) ) + ( * 2 + c ^ ) / 2 ( s ) 

Put these equations into block diagram form, and 
hence determine the overall transfer function 

> V 0(5 ) /V , .(5). 

v0(t) 2.27 Determine the transfer function models for the 
i mechanical and electrical compensators in Problems 

2.13 and 2.14. 
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3.1 PREVIEW 
3.2 SOME BASIC DESIGN REQUIREMENTS 
3.3 ROUTH STABILITY 
3.4 PERFORMANCE SPECIFICATIONS IN THE 

FREQUENCY DOMAIN 
3.5 FREQUENCY RESPONSE PLOTS 
3.6 RESPONSES OF DISCRETE-TIME MODELS 
3.7 TIME DELAYS (OR TRANSPORT LAGS) 
3.8 NON-MINIMUM-PHASE TRANSFER FUNCTIONS 
3.9 SIMPLE SYSTEM IDENTIFICATION 

3.10 CONCLUSIONS 
3.11 PROBLEMS 

3.1 Preview 
In Chapter 2 the steps involved in finding the 
mathematical model of a plant have been examined. 
In particular, in Section 2.5, it was shown that if the 
system is passably linear, the plant can be 
represented by a linear transfer function model, or by 
a linear state-space model. Historically these two 
model forms were produced independently and used 
to develop various control system design strategies. 
However, for modelling the input-output behaviour of 
a system, the linear transfer function and linear state-
space representations are interchangeable (Section 
2.7), so many of these design strategies have much 
in common. Indeed, the insight gained from (say) a 
study of transfer function techniques helps in the 
understanding of state-space techniques and vice 
versa. This chapter lays the foundation for these 
design studies by examining single-input-single-output 
(SISO) systems represented using transfer function 
models (although state-space models are mentioned, 
too). Further, rather than considering specific 
systems, the approach adopted is an analysis of 
transfer function models in general. The intent is to 

identify the various general characteristics of linear 
SISO systems, from which those pertinent to a 
particular system can be extracted. 

In th is chapter, the top ics covered are: 
• an introduction to the time and frequency 

response analysis of linear systems 
the relationship between the poles of a Laplace 
transfer function (LTF) model or the eigenvalues of 
the plant matrix in a state-space model, and its 
performance 
relationships between the frequency- and time-
domain responses 
simple stability analysis 

• the generation of the time response, from simple 
discrete-time models 

• how to find models of systems from simple plant 
tests. 

NEW MATHEMATICS FOR 
THIS CHAPTER 

The additional mathematics 
used in this chapter is 
complex algebra (that is, 
involving; = 

Topics covered include rectangular to polar conversion 
and vice versa and the identity e'e = cos 9 + j sin 9. 
Some trigonometric identities are also used, and are stated 
as required. 

11f i 
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3.2 Some basic design requirements 
In Section 1.3.2, i t was stated that the plant dictates the controller. That is, the 
control engineer ini t ial ly assumes that the plant dynamics G(s) are fixed and then 
uses the open-loop plant's transfer function, Figure 3 .1 , to design a controller. This 
controller w i l l be designed to give the closed-loop system, Figure 3.2, the required 
response characteristics. As an aside, such design studies may suggest plant 
modifications, that is, changes in the plant's dynamics G(s). Often this is 
impossible. Even in cases where i t is possible to modify the plant, any modifications 
w i l l be specific to that particular plant and therefore cannot be discussed here. 

Figure 3.1 A general 
Laplace transfer function 
block. 

U(s) _ G(s) Y{s) G(s) 

Figure 3.2 Laplace transfer 
function representation of a 
common feedback control 
arrangement. 

?\E{S)> C(s) U(s) G(s) 9 C(s) G(s) 

f 
Y(s) 

Once the controller C(s) has been designed, the closed-loop system needs to be 
tested to ensure that the desired response characteristics have been achieved. To this 
end, the block diagram reduction techniques o f Section 2.6.2 are employed to 
provide the relationship between the input R(s) and output Y(s). The result o f this 
reduction procedure is a Laplace transfer function (LTF) which may be represented 
in one o f the standard forms, Equation (2.77). 

Since both the open- and closed-loop transfer functions have the same standard 
forms, their analysis is identical. This can cause confusion during the design 
process. I t is therefore important to remember that in general, open-loop transfer 
functions are used to design closed-loop controllers and closed-loop transfer 
functions are used to test response characteristics. 

Perhaps the most basic design requirement is the abil i ty to specify a system's 
performance. The requirement is to be able to quantify the output resulting from 
some input stimulus applied to the system. Since there is an infinite number o f 
possible different inputs, and each w i l l produce a different response, only a few 
standard inputs are normally considered. Mathematically, these inputs are those 
which are easily manipulated, and for which the resulting system responses can be 
shown to be readily quantified. The inputs considered are the fo l lowing: 

• Step input. Figure 3.3 depicts the time response o f a step function having 
magnitude A acting on the system's input u(t). Mathematically, the step input is 
defined as 

«(0 
for t < 0 

for t > 0 

A t t = 0 the function is undefined, but i t is normal practice to assume that 
u(t) = A when t = 0. The Laplace transform of a step input o f height A is A/s. I n 
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Figure 3.3 A step input 
signal of height A units. 

"(OA 

calculating the system output, i t therefore adds a pole to the system's L T F (since 
output = L T F x input), which in turn maps into a point at the or igin o f the s-
plane (see Section 2.5.6). 

• Ramp input. The time response of a ramp function is shown in Figure 3.4. 
Mathematically, this function is defined as 

f 0 for t < 0 

" W ~ \kt for t > 0 

Figure 3.4 A ramp input 
signal of slope k unit s - 1 . 

Its Laplace transform is given by k/s2, and results in a double pole at the or igin o f 
the s-plane. Since the input to the system is unbounded (that is, this input signal 
continuously increases wi th time), the output o f the linear model w i l l also be 
unbounded (but not that of the real plant, which w i l l eventually encounter a 
saturation l imi t - see Chapter 14) and the system's response is said to be 
unstable. Although ramp inputs are useful for determining the performance o f 
certain systems (for example, missiles and machine tools), their application to 
physical plant must be carried out wi th care, precisely because of this capacity to 
cause saturation. 

• Pulse inputs. There are many kinds and shapes of pulses. Two are particularly 
useful, one for experimental testing and the other for mathematical convenience. 
These are the rectangular pulse, which is formed by two successive steps o f equal 
magnitude but opposite sign, shown in Figure 3.5 and the unit impulse, which is a 
pulse of unit integral area but zero duration and is shown in Figure 3.6. The 
Laplace transform of the unit impulse is unity, and consequently i t does not affect 
the system's poles and zeros. This response is often impl ic i t ly assumed, by 

"(OA 
Figure 3.5 A rectangular 
pulse signal formed from a 
rising step signal followed 
by a falling step signal. 0 T 
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«»A 

Figure 3.6 A unit impulse. 

evaluating the system's time response directly from its open-loop LTF. I f this is 
done, then a unit impulse input must be being assumed, because the output is the 
open-loop L T F x unity, and the only input w i th a Laplace transformed value of 
unity is a unit impulse. 

Pulse inputs are particularly useful when dealing w i t h an operational 
system, because there is no prolonged disturbance of the output variable, and 
also because pulses are often readily superimposed on the input variable. (Pulse 
testing is considered in Chapter 8.) 

• Steady-state sinusoidal input. From the point o f view of frequency-domain 
control system design techniques, this is the most useful o f the forcing inputs. 
The relevant response for analysis is the sinusoidal steady-state response, which 
is observed only after all transient effects have disappeared, so the timescale 
becomes arbitrary. However, i t is normal to assume that under steady-state 
conditions a sinewave 

u{t) = A sin cot 

is injected into the system (see Figure 3.7), where A is the zero-to-peak amplitude 
and co is the angular frequency in rad s - 1 . 

u(t)k 

Figure 3.7 A sinusoidal 
input signal. 

The Laplace transform of this function is 

Aco 
U(s) = 

s2 + co2 

which adds two imaginary poles to the s-plane, one at s = jco and the other at 
s = —jco . The steady-state sinusoidal (or harmonic) response o f a system and its 
relationship wi th the s-plane is considered in Section 3.2.3. 

Random input. In operational systems, all variables are continually changing. 
Although for well-controlled systems these changes are small and random, they 
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are the actual forcing inputs. The responses o f the operating plant and these 
random inputs may be correlated statistically and used to analyse the system 
dynamics. To reduce and interpret this data, extensive machine computation is 
normally required. Normal operating signals w i l l often not contain sufficient 
information to allow proper determination o f the dynamics; in which case small-
amplitude, artificially generated, pseudo-random signals can be used instead (see 
Chapter 8). However, in principle, for operating plants the use o f random signals 
offers a means of dynamic analysis which eliminates the need for significant 
process disturbance. 

Figure 3.8 A general time-
domain block diagram 
element representing a 
system. 

u(t) 
•J 

y(t) 

I n order to develop other basic design requirements, consider the system shown 
schematically in Figure 3.8, wi th input u(t) and output y(t). This system is 
assumed to be governed by an ordinary linear differential equation which is 
Laplace transformable, so that 

where I(s) is a function of the ini t ial conditions y (0 ) , and 

is the system's transfer function. 
The system's output y(t) is the result o f two terms: a transient, produced by the 

ini t ia l conditions on the system, and a forced response due to the input u(t). I n 
mathematical terms this is equivalent to saying that the solution o f an ordinary 
linear differential equation is given by the complementary function (the transient 
response) and the particular integral (the forced response). When a system is in a 
steady-state condition, all the transients due to the ini t ia l conditions have subsided 
and I(s) becomes zero. 

3.2.1 Stability 
Stability and Laplace transfer function models 
A unit impulse is often used to determine a system's stability (see Section 1.3.4). 
For a system init ial ly in steady-state conditions (I(s) = 0) the output Y(s) due to a 
unit impulse (U(s) — 1) is obtained from Equation (3.1) as 
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Factorizing the characteristic function D(s) and using a partial-fraction expansion 
(Appendix 2) gives the output 

Y(s) 
S+P\ S+P2 

- + (3.2) 

Since i t was impl ic i t ly assumed that the characteristic function o f D(s) was o f 
order n, this factorization has produced n poles —px, —p2, • • •, —pn, which could 
be real or occur in complex conjugate pairs. When a pole pj is real then the 
coefficient Aj w i th which it is associated w i l l be real. However, when there is a pair 
o f complex conjugate poles pj and then the coefficients Aj and Aj+l w i th 
which they are associated w i l l form a complex conjugate pair. The inverse Laplace 
transform of Equation (3.2) is found by taking the inverse Laplace transform of 
each term on the right-hand side o f Equation (3.2) and then summing al l the time 
responses to find the required response y(t). 

For a real pole at s = —ph the corresponding time response is (see Table 2.9): 

se - l = A; e~Pit (3.3) 

I f the root of (s + p{) is negative (that is, p{ is positive) then the exponent in the 
time response is also negative and this element decays exponentially. I f the root o f 
(s + p^ is zero (that is, pt = 0) the corresponding time response reduces to the 
constant A 2 . When the root of (s + pt) is positive (/?, is negative), the exponent is 
positive and the response increases exponentially. The various responses and their 
relationship to the pole position in the s-plane can be seen from Figure 3.9. 

Wi th a pair of complex conjugate poles the inverse Laplace transform becomes 

j s r 
g+jh g-jh 

s + a —jb s + a + jb 

(g+jh)e-ia-M' + (g-jh)e-ta+W 

(g+jh)e-a'ej»' + (g-jh)e-a,e->bt 

e-a'[(g+jh)(cos(bt)+jsin(bt)) 

+ (g -jh)(cos(bt) - j s in(bi))] (3.4) 

After mul t ip ly ing out the brackets, and collecting terms, Equation (3.4) becomes 

g+jh 

• + 
g-jh 

s + a - jb s + a + jb 
2e-"'[g cos(bt) - A s i n ( f t f ) ] 

(3.5) 

Recalling that 

M cos(bt + 0) = M(cos bt cos 6 — sin bt sin 9) 

letting g — M cos 9 and h = M sin 9 gives the required rectangular to polar 
coordinate transformation enabling Equation (3.5) to be writ ten as 

g+jh g-jh 

s + a — jb s + a + jb 
= 2Me~at cos(bt + 9) (3.6) 
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Pole location Impulse response 

Figure 3.9 The relationship 
between pole location and 
impulse response for first-
order systems. 

Equations (3.5) and (3.6) w i l l be considered in greater detail i n the fo l lowing 
section. 

A t the moment, i t is important to note that each of the exponential terms in 
Equations (3.5) and (3.6) is the product of the real part of the complex poles and 
time. From this i t can be seen that it is the location of the real part o f the complex 
conjugate poles (Equation (3.4)) that determines whether the response decreases 
wi th time or not. 

For completeness poles having the same s-plane location need to be 
considered. Assume that m of the n system poles (m < n) all have the same 
value pi. These poles may be real or complex, but i f the poles are complex then (for 
physical systems) there w i l l be m corresponding complex conjugate poles. Using 
partial-fraction expansion (Appendix 2) produces terms o f the form 

Aim , Ai{m-\) An 

(s+Pi)m (s+Pi)m-1 s + pi 

for which the corresponding inverse Laplace transform yields the time response: 

Am-\) Jm-2) 

A - i ^ i y . ^ + - V - D 7 — 2 ) ! ^ + • • ' A^~P" W 

and again it is seen to be the pole location that determines the dynamics o f the 
response. 
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The time response of Equation (3.2) may now be obtained by summing the 
individual impulse response contributions from all the poles. That is 

y(t) = Axe-pS + A2e-^ + • • • + Ane~^ (3.8) 

Examining the system's impulse response (Equation (3.8)) gives the relationship 
between a system's pole positions and its stability. From Section 1.3.4 a system 
whose impulse response y(t) decays to its original steady-state value w i th time is 
said to be asymptotically stable. This w i l l occur i f the real parts o f all the system 
poles have negative real parts. I f any o f the poles has a positive real part then the 
system is unstable, and the response y(t) w i l l increase w i t h time. When there are 
unrepeated system poles having a real part o f zero and no poles w i th positive real 
parts, then the system is marginally stable. Systems which have repeated poles 
wi th zero real parts are always unstable. This can be seen from Equation (3.7), 
since the t terms are unbounded and the exponential terms w i l l become constants. 
The 5-plane stability regions are indicated in Figure 3.10. 

Stability and state-space models 
In Section 2.5.1, the standard linear state-space model (Equations (2.43) and (2.44)) 
was introduced, and its solution was found in Section 2.7 by taking Laplace 
transforms. This solution w i l l now be extended by including the ini t ia l conditions. 
Note that only the solution to the (dynamic) state equation is required, since the 
output equation is non-dynamic and simply maps the state responses to the outputs. 

Taking Laplace transforms of the state equation x(t) = Ax(t) + Bu(t) gives: 

sx(s) - Jt(0) = Ax(s) + Bu(s), or 

[sI-A]x{s) = x(0) + Bu(s), or 

x{s) = [si- A]-lx(0) + [si- A]~xBu(s) (3.9) 

Equation (3.9) can be solved by analogy wi th the equivalent scalar equation: 

X(s) = — * ( 0 ) + bU(s) (3.10) 
s — a s — a 
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Taking inverse Laplace transforms of Equation (3.10) gives the time-domain 
solution: 

x(t) = eatx(0) + f ea^b.u(x).dx 
Jo 

Now, by analogy, the solution of the multivariable state equation, Equation (3.9), 
must be: 

x(t) = ^x(0) + f ^ ( r - T ) B.u{x).dx (3.11) 
Jo 

which is sometimes written as: 

x(t) = 0(t)x(O) - h i 0{t - x).B.u(x).dx (3.12) 
Jo 

where 0{t) is called the transition matrix and is equal to e*1\ 
Note that the transition matrix can also be specified in the Laplace domain by 

rewrit ing Equation (3.9) as: 

x(s) = 0{s)x(O) + <P(s)Bu(s) (3.13) 

where 0(s) = [si - A]~l. 
Additionally, in Section 5.6.2, a third specification o f the transition matrix is 

given, in terms more suited to matrix algebra applications. 
Equation (3.12) (and Equation (3.13)) can be compared wi th Equation (3.10). 

Note that both solutions have a free-response term (due to the ini t ia l conditions on 
the states JC(0)) and a forced response term (due to the applied inputs u(t)). Earlier 
in this section, i t was shown that i t is the denominator terms (s — a) i n Equation 
(3.10) that fix the dynamic response of the system and hence determine its stability. 
B y analogy, in Equations (3.12) or (3.13), i t is the transition matrix that carries this 
information and, since this is a function o f the plant matrix A, i t must be this A 
matrix that determines the stability o f the state-space model (this may have been 
deduced from Figure 2.49(a), since A is i n the only dynamic loop). 

To discover what it is about the A matrix that carries the same information as 
the poles o f the LTF model, consider the role played by the transition matrix 0(s) in 
Equation (3.13). From the standard state-space model output equation (Equation 
(2.44)): 

y(s) = Cx(s) + Du(s) 

which, on combining wi th Equation (3.13), gives: 

y(s) = C0{s)Bu{s) + Du(s) + C0(s)x(O) 

This was the method used in Section 2.7 (Equation (2.95) and Example 2.26) to 
convert from a state-space model to a transfer function model. In particular, note 
that to evaluate 0(s) (the inverse o f [si- A]) required the determinant \sl — A\, 
which was seen to contain all the system poles. That is, for the equivalent LTF 
model, | j / - i 4 l | is the system's characteristic function and therefore defines the 
system's dynamics. 
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Now, the eigenvalues o f the A matrix (see Section A1.2 and Equation (A1.7) , 
repeated below), are the values of the scalar quantity X that satisfy the characteristic 
equation (CE): 

\U-A\ = \A-XI\=0 (3.14) 

The eigenvalues of a plant matrix A are therefore identical to the roots of the 
determinant \sl- A\, and are therefore the characteristic values for that plant. 
Further, irrespective of the state-space representation selected for any particular 
system, the eigenvalues are the same. Changing the selected states does not change 
the system dynamics. The fol lowing example demonstrates that the eigenvalues o f 
a state-space model, and the poles o f the corresponding L T F model, are identical. 

Example 3.1 Poles and eigenvalues of the 
antenna-positioning system 
Figure 2.48(b) (see Section 2.7) introduced a system whose Laplace transfer function is: 

Y(s) 5 5 

U(s) s(s+i){s + 5) s3 + 6s2 + 5s 
(3.15) 

By inspection, the poles o f this model are s = 0, s = - 1 and s = - 5 . Further, i n Example 
2.28, a state-space model o f the system, using the set o f state variables indicated in Figure 
2.48(b), is given by (see Equation (2.103)): 

and c = [1 0 0] 

Using Equation (3.14), the characteristic equation (CE) is therefore: 

"0 1 0" "0" 

0 - 1 1 , A = 0 

0 0 - 5 _ _5_ 

i 

• 

1 

"1 0 0" ' 0 1 0" X - 1 0 

X 0 1 0 - 0 - 1 1 = 0 A -h 1 - 1 = 0 

0 0 1_ 0 0 - 5 _ 0 0 A + 5 

\Xl-A\ 

Expanding the determinant (see Section A 1.1.2) gives: 

A ( A + l ) ( A + 5) = 0 

The eigenvalues are the roots o f this equation, namely, 

(3.16) 

0, -1 and /U = —5 

It can be seen that the CE in Equation (3.16) is the same as the CE of the original 
transfer function; i t does not matter that one is wri t ten in terms o f X and one in 
terms of s. Both provide the same values, and give the same information. 

Therefore, for stability of a state-space model, no eigenvalue o f the A matrix 
must have a positive real part. The same restrictions about eigenvalues on the 
imaginary axis apply, as discussed for poles earlier. 
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Looking back at the examples in Section 2.7, note that each state-space 
representation of the same system gives the same eigenvalues. A discussion o f the 
part played by the corresponding eigenvectors in forming the time response is 
postponed unti l Section 5.6. 

3.2.2 Performance and pole positions 
The system shown in Figure 3.8 and described by Equation (3.1) w i l l now be 
examined wi th regard to its performance. Ultimately, the performance o f a system 
(see Section 1.3.4) w i l l be judged by its time-domain response. The time response 
considered in this section is the step response. However, to simplify the analysis the 
concept o f dominant poles w i l l be introduced. 

Dominant poles 
Most stable linear systems could be represented by a transfer function having 
distinct poles and zeros which are all contained in the left half o f the s-plane. The 
time-domain response of such a system may be found by performing a partial-
fraction expansion, and then taking and summing the inverse Laplace transform o f 
each term. However, each term has a dynamic part consisting o f a negative 
exponential in time, the magnitude of which is determined by the real part o f the 
system's poles, and an amplitude which is a function o f the relative position of the 
poles and zeros (see Equations (3.2) and (3.8)). I f the relative amplitude associated 
wi th a given term is small, or i f the magnitude o f the negative real part o f any pole is 
large (thus producing a rapid exponential decay), the effect o f removing that term 
from the system's time response is l ikely to be negligible. For this reason, i t is often 
possible to produce a close approximation to the time response by considering only 
those terms in the partial-fraction expansion whose poles are most positive. This 
type o f analysis is called a dominant pole analysis. 

Dominant pole analysis requires the transient contribution from the non-
dominant system poles to be small. This in turn implies either o f the fo l lowing: 

• The non-dominant poles are wel l to the left o f the dominant pole(s), so that the 
corresponding transients die away relatively rapidly. 

• A n y pole near the dominant pole(s) is close to a zero, so that the magnitude of its 
transient response w i l l be very small. 

In general these conditions may be verified by visual inspection o f the pole-zero 
map. Figure 3.11 shows two typical pole-zero maps, one having a dominant single 
pole and the other a dominant pair of complex conjugate poles. The corresponding 
time-domain responses of systems having pole-zero maps similar to these, appear 
to be predominantly first or second order. 

Figure 3.11 Illustrating the 
idea of dominant poles. (a) 

X i 
X 

X 
X 

X 
X o 

X 

X 

A / ® 

(b) 
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Example 3.2 A dominant pole analysis of a sixth-
order system 
Find the step response y(t) o f a system having the transfer function 

c ( _x = 2 8 1 0 . 1 ( 5 + 4 )  
U (s + 3 . 8 ) ( J + 6)(s2 + 2s+ \l)(s2 + 10s + 2 9 ) 

and compare it wi th the response obtained from a dominant pole analysis. 
The pole-zero map for this system (see Figure 3 . 1 2 ) indicates that the dominant poles 

are a complex pair at s = - 1 + 4 / and s = -1 — 4/. Performing a partial-fraction expansion 
and then grouping terms, the inverse Laplace transform of the forced system is (Problem 
3 . 1 ) : 

y{t) = 1 + £ - ' ( 0 . 6 2 2 5 cos At - 0 . 5 7 1 4 sin At) 

+ e~5t(0.9728 cos It - 3 . 3 2 9 6 sin It) - 0 . 5 1 8 4 i T 3 8 ' - 2 . 0 7 9 6 * T 6 ' 

and its step response is shown in Figure 3 . 1 3 (produced by the M A T L A B m-file fig3_13.m 
on the accompanying disk). 

In a dominant pole analysis, the step response could be obtained from the first two 
terms in the above equation, namely 

y(t) = 1 + < r ' ( 0 . 6 2 2 5 cos At - 0 . 5 7 1 4 sin At) 

This response is also shown in Figure 3 . 1 3 . Note that for small values o f t there is a large 
discrepancy between the two responses, but as t increases they become indistinguishable. 
Theoretically they would be identical only when t becomes infinite, but for al l practical 
purposes they would, in this case, be considered to have become identical after about 1 
second. 

A n alternative and more frequently used approach is to remove al l but the dominant r 
g poles (and zeros) from the transfer function. For the transfer function G(s) , above, this 

gives 

2 W s2 + 2s+ 17 

' " A 

5 -
x 4 -

3 -
x 2 -

1 -
* 1 4 * 1 1 1 
- 6 - 5 - 4 - 3 - 2 - 1 

-1 -
x -2 -

-3 -
Figure 3.12 5-plane pole x _^ _ 
and zero locations for 
Example 3.2. ~5 



128 System responses, stability and performance 

Note that the numerator term has been adjusted so that the steady-state value of this 
dominant pole analysis and the original step response are the same. That is, the steady-

tr state gains G(0) and G 2 ( 0 ) are both unity. For a type 0 system (Section 2.5.6) the steady-
•x4 state gain is the factor by which a steady input must be mult ipl ied to give the system's 

final steady-state output. When G(s) and G2(s) are excited by a unit step input the final 
value theorem (Section 2.5.5) indicates that 

y(oc) = y2(oo) = 1 

For a unit step input, the inverse Laplace transform of G2(s)U(s) is 

y2(t) = 1 - e~'(cos At - 0.25 sin At) 

and produces the dashed response shown in Figure 3.14. This response may be compared 
wi th the fu l l response y(t) which is also shown in Figure 3.14. Superficially the two 
responses look very different. However, a closer examination of the responses w i l l show 
that the main difference is a phase shift. 

Normally, a dominant pole analysis is carried out by inspection. Given a fu l l po le -
zero map, the designer uses the dominant pole (or poles) to estimate the system's response 

: (the subsequent text deals wi th dominant pole analysis). I f i t appears that the estimated 
response matches the desired response, then this would be checked using the ful l model. 

The approximation of this sixth-order model by a second-order model might suggest 
the use of dominant poles for model reduction. However, as demonstrated by Figures 3.13 
and 3.14, model reduction is always accompanied by a loss of system information. In some 
situations the lost information might be relatively unimportant, but in others i t is crit ical, 
and can lead to erroneous conclusions. 
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A first-order dominant system 
A system wi th a negative dominant first-order pole can be represented by the 
transfer function 

G(s) = - ± - (3-17) 
s + a 

Since it is a type 0 system, the steady-state gain is 

G(0) = A/a 

and, for a unit step input (U(s) = \/s), the output response is 

a a 

Setting the system's steady-state gain to unity (A = a) produces the time response 

y(t) = l-e-°' 
and i t is evident that the pole position (s = -a) determines the shape of the 
response. 

Figure 3.15(a) shows two first-order systems' step responses. One has a pole at 
- 0 . 5 which could be considered close to the unstable right-hand half o f the s-plane, 
and one has a pole at —5.0, which could be considered we l l into the stable left-hand 
half of the s-plane. The further the pole is moved into the left-hand half of the 
s-plane, the closer the output matches the input. The file fig3_15.m on the 
accompanying disk produces the plot. To use a design strategy which simply 
moves a system's closed-loop poles wel l into the left-hand half o f the s-plane may, 
at this point, seem desirable. I t must be remembered, however (Section 1.2), that 
the inputs to real systems w i l l be contaminated wi th noise. I f both systems are now 
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Figure 3.15 (a) Fast and 
slow first-order step 
responses, (b) The systems 
of Figure 3.15(a) with 
superimposed input noise. 
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(b) 

excited wi th unit step inputs contaminated wi th noise (see Figure 3.15(b)), the 
responses shown in Figure 3.15(b) are produced. The system wi th its pole at - 5 . 0 
transmits a large fraction of the noise wi th the signal, whereas the system wi th its 
pole at - 0 . 5 removes (or filters out) much of the noise. This design conflict 
between a system's speed of response and its noise filtering properties w i l l be 
considered in Section 3.4. 
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Before leaving this section, note that there is another very common standard 
form of the first-order LTF. This is the so-called 'gain- t ime constant' (or Bode) 
form, which is obtained by dividing Equation (3.17) by the magnitude of the pole 
(that is, by a): 

G(s) 
K 

1 +ST 
(3.18a) 

where 

K is the gain (sometimes called the d.c. gain, or low-frequency gain), K = A/a 

T is the time constant in seconds - defined below, T = 1 /a 

I f a unit step input is applied as before (U(s) 
given by: 

l/s), the time response is now 

y(t)=K(l-e (3.18b) 

which gives the response in Figure 3.16, for K = 1. A n y first-order system ('first-
order lag ' , or 'simple lag') represented in the form of Equation (3.18a) w i l l have 
the unit step response of Figure 3.16. The vertical scale only needs mul t ip ly ing by 
the gain, K, and the horizontal scale is easily converted into seconds by knowledge 
of the time constant, T. The time constant is the time taken by the output to achieve 
63.2 per cent of the remaining distance to the final value, from any given time (for 
proof, set t = T in Equation (3.18b)). From this normalized form, i t can be seen 
that any stable first-order step response reaches 95 per cent o f its final value after 
three time constants (put t = 3T in Equation (3.18b)), and 99 per cent after five 
time constants. 

Figure 3.16 A standard 
(normalized) first-order step 
response. 
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A second-order dominant system 
A system having a pair of dominant complex conjugate poles may be approximated 
by the standard second-order equation: 

oo„ m =  

U(s) s2 + 2Çoons + oo2 

(3.19) 

Note that oon is called the undamped natural frequency (rad s" 1 ) , and f is called 
the damping ratio (dimensionless). Often, a gain factor K w i l l be included in the 
numerator, as in Equation (3.18). For the present, this is assumed to be unity in 
Equation (3.19). 

When excited by a unit step input Equation (3.19) becomes 

Y(s) = 
cot, 

s(s2 + 2Çœns + oo2) 
(3.20) 

This system has three poles at s — 0, s = —^oon + jood and s = —Coon — jood, where 
ood is the damped frequency o f the system response, given by 

= oony/7^i (3.21) 

The pole-zero map for this system is shown in Figure 3.17. To find the time 
response a partial-fraction expansion of Equation (3.20) is required. This takes the 
form 

Y(s) 
s + Ccon- jood s + Caon + jood 

Using the cover-up rule (Appendix 2) 

oo» 

s2 + 2Çoons + oo2 

vol 

5=0 
OO2 

1 

s{s + tœn +jood) 

(3.22) 

=-Ça)n+jwd 2\J 1 - C 

Figure 3.17 Pole locations 
in the 5-plane for 
underdamped second-order 
systems. 
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and therefore A3 w i l l be: 

Substituting the values of Ax, A2 and A 3 into Equation (3.22) and then by 
comparison wi th Equations (3.3), (3.4) and (3.5) the inverse Laplace transform is 
given by 

and a typical time response for this system is shown in Figure 3.18. I t may be 
noted that the response is contained wi th in two exponential envelopes at 
1 + e x p ( - ( c o n r ) and 1 - e x p ( - ( a v ) . From the pole-zero map of Figure 3.17, 
the complex poles have their real parts at -Cco n . Also , the periodic time of the 
response is given by 2n/ojd (that is, the frequency o f oscillation is ood rad s" 1 ) . 
Again from the pole-zero map, the imaginary parts o f the complex poles are at 
-cod and -\-a)d. The damping ratio £ which, in Figure 3.17, is found from the angle 
between the con vector and the negative real axis, can take on any value between 0 
and 1, and determines the general shape of the response. 

Figure 3.19(a) gives a set of standard second-order response curves. The 
vertical axis assumes that the d.c. gain (the factor K which might have appeared in 
the numerator of Equation (3.20)) is unity. I f not, then simply mul t ip ly the scale by 
K. The horizontal axis has also been normalized to apply to any system, by plott ing 
against the dimensionless quantity cont. The axis could therefore be read as i f i t were 
in seconds, for a system in which ojn = 1 rad s _ 1 . C takes the values indicated in the 

y(t) = l - e -Co)nt £ — sin ojdt + cos ojdt (3.23) 

yfflA 

Figure 3.18 Step response 
of an underdamped second-
order system. 

0 — • 
Time 0 
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Figure 3.19 Standard 
(normalized) second-order 
system step responses. 
(a) Step responses. 
(b) Relationship between 
percentage overshoot, peak 
parameters and damping 
ratio. 
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figure. The smaller the damping ratio, the more oscillatory the response unti l , when 
C = 0, there w i l l be sustained oscillations. When the damping ratio is unity, the 
response is said to be critically damped. I n this condition, there is a double pole at 
- ( c o „ and the response is the fastest possible without overshooting (that is, without 
the response exceeding its final steady-state value). For values o f £ greater than 
unity, there would be two distinct real poles centred on — £con and the response is 
then said to be over-damped (and cannot overshoot, as i t consists of two cascaded 
first-order systems). 
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Step response performance criteria 
The object of defining performance criteria is to establish a workable set of 
standards which can be applied to achieve an optimal response. However, there are 
problems in determining what aspect of the response makes i t optimal. For example, 
in the automatic positioning of an astronomical telescope, a steady-state error 
would be unacceptable, and any setpoint change must be performed gradually in 
order to minimize shock loadings on the structure. I n missile tracking systems, 
speed of response (that is, a fast rise time) is essential, and small steady-state errors 
would be permissible. These two examples illustrate some of the diversity o f 
control problems. Each problem has its own peculiar requirements, and 
consequently the designer must determine those aspects which are crit ical and 
ensure that appropriate criteria are selected. For this reason it is usual to identify 
certain parameters which describe the main attributes of the response, and to use 
them as the performance criteria. A design which best meets these criteria may then 
be thought of as optimal, although in reality the design w i l l only be as good as the 
selected criteria. 

Wi th step response performance criteria, two approaches are possible. One 
specifies l imits on certain features of the response and the other, which uses integral 
performance indices, tries to quantify in a single positive measure the whole o f the 
response. Both have advantages and disadvantages, and both have been widely 
used. Integral performance indices tend to be more appropriate in simulation work 
and state-space analysis. 

The step response shown in Figure 3.20 indicates a number o f commonly used 
performance criteria: 

(1) Steady-state error. The difference between the demand input r(t) and the 
steady-state output yss. Given a stable model o f the system, this would normally 
be found using the final value theorem (see Example 3.3, below). 

(2) Rise time, tr. The shortest time required for the response to achieve some 
specified percentage of its final value, yss. Sometimes, the 100 per cent rise time 
is used, as shown in Figure 3.20, although the rise time is often taken as the time 
from 10 per cent of the final value of the response to when i t first achieves 90 
per cent of its final value. This latter method allows the rise t ime of non-
overshooting responses to be quoted. 

(3) Peak overshoot, y(tp]) — yss. Sometimes referred to as the ini t ia l or maximum 
overshoot, peak overshoot is the amplitude o f the first peak. This is normally 
expressed as a percentage of the final (steady-state) value. Figure 3.19(b) shows 
the variation of percentage overshoot w i th damping ratio, for damping ratios 
between zero and unity. 

(4) Peak time, tpl. The time from the init iat ion o f the response to peak overshoot. 
Figure 3.19(b) gives a graph showing the variation o f the normalized time to the 
first peak, against damping ratios between zero and unity. 

(5) Subsidence ratio. In a decaying oscillation this is the ratio of the amplitudes o f 
successive cycles. A subsidence ratio o f 4 : 1 or 3 : 1 and a peak overshoot o f 30 
per cent would provide a practical optimal response for many process control 
systems. 
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(6) Settling time, ts. The time taken for the response to reach and remain wi th in 
some specified range of its final value. A n allowable tolerance of between ± 2 
and ± 5 per cent is usual. 

(7) Number of oscillations to settling time. This is self-explanatory. 

The formulation of these specifications in the s-plane is considered later. 

• Example 3.3(a) Steady-state error calculation by 
i the final value theorem 
m 
H Section 3.4.1 below investigates the effect of system type number (recall from Chapter 2 
| that this is the number of poles at the origin of the s-plane) on steady-state performance. I t 
*g is worth pre-empting that discussion wi th an example of how the final value theorem is 
_ used to evaluate steady-state error. 
i t 
* Consider a pressure control system. The output is the pressure in a cylinder, and the 
^ input is a voltage proportional to the desired pressure, applied to a servovalve. I t is 

therefore required that the output follows the input wi th a gain o f unity at steady state. The 
& open loop system is modelled by a simple lag wi th a d.c. gain o f 0.6 and time constant 
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35 ms, cascaded wi th a second-order element of damping ratio 0.71 and undamped natural 
j i frequency 38.9 rad s" 1, as follows: 

0.6 1513  
G W = ( 0 . 0 3 5 ^ + 1 ) ' (s2 + 55s + 1513) 

v The final value theorem (see Section 2.5.5) states that the final value o f this system's 
} output ( y ( o o ) , say) in response to a unit step input (which has a Laplace transform l/s 

* from entry 2 o f Table 2.9) is given by: 

s - G(s) 
s 

y(oo) = l i m [y{t)} = l i m [sY{s)] = l i m 

" r ^ / m 0 . 6 x 1 5 1 3 A , 

= ! L m o [ G ^ = - 1 5 1 3 — = ° ' 6 

This might have been expected since the d.c. gain (which is effectively the same thing as 
the steady-state gain) was specified as 0.6 above. The final value o f 0.6, compared wi th the 
input step o f 1.0, means that there is a steady-state error o f 40 per cent. 

What might not be so easy to visualize without calculation, is what w i l l happen i f the 
pressure is measured using a transducer of negligible dynamics, and the measurement is 

<„ used in a closed-loop control scheme to try to reduce this steady-state error. The closed-
loop arrangement is exactly that shown in Figure 3.2, where G(s) is the open-loop transfer 
function from above, and C(s) is going to be a simple gain, K, for the purposes of this 

* example (that is, a simple proportional-only controller is being used). 
" The closed-loop transfer function o f the arrangement o f Figure 3.2, w i th C(s) = K, is 
T given by: 

Y{s) _ KG{s) Kx0.6x 1513  

R{s) " 1 + KG(s) ~ (0.0355 + l ) ( s 2 + 555 + 1513) + K x 0.6 x 1513 

z, Apply ing the final value theorem to this, for a unit step input on R, gives the result: 

i» r / x l r , x l Kx 0.6 x 1513 0.6AT 
f , ( o o ) = l i m [ , ( , ) ] = l i m [sY(s)} = 1 5 1 3 + * x 0 . 6 x 1513 = T T a 6 K 

& I t can be seen that wi th a gain of K = 2, for example, the steady-state error w i l l actually 
j : be worse than that o f the open-loop scheme! As K is increased the steady-state error 
1 improves, unt i l at K = 2.5 the closed-loop system has the same steady-state error as the 
§ open-loop system. As K is increased further, the steady-state error decreases, but the result 
| | above shows that i t can never become zero, even i f K could be made very large, 
i What is worse is that the dynamic behaviour o f the system (that is, the amount of 

overshoot, the decay ratio and the settling time, all o f which were acceptable in open-loop) 
1 is actually very poor for most values of K. This is examined in Example 3.3(b), where it is 

found that for values of K greater than about 8.3, the closed-loop system becomes 
unstable. 

? s The conclusion is that a proportional-only controller is not good enough for this 
system. A t the very least, proportional plus integral control is needed to get rid o f the 

^ : steady-state error (this idea was introduced in Section 1.3.5, and is discussed more ful ly in 
i Section 4.5.2). 

Returning to the discussion of performance, there are also many integral 
performance indices which, i f minimized, w i l l optimize the response in some sense. 
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Although not necessarily related to a system's step response, i t is convenient to 
introduce performance indices at this point. Typically, integral performance indices 
measure a system's closed-loop performance by measuring 'the area' between the 
time axis and the system's error response on an error response plot. Some o f the 
more common ones are: 

• The integral of the squared error (ISE). The ISE is one o f the more popular 
measures, as i t lends itself most readily to mathematical manipulation. Its major 
disadvantage is that it can produce an unacceptably oscillatory response. To 
overcome this problem, the measure may be modified to include additional terms 
such as the integral of the squared time rate o f change of error (or the squared 
error velocity) or the integral of the error squared acceleration. As wel l as 
including these extra terms, each term may have associated wi th i t a scalar 
weighting, w say, as shown below. However, the problem is one of interpreting 
the modified measure in terms of the expected response. 

f O O 

ISE = e2(t) dt Jo 

J'OO 

(wie

2(t) + w2e2(t)+w3e2(t))dt 
o 

• The integral of the absolute value of error (IAE). This measure places equal 
weighting on all deviations from the final steady-state value. Its main 
disadvantage is the mathematical determination o f a min imum value for all 
except the simplest of systems. 

Joo 
\e(t)\dt 

o 
• The integral of time by absolute error (ITAE). For the engineer this is probably 

the most acceptable of the indices since it most nearly matches intuitive 
expectations. Following a step change in demand, i t is inevitable that there w i l l 
be a large error in the response, and to penalize this would place an artificial bias 
on the measure. However, at some later time a smaller error should be heavily 
penalized. In general, for a system of any order, the transfer function minimiz ing 
the I T A E w i l l have an acceptable form of transient response. Again, the main 
disadvantage is in the analytical determination o f a min imum value o f the index. 

J'OO 

t\e(t)\dt 
o 

Chapter 12 looks in more detail at time domain optimal control. 

Performance specifications in the s-plane 
In a development of some simple rules for s-plane performance specifications, only 
the dominant poles of a system need be considered. Desirable responses tend to be 
ones which are under-damped (but not to excess), and this occurs i f the system has a 
dominant pair of complex conjugate poles. The corresponding time-domain step 
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response may therefore be approximated by a second-order system, w i th the 
response (from Equation (3.23)): 

y(t) = 1 -

Note that i f a non-unity gain factor K multiplies col m t n e numerator of Equation 
(3.20), then the values o f y(t) given by Equation (3.24) (and (3.25), below) must 
also be mult ipl ied by K. 

B y noting that cod = con^\ - £ 2 (Equation (3.21), for £ < 1), the expression 
for y(t) becomes 

y(t) = 1 - . y [C sin codt + V 1 - C2 cos a^r] (3.25) 
\ / i - C 2 

Now from Figure 3.17 

cos 6 = — = v 1 - C2 and sin 0 = Coon/aJn = ( 
co„ v 

which on substitution into Equation (3.25) and application o f the cosine formula 

cos(co/ - 6) = cos a)d t cos 9 + sin cod t sin 6 

gives 

y(r) = 1 - — _ cos(cod t - 6) (3.26) 
V i - c 2 

(see Equation (3.6)). From this equation it is possible to estimate the positions in 
which the dominant poles must be in order to meet a particular performance 
specification. Again note that i f a non-unity gain factor K multiplies oo\ i n the 
numerator of Equation (3.20), then the values o f y(t) given by Equation (3.26) 
must also be mult ipl ied by K, and that this w i l l additionally apply to some of the 
results below (such as that of Equation (3.27)). Consider each of the fo l lowing 
specifications described above: 

(1) Steady-state error. This would normally be found using the final value 
theorem, see Example 3.3(a), above. For the system described by Equation 
(3.24) or (3.26), setting t to infinity gives the value y (oo) = 1 and, since the 
input was a unit step, the steady-state error r (oo ) — y (oo) = 0. 

(2) 100 per cent rise time. This w i l l occur the first t ime cos{codt — 9) becomes 
equal to zero, that is when 

cod t — 6 — n/2 

Hence the rise time is 

tr = (n/2 + d)/cod 

The rise time is a function of the damped frequency cod. 

oo„ 
C — sin codt + cos codt 

(3.24) 
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(3) Peak overshoot. This is obtained by substituting the expression for the peak 
time into the response y(t) (see the note fol lowing Equation (3.26), above): 

y(tp) = l+e-(m*'' (3.27) 

and is seen to be a function of the real part of the complex poles. Since 

71 71 

then the peak overshoot is a function of ( only. Equation (3.27) gives the 
maximum or peak value of the response. The percentage maximum overshoot 
(Figure 3.19(b)) is given by 

y(tp) 
y(oo) 

1 I x 100 per cent 

(4) Peak time. The peak time may be found by differentiating the response y(t) and 
setting the derivative dy/dt equal to zero. This w i l l be found to occur when 
$>m{(Dd t) first becomes zero, hence the peak time is 

tp = n/cod (3.28) 

which is again a function of the damped frequency. 

(5) Subsidence ratio. Assume that the subsidence ratio is Rs : 1, such that the first 
peak y(tpi) — y(oo) is Rs times greater than the second peak, y(tp2) — y(oo). I t 
may be shown that for any two adjacent peaks the subsidence ratio o f a second-
order system w i l l be the same. One cycle later than Equation (3.28) the second 
peak occurs when tp2 = 37t/cod. Hence 

y{tpl)-l=R,(y(tp2)-l) 

Substituting from Equation (3.27) and taking natural logarithms yields 

which indicates that the subsidence ratio is a function o f the damping ratio £ 
alone. 

(6) Settling time. This is obtained by considering the decay of the response 
envelope. For a 2 per cent settling time, 

0.02 = e x p ( - C o v 5 ) 

or, taking natural logarithms, 

' , = 4 / ( C o ) B ) 

For a 5 per cent settling time the expression becomes (see Example 3.3(b), 
below): 

t, = 3/(C©„) (3.29) 
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Settling time is a function of the real part o f the dominant poles. The reciprocal 
o f Ca>„ has units of time, and is referred to as the equivalent time constant o f the 
second-order system. Equation (3.29) may also be used to define dominance. 
Non-dominant poles decay wi th in their own response envelope and conse
quently, i f there were a real pole at -cr, the transient due to this pole would have 
the form Ke~at. This term would decay to wi th in 5 per cent o f its in i t ia l value 
when t = 3/1(71 . I f the system rise time tr is greater than or equal to 3/|cr|, then 
the exponential term w i l l have only a small effect on the performance 
measures. A similar argument holds for complex poles. Therefore, i n general, a 
dominant pole analysis requires the non-dominant poles to be close to a zero, or 
to have a negative real part o f magnitude greater than or equal to 3 / r r . 

(7) Number of oscillations to settling time. Given the periodic time of the damped 
oscillations and the settling time of the system, then 

Settling time 
Number of oscillations = — - — : — 

Penodic time 

and is a function of the damping ratio. 

Example 3.3(b) Settling time and overshoot 
calculation for the system of Example 3.3(a) 
A n examination o f the open-loop transfer function o f the system of Example 3.3(a) 
suggests that a dominant pole analysis of the type outlined above is impossible, because 
the real pole is at about s = - 2 8 . 6 and the second-order part has complex poles whose 

£ real parts are s = - 2 7 . 5 . No part can therefore be classed as 'dominant ' over the other. 
However, in closed-loop, the situation changes dramatically. Example 3.3(a) gives the 

, closed-loop transfer function as: 

J Y(s) KG(s) Kx 0 . 6 x 1 5 1 3 

4f 

R(s) 1 + KG(s) (0.0355 + \)(s2 + 555 + 1513) + K x 0.6 x 1513 

A general expression could be written for the poles o f this LTF, and evaluated at various 
values o f K. However, i t is far easier to use a package such as M A T L A B (Appendix 3) to 
do it for us numerically. The M A T L A B commands to achieve this are as follows: 

> num = 0.6*1513; % open-loop numerator 

> den = conv([0.035 1], [1 55 1513]); % open-loop denominator 

y k = 2; % controller gain 

y [numc, dene] = cloop(k*num, den, - 1 ) ; % closed-loop L T F 

f > damp(denc) % see below 
0 
* The command damp(denc) is issued wi th no semicolon, so the results are displayed. I t 
* shows every closed-loop pole (it calls them eigenvalues), together w i t h its associated 
i l damping ratio and undamped natural frequency. 
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(Aside: Readers who do not have access to such a computer package must insert a 
» chosen value o f K into the closed loop LTF given above, factorize the denominator to find 
* the first-order root and the second-order complex pair o f roots, and fit values o f damping 
& ratio and undamped natural frequency to the resulting second-order term, by comparison 
P w i th the standard form (see, for example, Equation (3.19)).) 

Using K = 2, as in the M A T L A B example above, reveals that the first-order closed-
*M loop pole is at about s — - 58 .6 , while the real parts of the two complex poles are at about 
*;* s — - 1 2 . 5 . The second-order poles can therefore be regarded as dominant, and the 
v associated values o f damping ratio and undamped natural frequency can be used to 
v evaluate the performance measures outlined above. 

i I n this case (K = 2), these are approximately £ = 0.31 and con = 40.3 r ads" 1 . The 
% corresponding values of overshoot and 5 per cent settling time, from above, are therefore 

about 36 per cent and 241 ms respectively. Remember to include the closed-loop d.c. gain 
(equivalent to the value of yss for a unit step input) as a mul t ip ly ing factor on the value o f 
ytp given by Equation (3.27). O f course, i f M A T L A B is available, then 

y step(numc, dene) 

w i l l display the closed-loop step response for confirmation (the values w i l l be found to be 
approximate, due to the dominant pole approximation), 

i As K increases, the values of these performance indicators get progressively worse. A t 
B K = 7, the dominant second-order approximation is almost perfect, because the real parts 
1 of the complex roots are very small compared wi th that o f the real pole. This time, the 

values are C = 0.03 and con = 53 r a d s - 1 . The overshoot and 5 per cent settling time are 
i therefore about 90 per cent and 1728 ms respectively (there are also about 15 oscillations 
f during this settling time, and the steady-state error is sti l l about 19 per cent). B y the time 
m K is increased to 8.3, the closed-loop system has become unstable (the damp command 
* reports positive real parts for the complex roots). Example 3.7(b), confirms this value 
9 analytically. 

Using dominant pole analysis, the above performance specifications have all been 
shown to be related to either the damped frequency, the damping ratio or the 
equivalent time constant of the dominant poles. In the s-plane, lines o f constant 
damped frequency cod are lines parallel to the real axis o f the s-plane. A line o f 
constant damping ratio is a radial line emanating from the origin o f the s-plane and 
is at an angle <\> to the negative real axis; that is, 

C = cos (f) or (f) = c o s - 1 £ 

Lines of constant time constant, lines, are parallel to the imaginary axis. For 
completeness, note that lines of constant con describe circles centred on the origin 
of the s-plane. A l l these lines are shown in Figure 3.21. 

I n order to obtain an optimal step response it would be normal to impose l imits 
on the value of cod, which defines bands on the rise time, the peak time and the 
damped frequency. A minimum and a maximum value o f the damping ratio ( 
specify the subsidence ratio, the peak overshoot and the number of oscillations to 
the settling time. A minimum time constant defines the peak overshoot and, 
probably more importantly, the settling time. The maximum time constant specifies 
the system's noise-rejection properties. 

The design of a system using s-plane performance criteria typically reduces to 
the problem of ensuring that the system's dominant poles are not wi th in the shaded 
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Figure 3.21 Constant 
parameter contours in the s-
plane. (a) Lines of constant 
damped frequency; (b) lines 
of constant damping ratio; 
(c) lines of constant 
'equivalent time constant'; 
(d) lines of constant 
undamped natural 
frequency. 
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area in Figure 3.22. Again, in terms of the design problem, it is desirable to keep the 
specifications to a minimum. Over-specification may create unnecessary 
difficulties, and seldom leads to any significant improvement in the transient 
response. Removal of the constraints on the maximum value o f £, and/or on the 
min imum value of cod, would ease the design problem considerably (see Figure 
3.22). 

Before leaving this section, it w i l l be useful to consider the effect on the time 
response of shifting the dominant poles along the j -plane performance lines. Figure 
3.23 illustrates this shift for two second-order systems. When the systems have 
the same [,wn value, the responses are contained wi th in the same exponential 

- £ f f l n ( m i n ) ~C% ( m a x ) 

Figure 3.22 The effects of 
performance specifications 
in the i-plane. 
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Figure 3.23 The 
relationship between pole 
locations and step response 
for second-order systems, 
(a) Systems with the same 
value of £a)n; (b) systems 
with the same value of 
damping ratio (0; (c) 
systems with the same value 
of damped frequency (cod). 

JO) 

(b) 

-X- -

jco 

envelopes, but the frequency of oscillation is greater for the system having the 
larger cod value (see Figure 3.23(a)). The same £ value indicates that the peak 
overshoot in the two systems is the same (see Figure 3.23(b)), but the speed of 
response w i l l be faster for the system whose poles have the more negative real part. 
Figure 3.23(c) shows two systems wi th the same value o f cod. Although the 
frequency o f the response is the same, the more negative poles produce the faster 
and more heavily damped response. 

3.2.3 Frequency response methods 
Design methods based on a system's steady-state frequency response character
istics have many attractions. High-order systems, complicated controller dynamics 
and time delays are easily handled. The main disadvantage is that for systems 
higher than second order, there is no direct relationship between the transient 
response in the time domain and the various frequency response plots. However, 
experience shows that, provided certain frequency conditions are met, good 
transient response characteristics may be expected. These conditions are usually 
known as frequency performance criteria. 
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In the subsequent sections the relationship between the Laplace and frequency 
domains is explored, conditions for closed-loop instability are established and used 
to gain insight into various frequency performance criteria. The Nyquist , Bode and 
Nichols plots are also examined. 

The steady-state frequency response 
Consider again the open-loop system shown in Figure 3.8 which is governed by 
Equation (3.1). To determine the system's steady-state response to a harmonic 
forcing input let 

u{t) = a sin cot 

which, on Laplace transformation, becomes 

(3.30) 

U{s) = 
ooa 

sz + ooz 

Substituting for U(s) in Equation (3.1) gives 

Y(s) = 
N(s) ooa 

+ 
I(s) 

D(s) s2 + oo2 D(s) 

Since the system is assumed to be stable, the effect o f the in i t ia l conditions 
diminishes wi th time and 

I(s) 
D(s)\ 

0 as t —• oo 

Therefore 

y(t) = te
rn ooa 
_D(s) s2 + oo2 

as t oo (3.31) 

In order to solve for the steady-state response o f Equation (3.31) it is first 
necessary to make a partial-fraction expansion o f the terms requiring inverse 
transformation, namely the terms wi th in the square brackets: 

ooa N{s) 
D(s) s2 + oo2 s — joo ' s + joo + • + (all terms arising from D(s)) 

(3.32) 

As the system is stable, all the terms arising from the system's characteristic 
function D(s) must be functions which disappear as t —• oo. Hence, the steady-
state response may be found by solving for Ax and A2. Using the Heaviside 
formula, Appendix 2: 

N(s) ooa(s-joo) \ 

D ( i ) (s-jco)(s+jco)) 

which reduces to 

a N(joo) a 

2j D(j(o) = 2j 
G(jco) 

(3.33a) 

(3.33b) 
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Similarly, 

A2 = -YjG(-jœ) (3.34) 

The terms G(jco) and G(-jco) are complex, and their real and imaginary parts are 
functions of co. Hence, by the normal rules o f complex algebra, these terms may be 
written in polar form as 

and 

G(jco) = M(œ)ej<t>{œ) or Mej<t>  

G(-jœ) = M{(D)e~j^œ) or Me-** 

Thus, from Equations (3.33) and (3.34) 

A, =-MeJ 

V 

A 2 = ^ Me 
2 2j 

-j<t> 

(3.35a) 

(3.35b) 

(3.36a) 

(3.36b) 

Substituting the expansion of Equation (3.32) back into Equation (3.31) yields the 
steady-state response as 

s -jo s+ joo 

which, on inverse Laplace transformation, becomes 

y(t)a=Axe+*»+A2e-*» (3.37) 

Substituting Equations (3.36) for Ax and A2 into Equation (3.37) gives 

y(t)ss = 1 Me+J+e*" - 1 Me-Me-'0* 

or 

y(t)ss = £ Mie***») - e-M+Mî) 

Since sin x = (l/2j)(ejx - e~jx), then 

y(t)ss = aMsin(coi + 0) (3.38) 

On comparing the steady-state output (Equation (3.38)) wi th the input (Equation 
(3.30)), i t is evident that the input signal has been mult ipl ied by the factor M , 
known as the magnitude ratio or magnification factor. As M (or, more correctly, 
M(co)) is a function of frequency, for any given frequency it may be determined 
directly from the open-loop transfer function G(s). Also, the steady-state input and 
output signals have the same frequency of oscillation, but the output is phase-
shifted by an amount (f). This phase shift 4>{oo), l ike the magnification factor, is 
frequency-dependent and may be determined directly from the open-loop transfer 
function G(s). 
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The above analysis is simply a calculation o f the residues associated wi th a 
pair of complex conjugate poles on the imaginary s-plane axis. Provided the system 
is linear and stable, the steady-state response is characterized by M(oo) and (f>(co) 
which, in turn, depend on the transfer function G(s). From Equations (3.33) and 
(3.35), 

G(s)\s=jti) = G(jco) 

and 

N(joo) 
G O ) D(joo) 

One way to find G(joo) is to replace every value o f s i n G(s) by joo, and then to 
reduce G(joo) to its simplest form using the normal rules o f complex algebra. For 
example, i f 

G{s) 
s 2 + 5s + 6 

then 

G(ja>)= f + 4 

(joo) +5/CO + 6 

which may be 's implif ied' to give 

_ co2 + 24 . oo(oo2 - 14) 
U ( 0 > ~ co4 + 13co2 + 36 + 7 co4 + 13co2 + 36 

This equation uses rectangular coordinates - that is, i t has the form 

G O ) = U(co) +yV(co) 

To convert this equation to polar form, let 

G{joo) = M(ao)eMoj) 

where 

and 

M(co) = yJ(U(oo)2 + V(oo)2) 

4>{a>) =tim-l[V(oo)/U(oo)} 

This procedure can become quite involved, particularly i f the transfer function is 
of high order. Fortunately, there is a simpler way to find M(co) and (f)(oo). 

In general a transfer function in which s is set equal to joo may be represented 
by an expression o f the form 

m 

n + & ) 
G(joj) = K i = i 

tligi+jht) 
1 = 1 
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where m and n are the numbers of terms in the numerator and denominator, 
respectively. For this system 

m . 

M(a>) = K (3.39) 

and 

<fi(co) = £ t an - 1 (c/a,) - £ t an" 1 (A,-/*/) (3.40) 
/=1 1=1 

Before leaving this section note that, in general, a forcing input excites many 
harmonic signals, producing a response which, depending on the dynamics o f the 
plant, is either attenuated or amplified. Furthermore, these signals w i l l be phase-
shifted relative to each other, wi th the effect that the recombined signals w i l l tend 
to weaken or strengthen each other. 

Example 3.4(a) Finding the magnitude and phase 
responses of a LTF 
For the transfer function 

0(s) S + 4 

s2 + 5s + 6 

find the magnitude M(co) and phase 4>(oS). 
First find G(joS) by setting s = jco, hence 

G(yco) = • 
6 — oo2 + 5jco 

From Equation (3.39) 

M M = ^ f i ± 2 = (3.41) 
^[(6-CO2)2 + 25OJ2) 

and from Equation (3.40) 

^ ) = t a n - ' Q - t a n - ( ^ ) (3.42) 

Note that when co2 > 6 in the last term, the arctan of a negative number is required. The 
normal procedure is to rewrite Equation (3.42) as: 

<f>(co) = tan 1 (I) - 1 8 0 ° - t a n " 1 1 
(ûl - 6 

for a) 2 > 6 (3.43) 
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Equations (3.41), (3.42) and (3.43) provide the required solution. Alternatively, the 
denominator o f G(s) could be factorized to give 

G{s) 
(s + 2){s + 3) 

for which 

(jco + 4) 
G(jco) 

{jco + 2)(jco + 3) 

Then, from Equation (3.39): 

M o > ) = . (3.44) 

and from Equation (3.40) 

0 H = t a n - I g ) - t a n - ' ( f ) - t a n - ' ( | ) (3.45) 

By substituting various values of co into the expressions for M(co) and (f)(oo) i t is readily 
checked that Equations (3.41) and (3.44) are equivalent; and that Equation (3.45) is 
equivalent to Equation (3.42) when co2 < 6, and to Equation (3.43) when oo2 > 6. 

Example 3.4(b) Steady-state frequency analysis of 
a recording system 
A temperature recording system wi th transfer functions as shown in Figure 3.24 is used to 
measure a time-varying fluid temperature in an experiment. For steady-state operation a 
Fourier analysis o f the recorder output trace yields the expression 

QQ = 1.5 + sin 10i + 0.2 sin 60t 

Determine the corresponding expression for the true input temperature. 
The overall transfer function for the temperature recording system is 

G(s)=-
50 x 10~ 3 

(0.05s + 1) 
J 6 0 0 40 

Since the steady-state output was given by 

Q = 1.5 + sin 10r + 0.2 sin 60r 

QM 

of the temperature recording 
system for Example 3.4. 

0/ 50 x 1CT6 

temperature 0.05s + 1 1000 

Thermocouple Amplifier 

1 G 
s 2 + s + 1 

1600 40 
pen trace Recorder 
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i the corresponding input must have been of the form 

Qi = A + B sin(10f - 0(10)) + C sin(60r - 0(60)) 

In general, for an input of the form 

qi{t) = a sin cot 

t the corresponding steady-state output w i l l be (see Equation (3.38)) 

q0{t)ss = aM[oo) sin(cor + <j>{oo)) 

To find M(oo) and 0(a)) from G(s), set s =joo . Then 

50 x 10~ 3 

(0.057c + ! ) ( - -
v J J \ 1600 40 

50 x 1Q- 3 

Hence, from Equation (3.39) 

M(oo) = 
50 x 10~ 3 

,2 • 
16ÖÖ 

and from Equation (3.40) 

0(co) = 0 - t a n - 1 ( 0 . 0 5 w ) - tan" 

co 
40 

oo 
1600J 

For oo = 0 

M(œ) = 50 x 10" 

which is the system's steady-state gain. Hence, to obtain a constant output signal o f 1.5 the 
input signal must be 

1.5/(50 x 10" 3 ) = 30 

For oo = 10 rad s - 1 

50 x 10~ 3 

Af(10) = 46.1 x 10" 3 

and 

V ^ L 2 5 ) > / ( 0 . 9 4 1 4 ) 

0(10) = -0 .465 - 0.261 = -0 .725 rad 
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For co = 60 rad s - l 

§ 50 x 10~ 3 

M ( 6 0 ) = 8.10 x 10 1-3 

7(10) ^ ( 3 . 8 1 2 5 ) 

and 

0(60) -1 .249 + 0.876 = -0 .373 rad 

Consequently, the true input temperature was 

Q.(t) = 30 4-21.7 sin(10r + 0.752) + 24.7 sin(60r + 0.373) 

Conditions for closed-loop marginal stability 
Marginal stability in a closed-loop system occurs when the controller and other 
control elements in the loop are adjusted so as to produce a self-sustained steady-
state cycling in the response. Such a condition requires the closed-loop system to 
have two complex conjugate poles on the imaginary axis o f the s-plane, and all its 
other poles to have negative real parts. B y quantifying this condition in terms of a 
system's frequency response, i t is shown to provide a basis for the definition of 
performance criteria. 

As an aside, note that in practice i t would be hard to bui ld a reliable oscillator 
from a linear system wi th two complex conjugate poles on the imaginary axis o f the 
5-plane. This is because the slightest disturbance (for example, the effects of 
temperature on component values) would cause the poles to move slightly to the left 
( in which case the oscillations would eventually die away) or slightly to the right ( in 
which case, they would gradually grow). To maintain reliable oscillations (for use 
in a laboratory signal generator, for example) actually requires a deliberately 
nonlinear system, undergoing a phenomenon known as a limit cycle - see 
Chapter 14. 

Consider the marginally stable closed-loop system shown in Figure 3.25 which 
is performing self-sustained oscillations. A time profile o f the system's response is 
shown in Figure 3.26 in which the first half-cycle o f a sinewave is shown as a solid 
line in the e(t) plot. This signal passes through the various elements in the loop and 
emerges at b(t) w i th the same amplitude but w i t h a phase lag o f 180°, as shown. The 
signal then enters the comparator, which in this case inverts the signal b(t). Wave 
inversion is equivalent to a phase shift o f —180° (or —n radians), since 

b — —A sin cot = A sin (cor — n) 

y(t) 

Figure 3.25 A marginally 
stable control loop, 
exhibiting self-sustained 
oscillations. 
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Figure 3.26 Analysis of the 
phasing of signals in Figure 
3.25. 

The output o f the comparator, r - b(t), is i n phase wi th the error signal e(t) and 
provides the second half o f the sinewave. This process repeats itself continuously, 
and the system performs self-sustained oscillations. 

Two conditions must be met i f sustained oscillations are to occur: at the signal 
frequency oo, M(co) must be unity and cj)(ao) must be - 1 8 0 ° (that is, the phase lag 
must be 180°). I f M(co) were less than unity, 0.5 say, then the feedback signal b(t) 
would be half the amplitude of the error signal e(t), phase-shifted by - 1 8 0 ° . This 
signal would be inverted to form the new error signal at e(t). As the process 
continued, each successive peak in the error signal would be a quarter the height o f 
its predecessor, and the system would have quarter-amplitude damping - that is, the 
subsidence ratio would be 4 : 1 (see the subsection on 'step response performance 
criteria' in Section 3.2.2). I f M(oo) were greater than unity, the amplitude o f 
successive peaks would increase and the system would become unstable. B y similar 
arguments, when M(oo) = 1, (j)(oo) must be —180° for sustained oscillations to 
occur. Under these conditions the total phase shift, including that of the comparator, 
is —360°, and signals going around the closed-loop are in phase. 

Since the above conditions w i l l make a closed-loop system marginally stable, 
the design problem is reduced to the relatively simple task o f adjusting the loop 
characteristics so as to produce a stable condition which, from experience, is known 
to provide satisfactory responses. Typically, the process elements are known but are 
not easily accessible and cannot be altered to any great extent. Consequently, the 
problem is principally one of specifying the controller and associated hardware 
required for given specifications of control system performance. 

Experience shows that a good, stable control system w i l l usually be obtained i f 
the overall open-loop magnitude ratio M(oo) is set equal to some value between 0.4 
and 0.5 when the phase angle <j)(oo) is —180°. A companion rule is that the phase 
angle should be between - 1 1 5 ° and - 1 3 5 ° when the magnitude ratio M(co) is 
unity. In general, for an asymptotically stable, open-loop system, the application o f 
these rules produces a slightly under-damped closed-loop control system that 
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responds to a forcing step input wi th a 20-30 per cent overshoot, fol lowed by 
decaying oscillations having a subsidence ratio o f about 3 : 1 . 

I t is useful at this point to introduce some terminology: 

• Phase crossover is the frequency at which the overall open-loop phase angle 
</>(o>) first reaches the critical value o f - 1 8 0 ° . 

• Gain crossover is the frequency at which the overall open-loop magnitude ratio 
M(co) first reaches the value of unity. 

• Phase margin is the number of degrees by which the phase angle is numerically 
smaller than the critical angle of ( - ) 1 8 0 ° at gain crossover. 

• Gain margin is the factor by which the magnitude ratio must be mul t ip l ied at 
phase crossover to make it unity. 

The empirically derived design rules may now be restated in terms o f the more 
commonly used measures of gain and phase margin, as: 

Gain margin between 2 and 2.5, phase margin between 45° and 65°. 

In using these rules the fo l lowing points should be noted: 

• The above design rules do not give accuracy o f control. I t is possible to produce a 
satisfactory transient response, but st i l l have an unacceptable steady-state error. 

• The rules say nothing about desirable speeds o f response. 

• The rules do not guarantee closed-loop stability for al l systems. However, using 
Nyquist 's stability criterion (Section 4.3), i t can be shown that for open-loop 
stable systems of type 0, 1 or 2, the rules w i l l produce closed-loop stability. 

I t is also worth noting that consideration o f system stability can broadly be 
divided into two aspects. Firstly, there is the question o f whether the system is, or is 
not, stable. Such analysis is considered further in Section 3.3. Given that a system is 
stable, i t is then necessary to consider how stable i t is. Such analysis is considered in 
the frequency domain by gain and phase margin measures. 

Example 3 . 5 Evaluation of gain and phase 
margins from frequency response data 
The open-loop frequency response characteristics of a simple single-loop control system, 
including the controller but excluding the comparator, are found to be as follows: 

Frequency, cycles/min 0.01 0.06 0.10 0.6 1.0 
Magnitude ratio 4.82 1.00 0.47 0.08 0.02 
Phase angle - 1 0 ° - 1 2 2 ° - 1 8 0 ° - 2 7 2 ° - 3 1 6 ° 

What are the gain margin and phase margin for this system? 
From the data in the table, the gain margin (which is the safety factor in the 

magnitude ratio when the phase angle is - 1 8 0 ° ) is 1.00/0.47 or 2.13, and the phase 
margin (which is the margin of safety in the phase angle at gain crossover, overall 
magnitude equal to unity) is 180° - 122°, or 58° . 



154 System responses, stability and performance 

3.3 Routh stability 
In Section 3.2 it was shown that the response of a system to an impulse could be 
approximated by a dominant pole analysis. Dominant poles are those roots of the 
system's LTF denominator, Equation (3.1), which have the most positive real parts. 
System zeros, particularly i f they are close to, or to the right of, the dominant poles 
(that is, have more positive real parts than the dominant poles) w i l l alter the shape 
of the response. However, the role of zeros in shaping a system's response w i l l not 
be covered until Chapter 4. 

Some simple stability definitions for linear systems were provided in Section 
3.2.1. I t was seen that for asymptotic stability all the system's poles must be 
contained wi th in the open left-hand half o f the 5-plane. Any pole in the right-hand 
half of the .s-plane makes the system unstable, see Figure 3.27. Unrepeated 
dominant poles on the imaginary axis w i l l make the system marginally stable, while 
mult iple (repeated) dominant poles on the imaginary axis make the system unstable. 
The stability of a system in terms of its dominant poles and their impulse response is 
summarized in Table 3.1, in which multiple poles (two or more poles occupying the 
same location) are indicated by a number above the pole. For example, system 
number 3 has two poles occupying the location (0, 0) in the s-plane. 

I f the root locations of a system's characteristic equation are known, then i t is a 
simple matter to establish stability by visually checking that all the roots have 
negative real parts. Also, i f the zero locations between the forcing input and the 
measured output are known, the response may be determined. Indeed, i t is normal 
practice, when finding a system's time response using inverse Laplace transform 
techniques, to start by factoring the system's denominator polynomial and checking 
for asymptotic stability. Such a check is called a direct stability test. When suitable 
computing equipment and software is available (for example, M A T L A B -
Appendix 3, or any other suitable package), direct stability checks are the preferred 
solution (as was done using M A T L A B in Example 3.3(b)). However, care should be 
exercised i f poles appear very close to the imaginary s-plane axis. Due to numerical 
rounding errors, these poles may appear stable, but actually be unstable, and vice 
versa. 

3.3.1 Direct stability tests 

Region of 
asymptotic Unstable 
syability r e 9 ' o n 

Figure 3.27 Unstable 
region for poles in the s-
plane. 

s-plane 
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Table 3.1 Impulse responses and s-plane pole plots. 

Pole locations 
in 5-plane 

Impulse response Comment 

JO) y(t) 
Asymptotical ly 
stable 

y(t) 
Marginal ly 

*t stable 

JOJ 

ja>< 

V k 
x a 

X 

a 
X 

y(t) 

y(t) 

Unstable 

Unstable 

Asymptot ical ly 
+t stable 

6 ja) 
y(t)> 

Marginal ly 
>t stable 

7 jco. 
X2 y(0 

Unstable 
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3.3.2 A necessary condition for asymptotic stability 

In general a characteristic equation may be written in the form 

D ( i ) = ^ a I . i " - 1 = 0 

7=0 
or 

D(s) = QQS" + axsn~l + • • • + an_xs + an = 0 

I f D(s) has real coefficients, then its complex roots w i l l occur in conjugate pairs. 
Let D(s) have p real roots, - a l 5 - a 2 , . . . , — a p and q pairs o f complex roots, 
—/?! ± , —j?2 ± 702' • • • > — A ? =*= s o t n a t n = 2q + p.In factored form D(s) 
may be written as 

D(s) = a0(s + a i ) . . . ( j + a p ) ( i 2 + 2 ^ + j8? + 0 2 ) 

• . . ( 5 2 + 2 ^ 5 + ^ + 0 2 ) 

A l l the a and ft values w i l l be positive i f the system is stable. By expansion, i t is 
found that each of the a values must exist, and all must be o f the same sign. This is 
a necessary condition for stability, but i t may not be sufficient. However, i f one o f 
the a values is negative or zero then the system is unstable ( i f an = 0 the system is 
at best marginally stable). 

Example 3.6 Stability by inspection of the 
characteristic equation 

! Comment on the stability of the fol lowing systems' characteristic equations: 

(a) D{s) = s5 + 5 / + 3s3 - 2s2 + s + 8 = 0 

(b) D{s) =s5+ 5s4 + 3s3 + 2s2 + 8 = 0 

-; (c) D(s) = s5 + 5 / + 3s 3 + 2s2 + s = 0 

" (d) D(s) = -s5 - 5s4 - 3s3 - 2s2 - s - 8 = 0 

System (a) is unstable, since the coefficient associated wi th s2 is negative and therefore i t 
does not satisfy the necessary condition for stability. 

The s term is missing in system (b), so the system is unstable. 
In system (c) there is a root at s — 0, which means that the system is at best 

marginally stable. The remainder polynomial does satisfy the necessary condition for 
stability and therefore Routh's criterion should be used to test for sufficiency (see Section 
3.3.3). Routh's criterion would indicate that all the remaining roots are in the left half of 
the s-plane. 

System (d) satisfies the necessary condition for stability. The system may or may not 
be stable, and a further test is required. Routh's criterion w i l l show that the system is 
unstable. 



3.3 Routh stability 157 

sx Note that M A T L A B (Appendix 3) can very easily find the roots o f such equations, 
| which can then be inspected to see whether or not all the real parts are negative. For 
m example, to solve (b) using M A T L A B , use the single command (note the zero coefficient 
4 of s): 

» roots([ l 5 3 2 0 8]) 

r. This immediately confirms the instability, as there is a complex pair o f roots w i th real 
; parts o f +0.62 . 

3.3.3 The Routh stability criterion 
The Routh stability criterion provides a quick and easy method o f establishing a 
system's stability. I t involves calculating the number (not the location) o f 
characteristic roots wi th in the unstable right half o f the s-plane. The number o f 
roots in the stable left half of the s-plane and the number o f roots on the imaginary 
axis may also be found. Apart from the stability checks, usually carried out before 
determining root locations, the method may also be used to establish the l imi t ing 
values for a variable parameter beyond which a system would become unstable. 
This section does not attempt to prove Routh's stability criterion, but just gives the 
basic results. 

The characteristic equation of the system whose stability is to be tested must 
be expressed in the form 

D(s) = Y/ais"-i = 0 

i=0 

before Routh's criterion may be applied. For this polynomial , the Routh array is 
shown below. The first two rows are made up from the characteristic equation 
coefficients in the obvious manner. The elements in the third row onwards are 
obtained from elements in the previous two rows in the fo l lowing way: 

axa2 - a0a3 axa4 - a0a5 

bx = , b2  

ax ax 

bxa3 — axb2 bxa5 — axb3 

c \ = 7 > c2 = 7 • • • b2 bx 

Row 

0 s" a0 a2 a4 a6 ••• 

1 sn-l ax «3 «5 a7 ••• 

2 sn-2 
bi b2 ¿3 b4 ... 

3 ^3 c 4 

n - 1 sl 

y\ yi 
n s° 

(3.46) 
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The number of sign changes in the first column (a0)al,bl1cl,..., yuzx) o f the 
Routh array is equal to the number of roots o f D(s) w i th positive real parts. The 
criterion and the array are named after Edward John Routh (1831-1907), i n whose 
1877 paper the array first appeared. 

Example 3.7(a) A simple Routh stability test 
Use the Routh array to test the stability of a system having the characteristic equation: 

D(s) = s* + s3 + s2 + 2s + 3 = 0 

; The system satisfies the necessary conditions for stability, so the Routh array (Equation 
(3.46)) may be used to test for sufficiency. The array appears below and the first column 

; o f the array has two sign changes, so the system is unstable and has two poles w i th 
T positive real parts. 

Solving for the roots o f D(s) produces -1 .074 ± j0.706 and +0.574 ± j 1.219. 

Row 

0 s4 1 1 3 

1 s3 1 2 

2 s2 - 1 3 

3 s 5 0 

4 s° 3 

Example 3.7(b) A Routh stability test for the 
» system of Example 3.3 
r The pressure control system investigated in Example 3.3 was said to be unstable by the 
- time the controller gain K reached 8.3. From that example (either 3.3(a), or 3.3(b)), the 
^ denominator of the closed-loop LTF (which gives the characteristic equation when equated 
, to zero) leads to: 

D(s) = (0.0355 + l)(s2 + 55s + 1513) + K x 0.6 x 1513 

= 0.035s 3 + 2.925s 2 + 107.955s + 1513 + 907.8/T = 0 

i Forming the Routh array: 
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Row 

0 s3 0.035 107.955 

1 s2 2.925 1513 + 907.8/^ 

2 s 89.85 - 10.86A: 0 

3 s° 1513 + 907.8/«: 

The last element in the first column is positive for any positive value o f K. However, the 
third element is only positive for K < 89.85/10.86. I f K exceeds this value, there w i l l be 
two sign changes in the first column, implying two roots in the right-hand half o f the 
s-plane, and an unstable system. This l imi t ing value o f K is about 8.27, confirming the 
findings of Example 3.3(b), that the pair o f complex roots became unstable for K values 
greater than about 8.3. 

The Routh array: special cases 
A zero appearing in the first element o f any o f the n rows indicates instability or, at 
best, marginal stability. The array could not be continued by the normal method of 
construction, since this would involve division by zero. I f the root distribution is 
required an alternative technique must be adopted, and this gives rise to the 
fol lowing special cases. 

The first column term of any row vanishes, but some of the remaining 
terms in the row are not zero. There are several methods available for dealing 
wi th this particular case; some are better suited to hand calculation, and some 
to machine computation. The method given here is best used wi th hand calcula
t ion and, i f applied wi th care, w i l l always yield the correct result. 

I n this method, the first-column zero is replaced wi th an arbitrarily small 
number, S say, and the array is continued in the normal way. The l i m i t as 
d —• 0 is then found, and the first column of the array is checked for sign changes. 
Again, the number of sign changes equals the number o f roots w i t h positive real 
parts. 

Example 3.8 A Routh array with a first-column 
zero 
Test the stability o f a system having the characteristic equation 

D(s) = s5 + 2s4 + 2s 3 + 4s2 + s + 1 = 0 
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For this polynomial the Routh array is 

Row 

0 s 5 1 2 1 

1 2 4 1 

2 s 3 0 0.5 

The zero is replaced wi th 3 and the array continued. After taking the l imi t as 3 -> 0, the 
final array, from row 2 onwards, becomes: 

2 s 3 8 0.5 

3 s2 - 1 / 5 1 

4 s 0.5 0 

5 s° 1 

Since there are two sign changes in the first column, the system is unstable wi th two 
positive roots. A root-solving routine indicates that the roots o f D(s) are - 0 . 0 9 0 ± j0.533, 
+0.069 ± j 1.274 and -1 .957 . 

AH the coefficients of a row become zero. This indicates the presence o f a 
divisor polynomial F(s) whose roots are all symmetrically located about the 
origin o f the s-plane. 

Assume that, in the general Routh array o f Section 3.3.3, row 4 is found to be 
an all-zero row. The coefficients of the required divisor polynomial are obtained 
from the previous row, in this case row 3, to give: 

(n-3) /2 

i=0 

Since the roots of F(s) are symmetrically located around the real and imaginary 
axes, they w i l l be of the form 

s = ±(J or s = ±jfi or s = —a ± jP and s = +<r ± jfi 

Clearly F(s) w i l l always be of even order, and consequently the all-zero row w i l l 
always be associated wi th an odd power of s. 

In order to complete the array, F(s) is differentiated wi th respect to s and the 
coefficients of dF(s)/ds substituted into what was the all-zero row. Using these 
new coefficients, the array is completed in the normal way. 

The array may now be interpreted as follows. As far as the all-zero row, 
the number of sign changes in the first column indicates the number of roots 
of the remainder polynomial wi th positive real parts. From what was the row before 
the all-zero row, each change in sign in the first column of the array indicates the 
number of roots of the divisor polynomial wi th positive real parts. However, 
as the roots are symmetrical, any sign changes associated wi th the divisor 
polynomial F(s) w i l l indicate the number o f roots in the right half o f the s-plane, 
and also the number in the left half of the s-plane. Roots o f the divisor polynomial 
which are not accounted for in this way must lie on the imaginary axis. 
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Example 3.9 A Routh array with a zero row 
A closed-loop control system wi th unity negative feedback has an open-loop transfer 
function as follows, i n which K is the controller gain, G is everything else i n the forward 
path and H is the unity feedback gain: 

w s(s + l ) ( s 2 - f s + 1) 

For what value of K w i l l the system be marginally stable, and what is the corresponding 
frequency of oscillation? 

For this system wi th the feedback loop closed, block diagram reduction (Section 
2.6.2) produces the closed-loop characteristic equation: 

D(s) = s4 + 2s3+2s2 + s + K = 0 

and the corresponding Routh array is 

Row 

0 1 2 K 

1 s3 2 1 

2 s2 1.5 K 

3 s 1 - 4K/3 

For K = 3/4 , row 3 becomes an all-zero row and the divisor polynomial o f row 2 is 

or 

F(s) = 2s2 + 1 = 0 

B y dividing F(s) into D(s) i t is found that F(s) is the required divisor polynomial , and that 

D(s) = (2s2 + l)ds2 + s + l) 

I n order to complete the array when K = 3/4, F(s) is differentiated wi th respect to s and 
the coefficients o f dF(s)/ds are used to replace the zero coefficients o f row 3. N o w 
dF(s) jds = 4, and the completed array is 

Row 

0 / 1 2 0.75 

1 s3 2 1 

2 s2 1.5 0.75 

3 s 4 

4 s° 0.75 

Since there are no sign changes up to and including row 2, there are no roots o f the 
remainder polynomial in the right half of the s-plane. Since there are no sign changes from 
row 2, al l roots of the divisor polynomial must lie on the imaginary axis. 



162 System responses, stability and performance 

Hence when K = 3/4 the system w i l l have a pair o f complex conjugate roots on the 
imaginary axis, and w i l l therefore be marginally stable. To find the location o f these roots, 
and hence the frequency of oscillation, s is set equal to jco and the value of co found from 

F{jco) = -2co2 + 1 = 0 

hence 

co = —^ r a d s - 1 

which is the required frequency of oscillation. 

3.3.4 The Routh array and PID controller design 
Many industrial controllers for single input/single output systems consist o f three 
elements: proportional (P), integral (I) and derivative (D) action (Section 1.3.5). 
One idealized transfer function of a controller which includes all three items, the so-
called three-term controller, is given below (the physical significance of the terms is 
discussed in Chapter 4). 

Gc(s)=K[l+Tds+ l/(T,s)] 

where 

K = gain of the proportional term 

Td — derivative action time (or rate time) (seconds) 

Tj = integral action (or reset time) (seconds) 

There are a number of controllers based on the three-term (PID) controller. The 
most common are the P or PI type, which together account for the majority o f 
industrial control elements. These controllers are derived from the three-term 
controller Gc(s) by making adjustments to Td and 7}: 

Td = 0 and T{ = oo gives a P controller 

Td = 0 and 7} finite gives a PI controller 

Commercially available PID controllers are normally electronic or, for hazardous 
environments, pneumatic. I t is important to note that derivative action (represented 
by the term Td s) cannot be implemented exactly by these technologies in practice, 
which is why this PID representation is an idealized LTF. PID controllers are 
considered further in Chapter 4. 

The next section examines the empirical Ziegler and Nichols methods for 
establishing settings for PID controllers, as it makes a good example o f the use o f 
the Routh criterion (even i f a ful l understanding o f the PID controller itself must 
wait unti l Chapter 4). 
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Ziegler-Nichols rules for controller tuning 
These results were designed to be used when a process or model is available and 
amenable to a few simple experiments (J. G. Ziegler and Nathaniel Burgess 
Nichols, 1942). 

(i) F i r s t approach 
The process to be controlled is shown in Figure 3.28. Assume that i t has the 
property that, under purely proportional control, i t is asymptotically stable in the 
range 0 < K < Kc and becomes unstable in an oscillatory manner for K > Kc. For 
this type of system the fol lowing experimental procedure is specified: 

(1) Turn up the gain K unti l the onset o f continuous oscillations. A t this critical 
gain Kc the closed-loop system is marginally stable - on the boundary between 
stable and unstable behaviour - so any gain adjustments must be carried out 
wi th extreme care. 

(2) Note the value Kc and the period of the oscillations 7. 

The recommended settings are given by: 

P control K = 0 . 5 £ c 
(3.47) 

PI control K = 0A5KC 
(3.48a) 

7, = 0.8337 (3.48b) 

PID control K = 0.6KC 
(3.49a) 

7, = 0.57 (3.49b) 

Td = 0.1257 (3.49c) 

I f a Laplace transform model of the plant is available, Routh's array may be used 
to establish the critical gain Kc and the corresponding period o f oscillation 7. The 
procedure is: 

(1) Find the system's closed-loop characteristic equation under purely proportional 
control. 

(2) Form the Routh array and establish the gain Kc that produces an all-zero row 
(see earlier). I f the system becomes unstable in an oscillatory manner, the a l l -
zero row w i l l often be the row associated wi th sx. I n this case the divisor 
polynomial w i l l be second order and there w i l l be no roots o f the remainder 
polynomial wi th positive real parts. Note that the system should remain stable 
for all positive values of K below the crit ical value. 

Figure 3.28 A plant with a 
three-term controller in a 
feedback arrangement 
(proportional action is 
shown, but integral and 
derivative action are added 
in the text). 

(3) Use the divisor polynomial to find the period o f oscillation 7, and apply the 
recommended init ial settings given above. 

Controller Process 

K G(s) K G(s) 
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Example 3.10 Initial three-term controller settings 
by Routh's array 
Use the Ziegler-Nichols rules to find P, PI and PID controller settings for a plant having 
the open-loop transfer function 

G(s) 
( s + l ) ( s + 2)(s + 3) 

Under proportional control (the approach is the same as in Examples 3.3 and 3.7(b)), the 
closed-loop characteristic equation is: 

D(s) = s 3 + 6s 2 + 115 + 6(1 +K) = 0 

and the Routh array for this system is 

Row 

0 s3 1 11 

1 s2 6 6 (1+AT) 

2 s 1 0 - A " 

For row 2 to be an all-zero row, K must equal 10 (that is, Kc = 10). To understand how Kc 

and oo are found, refer to Example 3.9 and the associated description. The divisor 
polynomial is obtained from row 1 and is 

s 2 + l l = 0 

Letting s = jco and solving for co gives the frequency o f oscillation as 

co = v T T r a d s - 1 

and 

T = 2n/co= 1.895 s 

The recommended settings are therefore as follows: 
For proportional control K = 10/2 = 5; this gives the closed-loop transfer function as 

Y(s) 30 

R{s) s 3 + 6 s 2 + l l s + 36 

For P + I control K = 4.5 and Tt = 1.57, to give the closed-loop transfer function as 

7(s) 42 .55 + 27  
R(s) ~ 1.57s4 + 9.434s 3 + 17.3s2 + 51.89s + 27 

For PID control K = 6, T{ = 0.947 and Td = 0.237, which gives the closed-loop 
transfer function as 

Y(s) 8 .073s 2 + 34.15 + 36 

R(s) 0.947s 4 + 5.683s3 + 18.5s2 + 39.78s + 36 
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> Figure 3.29 shows the output response y(t) produced by a forcing step input r(t) for this 
system under P, PI and PID control. The M A T L A B m-file fig3_29.m on the accompanying 

; disk allows the entry o f any required K, T{ and Td settings, so any other values can be 
tried, as wel l as those suggested above (as can a different open-loop system, o f course). 
Note the relatively fast response of this system under proportional control, and that the 
final steady-state output y(t) is offset from the demanded input o f 1. In order to eliminate 
this steady-state error, the PI controller may be used. However, as shown, the introduction 
of integral action reduces the stability of the system (the real part o f the dominant poles is 
closer to the imaginary axis). The inclusion of derivative action has a stabilizing effect on 
the plant, but derivative action could not be used i f the controller were being fed wi th 
measurement noise. 

Using M A T L A B (as in Appendix 3), the unit step response of the system wi th the 
PID controller (as an example) can be simply produced by the fo l lowing commands 

. (although the m-file fig3_29.m on the accompanying disk is obviously a more flexible way 
to do i t ) : 

» num = [8.073 34.1 36]; 

» den = [0.947 5.683 18.5 39.78 36]; 

>̂ step(num,den);grid 

5 Note that a better response is obtainable by ' tuning ' the in i t ia l parameters suggested by the 
I * Ziegler-Nichols methods - see Chapter 4. 

(ii) Second approach 
This tuning method is included for the sake of completeness; i t is not based on any 
stability test. The method is particularly suitable for open-loop systems having a 
measured step response containing appreciable t ime lag. This response is often 
referred to as the plant's signature (or process reaction curve). For a process plant, 
which w i l l usually have large inertias, this is normally non-oscillatory, w i th a fairly 
well-defined point o f inflection. 
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The test procedure is normally carried out as follows: 

(1) Generate a step response from the open-loop plant. Typically, the response 
obtained w i l l be similar to that shown in Figure 3.30. 

(2) Measure the slope of the response R and the lag time L (see Figure 3.30). Note 
that R should pass through the response's point o f inflection, and should 
therefore have the maximum possible slope. 

(3) The recommended init ial settings are: 

P control K = l/(RL) (3.50) 

PI control K = 0 . 9 / ( R L ) (3.51a) 

r, = 3.3L (3.51b) 

PID control K= 1.2/'(RL) (3.52a) 

Ti = 2L (3.52b) 

Td = 0.5L (3.52c) 

The types of response obtained from the various PID controller combinations w i l l 
be similar in form to the responses shown in Figure 3.29. This PID choice is aimed 
at giving a subsidence ratio of 4:1 (Section 3.2.2) (sometimes called a 'quarter 
decay rat io ') , whereas Figure 3.29 exhibits a subsidence ratio o f about 6:1 in the 
PID trace. 

Figure 3.30 Illustrating the 
Ziegler-Nichols parameters 
for controller tuning. 

3.3.5 Concluding comments 
The various stability methods, the s-plane performance criteria, or the Ziegler-
Nichols rules for producing PID controller settings, are of l imited use. They w i l l 
indicate whether a particular design meets some given performance specification, 
or provide ini t ial settings for a PID controller. However, i f the design does not meet 
the specifications, or i f the init ial controller settings are inadequate, they provide no 
indication of what modifications are required. In the fol lowing sections, design 
techniques are introduced which not only indicate stability, but also provide 
information on the controller structure and adjustments needed to meet given 
performance specifications. 
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3.4 Performance specifications in the frequency domain 
So far, all the performance and stability techniques which have been introduced are 
equally applicable to open- or closed-loop systems. Only when the open-loop 
system fails to meet the desired stability or performance criteria is there a design 
problem, and then it is the closed-loop performance that is important. In the 
frequency domain, the gain and phase margin specifications (see Section 3.2.3) 
relate specifically to the open-loop transfer function, whi le the other common 
specifications normally relate to the closed-loop system. To understand why there is 
a need for these various performance specifications, consider the open-loop plant of 
Figure 3.31. This plant has an actuator input u(s) and an output y(s) which consists 
of the plant output plus some external disturbance d(s). For clarity, lower-case 
letters which are functions of s represent signals, and upper-case letters represent 
transfer functions. Assuming that the open-loop plant G(s) does not meet the 
required performance specifications then there is a control problem. 

Figure 3.31 A plant with 
an output disturbance. I 1 

Typically, a closed-loop solution is sought by adopting the closed-loop 
structure shown in Figure 3.32. Comparing Figure 3.32 wi th Figure 1.5 shows that 
the pre-filter (P in Figure 1.5, but P(s) generally) has been set at unity. This is 
justifiable, since a pre-filter is invariably designed after the design o f the standard 
single degree of freedom system is complete. A further difference between the two 
figures is that Figure 3.32 includes the signal n(s) which represents measurement 
errors or noise on the feedback signal. 

Figure 3.32 The plant of 
Figure 3.31 in a feedback 
loop with measurement 
noise. 

b(s) 

Controller 
1 Plant d(s) 

e(s) K(s) u(s) | _ G(s) y(s) • > K(s) G(s) v V \ y i 

j 

—i>^V<  

Block diagram reduction on Figure 3.32 indicates that the closed-loop output 
for the system is given by: 

* » = T T W | R W - " W I + T T » * » <"3> 
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and the controller output by 

u{s) = TT^W)Hs)~n{s)-di')] (3-54) 
Rather than simply wri t ing down the LTF for e(s) from Figure 3.32, consider the 
LTF for the actual tracking error eT(s) = r(s) -y{s). Note that eT(s) differs 
slightly from e(s) (Figure 3.32) in that the noise term n(s) i n the feedback loop 
shown in the figure is not included. This modification is made so that the actual 
error in the tracking of r(s) by y(s) is evaluated. The noise term n(s) is included 
indirectly, by virtue of its appearance in Equation (3.53), which can be substituted 
into the definition of eT(s) above. Doing this, and rearranging terms, gives: 

Although Equations (3.53) to (3.55) refer to the SISO case, a similar analysis could 
be produced for the multivariable case. However, in this section only the SISO 
system, shown in Figure 3.32, is considered. The right-hand sides o f Equations 
(3.53) to (3.55) contain a common denominator term, namely: 

F(s) = l+G(s)K(s) (3.56) 

For SISO systems this is often called the system's 'characteristic polynomial ' since 
i t contains the dynamics (exponential exponents) that characterize the system's 
response. I f the feedback loop in the closed-loop system o f Figure 3.32 is broken at 
b(s) then the system's open-loop transfer function, the transfer function between 
r(s) and b(s), is given by 

b(s) = G(s)K(s)r(s) (3.57) 

By comparison wi th Equation (3.56), i t may be seen that the closed-loop 
characteristic polynomial is 

F(s) = 1 + the system's open-loop transfer function 

When dealing wi th systems in general (SISO and multivariable) the quantity 
G(s)K(s), Equation (3.57), gives the difference between the input r(s) and 
feedback b(s). For this reason F(s), Equation (3.56), is called the return difference. 

The system's closed-loop transfer function (the relationship between y(s) and 
r(s)) is given by 

T(s)=. G « * « 
1 + G(s)K(s) 

There is an interesting relationship between the closed-loop transfer function and 
its sensitivity to specific parameter changes. Let the controller o f Figure 3.32 
consist o f a pure gain K, so that the closed-loop transfer function becomes 

(3.58) 
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The differential sensitivity or Bode sensitivity o f T(s) w i th respect to K is defined 

as 

N o w 

and so 

dT(s)/T{s) _ K dT(s) 

dK/K ~T{s) dK 

^ . » { « , „ „ I + r o w , - , 
= G ( J ) [ 1 + A G ( i ) ] _ 1 - KG2(s)[l + KG(s)}~2 

G(s) 

[l+KG(s)\2 

K dT(s) 1 

T(s) dK 1 + KG(s) 

which is the reciprocal o f the return difference, see Equation (3.56). Hence the 
quantity 

S « = T T W ( " 9 ) 

is called the sensitivity function. Also, since from Equations (3.58) and (3.59), 

T(s)+S(s) = 1 (3.60) 

the closed-loop transfer function T(s) is also called the complementary sensitivity 
function. 

Using the sensitivity and complementary sensitivity functions, Equations 
(3.53) to (3.55) may be written as 

y(s) = T(s)[r(s)-n(s)}+S(s)d(s) (3.61) 

u(s) = K(s)S(s)[r(s) - n{s) - d(s)] (3.62) 

eT(s) = S(s)[r(s) - d{s)} + T{s)n(s) (3.63) 

For disturbance rejection Equation (3.61) indicates that S(s) should be small. This 
can be achieved by making the system's open-loop transfer function (the return 
transfer function) large. A small sensitivity function w i l l also give good tracking, 
since this would reduce the error signal eT{s) i n Equation (3.63). However, for 
noise rejection T(s) must be small, Equation (3.63), and since i t is impossible from 
Equation (3.60) for both T(s) and S(s) to be small, there is an unavoidable trade
off between tracking (or attenuating disturbances) and filtering out measurement 
noise. This trade-off was alluded to in Section 3.2.2 ( ' A first-order dominant 
system'), and is further discussed in Chapter 13. 

Given these desirable performance characteristics, i t is now possible to 
consider how these conflicting design requirements could be satisfied. Wi th in the 
frequency domain, the solution is to shape the frequency response so that S(jco) is 
small at low frequencies and T(jco) is small at high frequencies. W h i c h frequencies 
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are defined as being 'h igh ' , and which frequencies are defined as ' l o w ' , depends on 
the particular problem. 

For S(jco) to be small, Equation (3.59) indicates that G(jco)K(jco) must be 
large. I n particular, at zero frequency (that is, steady-state d . c ) , i f the error is to be 
minimized then G(0)K(0) must tend to infinity. The relationship between the open-
loop system's zero frequency response and the closed-loop system's final response 
error w i l l be considered further in Section 3.4.1. 

When the open-loop system's frequency response produces a phase shift of 
- 1 8 0 ° there is a potential closed-loop stability problem i f the gain is greater than 1. 
The open-loop system's gain and phase margins (see towards the end o f Section 
3.2.3) are therefore good indicators of closed-loop stability. 

One way to make G(jco)K(jco) large, and hence make S(jco) large, is to make 
the controller K(jco) large. However, this can cause actuator problems. Equation 
(3.62) gives the control signal fed to the plant's actuator. Since all physical systems 
w i l l have l imits on their inputs and outputs it is desirable to keep u(s) w i th in 
specified l imits in order to prevent saturation, that is, K(jco)S(jco) must be l imited. 
However, for large K(jco) 

Now, wi th physical systems, G(jco) w i l l tend to become small w i th increasing 
frequency (because no real system can fol low an infinite frequency). Under these 
circumstances the actuator signals can become large. This is a further complication 
during the design stage. 

To minimize noise T(jco) must be small (Equation (3.63)). Since noise tends 
to be a high-frequency phenomenon, the requirement is that T(jco) and hence 
G(jco)K(jco) is small at high frequencies, see Equation (3.58). A performance 
measure which indicates when the closed-loop frequency response starts to become 
small would therefore be particularly useful. Just such a measure exists, and is 
referred to as the system's bandwidth. 

To summarize, the system's open-loop transfer function should have a large 
gain at low frequencies, to satisfy tracking requirements and rejection of low-
frequency disturbance. A t high frequencies, the gain is kept low to filter out high-
frequency noise. Over the mid-range of frequencies, the frequency response should 
satisfy the gain and phase margin requirements. Consequently, the control system 
design problem is one of shaping the open and closed-loop frequency responses by 
correctly selecting the controller transfer function K(s), a topic dealt wi th in 
Chapter 4. From experience, satisfactory frequency response shaping is achieved by 
satisfying the frequency-domain specifications listed below. 

Open-loop frequency response specifications. For open-loop stable systems of 
types 0, 1 and 2, a gain margin which is greater than unity, combined wi th a 
phase margin greater than 0° , w i l l guarantee closed-loop stability. Wi th unstable 
open-loop systems, or systems having any other type number, alternative 
methods for checking closed-loop stability must be employed. 
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(1) Gain margin. For a stable closed-loop system the gain margin gives the factor 
by which the loop gain may be increased before the system becomes unstable, 
see Section 3.2.3. 

(2) Phase margin. For second-order systems, phase margin and damping ratio can 
be shown to be related. A simple rule o f thumb states that the numerical value 
of the phase margin in degrees divided by 100 gives the closed-loop damping 
ratio. Wi th systems higher than second order this rule only indicates the 
damping ratio, and should be used in conjunction wi th the other frequency-
domain specifications. 

Closed-loop frequency response specifications 

(3) Bandwidth. Bandwidth is normally defined as the frequency at which the 
magnitude ratio drops to 0.707 o f its zero-frequency level (given that the gain 
characteristic is 'flat ' at zero frequency). The factor 0.707 is 1/^2, and arises 
because the fundamental definition of bandwidth is the 'ha l f power point ' , that 
is, the frequency at which the power in the signal has halved. Since, in electrical 
systems for example, signal levels are normally measured in terms o f voltages 
or currents, the square law relationship between either o f these quantities and 
signal power gives rise to the y/2. 

On the decibel scale, a factor of 0.707 is equivalent to a fal l o f 3 dB from the 
zero frequency gain. A magnitude ratio M is usually converted to decibels by the 
formula 20 l o g 1 0 ( M ) dB, see Section 3.5.1. (Note that this decibel formula is 
derived from the formula 10 l o g ^ F , where P is a power gain, and strictly applies 
only in rather t ightly defined circumstances. However, it is normally used in a fairly 
cavalier manner throughout control systems work.) 

The bandwidth gives a measure of the transient response properties. A large 
bandwidth corresponds to a faster rise time, since higher-frequency signals are 
passed to the output. I f the bandwidth is small, only signals o f relatively low 
frequencies are passed, and the time response w i l l generally be slow and sluggish. 
The bandwidth of a system is also an indicator o f its noise filtering characteristics: 
an unnecessarily wide bandwidth would produce a system wi th poor noise rejection 
characteristics. 

(4) Maximum magnitude ratio. This is usually referred to as ' M peak' (Mp), and 
gives an indication of a system's damping. For a second-order system, it may be 
shown that 

^ 2 2 
for M n > 1 so Mn 

(3.64) 

Normally, large Mp corresponds to a large peak overshoot in the step response. 
For most design problems an opt imum value o f Mp would be somewhere 
between 1.1 and 1.5 which, for a second-order system, would give a damping 
ratio between 0.54 and 0.36, respectively. 
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M (co) 
A 

Figure 3.33 Performance 
criteria on a frequency 
response plot. 

(5) Frequency at Mp. For a second-order system, the resonant frequency cop is 
given by 

a>p = co„ v/(l-2C 2 ) (3.65) 

and, like bandwidth, indicates the system's speed of response. 

(6) Cut-off rate (or roll-off rate). This is the rate of decrease in the magnitude ratio 
outside the system's bandwidth. A large high-frequency cut-off rate would 
indicate a system wi th good signal-to-noise ratio. However, high cut-off 
characteristics may be accompanied by a large Mp which, in turn, corresponds 
to a system wi th low damping. A typical cut-off rate specification is - 6 dB/ 
octave of frequency. That is, doubling the frequency (increasing it by one 
octave) should halve the magnitude ratio. I t turns out to be the same thing as 
-20 dB/decade of frequency (that is, mul t ip ly ing the frequency by a factor o f 
10 should cause the magnitude ratio to decrease by a factor o f 10). 

The closed-loop performance criteria (3)-(6) are illustrated on the frequency 
response plot shown in Figure 3.33. 

3.4.1 Tracking errors and system type 
I f the system's open-loop transfer function has n poles at the origin, then it is said to 
be o f type n. Wi th no noise and no disturbance Equation (3.55) indicates that the 
closed-loop error signal is given by 

* ) = I + G M * M R ( S ) 

Assuming that the closed-loop system is stable, then the final value theorem can be 
used to find the steady-state error. For example, i f the open-loop transfer function 
is type 0 and r(s) is a unit step (r(s) = 1 /s) then the final value theorem indicates 
that 

e(oo)=Urn(se(s)) = i + G

l

{ 0 ) m 
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which in this case is the system's sensitivity function evaluated at s = 0 or co = 0. 
The steady-state error of stable closed-loop systems to various forcing inputs is 
shown in Table 3.2. 

Table 3.2 Steady-state error for system types 0, 1 and 2. 

System type 
Unit step Unit ramp 

( l / S 2 ) 

Uni t 
parabola 

( l / S 3 ) 

Type 0 

Type 1 

Type 2 

1 
l + G(O)A:(O) 

0 

0 

CO 

1 

G(0)tf(0) 

0 

OO 

oo 

1 
G(0)K(0) 

3.5 Frequency response plots 
For the standard single degree o f freedom control system configuration, see Figure 
3.32, the system's open-loop transfer function is G(s)K(s). To obtain the system's 
open-loop frequency response, s is set equal to jco, see Section 3.2.3. This results in 
an expression having the general form 

m 

G(jco)K(jco) = ^ 

i=\ 
which may be reduced to 

G(jco)K(jco) = M(co)ej<t>{aj) 

The frequency response consists of three variables - frequency co, magnitude 
M(co) and phase c6(co). The various graphical representations o f these variables for 
a range of frequencies co produce the required frequency response plots. 

The intention of this section is to introduce the various frequency plots and 
then show how a system may be analysed using the frequency-domain performance 
specifications of Section 3.4. To aid in this analysis, consider a system having the 
open-loop transfer function 

where K is the controller gain which, for the sake of argument, could take the 
values 4, 1.5 or 0.4. Note that the open-loop system is o f type 1 (1 pole at the 
origin of the s-plane) and of rank 3 (3 more poles than finite zeros). Since the open-
loop system is of type 1 and stable, Section 3.4.1 shows that any stable closed-loop 
realization would track a step wi th zero steady-state error. Furthermore, the gain 
and phase margin measures can be used to test for closed-loop stability. 
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The open-loop frequency response for this system is given by 

G(jco)K{jco) = — ^ — (3.66) 

u ; u ; MJCO+1)(JCO + 2) 

which has magnitude 

M(co) = K r— (3.67) 

and phase 

cf)((o) = - 9 0 ° - tan-^co) - t an" 1 (|) (3.68) 

The closed-loop transfer function for this system is given by 

K 
T(s) 

s3 + 3s2 + 2s + K 

and from Routh's stability criterion w i l l be stable for values of K in the range of 
0 < K < 6. Finding the closed-loop system poles when K = 4 gives s = - 2 . 8 0 
and s = - 0 . 1 0 ± j 1.20. This system is second-order dominant wi th an 
approximate damping ratio £ of 0.085 and a (scon value of 0.10 r a d s - 1 . 
Therefore, the response to a unit step would be oscillatory, w i th a decay rate of 
e~OAOt, see Figure 3.34 (the m-file fig3_34.m on the accompanying disk w i l l 
duplicate the plots of Figure 3.34 and confirm all the given values). 

When K = 1.5 the poles are at s = -2 .43 and s = - 0 . 2 8 ± j 0.73. Again the 
system is second-order dominant, but now the approximate damping ratio £ is 0.36 
and the Cco„ value is 0.28 r a d s - 1 . For many applications, the damping ratio would 
be considered acceptable, and the decay rate would be faster than in the previous 
response. This new response is also shown in Figure 3.34. 

Finally, when K = 0.4 (or 0.385 to be more precise) there is one pole at 
s = -2 .15 and a double pole at s = -0 .422 . The dominant double pole makes the 
system crit ically damped and produces the step response shown dashed in Figure 
3.34. 
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The closed-loop frequency response can be used to evaluate parameters such 
as bandwidth, and is given by 

T(joo) K 

(K - 3co2) + ja>(2 - co2) 

wi th magnitude 

K 
MCL(co) = 

^{(K-3co2)2 + œ2(2-œ2)2} 

and phase 

^ _, fw(2 - c o 2 ) \ 
^ ( o , ) = - t a n ' [ - Y ^ r ) 

3.5.1 Logarithmic plots or Bode diagrams 
These are two plots in rectangular coordinates, i n which the magnitude is expressed 
in decibels (dB), and the phase angle in degrees, both plotted as functions of the 
logarithm of frequency in rad/unit time (normally, r a d s - 1 ) . 

Bode diagrams are normally plotted on semi-logarithmic graph paper, so that 
the dB values plotted on the linear vertical axis have the effect o f producing a 
logarithmic scale, while the frequency values can be plotted directly on the 
horizontal axis, al lowing the logarithmic axis to do the work o f conversion. 

The frequency response magnitude ratio is expressed in decibels, as noted 
earlier, using 

M ( c o ) d B = 20 l o g 1 0 M ( c o ) 

where M ( c o ) d B is the log modulus in decibels and M(co) is the magnitude ratio. 
Typical Bode plots are shown in Figure 3.35. For convenience, the two types of 

diagram are shown together. As usual, the magnitude ratio falls o f f and the phase 
angle becomes increasingly lagging wi th increasing frequency. 

One of the main reasons for using a logarithmic scale for the magnitude ratio is 
the ease wi th which the dynamic elements in a control loop can be manipulated. A t 
a given frequency, the magnitude ratio is obtained by mul t ip ly ing together the 
individual magnitude ratios of the elements (which becomes adding in dB - see 

Figure 3 .35 Stability 
margins on a Bode diagram. 
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below), and the phase angle is obtained by summing individual phase angle 
elements. 

Consider the Bode form of a transfer function F(s) (see Equation (2.77b)) for 
which the frequency response is 

m 

F(ja>) = KB ' = ' „ - r (3.69) 

(ycrnil+iWft)] 
/=1 

In this form, the coefficient KB is called the Bode gain. 
The magnitude of F(jco) for any frequency co is the product o f the Bode gain, 

the magnitude of each factor in the numerator and the reciprocal of the magnitude 
of each factor in the denominator. However, i f the magnitude of F(jco) is expressed 
in decibels, then 

m 

20 l o g 1 0 \F{ja>)\ = 20 l o g I 0 \KB\ + ] T 20 l o g 1 0 | ( l +j(co/zi))\ 
i=\ 

- 20 log 1 0 \ ( j c o ) r \ - £ 20 l o g 1 0 | ( l +j(co/Pi))\ 
i=l 

(3.70) 

(Note that in logarithmic form all products become summations.) The phase angle 
of F(jco) at any frequency is found in the normal way as 

m 

arg F(jco) = £ a rg( l + y (co/z j ) - arg(yco) r 

/=i 
n—r 

- ^ a r g ( l + y ( a ) / A . ) ) (3.71a) 
/=1 

or 

m n—r 

arg F(jco) = £ t an" 1 (a>/z f) - r (90° ) - £ t^n'1 (co/Pi) 
i=\ i=l 

(3.71b) 

Note that i f KB is negative then a further 180° phase lag (that is, —180°) must be 
included. 

Both the magnitude and phase plots are obtained by summing the contributions 
provided by each term in the open-loop transfer function. I f all the coefficients of 
the unfactorized transfer function are real, then each complex pole or zero in the 
factored transfer function w i l l have a complex conjugate. This means that there are 
only four possible terms that need to be considered: the gain KB, poles (or zeros) at 
the origin, real poles (or zeros) not at the origin and complex conjugate poles (or 
zeros). I t also means that for a compensator in series wi th a plant, the overall 
frequency response plot in Bode form is simply the sum of those o f the compensator 
and plant at each frequency value. 
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Bode plots for a gain term 
A constant KB provides a magnitude contribution o f 20 l o g 1 0 | A ^ | and a phase angle 
of 0° i f KB is positive, or —180° i f KB is negative. I f KB = 1, then 20 l o g 1 0 | A ^ | is 
zero dB; i f KB = 2, then the dB magnitude is 6 and i f KB = 0.5, the dB magnitude is 
—6. In all three cases the phase angle contribution is 0° . For KB = —2 or —0.5, the 
dB magnitude would be 6 or —6, respectively, but the phase contribution would be 
— 180°. A Bode plot for a positive gain term is shown in Figure 3.36. 

Bode plots for poles or zeros at the origin of the s-plane 
A system wi th poles or zeros at the origin o f the s-plane w i l l have an expression in 
its transfer function of the fo l lowing form, in which r is a positive integer equal to 
the number of poles at the origin of the s-plane (that is, the system's type number is 
r ) . Also, r is a negative integer for zeros at the origin. 

l / s r 

The magnitude and phase contributions w i l l be, respectively, 

20 l o g 1 0 — X — r = - 2 0 r l o g 1 0 co dB (3.72) 

and 

arg = -r90° (3.73) 

The equation for the Bode magnitude plot, Equation (3.72) describes a straight 
line o f slope — 20r dB/decade of frequency, passing through the 0 dB point when 
co = 1 (a 'decade' indicates a tenfold increase in frequency). The Bode phase plot, 
obtained from Equation (3.73), indicates that the phase angle is independent of 
frequency, and has a value which is dependent on r. Bode plots for one, two and 
three poles at the origin are shown in Figure 3.37. 

Equations (3.72) and (3.73) are also val id for zeros at the origin o f the s-plane. 
The Bode plots for a system wi th one, two or three zeros at the origin o f the s-plane 
would be the reflections o f the Bode plots in Figure 3.37 about the 0 dB and 0° 
lines. 

co 
CO 

CD 

20 log KB 

log co 

Figure 3.36 A Bode plot 
for a pure gain term. 

CD 
-o 

KB>0 log co 
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Bode plots for real poles and zeros 
A real pole or zero not at the origin o f the s-plane contributes to the system's 
transfer function a term of the form 

T* l-l~^r (3.74) 

The form of Equation (3.74) may be compared wi th Equation (3.18). In Equation 
(3.74), r is any positive or negative integer. Its introduction serves two purposes. I f 
r is positive, the contribution is from system poles, and i f i t is negative the 
contribution is from system zeros. Also, i f the magnitude o f r is greater than unity, 
there are r poles or zeros occupying the same s-plane location, and the pole or zero 
is said to be of order r. The quantity coc is known as the 'corner frequency', for 
reasons which w i l l soon become clear. For coc in rad s - 1 , i t is the reciprocal o f the 
time constant (T in Equation (3.18)) in seconds. 

The dB magnitude and phase angle given by Equations (3.70) and (3.71) are 
now 

-\0r\ogw(l + (œ/œc)2) (3.75) 

and 

—r tan x(to/coc) (3.76) 



3.5 Frequency response plots 179 

Asymptotic approximations for the magnitude plot are obtained by considering the 
normalized frequency co/coc. When co/coc is very small, the dB magnitude 
(Equation (3.75)) approximates to 

- 1 0 r l o g 1 0 l = 0 d B 

and for large values of œ/coc to 

- 2 0 r \og(co/coc) dB 

(3.77a) 

(3.77b) 

The corresponding phase angle for small co/coc from Equation (3.76), is 
approximately 

-r t a rT^O) = 0 ° (3.78a) 

and when co/coc is very large, the corresponding phase angle tends to 

-r 90° (3.78b) 

From Equations (3.77), i t is apparent that the Bode magnitude plot asymptotically 
approaches a horizontal straight line at 0 dB as co/coc —• 0 and 
- 2 0 r log 1 0 (co/co c ) dB as co/coc —> oo. When plotted on a logarithmic frequency 
scale, the high-frequency asymptote is a straight line wi th a slope of — 20r dB/ 
decade, or — 6r dB/octave. The low- and high-frequency asymptotes intersect at 
the corner frequency co = coc r a d s - 1 . Figure 3.38 shows the asymptotic Bode gain 
plots for real poles of order one, two and three. 

Asymptotic Bode phase angle plots may be obtained from Equation (3.78). A n 
asymptote for the mid-range of frequencies may be obtained by drawing a tangent 
to the exact phase curve at the corner frequency o f co = coc rad s" 1. This asymptote 
would intersect the low-frequency asymptote at co = co c /5, and the high-frequency 

20 

-20 
CO 

CD -40 

-60 
10" 10° 101 

Figure 3.38 Asymptotic 
approximations to the Bode 
plots for one, two and three 
first-order poles at the same 
5-plane location. 
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asymptote at co = 5coc. Figure 3.38 shows the asymptotic phase plots for real poles 
of order one, two and three. 

The errors produced by using the given asymptotic approximations for the real 
poles and zeros, rather than an accurate curve, are given in Table 3.3, in which a 
pole o f order r gives the factor + r , and a zero the factor -r. Again, the Bode plots 
for zeros of order r w i l l be the reflections of the plots in Figure 3.38 about the 0 dB 
and 0° lines. 

Table 3.3 Asymptotic errors for a real pole (or zero) of order r and corner frequency 
toc, with the mid-range phase asymptote plotted between coc/5 and 5coc. 

coc/10 coc/5 coc/2 coc 2coc 5coc 10coc 

Magnitude error (dB) 
Phase angle error 

-0.043r 
-5 .7r° 

-OMr 
-11 .3r° 

-0.96r 
-0 .8 r ° 

- 3 r -0.96r 
0° +0.8r° 

-OMr 
-11 .3 r° 

-0.043r 
+5.7r° 

I t should be noted that other mid-range phase asymptotes have been proposed. 
A common approximation is to use an asymptote which intersects the low-
frequency asymptote at co = a> c/10, and the high-frequency asymptote at 
co = 10coc. The phase angle errors produced using this approximation are given 
in Table 3.4. 

Table 3.4 Asymptotic phase angle error for a real pole (or zero) of order r and corner 
frequency coc, with the mid-range phase asymptote plotted between coc/10 and 10coc. 

coc/10 coc/5 coc/2 coc 2coc 5coc \0coc 

Phase angle error -5 .7 r° -2 .3 r° -4.9r° 0° +4.9r° +2.3r° +5.7r° 

Bode plots for complex conjugate poles and zeros 
Complex conjugate poles or zeros are normally mult ipl ied together and expressed 
in the standard form 

1 

, 2Çs s2 

1 + — + 
con coi 

0 < C < 1 (3.79) 

Equation (3.79) can be compared wi th Equation (3.19), where con is the undamped 
natural frequency, £ the damping ratio and r an integer indicating the number o f 
complex conjugate roots at a given location. Again, i f r is positive the roots are 
poles, and i f r is negative the roots are zeros. 

The frequency response function corresponding to Equation (3.79) is given by 

1 

1 + 7 2 Ç fey 
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which has a dB magnitude ratio of 

- l O l o g 1 0 

and a phase angle of 

a* + % col 
(3.80) 

- M a n - 1 2 ^ l ° > » \ (3.81) 
1 - (co/con)2 

A n asymptotic magnitude plot is obtained by considering the frequency ratio 
co/con. When co/con is very small, Equation (3.80) gives the low-frequency 
asymptote as 0 dB. The high-frequency asymptote, obtained by letting co/con 

become very large, is 

- 4 0 r \ogl0{co/con) 

which is line o f slope - 4 0 r dB/decade emanating from the corner frequency con. 
Use of the asymptotic magnitude approximation w i l l result in an error in this 

plot around the corner frequency, the size of which depends on the damping ratio, £. 
These errors are given in Table 3.5. For low values o f £ the magnitude ratio tends to 
a peak value near the corner frequency. I t can be shown that the exact curve peaks 
when (Equation (3.65)): 

CO = (o^{\-2?) (3.82) 

and that at this frequency the peak value o f the dB magnitude ratio (from Equation 
(3.64)) is 

20 l o g l 0

 1 

2 £01 - C 2 ) 

Since frequency must be real, Equation (3.82) indicates that a specific maximum 
value occurs only i f £ < l/y/2 - that is, less than 0.707. I f the damping ratio is 
greater than 0.707, the maximum value o f the magnitude curve is along the 0 dB 
line. Figures 3.39(a) and (b) show the Bode plots and asymptotic Bode plots for 
several second-order systems (the M A T L A B m-file fig3_39.m on the accom
panying disk draws these curves). 

The asymptotic phase plot is obtained from Equation (3.81). A t low 
frequencies (when the frequency ratio co/con is small), the phase angle is 
approximately 0° ; at high frequencies the phase angle tends to — r l 8 0 ° . For the 
frequencies around the corner frequency con i t is normal to draw an asymptote 

Table 3.5 Asymptotic magnitude error for complex conjugate poles (or zeros) of 
order r and corner frequency con. 

c con/\0 a)n/5 con/2 2con 5con 10co„ 

1 -0.086r -0.34r -1.94r -6r -1.94r -0.34r -0.086r 
0.707 0 -0.007r -0.263r -3r -0.263r -0.007r 0 
0.5 +0.043r H-0.17r +0.902r 0 +0.902r +0.1 Ir +0.043r 
0.3 +0.071r +0.287r + 1.85r +4.44r + 1.85r +0.287r +0.07 lr 
0.2 +0.08r +0.325r +2.2r +7.96r +2.2r +0.325r +0.08r 



182 System responses, stability and performance 

Figure 3.39 Standard 
(normalized) second-order 
system frequency responses, 
(a) Magnitude responses; 
(b) phase responses. n 



3.5 Frequency response plots 183 

consistent w i th those drawn for real poles and zeros. Consequently, the mid-range 
frequency asymptote crosses the low-frequency asymptote when co = con/5, and 
crosses the high-frequency asymptote when co = 5con (see Figure 3.39(b)). Again , 
the discrepancy between the exact and asymptotic phase plot is a function of the 
damping ratio, as indicated in Table 3.6 and Figure 3.39. For completeness, Table 
3.7 gives the errors in the asymptotic phase plot when the mid-range asymptote 
crosses the low-frequency asymptote at co„/10, and crosses the high-frequency 
asymptote at I0con. 

Table 3.6 Asymptotic phase angle error for complex conjugate poles (or zeros) of 
order r and corner frequency co„, with the mid-range phase asymptote plotted 
between con/5 and 5con. 

c con/\0 con/5 con/2 2con 5con \0con 

1 -11.4r° -22.6r° -1 .6r° 0° + 1.6r° +22.6r° + 11.4r° 
0.707 -8.1r° -16.4r° -7.9r° 0° +7.9r° + 16.4r° +8.1r° 
0.5 -5.8r° -11.8r° -17.5r° 0° + 17.5r° + 11.8r° +5.8r° 
0.3 -3.5r° -7.1r° -29.4r° 0° +29.4r° +7.1r° +3.5r° 
0.2 -2.3r° -4.8r° -36.3r° 0° +36.3r° +4.8r° +2.3r° 
0.1 -1.2r° -2.4r° -43.6r° 0° +43.6r° +2.4r° + 1.2r° 

Table 3.7 Asymptotic phase angle error for complex conjugate poles (or zeros) of 
order r and corner frequency con, with the mid-range phase asymptote plotted 
between co„/10 and 10co„. 

£ con/\0 con/5 a>n/2 2co„ 5con 10co„ 

l -11.4r° -4.6r° -9 .8r° 0° +9.8r° +4.6r° + 11.4r° 
0.707 -8.1r° -10.7r° -19.6r° 0° + 19.6r° + 10.7r° +8.1r° 
0.5 -5.8r° -15.3r° -29.2r° 0° +29.2r° + 15.3r° +5.8r° 
0.3 -3.5r° -20.0r° -41.1r° 0° +41.1r° +20.0r° +3.5r° 
0.2 -2.3r° -22.3r° -48.0r° 0° +48.0r° +22.3r° +2.3r° 
0.1 -1.2r° -25.9r° -55.3r° 0° +55.3r° +25.9r° + 1.2r° 

Asymptotic Bode plots are important in that they help in understanding how 
various compensators can be used to shape the frequency response of a system (see 
Chapter 4) and in system identification (see Section 3.9). Nowadays, Bode and the 
other frequency response plots are normally found using appropriate software as the 
fo l lowing examples show. Nevertheless, the authors believe that to plot a few 
examples by hand provides considerable insight. 

Example 3.11 Bode plots for a fourth-order 
system with one finite zero 
Draw the asymptotic Bode plots for a system having the open-loop transfer function 
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The open-loop frequency response of G(s)K(s) is obtained by setting s = jco, hence 

G(jco)K(jco) = 3 2 ° ( 1 +

2 ^ 
jco(jco + 2) [(jcoy + 4 jco + 16] 

In Bode form, this is 

G(jco)K(jco) = 
10(1 + jco) 

1 + JCO (CO\ 
4 (I) 

From Equation (3.70) the dB magnitude is obtained as 

20 \ogl0\G(jco)K(jco)\ = 20 l o g 1 0 10 + 20 l o g 1 0 | l +jco\ - 20 \ogl0\jco\ 
jcO /CQ\ 2 

1 + f - 20 log 10 1 + J 

arg 1 + 
jco _ /coy 

4 \4J 

- 20 l o g 1 0 

and from Equation (3.71a) the phase angle is 

arg G{jco)K(joo) = a rg( l + jco) - 90° - a r g ^ l +j-^J 

As co —> oo, the phase angle tends to - 2 7 0 ° . This could be deduced without resorting to 
the phase angle equation, by noting that the difference between the number o f poles and 
zeros is 3; i n other words, the system's rank is 3. For min imum phase systems (systems 
having no poles or zeros in the right half of the s-plane) wi th a positive loop gain, the 
ultimate phase shift is given by 

arg G(joo)K{joo) = -R90° 
where R is the system's rank. 
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A n asymptotic plot for each of the terms in the magnitude and phase expressions may 
now be drawn (see Figure 3.40). The asymptotic plots o f each element may be summed 
graphically to produce the overall asymptotic Bode plot shown in Figure 3.41. For 
reference, the actual Bode plot is also shown in this figure. 

Using M A T L A B , the actual Bode plot can be very easily drawn as follows (see 
Appendix 3 for more detail): 

» num = 320*[1 1]; 

» den = conv( [ l 0 ] , conv( [ l 2 ] , [1 4 16])); % the e v o l u t i o n 
% command multiplies 

> bode(num,den) % out two polynomials 

Example 3.12 Bode plots for a third-order system 
with variable d.c. gain 
Use Bode plots to analyse the system having the open-loop transfer function 

K 
G(s)K{s) 

s(s+ l ) ( s + 2) 

when K can take the values 4, 1.5 and 0.4. Note that this is the system introduced in 
Section 3.5, and for which the closed-loop step responses for the three gains are shown in 
Figure 3.34. 
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Equations (3.67) and (3.68) may be used to find the open-loop system's frequency 
data over the range 0.1 r a d s - 1 < co < 10 rads" 1 . Wi th the magnitude data in dB and the 
phase angle in degrees, the open-loop Bode plots of Figure 3.42 are produced (the m-file 
fig3_42.m on the accompanying disk w i l l do this). 

In Figure 3.42 changes in the gain K alter the level (but not the shape) o f the 
magnitude plot. For example, when K = 0.4 it is 0.267 times its value when K = 1.5. 
Converting to dB, 20 l o g 1 0 0.267 = -11 .5 dB, so the magnitude plot for K = 0.4 is 
11.5 dB lower than that for K = 1.5 at every frequency value. 

This is in contrast to the phase plot which, as expected, is identical for all three gains 
(the phase in Equation (3.68) is independent of the gain K). Further, w i th the open-loop 
system being o f type 1, the trend in the dB magnitude is always to reduce wi th increasing 
frequency. Also, the phase plot has a phase shift which becomes closer to - 9 0 ° as the 
frequency reduces. Wi th increasing frequency the phase plot tends to - 2 7 0 ° (that is, - 9 0 ° 
times 3, the rank number of this minimum phase system; see Section 3.8 for some notes 
on non-minimum-phase systems). 

The open-loop Bode plots are used to find the gain and phase margins as illustrated in 
Figure 3.43, for the case where K=\.5 (the m-file fig3_42.m also lists these for each 
gain). Projecting a line from the phase plot at the point where the phase first becomes 
- 1 8 0 ° onto the gain plot, as shown in Figure 3.43, enables the gain margin to be 
measured. The gain margin is the length of the projected line between the magnitude plot 
and the 0 dB line, and in this case is +12.04 dB. Converting this to a gain gives the value 
4 which indicates that K could be increased by a factor of 4 before the closed-loop system 
became unstable. This is in agreement wi th the value previously found using Routh's 
stability criterion (Section 3.3.3 and early in Section 3.5). 

The phase margin is found by projecting down from the point where the magnitude 
plot first crosses the 0 dB line. Since the distance o f the phase plot from the - 1 8 0 ° line at 
this frequency is 42° , the phase margin is + 4 2 ° . From the rule of thumb introduced in 
Section 3.4, an estimate of the closed-loop damping ratio is 0.42 and this may be 
compared wi th the damping ratio for the dominant poles which was found to be 0.36 (see 
Section 3.5 fol lowing Equation (3.68)). 
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Although a gain margin o f 4 is higher than that recommended (2 to 2.5) this is not 
necessarily a problem (but a lower gain margin might wel l be). I n this case a high gain 
margin makes the system robust in that i t would be tolerant of gain errors (see Chapter 
13). The phase margin is just outside the generally accepted range ( 4 5 ° - 6 5 ° ) . I t may be 
noted, however, that the acceptability, or otherwise, o f a closed-loop response depends on 
the application. For the process industries, a slightly lower phase margin (indicating a 
lower damping ratio) may be desirable, whereas for a profile cutting machine a higher 
phase margin would be required, since no overshoot in the time response would be 
allowable. 

When the system gain K is 4, the gain margin is 3.52 dB (or 1.5) and the phase 
margin is 11°. Both the gain and phase margins are positive and the closed-loop system is 
stable. However, the low gain and phase margins suggest an oscillatory response close to 
the stability boundary. Reducing the system gain K to 0.4 gives a gain margin o f 23.9 dB 
(or 15) and a phase margin of 73° . Although the system is stable, these values are wel l 
outside the accepted range wi th the high phase margin suggesting a very overdamped 
response. 

Figure 3.44 gives the closed-loop Bode plots for gains K = 4, K = 1.5 and K = 0.4 
(and the m-file fig3_44.m on the disk w i l l duplicate these). The plots are typical o f second-
order dominant, type 0 systems. For low frequencies the magnitude plot has a constant 
value equal to the system's steady-state gain, and the phase plot starts from 0° . 

A l l the closed-loop frequency-domain specifications can be found from the closed-
loop Bode magnitude plot. When K = 4 the peak magnification, M p , is 14.7 dB or 5.43 
and from Equation (3.64) this indicates a dominant £ value o f 0.092. Mp occurs at the 
frequency cop o f 1.25 r a d s - 1 and using Equation (3.65) to find con, suggests a Ccon value 
of 0.11 r a d s - 1 . The bandwidth is 1.8 r a d s - 1 and suggests that when the gain K is 4, the 
system w i l l have the worst noise filtering characteristics. However, the cut-off rate is 
—18 dB per octave (or —60 dB per decade) which would normally be satisfactory. 
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When K = 1.5, Mp is 3.1 dB (1.428) and cop is 0.66 rads" 1 which, from Equations 
; (3.64) and (3.65), gives a £ value of 0.38 and a £c/j„ value o f 0.29 rads" 1 . The bandwidth 
. is 1.07 r a d s - 1 and the cut-off rate is again - 1 8 dB per octave. 

After adjusting the system gain K to 0.4, the gain plot does not exhibit a peak 
magnification, suggesting that the response is overdamped. The bandwidth is 0.28 r a d s - 1 , 

, indicating good noise rejection properties but a relatively slow response. 
Comparison should be made between all the predicted response characteristics and 

those obtained from a dominant pole analysis (earlier in Section 3.5). 

3.5.2 Polar and inverse polar plots (Nyquist and inverse Nyquist diagrams) 
Polar plots in their various guises provide a powerful set o f stability and 
performance design techniques. The open-loop polar plot is a plot of the gain 
(magnitude) and phase locus of the open-loop L T F G(s)K(s) for all frequencies. 
The open-loop inverse polar plot is similar and shows the reciprocal function, the 
locus o f the inverse of the gain and negative phase for all frequencies. 

Both diagrams may be plotted on polar or linear graph paper and provide the 
basis for the Nyquist stability criterion (Chapter 4) . This method is more powerful 
than the Routh criterion (Section 3.3.3) in that i t indicates the degree o f stability, or 
the adjustments required to produce stability, and also provides exact stability 
information for systems containing time delays (Section 3.7). For now, note that 
Nyquist diagrams, named after Harry Nyquist (1889-1976), are mappings o f the 
'Nyquist contour' (see Section 4.3.1 for more detail) from the s-plane onto the 
G(s)K(s) -plane (the G(s)K(s) -plane is effectively an Argand diagram for the real 
and imaginary parts of G(s)K(s)). The Nyquist contour in the s-plane is 'D'-shaped, 
and the vertical of the ' D ' is the imaginary s-plane axis, extending to infinity in each 
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direction. Mappings along this axis produce frequency response data from which 
the open-loop polar plots are obtained. These polar plots therefore form part o f the 
Nyquist diagram. Furthermore, after testing for stability, only the polar plot portion 
of the Nyquist diagram is used for design work. Similarly, the inverse Nyquist 
diagram contains the inverse open-loop polar plot. Again , after checking for 
stability, only that portion of the diagram containing the inverse polar plot is used. 

Nyquist diagrams are particularly useful as they can be used to determine the 
closed-loop stability of a system directly from an open-loop plot. I t should be noted 
that, except in specific cases, satisfactory gain and phase margins do not guarantee 
closed-loop stability. This means that when using Bode diagrams (see Section 
3.5.1), for example, it may sti l l be necessary to test the stability o f a particular 
design using the Nyquist or Routh stability criteria. 

Inverse Nyquist diagrams are particularly useful when the system has a minor 
feedback loop, or i f feedback compensation is required (feedback compensation is 
the deliberate introduction of dynamic elements into the feedback path in order to 
meet a particular design specification). Familiarity wi th inverse Nyquist diagrams is 
a prerequisite for certain frequency domain studies o f multivariable systems (see 
Section 10.7). 

A typical polar plot is shown in Figure 3.45 and a typical inverse polar plot in 
Figure 3.46, for a system having an open-loop transfer function G(s). I n both the 
Nyquist and inverse Nyquist diagrams (the more general forms o f the polar and 
inverse polar plots) a unit circle is the locus o f al l points at which the respective 
magnitudes w i l l be unity, and the negative real axis is the locus of all points at 
which the phase lag is 180°. Arrows on the G(jco) and G~l(jca) loc i indicate the 
directions of increasing frequency. 
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Polar plots 
A system's type number and the related steady-state error information (see Section 
3.4.1) may be determined directly from the open-loop polar plot. Figure 3.47 shows 
a selection of polar plots for systems of different type number. Again i t is assumed 
that the system's open-loop transfer function G(s)K(s) may be simply represented 
by the transfer function G(s). The G(jco) locus for a type 0 system starts from a 
point on the 0° line, at co = 0. A type 1 system has a locus of infinite magnitude at 

Figure 3.47 The general 
effect of system type 
number on direct polar 
(Nyquist) plots. 

-180° 

Im [G(s)] 
,-270° 

co=0 Re[G(s)] 
0° 
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co = 0 and starts from a line asymptotic to the - 9 0 ° axis. Type 2 and 3 systems start 
from lines asymptotic to the - 1 8 0 ° and - 2 7 0 ° axes, respectively. Incidentally, as 
co —> oo, the magnitude ratio tends to zero and the phase angle to -R90°, for a 
min imum phase system (one wi th all poles and zeros in the left-half s-plane). Here 
R is the rank of the system (excess of poles over zeros). I f the closed-loop system is 
stable, the error in a type 0 system for a unit step input is given by (Section 2.5.5): 

1 + KG{0) 

where K is any additional loop gain not included in G(s), and G(0) is the 
magnitude of the system's open-loop frequency response evaluated at zero 
frequency. The magnitude of G(0) may be measured directly from the polar plot, 
and indicates that the further the starting point o f the locus is from the or igin o f the 
G(s) plane, the smaller is the steady-state error. 

For systems wi th higher type numbers the G(jco) locus becomes infinite at zero 
frequency. Therefore, i f a particular forcing input produces a steady-state error, the 
magnitude of the error cannot be calculated directly from the polar plot. There are 
techniques for quantifying the error, using polar data, in which the location o f the 
zero-frequency asymptote relative to the appropriate axis is found. The greater the 
distance between the axis and the asymptote, the greater the reduction in any 
steady-state error. 

For a system wi th open-loop LTF G(s), the closed-loop frequency response 

may be expressed as 

T(jco) U } 

l+G(ja>) 

Now, T(jco) has magnitude 

| r ( t o ) | = | G W I (3.83) 
l l [ J ( D ) l | l + G ( . / a > ) | V ' 

and argument 

arg T(jco) = arg G{jco) - a rg ( l + G{jco)) (3.84) 

I n the polar plot of the open-loop system transfer function (see Figure 3.48) the 
modulus of G(jco) is the length of the vector from the or igin o f the plot to the point 
on the G(jco) locus corresponding to the frequency value co. The argument of 
G(jco) is the angle this vector makes wi th the positive real axis. By simple vector 
addition, the modulus of 1 + G(jco) is the length o f the vector from the - 1 +j 0 
point to the point on the G(jco) locus corresponding to the frequency value co. 
Again, its argument is the angle this vector makes w i t h the positive real axis. 

B y selecting a number of points on the G(jco) locus and applying Equations 
(3.83) and (3.84), the closed-loop frequency response is obtained. W i t h the use of a 
computer even this simple procedure becomes unnecessary. However, i t is worth 
exploring the method further, since i t illuminates the development o f the Nichols 
chart (see Section 3.5.3). 

The magnitude of the closed-loop frequency response at a given frequency is 
expressed as the ratio of the length of two vectors, see Equation (3.83). Clearly, an 
infinite number of vectors could be found which would give the same magnitude 
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lm[G(s)l 

value. Let us find the contour in the G(jco) plane which corresponds to these values. 
Let the constant closed-loop magnitude in question have the value o f M , and let the 
open-loop transfer function G(jco) have the coordinate points x+jy. From 
Equation (3.83), 

M= ^ 

Squaring both sides and rearranging yields 

M2 \ 2 , M2 

M 2 - \ ) " (M2-\)2 

which is the equation of a circle having its centre at (-M2/(M2 - 1), 0) and a 
radius o f | M / ( M 2 - 1)|. 

For each value of M , such an 'M-c i rc le ' may be drawn in the G(ya>)-plane. 
Every time the open-loop G(jco) locus intersects such a circle, the M value o f the 
circle gives the gain of the corresponding closed-loop frequency response at 
frequency co. 

A similar analysis may be carried out on the argument o f the closed-loop 
frequency response. Let N be some constant value o f angle, and let the coordinates 
of the G(jco) locus be x +jy as before. Then, from Equation (3.84): 

t a n - 1 N = t a n _ 1 ( y / j c ) - t a n _ 1 [ y / ( l + *)] 

- l *r - l (y/x) -y/(l +x) 
tan 1 N = tan 1 K J / J J 

i + (?A)b/(i+*)] 
from which i t may be deduced that 

x2 + x + y2 
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After further manipulation, the above equation can be writ ten in the form 

which is also the equation of a circle, but this time wi th its centre at 

( - 1 / 2 , 1 / ( 2 W ) ) and radius 

For each value o f /V a circle could be drawn in the G(jco)-plane. This time, 
an intersection of the open-loop G(jco) locus wi th an W-c i rc le ' gives the 
corresponding closed-loop phase angle. 

Before dealing wi th the various closed-loop stability criteria, i t is interesting to 
note that the Nichols chart (described in Section 3.5.3) is obtained by mapping these 
M and N circles in polar coordinates, onto M and N loc i in rectangular magnitude 
(dB) and phase coordinates. 

The open-loop polar plot of the G(jco) locus wi th superimposed M circles is 
used to determine the closed-loop peak magnification, bandwidth and cut-off rate. 
In Figure 3.49, the G(jco) locus touches the M = 2 circle at frequency cop. This 
indicates that Mp = 2 and the peak frequency is cop rad s - 1 . Equation (3.64) may be 
used to approximate the effective damping ratio from Mp, which w i l l be found to be 
0.26. A further test would be to measure the phase margin, and use the rule o f thumb 
given in Section 3.4 to find an approximate value for the damping ratio, namely 
(phase margin)/100. The two methods should give similar results, although the 
estimated damping ratio found using the Mp value w i l l be more representative o f the 

response. 

Im [G(s)] 

M= 1.7/' 

>'M = 2S 
;M = 3I

/ 

-1 

CO c 
M = 0.707 

Re[G(s)] 

P 

Figure 3.49 Circles of 
closed-loop peak 
magnification on the open-
loop direct polar (Nyquist) 
plot. 

Gijco) locus 
G(s)-plane 
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For a zero-frequency magnitude ratio o f unity, the bandwidth may be 
determined from the frequency at which the G(jco) locus intersects the M = 0.707 
circle (see the comments on bandwidth fol lowing Equation (3.63)). I n Figure 3.49 
the bandwidth is the value of the frequency at coc. The cut-off rate is the rate o f 
decrease in the magnitude ratio. In Figure 3.49, the frequency doubles i f the 
magnitude ratio is halved, which indicates a cut-off rate o f 6 dB/octave (or 20 dB/ 
decade). 

In the T(s)-plane (the plane for the polar plot of the closed-loop LTF) , the M 
circles become circles of radius M wi th their centre at the origin o f the plane, and 
the N circles become radial lines emanating from the origin o f the plane. The 
closed-loop frequency measures of bandwidth, peak magnification and cut-off rate 
may all be made directly. Figure 3.50 shows the closed-loop T(jto) locus 
corresponding to the open-loop G(jco) locus in Figure 3.49. 

Example 3.13 Example 3.12 repeated using the 
direct polar plot 
Use polar plots to analyse the response of a system having the open-loop transfer function 

K can take the values 4, 1.5 and 0.4. 
This system was analysed in Example 3.12 and therefore the only requirement is to 

show how the various frequency-domain specifications may be obtained from the open-
loop and closed-loop polar plots, Figures 3.51 and 3.52 respectively. 
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1.5 

Figure 3.51 Direct polar 
(Nyquist) plots for the 
variable-gain system of 
Example 3.13. 
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Figure 3.45 shows how the gain and phase margins are determined. In Figure 3.51 
these are found to be as follows for the various values of K: 

K = 4 gain margin 1.5, phase margin 11° 

K = 1.5 gain margin 4, phase margin 42° 

K = 0.4 gain margin 15, phase margin 73° 

Figure 3.52 The 
information of Figure 3.51 
transferred to a closed-loop 
direct polar (Nyquist) plot. 
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For this system, only one open-loop polar plot need be drawn, since only M(co) changes 
wi th frequency (see Equations (3.66) to (3.68)). Different gains, K, are accommodated by 
simply rescaling the real and imaginary axes (alternatively, this can be imagined as moving 
all points on the plot radially away from the origin to increase the gain, or towards the 
origin to decrease i t ) . The frequencies at which gain crossover and phase crossover occur 
are not directly measurable from the open-loop polar plot and i f required, must be obtained 
from the frequency response data ( M A T L A B can do this - see below). 

Since it is normally easier to produce a closed-loop polar plot than draw M and N 
circles on the open-loop polar plot, the closed-loop polar plot is shown in Figure 3.52. By 
drawing circles centred at the origin of the closed-loop polar plot as shown in Figure 3.49, 
Mp, cop, bandwidth and cut-off rate may all be determined. Again some reference to the 
frequency response data w i l l be required. As expected, the performance measures are 
found to be the same as those found in Example 3.12. 

Using M A T L A B (Appendix 3), Figure 3.51 (for example) can be produced by using 
the m-file fig3_44.m, and substituting the command nyquist for the command bode. This is 
done in the file fig3_51 .m on the accompanying disk (also, three times as many points are 
plotted to give smooth curves). Wi th the Multivariable Frequency Domain Toolbox 
( M V F D T B - F o r d et al. (1990)) for M A T L A B , M-circles can be added, and this is also 
done in fig3 52.m. Note that both these files additionally generate mirror images o f the 
curves in the text, corresponding to 'negative frequencies' - these are explained later. In 
the case o f K = 0.4, the closed-loop system is overdamped (see Example 3.12), so the 
appropriate M-circle should be the one corresponding to the low-frequency gain. From the 
final value theorem applied to the closed-loop LTF for this case, this ought to be unity (the 
M A T L A B command dcgain(nc,dc) inserted into the m-file w i l l confirm this). 

Without the rather specialized M V F D T B , an alternative is to use M A T L A B to scan 
the frequency response data and find the maximum closed-loop gain. For this to be 
successful, there must be enough frequency points to be sure of 'catching' a value more or 
less at the peak. I t is therefore wise to set up a frequency vector, containing at least a few 
hundred points (a Bode plot can be produced and checked for smoothness around the 
peak). For example, for K = 4, proceed as follows (the bode command is used because i t 
provides magnitude and phase data; the nyquist command used in this way produces real 
and imaginary data): 

> w=logspace(-1,1,500); % 500 log-spaced values from 0.1 to 1.0 rad/s 

» den=conv([l 1 0 ] , [1 2]); 

> [ncl ,dcl ]=cloop(4,den,- l ) ; % form unity negative feedback system 

> [mag,pha]=bode(ncl,dcl,w); % calculate closed loop data using w, 
% but do not plot 

> max(mag) % displays Mp value 

It is also feasible to use the ginput command to pick the peak value from the bode plot 
(see Appendix 3, or use > help ginput). Again, the accuracy w i l l depend upon the 
number o f points in the plot and, of course, the accuracy in positioning the cursor over the 
plot. M A T L A B can also confirm the gain and phase margins for each case (as in 
Example 3.12). 
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Inverse polar plots 
This section provides a brief introduction to inverse polar plots. I n principle, the 
inverse polar plot may be used to achieve the same objectives as direct polar plots. 
The Nyquist stability criterion (see Section 4.3), gain margin, phase margin, steady-
state error checks and the various closed-loop frequency response measures all have 
their counterpart in the inverse plane. 

Consider the closed-loop system shown in Figure 3.53, whose overall LTF is 
given by 

R(s) K ) 1 + GH(s) 

The inverse closed-loop transfer function for this system is 

r - ' ( s ) = G-i(s)+H(s) 

(3.85) 

(3.86) 

Figure 3.53 A feedback 
loop with dynamic elements 
in the feedback path. 

R(s) 

»€>• G(s) 

H(s) 

Y(s) 

For feedback compensation, where the object is to design the dynamic 
characteristics of H(s) for fixed plant dynamics G(s), i t is much easier to work 
wi th Equation (3.86) than Equation (3.85). I f direct polar plots are used, each 
change in H(s) requires the rational polynomial T(s) in Equation (3.85) to be 
evaluated. However, T~l(s) (Equation (3.86)) may be evaluated by using the fixed 
inverse polar plot G~l(s) o f the plant and adding i t vectorially to the direct polar 
plot H(s) o f the feedback compensator. I n this way, the effect o f H(s) on the 
closed-loop system is seen immediately. 

Another system for which it is advantageous to use the inverse notation is one 
in which a minor feedback loop is used. Figure 3.54 shows G{(s), a forward path 
compensator, and H(s), a feedback compensator, for a plant w i t h fixed dynamics 
G(s). This type of control may have distinct advantages: the system may be easier 
to bui ld, install and adjust than one wi th a more complex, single-loop controller. 
Al though the designer w i l l have more work to do, i t is often possible to meet 
performance specifications which would otherwise be unobtainable. A n example o f 
the use of minor feedback loops is given in Section 4.5.3. 

Figure 3.54 A system with 
an inner feedback loop 
containing dynamic 
elements. 

R(s) ^ E(s) I 1 l(s) U(s) 

G(s) Y(s) 
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H(s) H(s) 
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A n interactive approach to the design o f the compensators Gl (s) and H(s) is 
normally adopted. Typically, the inner loop is designed first: that is, the problem is 
reduced to the design of a feedback compensator similar to that shown i n Figure 
3.53. For this stage of the design the inverse notation has a clear advantage. When 
the dynamics o f / / (s) are fixed, the dynamics of the feedback compensated plant are 
fixed and given by 

Bode and Nichols plots (Section 3.5.3), or a Nyquist plot w i th M and N circles, can 
then be used to design the forward path compensator Gx(s). 

Figure 3.55 shows a number of inverse polar plots near the origin o f the inverse 
plane. The general shape of the plots depends on the inverse transfer function. 

Normally, a system model w i l l have more poles than zeros, and therefore for 
low frequencies (small values of co) all but type 0 systems w i l l have loci emanating 
from the origin of the inverse plane. A type 0 system starts from a point along the 0° 
axis. For a stable closed-loop response, the closer this starting point is to the origin, 
the lower the steady-state error to a demanded step input. A type 1 system starts 
along the 90° axis, a type 2 system along the 180° axis, and so on. I f the system's 
transfer function has no zeros, the phase angle o f the inverse locus increases wi th 
increasing co. This produces an inverse locus which is a smooth curve in the 
anticlockwise direction. When zeros are present, the locus sti l l tends to rotate 
anticlockwise wi th increasing co, but the shape of the curve may be more irregular. 
For high frequencies (large co) the (inverse) magnitude values become large. As 
co —• oo the (inverse) magnitude ratio becomes infinite, and the phase angle 
becomes R90° for minimum phase systems. Again, R refers to the system rank. 
Given the system's transfer function, it is therefore possible to use the above 
argument to predict the general shape of the inverse locus. 

Closed-loop performance measures require the inverse equivalent of the M and 
N circles used wi th direct polar plots. The closed-loop transfer function o f a unity 
negative feedback system is (see Figure 3.53): 

Y(s) _ G(s) 

I(s) 1 + G(s)H{s) 

R(s) 
T(s) = 

1 + G(s) 

G(s) 
(3.87) 

Im [G"1(s)] 
A 90° 

type 0 

Figure 3.55 The general 
effect of system type 
number on the inverse polar 
(inverse Nyquist) plot. 

type 1 

type 2 
G_1(s)-plane 
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from which the inverse closed-loop transfer function is 

T-l(s) = G-l{s) + l 

From this equation the T~l(s) locus is obtained by vectorially adding 1 to each 
point in the G~l(s) locus. Therefore the phase angle o f the closed-loop transfer 
function T~l(s) may be obtained from the open-loop frequency response plot 
G~l(jco), for any value co, in the fo l lowing manner. Draw a vector from the 
G - 1 (jco) locus, from the point wi th the frequency value co, to the point ( - 1 + j 0), 
as in Figure 3.56. The required closed-loop phase angle is the angle this vector 
makes wi th the positive real axis. Similarly, a circle o f constant magnitude ratio 
which is centred at the origin of the T~l(s) -plane is mapped onto a circle of 
identical radius in the G " 1 (s)-plane, but centred at the ( -1 + 7O) point. 

Im [G-1(s)] 
A 

co 

Figure 3.56 Closed-loop 
information from an open-
loop inverse polar (inverse 
Nyquist) plot. 

The above analysis indicates that lines o f constant magnitude ratio in the 
closed-loop r(s)-plane map into circles centred on the ( - 1 +y '0 ) point in the 
G " 1 (s)-plane. The inverse of the radius of the circle i n the G " 1 (s)-plane gives the 
closed-loop magnitude ratio. Also, lines of constant phase angle in the closed-loop 
7(s)-plane map onto radial lines centred on the ( - 1 + jO) point in the G~l(s)-
plane. In this mapping, the angle of any radial line undergoes a sign change. 

Example 3.14 Analysis by an inverse polar plot 
Draw the inverse polar plot of 

G(s) 1 

s4 + 6s 3 + 1 Is2 + 6s 
and determine the gain margin, phase margin and closed-loop bandwidth. Also, comment 
on the Mp value. 

I n inverse notation, 

G-\jto) = co2(co2 - 11) - 6jœ(œ2 - 1) 

which is readily plotted on the G - 1 ( s ) -p lane , as shown in Figure 3.57. 
The gain margin is the magnitude of G~l(jco) when the imaginary part o f G~l(jco) is 

zero. This occurs when co = 1 and the gain margin is 10 (see Figure 3.57). 
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Figure 3.57 Inverse polar 
(inverse Nyquist) plot for 
Example 3.14. 
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Also from Figure 3.57 the phase margin is measured to be 73° . 
Since the open-loop system is type 1 wi th no right-half s-plane poles, the gain and 

phase margins are sufficient to indicate closed-loop stability. The bandwidth is determined 
by drawing a circle o f radius 1/0.707 (or 1.414, or y/2) centred at the ( - 1 + jO) point, as 
shown. This circle crosses the G~l(jco) locus at co = 0.24 rads" 1 . 

The value o f Mp is determined by drawing the circle of largest diameter centred on 
the ( - 1 +y"0) point which just touches the G~l(jco) locus without crossing i t . However, 
the phase margin o f 73° indicates an equivalent damping ratio o f approximately 0.73, and 
therefore the peak magnification is l ikely to be at the zero frequency point. As expected, 
Figure 3.57 shows that the largest circle wi th centre ( - 1 + jO) which just touches the 

xf locus has unit radius. 

Example 3.15 Examples 3.12 and 3.13 repeated 
* using the inverse polar plot 

Draw the inverse polar plots for a system having the open-loop transfer function 

K 
G(s)K(s) 

s(s+l)(s + 2) 

m where K can take the values 4, 1.5 and 0.4. This is the system analysed in Examples 3.12 
a and 3.13 using Bode and direct polar plots respectively. 
? The inverse polar plots are shown in Figure 3.58. The circles centred at ( - 1 , 0) have 

radii o f 1.0, 0.7 and 0.18 and each just touches the K = 0.4 locus, the K = 1.5 locus, and 
the K = 4.0 locus respectively. Taking the reciprocal of the radius of a particular circle 

> gives the system's Mp value for the indicated gain. The closed-loop phase shift at the Mp 

ri value may be measured directly from the inverse polar plot (see Figure 3.56) and the 
frequency cop is found from the frequency response data. 
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Figure 3.58 Inverse polar 
(inverse Nyquist) plots for 
the variable-gain system of 
Example 3.15. 

Using M A T L A B for inverse Nyquist plots is easiest i f the M V F D T B is available, 
when the finv command can be used. However, assuming this is not the case, but that 
direct Nyquist or Bode data are present, the inverse frequency response data can easily be 
generated. For example, in M A T L A B any frequency point on the direct Nyquist plot is 
given i n rectangular coordinates by a complex number o f the form x + jy. The 
corresponding point on the inverse plot is therefore: 

1 x . y 
x + jy x1 + y2 ^ x2 + y2 

To calculate individual frequency points, rather than doing normal vector algebra on the 
entire data set, the dot operator is used to force M A T L A B to do point-by-point 

v calculations. Alternatively, the Bode magnitude and phase data can be used. The m-files 
fig3_57.m and fig3_58.m on the accompanying disk use the Nyquist and Bode approaches 
respectively, so as to illustrate both. The commands adding the circles only work i f the 

Y M V F D toolbox is installed, so they are ini t ia l ly 'commented-out'. Remove the per cent 
signs to make them active i f the M V F D T B is available. I n each case, the circles were 
arrived at by using a larger plot to show the area o f interest (use help axis to see how this 
is done), and trying circles o f varying radius to find the best. 

3.5.3 Rectangular coordinate plot of magnitude and phase, or Nichols plot 
In this plot, the y-axis represents the magnitude expressed in decibels, and the jc-axis 
the phase angle in degrees. Linear graph paper could be used to produce a Nichols 
plot, but i t is more common to use a Nichols chart (both named after Nathaniel 
Burgess Nichols, b. 1914). 

The Nichols chart consists o f linear graph paper, specially prepared by the 
addition o f superimposed closed-loop magnitude and phase contours (see Figure 
3.59, which is simply produced by the M A T L A B command ngrid('new')). By 
plott ing the open-loop magnitude and phase locus using the linear axes o f this chart, 
the system's closed-loop frequency response characteristics may be determined 
from these superimposed contours. For example, i f an open-loop system has a 
magnitude ratio of — 8 dB and a phase shift o f —80° at a given frequency, and these 
values are plotted on the linear axes labelled 'open loop gain ' and 'open loop phase' 
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Figure 3.59 A Nichols 
chart. 
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in Figure 3.59, the point marked ' x ' results. The closed-loop contours on the 
Nichols chart indicate that, at the same frequency, the unity feedback, closed-loop 
system would have a magnitude of about — lOdB (between the — 6 d B and — 12dB 
contours) and a phase shift of - 6 0 ° . 

In principle, a Nichols chart plot may be used for adjusting a system's open-
loop gain and phase margins, as wel l as modifying its closed-loop performance 
specifications. In practice, Bode plots are used to shape the open-loop response and, 
since a computer is invariably used to produce these plots, i t is more convenient to 
use computer generated closed-loop frequency response data to check the closed-
loop characteristics. 

A Nichols chart is essentially a transformation o f the M and N circles on the 
polar plot (see Section 3.5.2) into non-circular M and N contours on a plot o f dB 
magnitude versus phase, in rectangular coordinates. A plot of the open-loop 
frequency response function G(jco) on a Nichols chart yields the gain and phase 
margins directly (see Figure 3.60). 

Information about the gain and phase margins, together wi th the various 
closed-loop specifications, is summarized in Figure 3.60. In this figure, Mp9 the peak 
maximum magnitude ratio, is obtained by finding the largest M contour which 
touches, but does not cross, the G(jco) locus. The frequency at Mp, namely cop, 
cannot be read directly, but is usually readily found by interpolating between the 
G(jco) data points. The bandwidth of the closed-loop system is similarly found 
from the intersection of the G(jco) locus wi th the —3 dB M contour. 

A change in gain does not alter the shape of the G(jco) locus on the Nichols 
chart, but shifts it vertically. Also, since the magnitude is expressed in dB form, i t is 
common practice to represent the system's open-loop transfer function G(jco) in 
Bode form (see Equation (3.69)). In this form, the effect of a design change such as 
the inclusion or modification of a compensator, is easily accommodated. The basic 
plot remains the same, and the modification becomes a problem in graphical 
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addition. Unlike Bode plots, the Nichols chart does not allow asymptotic 
approximations to be made. Therefore data points must be calculated directly or 
transferred from the Bode to the Nichols chart. 

Example 3.16 The system of Example 3.12 on the 
Nichols chart 
Produce Nichols plots for the system 

G(s)K(s) = £ 
w w s ( i + l ) ( i + 2) 

wi th A: = 4, 1.5 and 0.4. 
In the Nichols plots of Figure 3.61, the chain dotted line is the locus o f frequency 

points for K = 4, the solid line for K = 1.5 and the dashed line for K = 0.4. W i t h only a 
monochromatic presentation, computer generated Nichols plots can be confusing. However, 
by tracing the solid line (the locus of points for K = 1.5) the G(jco)K(jco) locus appears to 
touch (but not cross) the 3 d B M-circle, making Mp 3 d B (or 1.41) at which point the 
closed-loop phase angle is about —80°. The remaining performance measures can be found 
as indicated in Figure 3.60. The m-file fig3_61.m on the accompanying disk w i l l generate 
Figure 3.61. 
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Nichols plot 
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Figure 3.61 Nichols plots 
for the variable-gain system 
of Example 3.16. Open-loop phase (deq) 

3.6 Responses of discrete-time models 
A t this stage it is appropriate to re-examine the A R M A - t y p e difference equation 
model o f Section 2.8.1, and the discrete-time state-space model o f Section 2.8.2. 

3.6.1 ARMA-type difference equation models 
Section 2.8.1 introduced this form of model wi th the equation: 

yn = Aiyn-\ + A2y„_2 + ¿ 3 ^ - 3 + • • • 

+ B0un+Bxun_x +B2un_2 + -.. 

where the A and B values are constants, y is the output and u is the input. As before 
(see Figure 2.52), the Aith output (or input) is the latest one, the (n — l ) t h is the 
previous one, and so on. How such models work w i l l be demonstrated by 
examples. 

Example 3.17 Investigate the step response of a 
system modelled by a difference equation 
Find the unit step response of the system modelled by the difference equation: 

yn=0.9yn_x+0.lun 

where y starts from zero at step 0 and the sampling interval is 0.1 s. 
Since the specified input is a unit step, all the un values w i l l be equal to unity and the 

fol lowing iterative approach may be used: 

Set last_y equal to zero and n equal to 1 
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r Loop: Calculate y as 0.9 x last_y + 0.1 x u ( N B : u is 1) 

£ Store, graph or output y and f ( i = n x the sampling interval) 

Make last_y equal to the new value o f y 

A d d 1 to n 

jr Go to Loop (unless enough of the response has been calculated!) 

\ t This algorithm can be coded as an m-file in M A T L A B (see Appendix 3) as follows: 

i last_j = 0; 

n = 0; 

ts = 0 .1 ; % Setting the sample interval equal to 0.1 second 

r y ( l ) = last_y; % First value o f response ( ini t ia l condition) 

% t ( l ) = 0; % Ini t ia l value o f time 

't for n = 2 : 101 % This w i l l iterate through 100 time steps 

y(n) = 0.9*last_y+ 0.1; % Storing the y values in the form of an array 

t(n) = n*ts; % Doing likewise w i th the time values 

* last_y = y(n) ; % ready for the next step 

? end 

plot( t ,y , 'x ' ) ,gr id 
H 
1 Note that M A T L A B is not designed to work efficiently when programmed using for loops 
\: to step array indices (there are tricks to make execution o f such 4non-vectorized' 
*f M A T L A B code more efficient, but they are beyond the scope of this text). This usage of 
& M A T L A B has been included to illustrate how such simulation might be performed using a 
f conventional technical computing language. Also, since many languages cannot cope wi th 
f» element (0) in an array, the ini t ial conditions are stored in element (1) - so array element 
r numbers are always one greater than the time step number whose data they contain. 

The m-file (above) produced the output shown in Figure 3.62. The ' x ' characters are 
m used to show the output samples and indicate the discrete-time nature o f the response 
-* (without this, the plot command would draw lines jo in ing up the points as a smooth 
f curve). Note that the output is the digitized version o f a continuous-time first-order lag. 
* The interconversion is described in Chapter 4. 

A n alternative is to use the M A T L A B filter command which is also defined using a 
f difference equation. The required commands are: 

* » u = ones( 100,1); 

» y = filter(0.1, [1 - 0 . 9 ] , u); 

» p lo t ( [0 ;y] , ' x ' ) ,g r id 

1 Notes: 
• The ones command sets up the unit step input u as a column o f 100 unity elements (one 

? for each of the required 100 time steps). 

f • The filter command applies the filter (that is, the system represented by the difference 
?: equation model) to the input data stream in w, so as to generate the corresponding output 
i data stream in y. The filter (model) coefficients are specified by rearranging the model in 
^ the form: 

- ^ - 0 . 9 ^ . ! = 0 . 1 « , 



206 System responses, stability and performance 

Figure 3.62 Discrete-time 
step response for the system 
of Example 3.17. 
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The first argument in the filter command is then a vector containing the coefficients on 
the RHS of the equation (in this case, just one, namely 0.1), and the second argument is 
a vector containing the coefficients on the LHS (that is, [1 - 0 . 9 ] ) . 

• The plot command needs to add an extra zero row to the top of the y vector, to 
represent the ini t ia l condition on y (because the filter command output begins wi th time 
step 1). The resulting plot is similar to Figure 3.62, except that the horizontal axis is 
calibrated in sample numbers, not time values, and the ini t ia l value (f = 0) now 
corresponds to sample number 1. 

• A matching 101 element time vector could be set up (for example, using 
> r = [0:0.1:10];) and the command >plo t ( r , [0;y] , ' * ' ) , grid would then duplicate 
Figure 3.62. 

• The best way to use M A T L A B directly for this example would be to use z-transforms 
(introduced in Chapter 4). Then the dstep command could be used, and the output plot 
would appear as a sampled-and-held (or 'staircase') type of waveform. 

The next example w i l l show that higher-order systems can also be represented in 
discrete form. 

Example 3.18 A higher-order discrete-time step 
response 
Investigate the unit step response of the system modelled by the equation: 

yn = \.6yn_x - 0 .8y„_ 2 + O . l l ^ + 0 . 0 9 W „ _ 2 

The sampling interval is 0.1 s. 
The procedure is based on that given in Example 3.17: 
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Set last_y and lastl_y equal to zero 

Set lastju and lastlju equal to zero 

Set n equal to 1 

Loop: Calculate y as 

1.6 x last_y - 0.8 x lastl_y + 0.11 x lastju + 0.09 x lastlju 

Store, graph or output y and t (t = n x the sampling interval) 

Make lastl_y equal to the new value o f last_y 

Make lastl_y equal to the new value of y 

Make lastlju equal to the new value o f lastju 

Make lastju equal to the new value o f u 

A d d 1 to n 

Go to Loo/? (unless enough of the response has been calculated) 

I f desired (although it is not a recommended usage) M A T L A B can be used to code the 
above example directly: 

% Demo for second-order discrete example 

% Ini t ia l iz ing 

l a s t l _ y = 0; last_ y = 0; las t l_u = 0; last_u = 0; 

u = 1; % Unit step applied at t = 0 

y ( l ) = 0 ; % Output y starts at zero 

for n = 2 : 101 

y(n) = 1 .6* l a s t_y -0 .8* l a s t l _y + 0.11*last_u+0.09*lastl_u; 

l a s t l_ y = last_ y; last_ y = y(n); 

last l _ u = last_u; last_u = u; 

end; 

t = 0.1*[0:100]; % 101 time values for sampling interval = 0.1 s 

p lo t ( t ,y , 'x ' ) ; grid 

The output appears as Figure 3.63. 
More elegantly, the filter command introduced in Example 3.17 could be used. Note 

that the denominator and numerator both have the same number o f terms, which has been 
achieved by including the zero coefficient o f un. The significance o f this is explained in 
Section 3.7. 

» u = ones( 100,1); 

» y = filter([0 0.11 0.09], [1 - 1 . 6 0.8], u); 

» plot( [0;y] , V ) ; grid 

Discrete-time models of this type are next studied in detail i n Section 5.7 o f 
Chapter 5. 
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Figure 3.63 Discrete-time 
step response for the system 
of Example 3.18. 
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3.6.2 Discrete-time state-space models 
Equation (3.12), repeated below, gives the ful l solution for the time responses o f the 
state variables in a state-space model. 

x(t) = * ( f ) x ( 0 ) + [ tf (f - x).B.u(x).dx (3.12) 
Jo 

Application of the linear output equation (Equation (2.44)) would then give the 
output responses. However, direct solution of the convolution integral in Equation 
(3.12) can be difficult, and it is usual to convert to the discrete-time version o f the 
equation, outlined in Section 2.8. This is how digital computer packages such as 
M A T L A B evaluate their time responses - even when i t appears that continuous-
time models are used, giving continuous-time results. 

For computer solution of Equation (3.12), i t would be convenient i f a discrete-
time, recursive expression existed. That is, i f the value o f x at a sampling instant k 
(written as xk) could be found as a simple function of the values from the previous 
sampling instant: xk = / (xk_x, uk_x). So long as such a scheme is properly 
initialized (that is, at k — 0), the solution is then very simply found in a step-by-step 
manner. 

In seeking to obtain a discrete-time version of Equation (3.12), assume that the 
input and state vectors (x and u) w i l l be sampled-and-held at the sample intervals 
k0, kx, k2,... . This gives rise to sampled signals JC 0,JC 1 ? . . . and M0,Wi, . . . which 
w i l l be regarded as remaining constant throughout each sampling period as 
illustrated in Figure 2.51 (which was drawn for a signal y, but x or u could equally 
wel l be substituted for y) . This means that information is lost between sampling 
instants. Therefore, as usual in such systems, the samples must be taken sufficiently 
often to capture all significant events. 

I t can be assumed that the values at the kxh sampling instant are known, and 
therefore can be used to calculate the values which w i l l exist at the (k - f l ) t h instant. 
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This assumption is val id since, i f the ini t ia l conditions (at k = 0) are known, 
together wi th the recursive, discrete-time expression, then al l future values fol low. 

I t is convenient to regard the response o f Equation (3.12) as being the sum of 
two components: 

• The free response due to the ini t ia l conditions only (the first term on the RHS) 

• The forced response due to the input signals only (the convolution term on the 

RHS). 

For the sampled signal in the interval tk to tk+l, the state vector at the kth instant 
(xk) becomes a fixed init ial condition (see Figure 2.51, reading yk as xk). I f the 
sampling interval (that is, tk+l - tk) is h seconds, then that part o f the solution 
corresponding to the free response (Equation (3.12) w i th zero input) is seen to be: 

^Mfree 
= eAhxk = 0(h)xk (3.88) 

L ike the state vector, the input vector is also sampled-and-held (that is, 
analogously to Figure 2.51), and therefore the input vector uk is a constant over 
the same interval. This is the key to the solution, since i t permits 'de-convolution' 
o f the integral i n the forced response part o f the solution. Hence, ignoring the 
ini t ia l condition term (the 'free response', above), and taking the (now constant) 
input outside the integral, yields: 

rh 

X M f < 
1 forced 

0 
eA^dxBuk = -A'l[^h-T)]h

0Buk 

= -A~l [I - eAh]Buk = A{h)uk (3.89) 

where: 

A(h) = A~x[^ - I]B = A~l[0(h) - I]B 

Combining Equations (3.88) and (3.89) gives the general discrete-time state 
equation: 

xk+\ = xk+\free + xk+\forced 

or 

where: 

and 

xk+x=*{h)xk + A{h)uk (3.90) 

A2h2 A3h3 

A(h) = A-l[0(h) - I]B = 
' , Ah2 A2h3 

B 

Thus, the matrix exponentials can be evaluated using the power series expansion 
of a general exponential function. 
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For completeness, the corresponding discrete-time output equation is: 

y M =Cxk+l+DuM (3.91) 

Digital computer simulation 
The discrete-time state-space representation o f a system (Equation (3.90)) permits 
the implementation of digital control schemes based on state-space methods. 
However, i t is also suitable for digital simulation o f the system. 

For stationary systems, provided that the sampling interval h is constant, 0(h) 
and A(h) w i l l be constant matrices. This means that, for such systems, they need 
only be calculated once. 

The procedure is as follows. In the expressions for 0(h) and A(h) fo l lowing 
Equation (3.90), begin wi th the identity matrix as the first term in 0(h). Starting 
wi th i = 1, it w i l l then be found that the /th term in A(h) is the /th term in 0(h) 
multipl ied by h/i, and the ( / + l ) t h term in 0(h) is then the /th term in A(h) 
multipl ied by A. Increment / and continue unti l sufficient accuracy is reached. 
Finally, post-multiply A(h) by B at the end of the procedure (this last step is easily 
forgotten)! 

A n outline algorithm for performing a digital simulation o f the system 

x = Ax + Bu, y = Cx + Du 

would then be: 

O B T A I N A,B,C and D (the system matrices) 

ini t ial state vector JC 0 

ini t ia l input vector u0 

SELECT sampling interval h, small enough to cover all happenings of interest 

duration of simulation, 7 e n d 

C A L C U L A T E 0(h) and A(h) to sufficient accuracy 

£ = 0 

D O U N T I L kh = 7 e n d 

E V A L U A T E x M (Equation (3.90)) 

E V A L U A T E y k + l (Equation (3.91)) and STORE or O U T P U T 

O B T A I N input vector for next time step u k + l 

k = k+l 

E N D D O 

PLOT or OUTPUT required results 

Sylvester's expansion theorem 
The 'power series' expansion method used above for calculating 0(h) and A(h), 
although convergent, may converge only slowly. I f a computer is being used to 
estimate these values by summing terms, then a large number o f terms w i l l be 
required for models of some systems. Typically other methods, leading to closed-
form solutions, are required. One such is based on the Sylvester expansion theorem. 
The result is stated without proof. 
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I f A is an n x n matrix, and has eigenvalues (see Appendix A1.2) Xx, 

A 2 , . . . , then: 

eAh = ^ [e^} 
/= i 

where: 

n (A-iji) 
z =j=\j#  

n ^ i - ^ j ) 

Computer-assisted analysis with MATLAB 
Using M A T L A B (Appendix 3), the step or Isim commands w i l l directly perform the 
above procedure. For the state-space system defined by the continuous-time system 
matrices A,B,C and D, type 

> step(A,B,C,D,i) for the step response from the /th input (/ is omitted for SISO 
systems) 

I f a specific timescale is required, or an input other than a unit step is to be applied, 
this is also possible. Use the help step and help Isim commands respectively, for 
more information. 

The command dstep works for discrete-time models. However, when using 
M A T L A B ' s help system, note that the help system does not distinguish between A 
and B for continuous-time models, and 0 and A for discrete-time models (all are 
called A and B). 

To obtain a discrete-time model, from a continuous-time one, type: 

> [phifdelta] = c2d(AfB,h) (d2c does the inverse) 

3.7 Time delays (or transport lags) 
A phenomenon often encountered in process equipment is that o f transportation lag 
or time delay. For example, i f a fluid is f lowing w i th a velocity v m s"1 in a pipe of 
length L m , the time taken for any individual element of f luid to flow from the 
entrance to the exit of the pipe is L / v s. This time, usually given the symbol T or T, 
represents a delay between an action occurring and its observed response. The real 
shift theorem, see Table 2.8, may be used to show that for such a process the open-
loop system Laplace transfer model is 

G(s)K{s)e-ST 

There are two or three ways of dealing wi th time delays in modell ing and design. 
One is to use a Fade approximation, which replaces the term e~sx w i th a rational 
polynomial in s. This method is described in Section 8.6.2. This is seldom 
accurate, particularly when using the open-loop model to find the closed-loop 
response, but does give an open-loop transfer function which consists purely of 
poles and zeros. 
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The second and more accurate method is to perform all the design work wi th in 
the Laplace domain. As previously noted, the Laplace transform of a time delay is 
given by e~ST, and has the corresponding frequency response function e~ja)x. This 
has a magnitude of unity for all frequencies and a phase angle o f —COT radians, or 
—COT 360/2n: degrees. 

A time delay does not affect a system's magnitude since its contribution is 1 
(that is, 0 dB), but i t does affect the phase plot (by adding the negative angle just 
described). The effect on the Bode plot o f adding a time delay to a transfer function 
is that there is no change in the Bode magnitude plot, but the Bode phase plot 
decreases rapidly towards minus infinity as the frequency increases (see the 
example in Section 8.5.2). In a direct polar (Nyquist) plot, the dominant feature is 
that the G(jco)K(jco) locus spirals into the origin of the G(s)K(s) plane, see Figure 
3.64. In Figure 3.64 the original system is shown by the solid line, and i t can be seen 
from the gain and phase margin measures that this system would be stable. The 
same system, except for the addition of a 1 s time delay, is also shown in Figure 3.64 
by the dotted line. A n examination of the gain and phase margins for the system 
wi th the time delay indicates that the closed-loop response would be unstable. In 
general, time delays w i l l tend to have a destabilizing effect on a system due to the 
greatly increased phase lag (but not always a completely ^ s t a b i l i z i n g effect). 

Time deiays in state-space systems 
I t is not straightforward to include a pure time delay in a continuous-time state-
space model. This is because terms like e~ST cannot be forced into the standard 
state-space form. The available methods are included in Section 8.6.1. 
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Time delays in discrete-time models 
Provided that the sampling interval for a discrete-time model is significantly shorter 
than the time delay, i t is easily included by delaying the signal for a number o f 
sampling intervals equivalent to the length o f the time delay. For example, i f the 
input signal to a plant is effectively delayed by 500 ms before having any noticeable 
effect, and i f the sampling interval for a discrete-time model o f the plant is chosen 
to be 50 ms, then the input signal must be delayed by ten time steps. I f the model at 
the start o f Section 3.6.1 represents the delay-free system: 

yn = A, yn_x + A2yn_2+A3yn_3 + ••• 

+ B0un + Bxun_x + B2un_2 + • • • 

then, to include a 10-step delay on the input, we rewrite as: 

yn =Alyn_l + A 2 y „ _ 2 + A 3 y , 2 _ 3 + --¬

+ # 0 " « - 1 0 + B \ U n - U + B2Un-\2 H 

The effect o f this is that the input w i l l not start to have any effect unt i l the 10-time-
step delay has elapsed, when un_l0 w i l l first appear in the equation. 

Referring back to Example 3.18, note that the modelled system has a one time-
step delay on its input (because there is no un term on the RHS). The effect o f this is 
seen in the response (Figure 3.63), which displays a one-step delay before the 
output begins to respond. 

In a discrete-time state-space model (Equation (3.90)), the same methodology 
applies. M A T L A B can handle some time delays in discrete-time state-space models 
using the c2dt command. For time delays that do not fit this command, custom 
simulations may be written along the lines suggested in the algorithm of Section 
3.6.2. Alternatively S I M U L I N K (Appendix 4), i f available, would prove an easier 
solution. 

3.8 Non-minimum-phase transfer functions 
I t has been impl ic i t ly assumed in all the frequency response analysis performed, 
that the transfer function is min imum phase. That is, the system's transfer function 
has all its poles and zeros contained in the open left-hand portion o f the s-plane. 
When a transfer function has a pole or zero in the right-hand half o f the s-plane, that 
pole or zero is said to be non-minimum phase. Consider a polynomial in s which 
contains two roots, one at s = - fx and the other at s = — x. The first root is non-
min imum phase and the second is min imum phase. To find the magnitude and phase 
contribution from each root set s = jco, so that the terms in the polynomials become 
jco — x and jco + x respectively. 

Representing the minimum-phase root in polar form gives 

(jco + x) = ^(co2+x2)ejUm~l{(0M (3.92) 

and the non-minimum-phase term 

(jco-x) = ^(co2+x2)ejtan~l{-^x) (3.93) 

Note that the magnitude contribution from each term is the same. 
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For the minimum-phase element, Equation (3.92), the phase is found in the 
normal way. However, the non-minimum-phase element, Equation (3.93), requires 
the inverse tangent of a negative number, which is found to be 

t a n - ' ( - ^ ) = 1 8 0 ° - t a n - ' g ) (3.94) 

Therefore, as the frequency increases, the change of phase introduced by the non-
minimum-phase element is - 9 0 ° , whereas the change in phase for the min imum-
phase element is + 9 0 ° . 

Example 3.19 Minimum-phase and non-minimum-
phase transfer functions 
Analyse the closed-loop responses of the systems wi th the fo l lowing open-loop transfer 
functions, for K — 1 in each case: 

K(s+\) K(s-\) 
Gi(s)=- — - — — and G2{s) =-

(s + 2 ) ( 5 + 3) z v ' ( 5 + 2 ) ( s + 3) 

Both systems are type 0 and therefore there w i l l be a steady-state error to a unit step input. 

System G^s) 
Since the phase never reaches - 1 8 0 ° or the gain OdB (see Figure 3.65), the closed-loop 
response must be stable for K = 1. Indeed, the closed-loop system response w i l l be stable 
for all K > 0 (the m-file fg3_6570.m on the accompanying disk plots all the responses for 
this example). 

0 



3.8 Non-minimum-phase transfer functions 215 

The closed-loop Bode plot (Figure 3.66) is similar to that o f a heavily damped 
second-order system, see Figure 3.39. A t low frequencies the gain plot is 16.9 dB down 
from the OdB line and hence the closed-loop system gain is 1/7 ( = - 1 6 . 9 d B ) . The 
response o f the system to a unit step input is shown i n Figure 3.67. 

System G2(s) 
The open-loop Bode plots for this system are shown in Figure 3.68. By comparing Figures 
3.65 and 3.68 it can be seen that the gain plots for both systems are identical. However, 
the non-minimum-phase zero produces a phase plot which, at low frequencies, approaches 
180° (see Equation (3.94)), and at high frequencies approaches - 9 0 ° . Since the system is 
non-minimum phase, the gain and phase margins cannot be used to determine closed-loop 
stability. Using Routh's stability criterion, Section 3.3.3, the closed-loop system is stable in 
the range 0 < K < 6. 

Figure 3.67 Closed-loop 
step response for the system 

( j + 2)(s + 3)* Time(s) 
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The closed-loop Bode plot, Figure 3.69, shows a gain plot which is 14 dB down 
- (1/5), and appears non-oscillatory. The closed-loop phase plot again shows that system is 
~ non-minimum phase, but gives no indication of the step response characteristics shown i n 

r Figure 3.70. In this figure, the final steady-state output to a positive unit step is - 0 . 2 . This 
could have been determined from the closed-loop transfer function and the final value 

5 theorem. What is surprising is that the system ini t ial ly responds in a positive direction and 
^ away from its final steady-state value. 

0 

-20 

S -40 
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The k ind o f behaviour exhibited by the non-minimum-phase step response makes 
such systems rather hard to control, because the controller has to ' know ' that the 
system w i l l ini t ia l ly move in the wrong direction. There are certainly real systems, 
in need o f control, which exhibit such behaviour. One example is the ro l l dynamics 
of a warship as i t is turned at speed. In i t ia l ly i t rolls into the turn, then rolls out o f 
it . A second example is the control o f water level in certain boiler drum systems. I f 
the l iqu id is boi l ing fiercely, and cold l iqu id is added to raise the level i n the boiler, 
the apparent level w i l l in i t ia l ly drop as the cold l iqu id quenches the rising bubbles 
in the boi l ing l iquid . 

3.9 Simple system identification 
In this chapter, the responses o f various system models to various types o f input 
signal have been investigated. In particular, step inputs have been used wi th time-
domain models (differential equation models, state-space models and discrete-time 
models) and sinusoidal inputs, at various values o f frequency, w i th frequency-
domain (LTF) models - to produce Bode plots, for example. 

Some of the methods used to predict a model's response to these input signals 
can be used in reverse. That is to say, step response tests or frequency response tests 
on an existing plant may be used to generate a model o f the plant. This is the process 
of system identification. 

In this section, it w i l l be assumed that the system to be identified is extremely 
simple, and can be modelled as being either a first- or second-order system wi th no 
zeros in the transfer function. The more generally applicable approach o f Bode 
decomposition, together wi th methods o f handling more complicated systems, w i l l 
be dealt w i th in Chapter 8. 

I t is very important to note that the methods in this section are only applicable 
to the l imi ted class o f systems described above. They are included as an 
introduction to the more complex methods studied later. I f faced w i t h an open-loop 
step response which looks like that o f a first-order system (see, for example, Figure 
3.16), the present section w i l l simply assume i t to be the response o f a first-order 
lag, and derive an appropriate model. The resulting model w i l l therefore predict that 
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the modelled system would be stable in a unity negative feedback closed-loop, for 
any positive value of forward path gain. 

However, a system wi th a third-order denominator but a second-order 
numerator (that is, having two finite zeros) could generate a step response looking 
very similar to Figure 3.16. In this case, although the same first-order model might 
be derived, the real system could be unstable in a closed-loop arrangement, wi th 
disastrous consequences. 

These introductory methods are therefore more for academic interest and 
practice of the fitting techniques, than for practical application. 

3.9.1 Obtaining a system model by experiment 
In Chapter 2, examples were given explaining how a system can be mathematically 
modelled by applying appropriate engineering principles (such as Ohm's law and 
Newton's laws of motion) to its lumped-parameter model. Although lumped-
parameter modelling is widely used, considerable ski l l is required. I t is rare, for 
example, that the data about the individual system components are precisely 
known, so assumptions have to be made regarding particular dumpings' , and 
especially about parameter values. I t is also the case that too detailed a model would 
be impractical for control design purposes, and judgement is again needed in 
deciding which elements are significant. 

For these reasons, i f the system exists (as opposed to a system under design), i t 
is desirable to perform some appropriate experiments on the system, from which a 
model could be obtained. The experimental (or ' identification') approach is even 
more vi tal in cases where the system is so complicated (or impenetrable) that it is 
impracticable to obtain a lumped-parameter model. 

System identification normally has two stages; the first is to decide on an 
overall structure for the model (for example, a transfer function of appropriate order 
in numerator and denominator) and the second is to determine appropriate model 
parameters (parameter estimation). 

When considering model structure, both the ' k i n d ' and 'size' o f the selected 
model are important. In this chapter, only models o f the Laplace transfer function 
' k i n d ' are considered. The 'size' of the model then becomes important. For LTF 
models, that is the number of terms to be included in the numerator and 
denominator. In practice, at least a third-order denominator is normally required or, 
i f a lower-order denominator is used, a time delay would usually be included wi th in 
the model. 

The system's response is a function of the plant dynamics, the applied test 
input and any imposed init ial conditions. In system identification, unless otherwise 
stated, i t w i l l be assumed that the system is stable, and is operating under steady-
state conditions (all transients due to the ini t ial conditions having decayed to zero). 

To simplify the problem further, only well-defined forcing inputs w i l l be used. 
The types of input normally used in system identification are: 

(1) A steady input ('static test'). 

(2) A step input. 

(3) A n impulse input. 

(4) A sine wave input ('frequency-response test'). 
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(5) A random input - normally a pseudo-random binary sequence (PRBS). 

(6) A general input - the one naturally arising in the normal operation o f the 
system. 

Possibilities (5) and (6) are discussed in Chapters 8 and 11 respectively. The 
approaches of (3) and (4) w i l l be introduced here and developed further in Chapter 
8. 

3.9.2 The static test 
In its simplest form, this test simply consists o f applying a steady input and 
observing the output. It may be that the output does not settle, i n which case the 
system may be assumed to contain an integrator, that is, to be o f type 1 or higher 
(unless it is unstable for other reasons). It is normally advisable to perform the static 
test over a range of steady input values; ideally increasing from zero to a positive 
maximum value, then reducing back to zero and onwards to a negative maximum 
value, and back to zero again. Such a procedure w i l l detect many types of 
nonlinearity. For example, a common nonlinear characteristic takes the form of 
hysteresis (see Figure 3.71), which w i l l be detected by this approach. The 
corresponding response plots for a linear system and for a nonlinear one which does 
not display hysteresis are included for comparison. Nonlinear systems are 
considered in Chapter 14. 

4 

Figure 3.71 Static test 
characteristics for various 
systems. 

-2 0 2 
System input 

With hysteresis 
Nonlinear but no hysteresis 
Linear 

8 10 
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3.9.3 The step test 
This differs from the static test in that the constant input is suddenly applied and the 
behaviour of the system output is recorded as time progresses. Figure 3.72 shows 
some possible responses to a unit step input. The solid lines are the recorded 
responses, while the other lines are constructions to be described in the fo l lowing 
example. Subject to the restrictions imposed in the introductory paragraphs of 
Section 3.9, Figure 3.72(a) is deducible to be that o f a simple first-order lag. Its 
shape is that of the expression K(l - e~at) (cf. Equation (3.18b)) in that i t settles at 
a value K without overshoot, that the init ial slope of the graph is aK, and that i t has 
reached a value of approximately 63 per cent of the steady-state value after one time 
constant (a time of l/a, equivalent to x in Equation (3.18b)). ( I f the input step were 
of height h instead o f being a unit step, the steady-state output would be Kh and the 
init ial slope would be aKh.) One approach is to determine the value of K from the 
value at which the response settles; to find the value of a from the time taken to 
reach 63 per cent of the steady value (remembering that a is the reciprocal 
of that time); and finally to use the init ial slope as a check on the relationship o f a 
and K. 

Figure 3.72(b), a straight line through the origin, is the step response of an 
integrator, while Figure 3.72(c) is that of Figures 3.72(a) and (b) in cascade. In each 
of Figures 3.72(b) and (c) i t is clear that, because of the integration, the response is 
not settling. A simplified method for producing an approximate model for systems 
like that of Figure 3.72(c) was devised by Ziegler and Nichols (1942) and w i l l be 
described in the fol lowing example. I t is closely allied to the PID tuning method 
outlined in Section 3.3.4. 

Again subject to the restrictions imposed in the introductory paragraphs o f 
Section 3.9, Figure 3.72(d) is the step response o f a well-damped second-order 
system; i t superficially resembles Figure 3.72(a) but its ini t ia l slope is zero. The 
latter feature is indicative of a system wi th at least two more poles than zeros. The 
exact transfer function of the system of Figure 3.72(d) is difficult to find without the 
use of computer curve-fitting, but another method devised by Ziegler and Nichols 
(1942) allows the response to be approximated by that o f a first-order lag plus a pure 
time delay (that is, a transport lag). This approximate method is explained in the 
examples. 

Subject to the restrictions imposed in the introductory paragraphs of Section 
3.9, Figure 3.72(e) is the response of an underdamped second-order system; the 
underdamping produces the typical overshoot in response to a step input. The 
transfer function is easier to determine from the step response than for the 
overdamped case; the approach is also demonstrated in the examples. Figure 
3.72(f) is the response of a system which is identical to that of Figure 3.72(a) except 
for a transport lag of x seconds. That is, there is no response unti l a time x has 
elapsed (the response being otherwise unaltered). 

The procedures for determining the transfer functions from the responses are 
explained by example. 
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Example 3.20 Obtaining the transfer functions of 
systems from unit step responses 
Obtain the transfer functions of the systems whose unit step responses are given in Figure 
3.72(a) to ( f ) . Note that the various dotted lines represent the geometrical constructions to 

*| be described in the example. Init ial ly, fo l lowing the plant tests, only the solid curves 
% would be present. 

j Figure 3.72(a) 
2 I n this figure, note that the response settles to a steady value (showing that the system is o f 
"u\ Type 0) and that i t has a non-zero init ial slope. This means that i t has one more pole than 
f" zero but, i n accordance wi th the simplifying restrictions which apply to this section, i t w i l l 
^ be assumed to be of first order. The general form of a first-order transfer function is 
| K/(l + Ts) or oK/(s + a) where a = 1/7. 
^ Further, note that an input o f 1 unit gives a steady output o f 2 units, so the static gain 
J K is 2/1=2 units o f output per unit of input. The output reaches 63 per cent o f that 
^ steady output in 0.2 s, so the time constant T is 0.2 s. 
v The assumed transfer function is therefore 2 / ( 1 + 0.2s) or 10 / (5" + 5) . The values o f 
f K and T can be checked by drawing the tangent to the curve at zero time, which crosses 

the steady-state value line (output = 2 units) at approximately 0.2 s, confirming that the 
1 assumed first-order model is valid. 

• Figure 3.72(b) 
£ This response is a straight line through the origin. As the integral o f a constant K w i th 

respect to time is simply Kt plus the usual constant o f integration, this system may be 
g deduced to be an integrator o f transfer function K/s. The value o f K is the slope o f the 
g graph, which by inspection is 1/1 = 1 unit o f output per second, so the transfer function is 

1 1/5. 
I 
I Figure 3.72(c) 
I 
I 
1 
1 
I K 
• s(l+sT) 
I 
I The problem is that o f finding K and T. For such a system, the response to a unit step lis 
I w i l l be: 

This response is produced by a plant which is a cascade combination o f those o f Figures 
3.72(a) and (b), though possibly wi th a different time constant T and overall gain K. Its 
transfer function is therefore assumed to be: 

I Y(s) = -
I [ ) s*(l+sT) 

I 
1 

I / I T T 2 

which is divisible into partial fractions (Appendix 2) as: 
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Taking inverse-Laplace-transforms gives: 

y(t)=K(t-T + Te-«T) 

This has the fol lowing properties. Both y(t) and its gradient are zero when t is zero (like 
the response of Figure 3.72(c)) and, when t is much greater than T, i t tends to K(t — T), 
that is, its value is A T below that of a graph of a quantity equal to Kt alone. K is therefore 
the gradient o f the response when t is large, namely 1.6/(1 - 0.2) = 2 units/second. The 
value o f KT is the 'velocity lag ' shown in the figure, which proves to be 0.4 unit, so 
T = KT/K = 0.2 unit, and the transfer function becomes: 

2 

5(1 + 0.25) 

The first of the Ziegler-Nichols methods mentioned earlier can be applied to Figure 
3.72(c). They postulated that, after the init ial period of decay of the exponential, the 
response is the same as that of an integrator KIs wi th a transport lag equal to the time 
value at which the asymptote shown in the figure crosses the line o f zero output. I n this 
case, the approximate transfer function would be: 

2e-°2s 

5 

Despite the approximate nature of such a result, i t is often more accurate than an assumed 
second-order model for controller design purposes using LTF methods. However, i f state-
space methods were to be used, the transport delay would generally be unacceptable. 

Figure 3.72(d) 
This response differs from those investigated so far, in that its ini t ia l slope is zero. That 
feature shows the system to have at least two more poles than zeros. There are two 
methods of finding a transfer function from a response o f this type. The first is another 
version of the Ziegler-Nichols approximation and it assumes the system to be a first-order 
lag wi th a transport lag. The static gain K is found in the usual way as the steady-state 
output divided by the steady-state input ( in this case, 2 / 1 = 2 units o f output per unit o f 
input). A tangent is then drawn on the graph at the steepest gradient and is produced as 
necessary to intersect both the init ial output and steady-state output levels. The value o f 
time where the tangent crosses the init ial output is taken to be the transport lag Tx, while 
the difference between that time and the time at which the tangent crosses the steady-state 
output is taken to be the time constant T2 o f the first-order lag. The transfer function w i l l 
then be 

Ke~sT^ 

l+sT2 

The other method assumes the response to be of an order determined by simple analysis of 
the plant components (but for the purposes of this section a second-order plant is assumed), 
and to fit, wi th computer assistance, a transfer function o f the fo l lowing form: 

K 

(l+sTx)(l+sT2) 
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Although the static gain w i l l be the same in both cases, in general, none o f the lags w i l l 
coincide. I f i t is suspected that the system is of higher than second order, the Ziegler -
Nichols approach generally gives the better model for design purposes. A least-squares 
approach to computer curve-fitting is demonstrated in Example 8.2 in Chapter 8. 

Figure 3.72(e) 
This figure is again significantly different from the others, in that it displays overshoot. 
Paradoxically, the overshoot makes it easier to determine a transfer function, provided that 
the system is second-order (again in line wi th the assumptions made for this section). 
Again two methods are available. In each case, a transfer function o f the form of Equation 
(3.19) w i l l be assumed (but in general there would be more poles and zeros, as discussed 
before, which would then prevent this analysis): 

K a A (3.95) 
s2 + 2£cons + co2 

As noted fo l lowing Equation (3.23), the decay constant is £con. The damped natural 
frequency cod is given by Equation (3.21) as cod = con yj(1 - C2). 

The damped natural frequency is found from Figure 3.72(e) as 

cod = n/(half-cycle time) = 11.2 r a d s - 1 

The decay o f the peak height is caused by the mul t ip ly ing exponential ( e ~ i a V ) . The height 
of the first overshoot is about 0.36 unit and the magnitude o f the first 'undershoot' is about 
0.06 unit. The time between them is about 0.28 s (the overshoot and undershoot can be 
used in combination because the decay envelopes are symmetrical about the steady-state 
value - see Figure 3.18). Therefore, i t may be deduced that 0.06/0.36 = e~a0 2S> (where 
a — Ccon). Taking natural logs of each side, ln(0.1667) = —0.28a. This gives 0 .28« = 1.79, 
or a = 6.4 = £eo„. 

The numerator gain term K in Equation (3.95) is the static (d.c.) gain, which is seen 
from the graph to be 2.0. 

To obtain the value of co2, square the formula for cod, to obtain: 

c*>d = <»2n- ( C ^ ) 2 

Since cod = 11.2 r a d s - 1 and £cow = 6.4 r a d s - 1 , then to2 = 166.4. The resulting transfer 
function is therefore: 

Kcol 332.8 

s2 + 2Ccons + co2 s2 + 12.8s + 166.4 

The alternative method uses the standard second-order step response graphs in Figure 
3.19(a). The damping ratio £ is determined directly from the percentage overshoot. For 
Figure 3.72(e), this is (0.36/2) x 100 = 18 per cent. From the standard graph (Figure 
3.19(a)) the curve corresponding to such a percentage overshoot gives a £ value o f about 
0.48. 

The undamped natural frequency con is found by examining the duration o f some 
easily determined feature (for example, the first positive half-cycle) on the actual and 
standard graphs. On the actual one (Figure 3.72(e)), the duration is 0.28 s; on the standard 
one (Figure 3.19(a)), the duration is about (6.1 — 2.4) = 3.7 units for £ = 0.5, or 
(5.1 - 2.2) = 2.9 units for £ = 0.4. Interpolating, £ = 0.8 x 3.7 + 0.2 x 2.9 = 3.54 units. 
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These 'units ' on the standard graph are actually units o f cont, so a value o f 0.28 s for t 
corresponds to 3.54 for cont. The value of con is therefore 3.54/0.28 = 12.6 r a d s - 1 . The 
transfer function is therefore 

2(12.6 2 ) 317.5 

s2 + 2(0.48)(12.6)J + 12.6 2 " s2 + 12.1s + 158.8 

It is reassuring that both methods, involving, as they do, taking measurements from fairly 
small-scale graphs, have given similar answers. 

Figure 3.72(f) 
This response is identical to Figure 3.72(a) except that the response is delayed in time by 
0.2 s. As previously, this delay is represented in the transfer function by e~sx, where T is 
the transport lag (Section 3.7). The overall transfer function of the system is therefore 
10e-02s/{s + 5). 

3.9.4 The impulse-response test 
The impulse response has the property of being the inverse Laplace transform of the 
system transfer function. In addition, by means o f convolution (Section 8.2), the 
response to a general input can be determined from the impulse response by 
analytical or numerical integration. The transfer function could be determined by 
recording the unit impulse response, fitting a time function to i t , and Laplace-
transforming the time function from tables. The main problem wi th such an 
approach is the generation of an impulse of sufficient energy (since the 'strength' o f 
an impulse is equal to the product of its height and its duration - and a true impulse 
is o f zero duration). A subsidiary problem is the actual fitting of the curve, though 
that operation can be performed wi th computer assistance. The method is discussed 
in Chapter 8. 

3.9.5 The frequency response test 
The principle of this test is simple - a sinusoidal signal o f varying frequency is 
applied to the system input and the corresponding system output is measured in 
terms of both magnitude and phase relative to the input. The system gain is then 
calculated at each frequency as the ratio of output magnitude divided by input 
magnitude. The results are normally plotted either as a Nyquist diagram or (more 
usually for this purpose) as a Bode diagram (Section 3.5.1). The fu l l procedure for 
determining the transfer function from a Bode diagram is given in Section 8.5. The 
fol lowing description refers to the simpler approach appropriate to minimum-phase 
systems having no time delays and being o f no higher than second order, in accord 
wi th the restrictions noted in the early paragraphs o f Section 3.9. 

The method is as follows. 

(1) Draw the asymptotes on the magnitude Bode plot. I t is important to remember 
that their gradients can only be zero or an integral multiple o f 20 dB/decade 
(positive or negative). Where the asymptote gradient changes by only 2 0 d B / 
decade, i t is often helpful in placing the asymptote to note that the actual graph 
should be approximately 3 dB inside the 'corner' o f the asymptotes. Note that i f 
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two such 'break frequencies' are relatively close together, their responses w i l l 
add to one another, and this simple rule w i l l no longer apply (Table 3.3 then 
gives the required corrections for first-order terms). 

(2) Examine the gradient at low frequency. I f i t is zero, that is, the graph is level, 
the system is of Type 0 wi th no pure integration or differentiation content. I f i t 
has a negative slope of 20 dB/decade, the system w i l l have a transfer function of 
the form: 

K 

s(\+sT) 

Note that, i f the low-frequency gradient is zero, the value o f K (the static gain) 
can be determined as K = 1 0 ^ G / 2 0 \ where G is the low-frequency gain in 
decibels (G is 20 l o g 1 0 K). The determination o f K is easier, and more 
accurate, i f the experimentally determined value o f the gain is used before 
calculating the decibel equivalent. The method of determining K i f the low-
frequency slope is not zero is explained under point (5) below. 

(3) Find the frequencies at which the gradient o f the asymptotic diagram changes. 
For the purpose of the fol lowing explanation, let a particular change of gradient 
occur at a frequency coc r a d s - 1 . 

(a) I f the gradient becomes more negative by 20 dB/decade, there is a 
(1 + s/coc) term in the denominator o f the transfer function. Note that this 
corresponds to the (1 + ST ) i n the denominator o f Equation (3.18a), since 
the time constant x seconds is the reciprocal o f the 'corner frequency' in 
r a d s - 1 . 

(b) I f the gradient becomes more positive by 20 dB/decade, there is a 
(1 + s/coc) term in the numerator o f the transfer function. 

(c) I f the gradient becomes more negative by 40 dB/decade, there is a 
(s2 + 2£cocs -h co2) term, representing underdamped second-order beha
viour, in the denominator o f the transfer function. 

(d) I f the gradient becomes more positive by 40 dB/decade, there is a 
(s2 + 2Ccocs -h co2) term in the numerator o f the transfer function. 

(4) I f there was an underdamped second-order term in the numerator or 
denominator, the damping ratio £ may be found by reference to standard 
graphs of the behaviour of such systems (Figure 3.39). The procedure is to 
examine the maximum rise of the actual curve above the asymptote (or the fall 
below it i f the term is a numerator one), and the 'corner error' (the difference 
between the decibels at the intersection o f the asymptotes and the actual 
decibels at the same frequency), and to compare this error w i th those from the 
standard curves: see Example 3.21 below. 

(5) When the low-frequency gradient is not zero, the procedure for finding K 
(which is now not the static gain) is to select a frequency low enough so that the 
transfer function has reduced to Klsn (wi th allowance for the co2 terms i f 
underdamped second-order behaviour is present), or K/(jco)n in frequency 
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response form. A t such a frequency, the graph should coincide wi th the low-
frequency asymptote. A t this low frequency co, the gain in decibels is 
20 log 1 0 (A^/co2) and again K can be obtained. 

(6) The phase graph is vital in determining the presence of non-minimum-phase 
zeros or poles (terms like (1 — Ts) rather than (1 + Ts) in the transfer function) 
and time delays, or transport lags. The methods required to deal wi th systems 
having such effects are explained in Chapter 8. For the moment, the phase 
graph gives a check on the result by confirming the system order (a system of 
order n wi th no zeros w i l l have a maximum phase lag o f «90°) and the 'corner 
frequency' (at this frequency, the phase shift for a first- or second-order system 
w i l l have completed half its final change). 

These methods w i l l be demonstrated by a series o f examples. 

Example 3.21 Obtaining the transfer functions of 
systems from frequency responses 
Obtain the transfer functions of the systems whose frequency responses are shown in 
Figures 3.73(a) to (e). Note that the addition of the various asymptotes is described during 
the example. Init ial ly, fol lowing the plant tests, only the solid curves would be present. In 
line wi th the rest o f this section, only simple first- or second-order systems are assumed, 
whereas plots such as these might generally have been produced by more complex systems 
having zeros in their transfer functions, and more than one or two poles, w i th the zeros 
fairly close to the poles in the s-plane. 

Figure 3.73(a) 
In the magnitude (dB) part of the figure, the low-frequency gain is constant at 6 d B , so the 
static gain is given by K = an t i log 1 0 (6 /20) = 1 0 6 / / 2 0 = 2.0. There is only one 'break 
frequency' of about 5.1 r a d s - 1 , at which the gradient of the graph changes from zero to 
-20dB/decade. This indicates the presence of a term (1 + s/5.1) in the denominator o f the 
transfer function. A t the corner frequency, the difference between the actual graph and the 
asymptote corner is approximately 3 d B . As the gradient never increases, or becomes less 
negative, w i th increasing frequency, there are no numerator zeros, hence the transfer 
function is: 

2 2 

1 + 0.2s 

The phase graph offers confirmation that the system is first order; the maximum phase 
shift is - 9 0 ° , and the phase angle is - 4 5 ° at 5.1 r a d s - 1 , i n agreement wi th the above 
'corner frequency'. 

Figure 3.73(b) 
The magnitude ratio (gain in dB) plot has no changes in gradient, but i t does slope 
downwards at all frequencies at -20dB/decade. The corresponding phase graph is a 
constant - 9 0 ° . From rule (2) i t may be deduced that the system is an integrator. 
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Peak approx 1.5 dB above low frequency value 
10 • • ^ 

10° 

Figure 3.73 (Continued) (e) 

101 

Frequency (rad/s) 

101 

Frequency (rad/s) 

10 2 X 

10 2 

^ The denominator therefore contains a single s. The numerator only contains a constant 

m term K. Selecting the frequency to = 1 r a d s - 1 , the modulus o f the transfer function is 

K K 

s 

K 

co 
K 

The decibel magnification at 1 rads 1 is zero, so 20 l o g 1 0 K = 0, g iv ing K = 1. The 
transfer function is therefore l/s. 

* Figure 3.73(c) 
à 
y I n this figure, the gradient o f the magnitude graph starts at —20dB/decade and increases to 

—40dB/decade at approximately co = 4.8 r a d s - 1 . Again , applying rule (2) indicates a 
transfer function of form: 

I? 

K 

s(l +sT) 

. in which the s is from the ini t ia l -20dB/decade and the (1 + sT) f rom the increase to 
, —40 dB/decade. The value of T can be found from the corner frequency, so T = 1/4.8 = 

m 0.21 s. To find K, again examine the gain in decibels at a low frequency; 0.1 r a d s - 1 is 
suitable. A t this frequency: 

K K K K 

s(l+sT) ~ jco{\+jcoT) _ 7*0 .1(1 + . /0 .021) ~ JÔA 
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The modulus is therefore \0K, or 20 log 1 0 (10A r ) dB. From the gain (dB) graph, the 
modulus is 6 d B when co = 0 .1 , so 10K = 2 and K = 0.2. The complete transfer function 
is therefore 

0.2 

s ( l + 0.21s) 

Figure 3.73(d) 
This magnitude plot is level at low frequency, so there are no s terms mul t ip ly ing the 
whole of the numerator (pure differentiations) or denominator (pure integrations). A t high 
frequency, i t slopes down at - 4 0 dB/decade, suggesting a second-order denominator 
system (subject to the restrictions given in the early paragraphs o f Section 3.9). A t no 
point does the graph go upwards or begin to descend less steeply, so the numerator w i l l 
contain only a constant. The denominator w i l l therefore contain terms up to and including 
s 2. The 'corner error' is about 7 d B , so comparison wi th the standard second-order 
responses (Figure 3.39(a)) suggests that the system is overdamped (that is, £ > 1) and 
consists o f a cascaded pair of first-order lags. This requires a —20 dB/decade asymptote to 
find the break frequencies. A clue as to the position of this further asymptote may be 
gained by remembering that the 'corner errors' w i l l be approximately 3 d B (the true curve 
being below the asymptote corner). In fact, the errors w i l l be marginally over 3 dB in this 
case, as the error for one 'corner' w i l l still be having a slight effect at the corner 
frequency o f the other (see Table 3.3). This illustrates that the asymptotes are not 
necessarily tangents to the curve. The asymptote is therefore drawn, giving corner 
frequencies o f 3 . 3 r a d s - 1 and 1 2 r a d s - 1 , corresponding to time constants of 1/3.3 = 0.3 s 
and 1/12 = 0.083 s. The level graph at low frequency determines the static gain; 
20 \ogl0K = 6 dB, so K = 1 0 6 / 2 0 = 2.0. The complete transfer function w i l l be 

( l + 0 . 3 s ) ( l + 0.083s) 

Figure 3.73(e) 
In this final response, i t is again clear that the decibel graph is level at low frequency and 
falling at - 4 0 dB/decade at high frequency. The difference this time is that the asymptote 
corner is perhaps 0.5 dB below the actual plot. A t a slightly lower frequency, the graph 
peaks even higher above the low-frequency value - by about 2 d B . 

The corner frequency (12.5rads" 1 approximately) gives con, and £ is found by 
inspecting the standard frequency-response curves (Figure 3.39(a)). I n these curves, the 
corner frequency is normalized to 1 rads" 1 and, in the case o f the decibel graphs, the static 
gain is normalized to unity (that is, OdB). For this example, the important features o f the 
decibel graph are the peak height and the corner error; the graph which most closely 
resembles Figure 3.73(e) in those respects being that for £ = 0.5. Finally, the low-
frequency gain is 6 d B , so the static gain is K = 1 0 6 / 2 0 = 2.0. 

The general form of the transfer function for an underdamped second-order system, 
and the version wi th the identified parameters inserted are: 

Kco2

n 2(12.5 2 ) 312.5 

s 2 + 2£co„s + col ~ s2 + 2(0.5)(12.5)s + 12.5 2 " s 2 + 12.5s + 156.25 
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3.10 Conclusions 
This chapter has introduced many of the standard responses expected from linear 
system models. Standard input signals have been specified and used in testing 
models (they can similarly be used for testing real plants). Most notable amongst 
these are the step input and the steady-state sinusoidal input. In response to these 
inputs, the performance of a system may be viewed either in the time domain (as a 
step response plot, for example) or in the frequency domain (as a Bode plot, polar 
(Nyquist) plot, inverse polar plot or Nichols plot, for example). 

I t was shown that the poles of a Laplace transfer function model are identical 
to the eigenvalues of the plant matrix (that is, the A matr ix) o f the equivalent state-
space model, and that these are responsible for the dynamic behaviour o f the 
system, and its stability. Methods o f assessing the stability o f linear systems were 
also examined. 

The time and frequency responses of standard first- and second-order models 
have been investigated, and used to predict the behaviour o f more complex 
systems. In this context, both the frequency and time response o f a system have 
been linked to its pole (or eigenvalue) locations in the s-plane. 

The responses o f various model types, including continuous-time models 
(such as the state-space model), Laplace transfer function models and discrete-
time models (both in the form of discrete-time series, and the discrete-time state-
space model), have been derived. 

Finally, some of the techniques for calculating model responses have been 
used to obtain plant models by analysis o f test results (either step tests or frequency 
response tests) - a process known as system identification. 

This background is sufficient for a study o f control system design techniques. 

3.11 Problems 
3.1 

3.2 

3.3 

3.4 

Derive the time response (to a unit step input) given 
for the initial system in Example 3.2. 

A number of pole-zero plots are shown in Figure 
P3.2 with the gain K indicated. As usual, K is the 
multiplier of the pole-zero function. For each plot: 

(a) Find the transfer function G(s). 
(b) Determine the inverse Laplace transform. 
(c) Sketch the general shape of the transient 

response using a dominant pole analysis. 
(d) Check the response found in (c) using the 

MATLAB impulse function in the CSTB. 

Evaluate the following function G(s) at the s-plane 
locations (0,0), (0, - 4 ) and (-2,2): 

6(^+1) 
G(s) 

(* + 2)(s + 3) 

Using the normal rules of complex algebra evaluate 
the functions Gx(s) and G2(s), given below, for any 
positive value of co on the imaginary s-plane axis. 

O X X 

K = 36 

O X 
-3 -2 

(in) 

X - +2/ 
K = 4 

X 

-1 

X 

-1 

X - -2/ 

(iv) 

+3/ 

+2/ 

X -2/ 

C) -3>' 

Figure P3.2 Pole-zero maps for Problem 3.2. 



234 System responses, stability and performance 

Plot the resulting loci Gi(jco) and G2(jco) on Argand 
diagrams. (The Argand diagrams are called the 
G{(s)- and G 2 (s)-planes respectively, and the 
resulting plots are called polar plots.) 

Phase lead G 1 ( j ) = - 1 + 1 0 i 

Phase lag G2(s) = 

1 + 5 

1 + 0 . 1 5 

1 + 5 

3.5 From the following time-domain performance 
specifications, establish 5-plane performance criteria. 
In each case use these criteria to sketch the response 
to a unit step. Assume a second-order system with 
unity gain. 

(a) A 100 per cent rise time of 0.5 s and a peak time 
of 0.7 s. What would be the peak overshoot and 
steady-state error for this system? 

(b) A subsidence ratio of 3:1 and a 5 per cent 
settling time of 9 s. What is the peak overshoot 
for this system? 

(c) A peak overshoot of 30 per cent and a 5 per cent 
settling time of 9 s. What is the subsidence ratio? 

3.6 A system has an open loop transfer function given by 

To control this system two alternative closed-loop 
designs have been proposed as shown in Figure P3.6. 
Design A is a simple proportional controller and 
design B is a proportional plus derivative controller. 
The variable K in both designs is to be set so that 
the closed-loop damping ratio is 0.5. For both 
designs determine: 

(a) the rise time, 
(b) the peak time, 
(c) the 5 per cent settling time and 

K G(s) K G(s) 

Design A 

1 +Ks Gfs) 1 +Ks Gfs) 

Design B 
Figure P3.6 Alternative arrangements for Problem 3.6. 

(d) the percentage overshoot. 

Comment on the two designs and explain the 
differences and similarities between the two 
responses. 

3.7 Indicate the root distribution and hence the stability 
of the following characteristic equations, using 
Routh's array (check with M A T L A B ' s roots 
command if available): 

(a) 5 3 + 2s2 + 35 + 1 = 0 
(b) 5 4 + 25 3 + 5 2 + Is = 0 
(c) 5 5 + 25 4 + 35 3 + 65 2 + 25 + 1 = 0 
(d) 5 5 + 5 4 + 55 3 + 55 2 + 45 + 4 = 0 
(e) 5 6 + 5 5 + 35 4 + 35 3 + 25 + 1 = 0 
(f) 5 1 0 + 5 9 + 25 8 + 25 7 + 5 6 + 

2s5 + 65 4 + 75 3 + 1052 + 65 + 4 = 0 

3.8 A system's characteristic equation may be written in 
the form 

D(s) = a0s" + axsn~x + a2sn~2 + • • • + an_xs + an 

= 0 

If all the coefficients a, are positive and exist, show, 
using Routh's criterion, that: 

(a) A second-order system is always stable. 
(b) A third-order system is stable if axa2 - a0a3 > 0. 

What is the stability condition for a system of fourth 
order? 

3.9 The block diagram shown in Figure P3.9 consists of an 
inner loop with feedback gain KT and an outer loop with 
forward path gain KB. Find the gain KT which makes the 
inner loop critically damped. (For a second-order system 
to be critically damped, requires that the characteristic 
equation s2 + 2£co„5 + to2 = 0 has a damping ratio 
£ = 1.) Using this value of KT, determine: 

(a) The range of gain KB for which the closed-loop 
system is stable. 

(b) The KB which results in a marginally stable 
sinusoidal response. What is the frequency of this 
response? 

T 
S*+ 11s + 10 

Y(s) 

Figure P3.9 System block diagram for Problem 3.9. 

3.10 A process control system with unity negative 

feedback has plant dynamics given by 

4 
Gp(s) 

(5 2 + 85 + 8 0 ) ( 5 + 1) 
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and incorporates a three-term controller with the 
idealized transfer function 

G c ( j ) = 2 o ( l + ^ + r r f j 

Establish the values of T{ and Td that will ensure 
the system's closed-loop stability. 

3.11 Use the Ziegler-Nichols rules to design a three-
term controller for a plant model having an open-
loop transfer function given by 

G ( 5 ) = J ( S + 1 ) ( J + 2)(* + 3) 

Show that the resulting closed-loop system is 
stable. 

3.12 Determine the amplitude magnification M{co) and 
the phase shift 4>(co) for the following open-loop 
transfer functions: 

(a) G(s)=- 1 

3.17 For the system represented by the following state-
space model: 

s(s-\) 

(b) G(s) = 

(c) G(s) = 

K 

s(òxs+ l ) ( c V + 1 ) 
1 0 ( 1 + 2 5 )  

5 (1 + 0 .025) ( 1 + 0 . 5 J ) ( 1 + 5 ) 

3.13 Use a graphical technique to evaluate M(co) and 
<j)(to) at co = 2 rads - 1 for the transfer function 

{ S ) ( 5+l ) (0 .55+l ) (0 .255+l ) 
Check your solution by direct calculation of M(co) 
and <j)(co). 

3.14 For the transfer function 

{ S ) 5(1 + 0.255) (1 + 0.5J)(1 + 5 ) 
plot the polar, inverse polar and Bode diagrams. 
Also produce a plot of dB magnitude versus phase 
(a Nichols plot). From each of these plots, find the 
gain and phase margins. If the transfer function gain 
were reduced from 10 to 1, what would be the new 
gain and phase margins? 

3.15 Repeat Problem 3.14 for the case in which the 
transfer function G(s) also contains a one-second 
time delay (transport lag), such that G(s) becomes: 

{ S ) 5(1 + 0.255) (1 +0.55)(1 + 5 ) 

3.16 Use MATLAB (or some other high-level language 
or package) to investigate the step response of each 
of the following system models: 

(a) yn=0.Syn.l+0.411»^ 
(b) y„ = \.2yn_x - 0.5y„_ 2 + 0A4un_x + 0.1^_ 2 

A 

d--

0 1 0" 
, b = 

- 4 -0.8 1 
c = [8 0 ] , 

0 

3 . 1 8 

(a) Obtain a discrete-time state-space model, using 
a sampling period of h = 0.4 s. Each term in the 
model should be accurate to about ± 1 per cent. 
With access to MATLAB and the Control 
Systems Toolbox (CSTB), enter A, b and h, and 
check your result with the command: 

[phi,del]=c2d(a,b,h) 

(b) Evaluate, using hand calculation, the first 10 
values of the unit step response (at the output), 
beginning from zero initial conditions. Do this 
on paper. Again, with MATLAB and the CSTB, 
the result can be checked using the command in 
part (a), entering c and d also, and then issuing 
the command: 

dstep( phi,del,c,d) 

(c) Compare the peak output value, and the time at 
which it occurs, with the equivalent continuous-
time solution - convert the original state-space 
model to a Laplace transfer function model and 
use the standard response curves (Figure 3.19) 
or formulae (Equations (3.27), (3.28), and so on). 

(d) Comment on the choice of sampling interval. 

The discrete-time state-space model of a system is 
given by: 

'0.5 1.0 -0.8" "0.26 
0 = 0.3 0.8 -0.1 0.05 

0 0.3 1.0 0.01 

c=[0 0 1], d = 0 

The sampling period is h = 1/3 s. 

(a) Evaluate the first 15 values of the output 
response to a unit impulse applied with zero 
initial conditions (a unit impulse lasts for one 
sample period in discrete time, and is of such a 
height that it has unit area). 

(b) Estimate the following quantities in the output 
response: 
(i) Time to the first peak 
(ii) Value of the first peak 
(iii) Time to the second zero crossing 

(following the first 'undershoot'). 

(c) Comment on the likely suitability of the 
sampling period for this system. 



236 System responses, stability and performance 

(d) With MATLAB and the CSTB, convert the 
system to a continuous-time equivalent model 
by entering the values of phi, del, c, d and h, 
and using the command [a,b]=d2c(phi,del,h). 
The discrete-time response should be compared 
with the response of the equivalent continuous-
time system, using the command impulse(a,b,c,d). 

Note: When using the MATLAB command dimpulse 
(phi,del,c,d,l ,15) to duplicate the discrete-time 
impulse response (for example), it is important to 
note that MATLAB applies a unit-height impulse 
during the first sample, because that is what a 
sampled-data system would acquire. For the 
response to a unit-area impulse, multiply the results 
by a factor of 3. This can be done, for example, by 
the commands: [yrK]=dimpulse (phi,del,c,d,1,1'5); 
plot(3*y). To see the correct time axis, use 
t=[0:h:(length(y)-l)]*h; plot(t,3*y). 

3.19 Obtain the transfer functions of the systems whose 
step responses are given in Figure P3.19(a) to (e). 
The magnitude of the step input is given in each 
case. Where appropriate, the Ziegler-Nichols 
approximation may be used to obtain the 
approximate transfer function. 

0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

(a) Time (s) 

Figure P3.19 (a) Figure for Problem 3.19(a). Input step = 2 
units, (b) Figure for Problem 3.19(b). Input step = 5 units, 
(c) Figure for Problem 3.19(c). Input step = 0.2 unit, (d) 
Figure for Problem 3.19(d). Input step = 0.5 unit, (e) Figure 
for Problem 3.19(e). Input step = 1 unit. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
(c) Time (s) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
(d) Time (s) 
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10 
Frequency (rad/s) 

Figure P3.20 (a) Figure for Problem 3.20(a). (b) Figure 
for Problem 3.20(b). (c) Figure for Problem 3.20(c). (d) 
Figure for Problem 3.20(d). (e) Figure for Problem 3.20(e). 
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10 

_50 I ! : : ' 10~1 10° 101 102 

Frequency (rad/s) 

Figure P3.20 (Continued) 

3.20 Obtain the transfer functions of the systems whose 
frequency responses are given in Figure P3.20(a)-(e). 
It may be assumed that none of these systems is of 
higher than second order. 



4 Single-input-single-
output (SISO) design 

4.1 PREVIEW 
4.2 PRELIMINARIES 
4.3 THE NYQUIST STABILITY CRITERION 
4.4 THE ROOT LOCUS METHOD 
4.5 CONTROLLER AND COMPENSATOR DESIGN 
4.6 THE SMITH PREDICTOR 
4.7 SOME NOTES ON CONTROLLER 

IMPLEMENTATION 
4.8 CONCLUSIONS 
4.9 PROBLEMS 

4.1 Preview 
Previous chapters have examined the modelling of 
systems and the model's response. Stability and 
performance characteristics have also been examined 
in terms of the model's s-plane pole and zero 
locations. Provided all the poles and zeros are 
suitably located, an acceptable dynamic response to 
some forcing input or disturbance may be inferred. 
However, a problem exists when such criteria are not 
met. 

This chapter expands on the design problem 
introduced in Section 3.4. It will show how a controller 
can be designed so that a system's closed-loop 
response dynamics can be changed. In particular it 
will consider the determination of closed-loop stability 
from the system's open-loop frequency response. It 
will then look at the root locus method and show how 
the position of the closed-loop system poles can be 
moved within the s-plane. The use of root locus 
diagrams and frequency response plots in control 
system design is then developed. To close the 
chapter, a number of other simple design techniques 
are considered. State-space design methods and 
digital control are covered in the next chapter. 

This chapter cove rs : 
the Nyquist criterion for investigating a system's 
stability 

• the root locus method for examining the effects of 
parameter variation 

• three-term (PID) controllers 
• the design of lead- and lag-type compensators 
• the basis of analog controller implementation 

the Smith predictor for use in systems with time 
delays. 

NEW MATHEMATICS FOR 
THIS CHAPTER 

There are no mathematical 
techniques in this chapter 
which have not been used 
in previous chapters. 

?3P) 



240 Single-input-single-output (SISO) design 

4.2 Preliminaries 
Consider the feedback configuration shown in Figure 4.1 and compare i t wi th 
Figure 3.32 (Section 3.4). It w i l l be noted that an element H(s) has been introduced 
into the feedback path. This element could represent either transducer dynamics or 
some form of feedback compensation. 

Figure 4.1 A general 
feedback controller, 
showing rational 
polynomials. 

Compensator Plant 
n[s) e(s), L(s) u(s), 

0(5) Sensor dynamics 
W(s) 

H { s ) = m 

y(s) 

The open-loop transfer function of the system of Figure 4.1 is: 

H(s)G(s)K(s) (4.1) 

and the closed-loop transfer function between y(s) and r(s) is given by 

T(s) = (4 2) 

For this system the return difference equation (or closed-loop characteristic 
equation) is: 

l+H(s)G(s)K(s) = 0 (4.3) 

On substitution for H(s)G(s)K(s) from Figure 4 .1 , this becomes 

V(s)P(s)M(s) + W(s)Q(s)L(s) 
V{s)P(s)M(s) 

or 

V(s)P(s)M(s) + W(s)Q(s)L(s) = 0 (4.4) 

and the roots (or zeros) of Equation (4.4) are the poles o f the closed-loop system 
given in Equation (4.2). I t may be noted that the closed-loop poles are a function o f 
the open-loop poles and zeros. Further, since the plant transfer function G(s) is 
normally fixed, the design problem is to select a K(s) and/or an H(s) which 
guarantee that the closed-loop poles of T(s) are stable (all contained wi th in the 
open left-hand half of the s-plane) and then to ensure satisfactory performance. 
This is achieved by shaping the system's frequency response curve, or by placing 
the dominant closed-loop poles in preferred s-plane positions. 

Substituting for H(s)G(s)K(s) into the closed-loop transfer function of 
Equation (4.2) gives 

T(s)= V(s)Q(s)L(s)  
^ ' V(s)P(s)M(s) + W(s)Q(s)L(s) [ ' 



4.2 Preliminaries 241 

from which it is seen that the closed-loop zeros are the zeros of the plant and 
forward path controller (zeros of G(s)K(s)) and the poles o f the feedback element 
H(s). 

Equation (4.5) relates y(s) to r(s), but other signals in Figure 4.1 could be 
chosen as the input and output. The return difference equation (that is, the system 
closed-loop characteristic equation) remains the same regardless of the selected 
input-output pair, but the closed-loop numerator is a function o f the selected input 
and output. That is, the closed-loop system dynamics (defined by the closed-loop 
poles) are independent of the chosen signals, but for the same input, the nature of 
the response w i l l appear to change wi th the output. For example, the relationship 
between the error signal, e(s)9 and input, r(s), in Figure 4.1 is given by 

£ ^ = I (4.6) 

r(s) l+H{s)G{s)K(s) 

and its closed-loop zeros w i l l be found to be the roots of 

V(s)P{s)M{s) = 0 

which are the system's open-loop poles. Perhaps the simplest way to visualize the 
change in output response is to note that Equations (4.2) and (4.6) have the same 
characteristic equation and therefore the dynamics of the two responses w i l l be the 
same. However, for a unit step input, the requirement that y(t) becomes close to 
unity wi th increasing time requires that e(t) approaches zero. Clearly, y(t) and e(t) 
w i l l have the same dynamics but the zeros make the two responses very different. 

Having examined the effect of pole position on performance (Section 3.2.2) 
attention w i l l now be given to the influence o f a zero on a system's response. 
Consider the system 

18 
G M = ( , + 6)(s* + 2 , + 3) ( 4 J ) 

which has poles at s = - 6 and s = - 1 ± y 1.4142. The step response for this 
system is shown by the solid line in Figure 4.2. Assume a zero is added to the 
system, such that Equation (4.7) becomes 

° w - ( 7 ) ( , + 6 ^ : L + 3 ) < « > 

Note that the gain in Equation (4.8) has been adjusted so that the final steady-state 
output to a unit step input w i l l st i l l be unity. Step response plots for zeros at 
s = — 1 , 5 = —2 and s = —0.5 are also shown in Figure 4.2. Readers wi th access to 
M A T L A B (Appendix 3) can use the m-file fig4_234.m on the accompanying disk 
to produce this figure, and test any other values they add. 

When compared wi th the response of the original system, the added zero 
reduces the rise time, reduces the peak time, but increases the overshoot. The closer 
the zero is to the imaginary axis the more pronounced the effects. Zeros in the right-
hand portion of the s-plane are not considered from the viewpoint of the effects they 
might have in a compensator since, as shown in Section 3.8, these can produce some 
very peculiar responses. They are therefore unlikely to be introduced into a system 
(via a compensator design) deliberately. 

The corresponding Bode plots, Figure 4.3, and polar plots, Figure 4.4 (which 
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Figure 4.2 The effect on 
the step response of a third-
order system of adding a 
zero (s + a) (while 
maintaining steady-state 
gain). 

"D D 
Q. E < 

can also be produced by the M A T L A B m-file fig4_234.m on the accompanying 
disk), show that as the zero becomes more positive the peak magnification and 
bandwidth increase. Introducing a zero reduces the system's rank and the phase 
shift at large frequencies tends to - 1 8 0 ° rather than the - 2 7 0 ° phase shift, 
produced by the system of Equation (4.7). The effect on the polar plot is to rotate the 
G(jco) loci anticlockwise; the closer the zero is to the right-hand portion o f the 
s-plane the greater the rotation. 

50 
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Figure 4.4 Direct polar 
(Nyquist) plots 
corresponding to Figure 4.2. 
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For comparison purposes, assume that a pole is added to the system such that 

18a 
G(s) (4.9) 

(s + 6)(s 2 + 2s + 3)(s + tf) 

and that the introduced poles can have the value s = —2, s = — 1 and s = —0.5. 

Figure 4.5 Step responses 
of the same system as 
Figure 4.2, but adding a pole 
rather than a zero. 
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The step responses for the systems described by Equations (4.7) and (4.9) are 
shown in Figure 4.5. Bode and polar plots for the responses are shown in Figures 
4.6 and 4.7 (the m-file fig4_567.m on the accompanying disk w i l l produce these). 

In the step response plots of Figure 4.5, the pole reduces the oscillations in the 
system and, as i t becomes more dominant, makes the response more sluggish. The 

0.5 
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rank of the system is also increased and at large frequencies the phase shift becomes 
- 3 6 0 ° . This tends to twist the polar plots clockwise, as shown in Figure 4.7. 

It should be evident that having zeros or poles near to the open-loop system's 
dominant poles can dramatically alter the shape of the open-loop frequency 
response curve. Such changes w i l l be reflected i n the closed-loop frequency 
response and hence in the closed-loop time-domain response. Adding open-loop 
zeros and poles through the forward path compensator, K(s), or by the feed-back 
element, H(s), is therefore one o f the foundation stones o f control system design. 

4.3 The Nyquist stability criterion 
A control system design problem exists when the performance of a plant or process 
is deemed unsatisfactory (for whatever reason). The starting point is the open-loop 
plant and the requirements are closed-loop stability and performance. Stability 
requires that all the system's closed-loop poles are contained wi th in the left-half 
portion of the s-plane and performance requires that the mix o f dominant poles and 
zeros produces a time response wi th desirable properties. 

In terms of Figure 4 .1 , the stability requirement is that the values of s which 
make the system's closed-loop characteristic equation (the return difference 
equation) zero must all have negative real parts. Setting the characteristic equation 
equal to F(s), then from Figure 4.1 and Equation (4.3): 

F(s) = l+H(s)G(s)K(s) (4.10) 

or 

V(s)P(s)M(s) + W(s)Q(s)L(s)  
F ( S ) = V(s)P(s)M(s) ( 4 - U ) 

Comparing Equation (4.11) wi th the system's open-loop transfer function (see 
Equation (4.1)): 

H(s)G(s)K(s) = v { s ) p { s ) M { s ) (4-12) 

reveals the fol lowing properties: 

• The poles of F(s) are the poles of the open-loop transfer function (Equations 
(4.11) and (4.12)). 

• The zeros o f F(s) are functions of the open-loop poles and zeros and o f any fixed 
gain wi th in the controller K(s), feed-back element H(s) and plant G(s). 

• Since the zeros of F(s) are also the system's closed-loop poles, for closed-loop 
stability all the zeros of F(s) must lie in the left-half s-plane. 

Nyquist 's stability criterion establishes the number o f zeros o f F(s) which are 
located in the right-half s-plane. Clearly, for closed-loop stability this number 
should be zero. 

The next few pages introduce the mathematical basis o f the Nyquist criterion, 
but this need not be understood ful ly in order to make use o f the resulting 
procedures. Nevertheless, an understanding of why the criterion works is definitely 
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helpful. The basic idea is that a curve ( 'contour') drawn in the j'-plane can be 
regarded as jo in ing a series of points, each o f which is a value of s (and w i l l 
therefore be a complex number). As we travel along such a curve, each value o f s 
through which the curve passes can be substituted into any function o f s which is o f 
interest (for example, F(s), the closed-loop characteristic equation o f a system). 
The resulting values of the function of s w i l l therefore trace out their own contour in 
the new function plane (this is known as a 'mapping' o f the original contour). O f 
course, a curve can be regarded as consisting o f an infinite number o f points, so this 
mapping would be rather long-winded by hand. There are analytical techniques to 
help wi th i t , which are explained below but, in general, i t need not be done at al l , as 
computer packages such as M A T L A B (Appendix 3) can do i t al l in a single 
command. The purpose of the fol lowing analysis is to illustrate the concepts. 
Beginning wi th an analysis of how poles and zeros of the characteristic equation 
relate to such s-plane mappings, it w i l l eventually be shown that i f a closed contour 
is chosen in the s-plane which contains everything in the right-hand half o f the 
plane, then the mapping of the open-loop transfer function of a system as this 
contour is traversed w i l l provide a plot (a Nyquist plot) from which the required 
stability information can be determined. 

Consider the closed-loop characteristic equation, Equation (4.11), which may 
be written as 

F(s) = 
K(s + a1)(s + a2)---(s + am) 

(s + bi)(s + b2)---(s + bn) 
(4.13) 

where n > m a n d all the a's and £ ' s are constants. The polar form of Equation 
(4.13) is 

F(s) = \F(s)\eju*FM 

Let the poles and zeros of F(s) be plotted in the s-plane. Let Vs be any closed 
contour enclosing some of the poles and zeros o f F(s) (see Figure 4.8). Consider 
the zero at -a2, which is representative of any zero, real or complex, which lies 
outside the contour Fs. To determine the contribution of this zero to F(s) at any 
point s on the contour Ts, draw a vector from the zero to the required point on Ts. 

Figure 4.8 Distances from 
poles and zeros to a point on 
a closed contour in the s-
plane. 
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The modulus contribution to F(s) is given by the length o f the vector, and the 
argument contribution is the angle the vector makes w i th the positive a-axis. As 
usual, the normal mathematical convention is used in which a positive angle 
indicates that the vector is rotated anticlockwise from the positive real axis. 
Equation (4.13) indicates that the modulus contribution is |s + a 2 | a n Q l t n e 

argument contribution is +arg(.s - f a 2 ) , evaluated at the point 5 on T r I f the vector 
now traverses once around the contour, the net contribution to the argument of 
F(s) must be zero; the vector oscillates about its starting position and its net 
displacement is zero degrees. Similarly, any pole which is outside the contour, for 
example -b2, makes a net contribution to the argument o f F(s) o f zero degrees 
every time the vector traverses once around Ts. 

The only other possibilities that need to be considered are zeros or poles o f 
F(s) inside the contour. The zero at -ax is representative o f such zeros and, as 
shown in Figure 4.8, ax must be negative since i t lies in the right half o f the s-plane. 
However, the argument's contribution to F(s) is independent o f the sign o f ax, 
provided ax is wi th in the contour. As the vector from ax traverses once around the 
contour in the clockwise direction, the net contribution to the argument o f F(s) is 
- 3 6 0 ° . For each such clockwise circuit o f the contour the vector is displaced from 
its starting point by - 3 6 0 ° . 

A vector from any pole wi th in the contour, say —bx, w i l l also be displaced by 
- 3 6 0 ° for each clockwise circuit of the contour. However, since for a pole 

the net contribution to the argument of F(s) is + 3 6 0 ° . 
A more formal statement of the above reasoning would conclude that the net 

angular rotation of the F(s) locus about the origin o f the F(s)-plane is some multiple 
of ± 3 6 0 ° . Note that i t may be shown that the mapping o f the closed contour Ts onto 
the F(s)-plane produces a closed contour. Consequently, 

N = net number o f anticlockwise encirclements o f the F(s) locus about the 
origin of the F(s) plane 

Z * = number of zeros of F(s) enclosed by Fs 

p* = number of poles of F(s) enclosed by Ts 

and Fs is traversed in the clockwise direction. 

Generalizing this idea, let Fs be a contour enclosing the whole of the right half of 
the s-plane, but avoiding poles on the jco axis, as below. This is the Nyquist 
contour - see Figure 4.9. For obvious reasons it is often called the 'D-contour ' . 
The vertical of the ' D ' travels along the imaginary axis, and poles on the imaginary 
axis are avoided by introducing a semicircular arc o f infinitesimally small radius p, 
as shown. The large semicircle of the ' D ' has a radius R which is infinitely large, 
and therefore must enclose all the right-half s-plane poles and zeros of F(s). 

The Nyquist stability criterion may now be stated as 

arg F(s) = 2nN = 2n(P* - Z * ) 

where 

Z = P-N (4.14) 
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where 

Z = number of zeros of F(s) in the right half o f the j-plane. Since F(s) is the 
closed-loop characteristic equation, Z gives the number of closed-loop 
poles in the right half of the s-plane. For closed-loop stability Z must be 
zero. 

P = number of poles of F(s) in the right half o f the s-plane, and is equal to the 
number of poles of G(s)H(s) in the right half o f the s-plane. P may be 
obtained directly or from Routh's array (Section 3.3.3). Note that for an 
open-loop stable system P — 0. 

N = net number of encirclements by the F(s) locus about the origin o f the 
F(s)-plane. Anticlockwise encirclements are positive, and clockwise 
encirclements negative. 

I n applying the Nyquist stability criterion, the object is to find Z from a knowledge 
of P and N. P, the number of open-loop right-half s-plane poles, may be found 
directly from the open-loop transfer function. As TV is the net number o f 
encirclements of the F(s) locus about the origin of the F(s) -plane, i t may be found 
by mapping F(s) as s traverses around the Nyquist D-contour. However, i t is not 
necessary to plot the F(s) locus, since the origin o f the F(s) plane is 

F ( * ) = 0 + / ) 

and, by equating wi th Equation (4.10), i t is evident that an equivalent point exists 
in the H(s)G(s)K(s)-piane, namely 

H(s)G(s)K(s) = - 1 +j0 

The normal procedure is to plot the open-loop transfer function H(s)G(s)K(s) as s 
traverses the Nyquist contour. N is then determined from the net number o f 
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encirclements o f the H(s)G(s)K(s) locus around the crit ical point ( - 1 + jO) i n the 
H{s)G(s)K(s)-plme. 

Closed-loop stability is therefore determined from the system's open-loop 
transfer function. I f the closed-loop system is stable, the open-loop gain and phase 
margin measures indicate the degree o f stability and the adjustments required to 
improve stability. Since a system's frequency response deals w i th time delays exactly, 
the method may be used to test the stability o f systems containing such elements. 

4.3.1 The Nyquist contour 
Figure 4.9 shows a general Nyquist contour which encloses the whole of the right 
half o f the s-plane. The contour has been deformed to avoid the real open-loop pole 
at the origin and the pair of complex conjugate poles on the imaginary axis. In 
plotting the open-loop transfer function locus H(s)G(s)K(s), appropriate values of s 
must be used as s traverses round the Nyquist contour. For example, consider the 
path ab shown in Figure 4.9. A t any point on this path s = jco, and therefore 
H(jco)G(jco)K(jco) must be evaluated. This portion o f the Nyquist plot is therefore 
the polar plot o f the open-loop frequency response for all frequency values between 
points a and b. 

The various paths along the Nyquist contour and their mathematical equations 
and range of validi ty are summarized in Table 4 .1 . 

Table 4.1 Mathematical equations for the Nyquist contour of Figure 4.9. 

Path Equation Range of validity 

ab s = jco 0 < CO < COQ 

be s = lim (jco0 + pejd) 
p^O 

- 9 0 ° < 0 < 90° 

cd s = jco CO0 < CO < CO 

def s = lim RQje +90° > e > - 9 0 ° 

fg s = jco — CO < CO < —COQ 

gh s — l im (-jco0 + peje) 
p^O 

- 9 0 ° < 6 < 90° 

hi s = jco -COQ < CD < 0 

ija s = lim pe^6 

p-0 r 

- 9 0 ° < 9 < 90° 

4.3.2 Nyquist stability and inverse polar plots 
Apply ing the Nyquist stability criterion to the inverse transfer function (see Section 
3.5.2) gives similar results to using direct polar plots in that the equation 

Z = P-N 

sti l l holds (see Equation (4.14)). Again, Z is the number o f zeros o f the closed-loop 
characteristic equation in the right half of the s-plane, and for closed-loop stability 
Z must be zero. Likewise, N is the net number o f encirclements of 
[H(s)G(s)K(s)]~l locus about the ( - l + y ' 0 ) point in the [H(s)G(s)K(s)]~] 

plane, anticlockwise encirclements being positive. However, P is now the 
number of zeros of the open-loop transfer function H(s)G(s) enclosed by the 
Nyquist contour, and not the number o f poles in the right half o f the s-plane, as 
wi th direct polar plots. 
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4.3.3 The left-hand rule 
Using the Nyquist stability criterion, it is possible to show that for open-loop stable 
systems of type 0 ,1 or 2, only the H(jco)G(jco)K(jco) locus need be plotted in order 
to determine closed-loop stability. Systems wi th complex open-loop poles on the 
imaginary axis are excluded and in these cases (and for open-loop unstable systems) 
the fu l l criterion must be applied. 

Parts of three possible H(jco)G(jco)K(jco) loci are shown in Figure 4.10. In 
this figure the direction of increasing co is indicated by means of arrows on the loci . 
I t is also assumed that each locus is obtained from an open-loop stable system of 
type 0, 1 or 2. 

The left-hand rule states that i f the ( - 1 + jO) point lies to the left o f the 
H(jco)G(jco)K(jco) locus, then the system is closed-loop stable. In Figure 4.10(a), 
an observer looking along the locus in the direction o f increasing co would place the 

Im HGKijco) 

-1+/0 

Figure 4.10 Illustrating the 
'left-hand rule' for direct 
Nyquist plots. (a) 

Re HGKijw) 
>» 

HGK(/o))-plane 
-1+/0 

(b) 

Im HGKijco) 

Re HGKijw) 

Im HGKijco) 

HGK(/<y)-plane 

Re HGKijw) 

HGK(/co)-plane 

(c) 

( - 1 + jO) point to the left of the locus, and therefore the closed-loop system is 
stable. In Figure 4.10(b), the locus passes through the ( - 1 + 7O) point and the 
system is marginally stable; the loop gain is unity when the phase shift is - 1 8 0 ° . 
The system in Figure 4.10(c) is closed-loop unstable since the ( - 1 + jO) point lies 
to the right of the locus. 

Proof of the left-hand rule is left as an exercise for the reader. 

Example 4.1 Nyquist's stability criterion applied 
to an open-loop-stable fourth-order system 
A negative feedback closed-loop system has an open-loop transfer function given by 

G(s)= f (4.15) 
(* + 3 ) 3 ( 5 + l ) ' 

Use the Nyquist stability criterion to determine the range of gains K for which the closed-
loop system is asymptotically stable. 

Since the open-loop transfer function has no poles on the imaginary axis, the Nyquist 
contour takes the form shown in Figure 4.11. Now, G(s) has none o f its poles enclosed by this 
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contour, so P (Equation (4.14)) equals zero. For stability Z must be zero, and therefore N 
must be zero. To determine N, the G(s) locus must be plotted as s travels round the 
Nyquist contour, and this is carried out as follows. 

For path ab 
Along the path ab, s = jco for 0 < co < + o o (note that this range corresponds to normal, 
positive frequencies), so 

G(jco) ~ x 

A t this point i t is useful to fix K at some value. A suitable choice is K = 27, which makes 
the static gain of the system unity. Consequently, 

4 

m \ ^ ( • m 27 

(co2 + 3 2 ) J / z ( c o 2 - f 1 2 ) 1 / 2 

and 
arg G(jco) = 0 - 3 t an _ 1 (co /3) - t an" 1 (co) 

Note that K affects only \G(jco)\, and not arg G(jco). 
A table o f frequency response points, Table 4.2, may now be calculated from which 

to draw the polar plot. These points may be found by solving the modulus and argument 

Table 4.2 Frequency response points for the path 
ab in Example 4.1. 

CO \G(jco)\ arg G(jto) 

0 1.0 0° 
0.5 0.859 - 5 5 ° 
1.0 0.604 -100° 
1.5 0.397 -136° 
2.0 0.257 -165° 
3.0 0.112 -207° 
CO 0 -360° 
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equations at different frequencies, or by using appropriate software ( M A T L A B can be used 
as outlined in Appendix 3 - i t is used below). 

For path bed 
This section of the Nyquist contour (see Table 4.1 and Figure 4.9) is described by 

s = l i m Reje, + 9 0 ° > 9 > - 9 0 ° 
R^oo 

f Now, from Equation (14.15), for large values of s, 

w s4 + 10s3 + 36s2 + 54s + 27 s4 

So, for large values of R 

l i m G(Rejd) = l i m ( - ^ ] = 0e~j4d 

The infinite semicircular arc in the s-plane therefore maps onto a point of zero radius in 
the G(s)-plane (because the modulus is zero). The argument ( involving —46) shows that 
the original range of + 9 0 ° > 9 > - 9 0 ° maps to - 3 6 0 ° < 9 < + 3 6 0 ° . Therefore the G{s) 
locus approaches the origin of the G(s)-plane at - 3 6 0 ° , makes two complete anticlockwise 

" revolutions (albeit at zero radius in this case) and leaves the origin at + 3 6 0 ° . Note that the 
inequality signs specify the direction of the rotation (see Problem 4.1). 

For path da 
- Over this path s = —jco, and its evaluation produces the mirror image of the G(jco) locus 

along the real axis. 
The complete G(s) locus may now be plotted. This is shown in Figure 4.12. A t 180° 

the G(s) locus has a magnitude of 0.195, so i t does not enclose the ( - 1 + jO) point, and 
therefore N = 0. From Equation (4.14), 

Z = P-N = 0 

and the system is stable. I f the system is to become marginally stable, then the gain K 
must be increased until the G(s) locus passes through the critical point (—1 +7O). 

A Reference to Figure 3.45 shows that the gain margin for this example is 1/0.195 « 5.13. 
The gain may therefore be increased from its present value (K = 27) by this factor to 
obtain marginal stability. Thus the system is asymptotically stable in the closed-loop for 
0 < K < 139. 

To obtain the plot using M A T L A B (Appendix 3) use the commands: 

» n u m = 27; 

» d e n = conv( [ l 3 ] , conv( [ l 3 ] , conv( [ l 3 ] , [1 1]))); 

>̂ nyquist(num, den) 

The ginput command can then be used to confirm the value of 0.195 for the negative 
real axis crossing. Alternatively, the command [g,p,wg,wp] = margin(num,den) w i l l give 
the gain and phase margins directly. Using num = num*g; and repeating the rest o f the 
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Figure 4.12 Direct Nyquist 
plot for Example 4.1. 

Real axis 

• -0.8 

commands w i l l then confirm the condition for l imi t ing stability. To investigate the closed-
loop system for stability and performance, use: 

)> [numc, dene] = cloop(num, den, —1); % apply unity negative feedback 

>̂ roots(denc) % check the closed-loop poles 

> step(numc, dene), grid % closed-loop step response 

Example 4.2 Nyquist's stability criterion applied 
to an open-loop-unstable second-order system 
Use the Nyquist stability criterion to test the closed-loop stability o f the unstable open-loop 
system 

G(s) = 1 

s(s-l) 

The open-loop system has one pole on the imaginary s-plane axis at s = 0, which means 
< that the Nyquist contour must be deformed as shown in Figure 4.13. There is one pole at 

5 = 1 , which is inside this contour, and therefore P — 1 (see Equation (4.14)). The Nyquist 
contour is mapped onto the G(s) plane as follows. 

* For path ab 
Along this path s = jco for 0 < co < +oo . Therefore 

,g G(jco) = . * n jco(jco-l) 
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from which 

1 G W I = N ^ V ( w 2 + 1) 

and 

arg G(jco) = - [ t a n - 1 ( o o ) + tan" 1 (-co)] 

3n _ i / x ft [ft i / xl ^ft -1 / \ ft i / \ 

- 4 - 7 C - t a n _ 1 ( c o ) J = - y + tan 1 (co) = + - 4 - tan A(co) 
wf Note that t a n - 1 ( -co) has been rewritten as n - t an" 1 (co) (as in Equation (3.94)). 
H A scale plot of the G(ja>) locus is inappropriate since \G(jco)\ —• oo as co —• 0. 
^ Typically, points close to the origin are plotted to scale, while points away from the origin 
v indicate the general direction. 

For path bed 
On this path s = l i m Re'6 for + 9 0 ° > 9 > - 9 0 ° . For large values o f s 

R->oo 

G ( i ) = _ L _ . I 

SO 

l i m G{Rejd) = — e~j2d 

/?->oc CO 
:* The modulus o f this expression is zero, and the argument (by similar reasoning to that in 
. Example 4.1) shows that the original range of 9 maps to - 1 8 0 ° < 9 < + 1 8 0 ° . 

; For path de 
This path is the mirror image of the path ab wi th respect to the real G(s)-plane axis. 
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For path ef a 
Here 

s = l i m pej\ - 9 0 ° <d< + 9 0 ° 

or, when s is negative, 

(s) = l i m pe"^ , - 9 0 ° < 9 < + 9 0 ° 
p—0 

For small values of s 

SO 

l i m G ( p e " ^ ) = l i m ( - ^ 

The modulus o f this expression is infinite, and the argument is val id for - 9 0 ° > 9 > + 9 0 ° . 
The complete G(s) locus may now be plotted. This is shown in Figure 4.14. I n this 

sketch there is one clockwise encirclement o f the ( - 1 + jO) point, and hence N = —1. 
; From the Nyquist stability formula 

Z = P-N= 1 — (—1) = 2 

The closed-loop system is clearly unstable since there are two closed-loop poles w i th 
« positive real parts. 

Using the M A T L A B commands given in Example 4 .1 , w i t h appropriate numerator 
and denominator data, gives the required polar plot. To see the detail o f Figure 4.14, i t is 

Figure 4.14 Direct Nyquist 
plot for Example 4.2. 

co=0+  

a A Im G(s) 

I 

co=0~ 

c Re G(s) 

G(s)-plane 
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necessary to restrict the frequency range by the commands: 

> w = logspace (-1,1,100); % 100 log.-spaced frequency values from 0.1 to 
% 10 rad s _ 1 

y nyquist(num,den,w) 

Example 4.3 Nyquist diagram for a more 
complicated system 
Plot the Nyquist diagram for the system having the open-loop transfer function 

2(s + 0 .1) ( j + 0.6)( ls 2 + ly + 1) 
G(s) 

s 3 ( s - 0 . 2 ) 0 + 1 ) 

and hence determine the stability of the closed-loop system. 
The Nyquist contour must avoid the multiple-open loop poles at the origin o f the 

s-plane, and therefore takes the form shown in Figure 4.15. There is one open-loop pole 
wi th in the Nyquist contour at s = 0.2, and therefore P = 1. 

For path ab 
Here s = jco for 0 < a> < +oo , so 

G(jco) = 
2(jœ + 0.l)(jío + 0.6)[jco + (1 - co2)] 

(jco)\joy-0.2)(jœ + l) 

from which 

\G{jco)\ = 
2v/(co 2 + 0.1 2 ) v/(o> 2 + 0.6 2 ) y ' [co 2 + (1 - co2)2} 

a; V(«2 + 0-2 2) V > 2 + 1) 

Figure 4.15 The Nyquist 
' D ' contour for Example 4.3. 

s-plane 
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and 

arg GU») = t an" 1 (£) + tan" ' Q + tan" ' 

- 3 t a n - ' Q - t a n " ' ( - ^ ) - t a n " ' ( c o ) 

Remember that the term \/sn gives an argument contribution o f -n t a n _ 1 ( c o / 0 ) , 
or - « 9 0 ° . 

N o w for co < 1 the term co/( 1 - co2) is positive, so 

arg G(jco) = tan _ 1 (10co) + t a n - 1 (1.67a;) + t a n - 1 ( _^ ) 

- y - ^ - t a n ~ 1 ( 5 c o ) l ~ t a n 1 ( w ) 

For co > 1 the term c o / ( l - co2) is negative, and 

arg G(jco) = t an" 1 (lOco) + t a n - 1 (1.67co) + 

3TT 

71 — tan 
Vco2 - V 

[n - tan 1 (5co)] - tan (co) 

To assist in sketching this locus a minimal table of points is drawn up (see Table 4.3). 

Table 4.3 Frequency response points for the path 
ab in Example 4.3. 

CO arg G(jco) 

0 oo - 9 0 ° 
0.1 761.8 -8 .9 ° 
0.2 120.2 +37.3° 
0.5 9.54 + 105.6° 
1.2 1.2 + 199.2° 
oo 0 +270° 

For path bdc 
The required transformation expression is 

s = l i m Reje for + 90° > 0 > - 9 0 ° 
R->oo 

For large values of s, G(s) —• 1/s, so 

l i m G{Rej0) = 0e~jd 

For path de 
This is the mirror image wi th respect to the real G(s)-axis o f the G(jco) locus. 
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For path efa 
For small values o f s, G(s) may be approximated by 

G(s) * l / ( - 5 3 ) 

For —s the Nyquist path in the s-plane is described by the expression 

(s) = pe~jd, - 9 0 ° <6< + 9 0 ° 
Therefore 

l i m G(pe-jd) = l i m ( = ooe^0 

and the argument o f this expression is valid for - 9 0 ° > 6 > + 9 0 ° . This means that the 
infinite-radius portion rotates through a total of 540° (that is, 3 x the stated 180° range), or 
one and one half revolutions. The starting point (co = 0" ) is 3 x ( - 9 0 ° ) = - 2 7 0 ° , 
measured from the positive real axis, and the finishing point (co = 0+) is 3 x ( + 9 0 ° ) = 
+ 2 7 0 ° , again measured from the positive real axis. Note that the directions o f the 
inequalities have reversed due to the inversion o f exponent, and hence the direction o f 
rotation must be from - 2 7 0 ° through one and a half clockwise revolutions to + 2 7 0 ° . 

The Nyquist plot of this system is shown in Figure 4.16. There are two anticlockwise 
encirclements of the ( - 1 + jO) point, the two inner circles o f the Nyquist plot, and one 
clockwise encirclement of infinite radius from e to a. The net number o f anticlockwise 
encirclements is therefore plus one (two anticlockwise minus one clockwise) so N = 1. 
From the Nyquist stability formula, 

Z = P - N = l - \ = 0 

Hence i t may be concluded that the closed-loop system is stable. 
M A T L A B (Appendix 3) can be used to produce the plot very simply, as in the m-file 

fig4_16.m on the accompanying disk. 

Figure 4.16 Direct Nyquist 
plot for Example 4.3. 

Im G(s) 

V -1 +/0 

co=0~ 

G(s)-plane 

co=0+ •"' 

Re G(s) 
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I f only stability information is required, it is much easier to investigate the closed-
loop characteristic equation directly by using a package such as M A T L A B to find 
the closed-loop poles (as in Example 3.3(b)). I f such a package is unavailable then, 
for low-order systems wi th no time delays the use o f Routh's stability criterion (see 
Section 3.3.3) may be easier. However, in al l other cases, the ease wi th which polar 
plots can be produced and the additional information they provide make the Nyquist 
stability criterion a far superior method. To validate the truth o f these statements, i t 
would be a useful exercise to investigate the above examples using Routh's stability 
criterion. 

4.4 The root locus method 
The root locus technique provides a design method based on the system's open-loop 
transfer function, which w i l l give the closed-loop pole positions for all possible 
changes in a single variable, normally the loop gain. These are plotted on a 
diagram (the 'root locus' diagram), from which the value o f open-loop gain (for 
example) which w i l l give the most appropriate closed-loop performance can then 
be chosen. 

It has been previously shown that the system's closed-loop zeros, between any 
two points in the loop, w i l l be a subset o f the open-loop zeros and the poles o f the 
feedback element H(s) (see Section 4.2). For these reasons, the root locus method 
can be used to find all possible closed-loop transfer functions for variations in a 
single variable. As usual, M A T L A B (Appendix 3) or a similar package w i l l 
normally be used in such investigations. The fo l lowing descriptions o f how to 
fol low the method by hand are provided for use in situations where 
computer assistance is unavailable, and also to provide some background 
information. 

To introduce the root locus method, assume that in Figure 4.1 K(s) = K and 
can take any value between ± o o , G{s) = s/(s2 + 1) and H(s) = 1. For this 
system the open-loop transfer function (see Equation (4.1)) is 

and the closed-loop transfer function (see Equation (4.2)) is 

Ks 
T(s) 

s2+Ks+l 

Notice that both the open and closed-loop systems have a zero at s = 0. The 
closed-loop poles are at 

(4.16) 

For values of K between 0 and 2 the poles are complex and for K greater than 2 
the poles are real. For K = 2 there is a double pole at s = — 1. For any negative 
value of gain the response is unstable. 
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Consider the fol lowing cases: 

(1) K = — 1. There are two complex poles, at s = +0 .5 ±y '0 .866 , and the time 
response for a unit impulse is given by 

y(t) = - e + 0 5t(cos 0.866r - 0.577 sin 0.866f) 

The positive real part of the poles produces a positive exponential, and 
consequently the system is unstable. 

(2) K = 0. This essentially breaks the loop (see Figure 4.1) since at K = 0 a change 
in E(s) has no effect on U(s). However, an impulse response may be obtained 
for the open-loop system and is given by 

y(t) = cos t 

(3) K = 1. There are now two complex poles, at s = —0.5 ±y '0 .866 , and the 
corresponding impulse response is given by 

y(t) = e-°5t(cos 0.866r - 0.577 sin 0.866i) 

The response is now stable, as indicated by the negative exponential. 

(4) K = 2. There is a double pole at s = — 1 and the impulse response is given by 

y{t) = 2(e- - te-) 

(5) K = 4. This gives poles at s = -3 .732 and s = -0 .268 and the closed-loop 
impulse response is 

y(t) = 4 ( - 0 . 0 7 7 4 < r a 2 6 8 ' + 1 . 0 7 7 4 < r 3 J 3 2 f ) 

Note that the effect of the dominant pole is reduced because o f its proximity to 
the closed-loop zero. 

Since a simple feedback loop affects only the closed-loop pole positions, i t is useful 
to plot the pole trajectories, or root loci , for all possible changes in the loop gain K. 
Figure 4.17 shows the closed-loop pole plot, or root locus plot, for the system. The 
poles and zeros of the open-loop system are indicated by crosses and enclosing 
circles respectively. The arrow on each locus indicates the direction o f increasing 
loop gain. 

I t is evident from Figure 4.17 and Equation (4.16) that when K is positive the 
closed-loop poles w i l l be negative and the system w i l l be stable. When K — 0 the 
system is marginally stable and when K < 0 i t is unstable. A negative value o f K 
has the same effect as positive feedback and therefore only positive values o f K are 
normally considered ( M A T L A B , for example, only produces the plot for positive K 
by default - see below). Looking at Figure 4.17 it is evident that for the fastest rate 
of decay (when the dominant pole has its most negative value) K = 2, and the 
system has 2 real poles at s = — 1 . For 0 < K < 2 the poles are complex, and w i l l 
always have a negative real part greater than — 1. For K > 2, one pole tends to the 
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2 r 

Figure 4.17 Root locus plot 
for positive and negative 
values of K in 

Ks 

origin and the other to minus infinity and consequently the system's response takes 
longer to decay. 

Production of the root locus using M A T L A B (Appendix 3) is very easy, 
requiring only the fol lowing commands (also, try the m-file fg4_1718.m on the 
accompanying disk). 

» n u m = [1 0 ] ; % This is Ks w i t h K = 1. M A T L A B w i l l sweep K 
% automatically. 

> d e n = [1 0 1]; % note the zero coefficient o f s 

y rlocus(num,den),grid 

To pick points off the locus (in order to find the K value, for example) M A T L A B has 
the command [k,p] = rlocfind which puts a crosshair on the plot, waits for the cl ick 
of the mouse button over the required point and then returns the value o f K at the 
selected point and the pole locations for that value o f K. 

Figure 4.18 Closed-loop 
impulse responses for 
several values of K from 
Figure 4.17. 
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I t is interesting that wi th this system, faster transient responses are obtained 
when K is not equal to 2 - see Figure 4.18. For K < 2 the damping is reduced and 
the system responds as expected. However, i f the open-loop zero occurs between 
the forcing input and the measured output, the closed-loop pole-zero map w i l l have 
a zero at the origin. For large values of K this zero w i l l give approximate closed-
loop pole-zero cancellation. For the impulse responses shown in Figure 4.18 (also 
produced by the m-file fg4_1718.m on the accompanying disk), notice that an 
increase in gain K causes a very fast ini t ia l measured response, which quickly 
approaches its final steady-state value, but takes a considerable amount o f time to 
settle at that value. However, i f the open-loop zero occurs in some other part o f the 
system, the measured closed-loop response w i l l become progressively more 
sluggish as K is increased. 

4.4.1 Rules for constructing root locus plots 
Normally, root locus plots w i l l be produced by computer, as in the M A T L A B 
example above. However, i f such a package is unavailable, i t is possible to 
determine the salient features o f root loci by applying simple rules. These rules 
obviate the necessity to solve the characteristic equation, and thus make the method 
applicable to quite complicated systems. 

The rules, often known as Evans' rules (after Walter R. Evans, whose original 
paper on the subject o f root loci appeared in 1948), are stated below for the closed-
loop single-input-single-output system shown in Figure 4 .1 . To simplify the 
presentation it w i l l be assumed that the open-loop system's transfer function is 
HGK{s) where, from Equation (4.1) 

HGK(s) = H(s)G(s)K(s) 

and the return difference is set equal to zero to give the closed-loop characteristic 
equation: 

F(s) = 1 +H(s)G(s)K(s) = 1 + HGK(s) = 0 (4.17) 

The purpose of these rules is to find the roots of F(s), given HGK(s), for all 
positive values o f some constant K in HGK(s). 

That is, assuming the system's open loop transfer function has m zeros and n 
poles wi th n > m, then 

m 

Uis + z,) 

HGK(s) = K (4.18) 

] > + / > , ) 
/=1 

(1) Number of root loci. The number of root loci is equal to the order of the 
closed-loop characteristic equation. 

For engineering systems HGK(s) w i l l be rational, and the closed-loop 
characteristic function F(s) must therefore be o f the same order as the 
denominator of HGK(s); that is, of order n. Since F(s) is an nth-order 
polynomial it w i l l have n roots, each wi th its own locus. 
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(2) Symmetry of loci. The root loci of a characteristic equation having real 
coefficients are symmetrical with respect to the real axis. 

This follows from the fact that the complex roots o f a real characteristic 
equation can only occur in conjugate pairs. 

(3) Poles ofHGK(s). Each pole ofHGK(s) lies on a root locus and corresponds 
toK = 0. 

This follows directly from Equations (4.17) and (4.18) as follows. 
Substitute Equation (4.18) into Equation (4.17) and rearrange to make K the 
subject. Then substitute s = —ph where ph is the value o f one o f the poles. 

(4) Zeros ofHGK(s). Each zero ofHGK(s) lies on a root locus and corresponds 
to K = co. 

Again, this follows directly from Equations (4.17) and (4.18), but this 
time the subject becomes l/K, and s is set equal to —zz. I f there are r more 
poles than zeros, then r o f the loci w i l l become infinite as K —• oo. These loci 
are dealt wi th in rules (5) and (6). 

(5) Asymptotes of root loci. IfHGK(s) has r more poles than zeros, the root loci 
are asymptotic to r straight lines making angles 

with the real axis. The root loci approach asymptotes when K —• oo. 

(6) Point of intersection of asymptotes. Asymptotes intersect on the real axis at a 
point with abscissa 

where the pj and Zj are respectively the poles and zeros of HGK(s). 

(7) Root loci on the real axis. IfHGK(s) has one or more real poles or zeros, the 
segment of the real axis having an odd number of real poles and zeros to its 
right will be occupied by a root locus. 

(2/4-1)71 
/ = 0 , l , 2 , . . . , r - 1 

r 

JO) 
A 

« » » T o c 0 

Figure 4.19 Illustrating the 
existence of root loci on the 
real axis. 
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This rule is best demonstrated by means o f the example shown in Figure 
4.19, in which HGK(s) has six poles and three zeros on the real axis. 

(8) Singular points. These indicate multiple characteristic roots (intersections of 
loci), and occur at those values of s which satisfy dK/ds = 0. 

This rule is probably best demonstrated by an example. Consider a 
system having the closed-loop characteristic equation 

s2 + Ks + 1 = 0 

as used in the example of Section 4.4. The rule states that there w i l l be singular 
points when dK/ds = 0, and since 

s 

differentiating K wi th respect to s and setting dK/ds = 0 indicates that 

s2 - 1 = 0 

Therefore there are two singular points, at s — - h i and s = — 1. Substituting 
both values of s back into the characteristic equation indicates that when 
s = + 1 , K — —2 and when s = - 1 , K = + 2 . Since only the rules for positive 
values of K are being considered, the singular point at s = + 1 would not 
appear on the root locus plot. 

Typically, not all the singular points found using this rule w i l l be for 
positive values of K; some w i l l be associated wi th zero or negative values. 
When producing the root locus plot i t is usually obvious which o f the singular 
points are required. In the few cases where it is not clear, the associated value 
of s may be substituted back into the closed-loop characteristic equation, and 
the sign of K determined. 

(9) Intersection of root loci with the imaginary axis. The intersections of root loci 
with the imaginary axis can be determined by calculating the values of K 
which result in the existence of imaginary characteristic roots. 

These values of K, together wi th the corresponding imaginary roots, 
can be found from Routh's array using the method described in 
Section 3.3.3. 

(10) Slopes of root locus at complex poles and zeros ofHGK(s). The slope of a root 
locus at a complex pole or zero of HGK(s) can be found at a point in the 
neighbourhood of the pole or zero. 

This technique can be illustrated by considering the complex pole px 

shown in Figure 4.20, where Q is the unknown slope of the locus at px. The 
arguments of the complex numbers, represented by vectors drawn from the 
other poles p2, p^ and p4 and the zero zx to a point on the root locus near px, 
obviously differ very little from the angles c62, cp3, cp4 and 9X. 



4.4 The root locus method 265 

Figure 4.20 Diagram for 
evaluating the slope of a 
root locus at a complex pole 
using the angle criterion. 

P1> 
\1C° 

( 
w 7V 

) 

Z 1 PA 

^ 3 

s-plane 

p 3 

Now, for some point s on a root locus, 

£ argO - z y) - ~ Pj) = (2/ + l ) m ° (4-19) 

where arg(s - z y) and arg(s - /?,) are the angles of the vectors from the zeros 
and poles of HGK(s) to the point s, and / is some real integer. Equation (4.19) 
states that the sum of the arguments o f all the vectors drawn from s to all the 
zeros, minus the sum of the arguments o f al l the vectors drawn from s to all the 
poles, is given by an odd integer mult iple o f 180° for al l points on a root 
locus. 

Therefore i t follows that 

6X - (02 + c63 + c64 + Q) = (2/ + 1)180° 

where i is an appropriate integer. This equation can be solved for Q since the 
angles c/>2, c/>3, c/>4 and Qx are easily measured. Equation (4.19) is often called 
the angle criterion. 

(11) Calculation of K on the root locus. The absolute magnitude of the value of K 
corresponding to any point s0 on a root locus can be found by measuring the 
lengths of the vectors drawn to s0from the poles and zeros of HGK(s), and 
then evaluating 

\K\ = 
Y[\so-Pj\ 

m 
(4.20) 



266 Single-input-single-output (SISO) design 

This rule states that 

K = 
Product of lengths o f vectors from open-loop poles to s0 

Product of lengths of vectors from open-loop zeros to s0 

I f the open-loop system has no zeros, then 

K = Product of lengths of vectors from open-loop poles to s0 

In applying this rule, i t is assumed that, on mul t ip ly ing out all the numerator 
and denominator factors, HGK(s) w i l l be o f the form 

sm + b{s m-\ 

M(s) = 
sn + axs n-\ 

m 

The coefficients b0 and a0 normally associated wi th s m and s n , respectively, 
must be unity. I f these terms are not unity, then they must be made unity by 
dividing through the appropriate polynomial and adjusting K accordingly. 
Equation (4.20) is often called the magnitude criterion. 

Example 4.4 A root locus analysis of a fourth-
order system 
A system has the open-loop transfer function 

K(s2 + 1.5s + 1.5625)  

(s - 0.75 ) (5 + 0 .25)0 + 1-25)0 + 2 .25) ' K > ° 

Use Evans' rules to plot the root locus diagram for this system given that, for positive 
values o f K, there are only four singular points, at s = +0.26, s = - 1 . 7 6 and 
s = -0 .75 ±y '1 .74 . Determine the values of gain for a stable closed-loop system. 

B y inspection, the denominator and numerator polynomials are of the correct form. 
The coefficient associated wi th s2 in the numerator is unity, and the coefficient associated 
wi th s4 in the denominator is also unity. 

Evans' rules as given in Section 4.4.1 are applied to yield the fo l lowing results: 

(1) Number of roots = 4. Therefore the root locus plot w i l l have four branches. 

(2) The loci are symmetrical about the real axis. 

(3) When K = 0, loci start from poles at s = 0.75, s = - 0 . 2 5 , s = - 1 .25 and s = - 2 . 2 5 . 

(4) When K = oo loci terminate at infinity and at the finite zeros s = -0 .75 ± jl. 

(5) Asymptotes: HGK(s) has two more poles than zeros, so r — 2 and two loci approach 
asymptotes wi th angular slopes given by 

/ = 0 or 1 

that is, at n/2 and 3n/2 (90° and 270°) . 
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(6) Asymptotes for the loci extending to infinity intersect on the real axis at 

<7O = 1-(T,p-1lz) 
(+0.75 - 0.25 - 1.25 - 2.25) - ( -0 .75 + ; - 0.75 -j) 

= -0 .75 

(7) Loc i are on the real axis between s = 0.75 and s = — 0.25, and also between 
s = —1.25 and s = —2.25. 

(8) The singular points are given. (It would be a useful exercise to show that these points 
are singular points, and to find the associated closed loop gains * . ) 

(9) To determine the points of intersection of the loci w i th the imaginary axis using 
Routh's array, the closed-loop characteristic equation must be found. It is: 

K(s2 + 1.5s + 1.5626) + (s4 + 3s3 + 0 .875? - 2.063s - 0.527) = 0 

or 

s4 + 3s 3 + (0.875 + K)s2 + ( 1 . 5 * - 2.063)s + (1 .5626* - 0.527) = 0 

The Routh array for this equation is then 

Row 

0 

1 

1 

3 

3(0.875 + * ) - ( 1 . 5 * - 2 . 0 6 3 ) 

(0.875 + * ) 

( 1 . 5 * - 2.063) 

( 1 . 5 6 2 6 * - 0 . 5 2 7 ) 

( 1 . 5 6 2 6 * - 0 . 5 2 7 ) 

To be on the imaginary axis, row 3 must be an all-zero row - that is, the first and only 
element must be zero: 

3(0.875 + * ) - ( 1 . 5 * - 2.063) 
( 1 . 5 * - 2.063) - 3 (1 .563* - 0.527) = 0 

which may be rearranged to give 

0 .75* 2 - 3 . 3 7 7 * - 1.634 = 0 

from which 

* = 2.251 ± 2 . 6 9 4 

Since only positive values of * are required, * = 4.945. 

Note that this analysis also indicates that the closed-loop system is asymptotically stable 
for all values o f * greater than 4.945. 
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Letting s = jco and equating the resulting imaginary part o f the characteristic equation to 

(10) This rule w i l l be used to find the slope of the locus at the complex zero, s = —0.75 + j . 
Let Q be the unknown slope of the locus at the zero s = -0 .75 + j (see Figure 4.21). 
From the angle criterion (Equation (4.19)), 

(90° + Q) - [(180° - 34°) + 34° + (180° - 63°) + 63°] = (2/ + 1)180° 

where / is some real integer. I f / is set equal to — 1, then Q = + 90° , which is the required 
answer. W i t h / = 0, Q = 450° and, since this is a 360° rotation plus a 90° rotation, the 
results are identical. Indeed, any value of the integer / w i l l give the correct result once 
any superfluous 360° rotations have been removed. 

From the above rules the root locus plot may now be produced, and is shown in 
Figure 4.22. Rule (11) could be used to determine the loop gain at any point on the 
diagram. 

Figure 4.22 can be produced using M A T L A B (Appendix 3) simply by using the 
fo l lowing commands: 

zero gives 

3co3 + (1.5/v:-2.063)aj = 0 

Therefore 

» n u m = [ l 1.5 1.5625]; 

» d e n = conv( [ l - 0 .75 ] , conv( [ l 0.25],conv([l 1.25],[1 2.25]))); 

y rlocus(num,den),grid 

A jco 

(180°-34°) 

^ * — 1 — ^ 
a 

\ 
(180°-63°) 

90° s-plane 

Figure 4.21 Use of the angle 
criterion in Example 4.4. 
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The fo l lowing command can then be used to find the value of K at any point on a locus: 

^ [k, p] = rlocfind(num,den) 

This command produces a 'crosshair' which can be placed at any required point on a 
locus. Cl icking the appropriate mouse button then selects the point and returns the 
corresponding value of gain in k and the closed-loop pole locations in p. 

Example 4.5 Gain selection using the root locus 
approach 
A closed-loop, negative feedback control system has an open-loop transfer function given 
by 

v y s 2(s + 9) 

Plot the root locus diagram, and hence determine the gain K which w i l l give the closed-
loop system its maximum value of relative stability. 

W h y would this system have good tracking characteristics? 
The closed-loop characteristic equation is 

1 + HGK(s) = 0 

or 

s3 + 9s 2 + Ks + K = 0 

Evans' rules yield the fo l lowing results: 
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(1) The characteristic equation is of degree three, and hence has three roots. Therefore, 
there w i l l be three root loci . 

(2) The characteristic equation has real coefficients, so the loci must be symmetrical wi th 
respect to the real axis. 

(3) When K = 0, there are loci at points s = 0 (a double root and therefore also a singular 
point) and s = —9. 

(4) When K — oo, there are loci at s = - 1 and infinity. 

(5) The asymptotes have angular slopes 

(7) Loc i are on the real axis between —1 and —9. 

(8) Break points occur when dK/ds = 0. The closed-loop characteristic equation may be 
solved for K to give 

Differentiating K w i th respect to s and setting dK/ds = 0 yields 

On expansion the above equation becomes 

-2s3 - 12s 2 - 18s = 0 

which may be solved directly to give the singular points s = - 3 , —3 and 0. 
Substitution o f any of these values of s back into the closed-loop characteristic 
equation indicates that all are associated wi th positive values o f K. Note also that the 
analysis has indicated that the double open-loop pole at s = 0 is a singular point. 

(9) The axis crossing points are determined using the Routh array: 

- ( 2 / + l ) 7 T , i = 0 o r l 

that is, at n/2 and 3TT/2 (90° and 270°) . 

(6) The asymptotes intersect the real axis at 

(s 3 + 9s 2 ) - (s + 1X3S 2 + 18s) = 0 

Row 

9 

1 K 

K 

3 

2 s 8* /9 

K 

Since there are no sign changes in the first column o f the array, i t may be concluded 
that the loci do not cross the imaginary axis (so the closed-loop system w i l l be stable) 
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for any positive K. (Note that when using the Routh array for stability assessment, i t is 
permissible to mul t ip ly a row by any positive constant. Row 2 could therefore have 
been written as K.) 

(10) This rule is not required. 

The root locus plot for this system may now be drawn, and is shown in Figure 4.23. 
In this figure, the two loci breaking from the double pole at s — 0 coalesce on the real axis 
at s — —3, together wi th the real pole emanating from s — —9. Two of the three loci break 
from this point, and become infinite, wi th asymptotes passing through the s — — 4 point on 
the real axis. The third locus breaks from the s = - 3 point, and moves w i th increasing K 
along the real axis unt i l , at K = co, i t reaches the zero at s = — 1. From the root locus plot 
the system w i l l have maximum stability when s — —3; for at any other point on the plot at 
least one closed-loop pole would have a more positive real part. 

The loop gain which gives the maximum value o f relative stability is found from rule 
(11) to be 

| - 3 1 | - 3 | 1 6 [  
K ~ \2\ = 2 ? 

The tracking properties o f this system are most easily evaluated by using the final value 
theorem to find the closed-loop transfer function between the forcing input and the error 
signal. App ly ing the final value theorem for various forcing inputs shows that the system 
w i l l track both a step and a ramp input, wi th zero steady-state error. 

To produce Figure 4.23 using M A T L A B requires the fo l lowing commands: 

» n u m = [ l 1]; 

> d e n = [1 9 0 0 ] ; % note the zero coefficients o f sl and s°. 

> rlocus(num,den),grid 

Figure 4.23 Root locus for 
Example 4.5. 
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Note that the values of K chosen by M A T L A B make the plot cover a larger area than 
Figure 4.23, so some detail is lost. To obtain Figure 4.23, the command 
axis([-10 0 -6 6]) should be used. Note that in versions of M A T L A B earlier than v4.0, 
this command must be issued before the Hocus command. 

As in the previous example, the command: 

X k , p] = rlocfind(num,den) 

can be used to 'p ick ' points off the plot. 

4.4.2 Root locus and PID controllers 
In Chapter 3 the notion of the PID (proportional plus integral plus derivative, or 
'three-term') controller was introduced and the empirical Ziegler-Nichols methods 
were used to establish settings for PID controllers (PID controllers are properly 
discussed in Section 4.5.2). For some applications, the time responses resulting 
from the Ziegler-Nichols settings tend to be underdamped, and the methods 
provide no indication of how the performance may be modified. Here, we show how 
the root locus method can be used to select controller settings, and how the 
introduction of control elements wi th in a closed-loop system affects performance. 

Consider again the system used in Example 3.10 (Section 3.3.4), i n which the 
plant transfer function is given by 

G(s) 
( s + l ) ( i + 2 ) ( i + 3) 

and the PID controller's idealized transfer function is as follows (this was 
introduced in Chapter 3, and is properly discussed in Section 4.5.2): 

Gc(s)=K(l+Tds + ±-

Under proportional control, Td = 0 and T{ has to be infinite. The controller 
therefore becomes simply Gc(s) = K and, for the closed-loop system, the 
characteristic equation is then: 

6K 
1 + G(s)K = 1 + -~ —; " = 0 

w s3 +6s2 + l i s + 6 

The root locus plot is shown in Figure 4.24(a) (the M A T L A B m-file fig4_24.m on 
the accompanying disk generates all the parts of this figure). In this plot Kc, the 
critical gain, and the Ziegler-Nichols gain (from Example 3.10), are 
indicated by their corresponding dominant closed-loop pole positions. Clearly, the 
response dynamics would be made less oscillatory by reducing the controller gain 
K to 0.6. However, this increases the offset (that is, the steady-state error) caused 
by a demand step change in the reference input (see Figure 4.24(b)). 

Under proportional plus integral (PI) control, the controller is given by: 

G c M = * ( i + ^ ) = £ ( i + ™ 
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1.8r-

Figure 4.24 Relationship 
between the root locus and 
PID controller tuning for a 
third-order system, (a) Root 
locus for proportional 
control only, (b) Step 
responses for proportional 
control only, (c) Root locus 
for varying K in 
proportional plus integral 
control, (d) Step responses 
for varying K in 
proportional plus integral 
control, (e) Root locus for 
varying T, in proportional 
plus integral control, (f) 
Root locus for varying K in 
proportional plus integral 
plus derivative control. (e) (*) 

The closed-loop characteristic equation is 1 4- G(s)Gc(s) = 0, that is: 

1 + 6 * ( 1 + r ' * > = 0 ( 4 2 1 ) 
+ r , 5 ( 5 3 + 6 5 2 + l l S + 6 ) 1 ' 

Since the root locus method can only cope wi th adjustments to one variable at a 
time, either K or Tt must be fixed. I f Tt is fixed at its recommended Ziegler-
Nichols value of 1.57 (Example 3.10), then 

x * (6s + 3.82) = Q 

s(s3 + 6s 2 + l i s + 6) 

and the corresponding root locus plot is as shown in Figure 4.24(c). Note that the 
PI controller introduces a pole at the origin o f the s-plane, and a zero at s = - 0 . 6 4 . 
The controller pole eliminates the offset (steady-state error) for a demanded step 
change in input. Provided the controller gain is high enough, the zero w i l l give 
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approximate closed-loop pole-zero cancellation and make the complex poles 
dominant. Again, the Ziegler-Nichols gain and the gain Kc which makes the 
closed-loop system marginally stable are indicated on the root locus plot. 

From this plot, it would appear that the response could again be made less 
oscillatory by reducing the gain K to 2, as shown. Further reductions in gain w i l l 
move the real pole away from the zero, and the complex poles closer to the zero, 
and hence reduce the effective dominance of the complex poles. The step responses 
for the system wi th both the Ziegler-Nichols settings and the reduced gain setting 
of K = 2 are shown in Figure 4.24(d). 

To see the effect of adjustments to Th the characteristic equation must be 
modified so that i t is of the fol lowing form, in which Kx w i l l be chosen to allow for 
variation o f 7}: 

\+KxG{s)=0 

Again, the controller gain K must be fixed and, as previously, its Ziegler-Nichols 
value is used. Hence, from Equation (4.21) and wi th K set at 4.5 (Example 3.10), i t 
is easily shown that 

i + 2211L = 0 

s(s3+6s2+ l i s + 33) 

I f Kx is now set equal to 27/ 7 } , the above closed-loop characteristic equation is o f 
the required form. The root locus plot for 0 < Kx < oc is shown in Figure 4.24(e), 
in which the arrows on the root loci indicate decreasing values o f Tr When 
Tt = 1.57, its Ziegler-Nichols value, the loci on this plot coincide wi th the points 
on the loci o f Figure 4.24(c), for which KZN = 4.5. Also, i f 7, < 1 (wi th K = 4.5), 
the system becomes unstable (because two loci , that is, two poles o f the closed-
loop transfer function, move into the right half o f the s-plane). 

Using ful l PID control, there are three terms which could be adjusted, and 
therefore two must be fixed during any given root-locus analysis. For convenience 
Ti and Td are set at their Ziegler-Nichols values o f 0.947 and 0.237 respectively 
(Example 3.10), and the root locus plot for variations in K is drawn. This is shown 
in Figure 4.24(f) , from which the closed-loop system is seen to be stable for all 
values of loop gain K. Wi th the proposed Ziegler-Nichols value, K w = 6 (Example 
3.10), there are four closed-loop poles, in the positions shown. Further, since the 
open-loop and closed-loop zeros between the forcing input and measured output are 
the same, there is approximate pole-zero cancellation and the dominant poles are at 
s = —0.85 ±7 '2 .67 . By comparing these closed-loop pole positions wi th those 
obtained from the P and PI controllers (Figures 4.24(a) and 4.24(c)), this control 
system is seen to have the better relative stability and damping ratio, while the 
damped frequencies of all three systems are similar. A plot o f the Ziegler-Nichols 
responses to a step input for P, PI and PID control is shown in Figure 3.29. 

4.4.3 Comments on the root locus design procedure 
The root locus design procedure is clearly an iterative one, and the more design 
variables there are, the greater the required number o f root locus plots. For three or 
more variables the method (particularly for hand calculation) becomes unwieldy as 
a design technique. I t is still useful, however, as a test of the system's sensitivity to 
changes in variables and loop integrity (loop integrity is concerned wi th the stability 
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and response of a system in the face of some failure: when a loop breaks, how w i l l 
the system respond?). 

Since the root locus method gives the closed-loop pole positions, i t provides 
the designer wi th considerable insight into a system's stability, performance and 
response characteristics. Wi th experience, it is possible to sketch the general shape 
of a root locus diagram and hence show what type o f controller or compensator 
network is required to meet a particular design criterion. 

The method's main limitations are its inabil i ty to deal w i th more than one 
variable at a time, and the difficulty o f dealing wi th t ime delays (transport lags). 
Time delays can be included, but produce loci which exhibit repeated asymptotic 
behaviour as described in D 'Azzo and Houpis (1995), for example. 

4.5 Controller and compensator design 
The normal procedure for designing a controller for a single-input-single-output 
system is an iterative one. Often the nature o f the plant determines the structure o f 
the controller, and the problem becomes one o f selecting and tuning suitable 
compensating networks in order to meet the required performance specifications. 
Sometimes the controller's structure is not immediately evident; sometimes a 
preferred configuration proves impossible to implement. Such cases test the 
ingenuity of the designer. Also, the final control system design is invariably a 
compromise, not only between the various performance specifications but also 
between the feasible and the economically justifiable. There are no universal 
solutions. However, there are some simple controller structures and compensating 
elements which have proved useful, in particular the P ID controller and 
compensating networks consisting of lead and lag elements. Since lag and lead 
elements have properties similar to the integral and derivative terms in a PID 
controller respectively, it is useful to examine these properties briefly. 

In Section 4.4 it was shown that by adjusting a closed-loop system's 
proportional gain, K, it is possible to move the closed-loop poles wi th in the s-
plane. The system's root locus plot, which indicates al l possible closed-loop pole 
positions for all positive values of K, is therefore a valuable design tool . However, 
for an open-loop type 0 plant there w i l l be a steady-state error to a step input (see 
Section 3.4.1) and this might be a problem. The magnitude o f the error can be 
reduced by increasing the proportional gain K but, for many systems, the root locus 
plot w i l l indicate that large values o f gain produce instability. For this reason a 
purely proportional controller tends to be used wi th type 1 plant or in stable plants 
which have an open-loop pole very close to the imaginary axis. 

Integral action increases the system's type number by one and a lag 
compensator introduces a stable pole close to the imaginary axis. For a type 0 plant 
this eliminates or ( in the case of the lag compensator) reduces the steady-state error 
produced by a step input. Proportional control can then be used to achieve the 
desired performance. The downside of integral action is that the introduced pole 
tends to make the closed-loop response more sluggish. 

Derivative action reduces the system type number by one and a lead 
compensator introduces a min imum phase zero close to the imaginary axis. Since a 
derivative action controller produces an output equal to the time rate o f change of 
the input, the error signal must be changing for there to be any controller output. 
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This means that derivative action has no effect at steady-state, and is therefore 
always used in combination wi th a P or PI controller. Type 2 plants are invariably 
controlled using a PD controller. When D action is used alongside PI action to give 
fu l l PID control, i t w i l l tend to speed up the closed-loop system response. The 
downside is that D action increases the system's bandwidth, making it more 
susceptible to noise. 

4.5.1 Controller design concepts 
A control system consists of a plant wi th its actuators and sensors, and a controller. 
The actuator normally takes a low-energy signal, and transforms and amplifies it in 
order to produce a corresponding action which is applied to the plant's manipulable 
input. A sensor typically takes a high-energy signal from the plant's measurable 
output, and transforms it - ideally linearly - into an equivalent low-energy signal. 
The controller includes all the compensators, comparators, set points and paths 
required to complete the system. 

In this section, rules of thumb are given for designing the controller and the 
control system configuration. These are not rigorous, and not applicable in every 
case, but are intended to provide some insight into the SISO design problem. 

Some of the more common design problems concern the control o f flow, level, 
temperature and pressure. Experience shows that satisfactory control may be 
achieved 6y using simple PID controllers. 

Flow 
R o w loops are notoriously noisy, and this precludes derivative action. The 
controller gain is rarely greater than one, and consequently, unless integral action is 
included, there is significant steady-state error. 

Level 
I n most level control loops the actual l iquid level is relatively unimportant, 
provided it is between some maximum and min imum value. The transfer function 
model of a level system w i l l often be of type 1, so satisfactory control can be 
achieved wi th a simple proportional controller. 

Temperature 
In temperature loops, thermal lags (caused by heat transfer) and sensor lags make 
the loops relatively slow and noise-free, so fu l l PID controllers are often used. 

Pressure 
Pressure loops can vary considerably in their dynamic characteristics, from very 
fast loops almost like flow to slow averaging loops almost l ike level. Therefore, 
depending on the nature of the loop, a PI or P controller is used. 

Returning to the more general discussion, compensators modifying low-energy 
signals are normally cheaper and easier to adjust than those for high-energy signals. 
If , for some reason, a forward path compensator has to be combined wi th the 
actuator, then i t may be more economical to use feedback path compensation. In 
general though, forward path compensation provides the preferred configuration. 

A t this point i t is worth noting that control is an important aspect o f any plant 
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design. I f control is l ikely to be required, dynamic considerations should be taken 
into account in the plant design. Various hardware configurations may be possible 
and some, for example those that avoid interactions, are easier to control than 
others. Allowance should be made in sizing and selecting equipment so that i t can 
handle operational transients. Also, allowance should be made for the inclusion and 
optimal location of sensors and actuators so that they operate effectively. 

In developing the controller, the fo l lowing design points should be borne in 

mind: 

(1) Feedback paths should be designed so as to avoid time delays and lags. In 
practice this means that a sensor should be placed as close as possible to the 
source of the variable i t is intended to control. For example, i f the temperature 
of the steam from a boiler is required, then ideally the sensor should be in 
contact wi th the steam and located close to the boiler steam outlet point. 
Measurements at a point on the steam pipe away from the boiler would 
introduce a time delay, and i f the sensor is not in contact wi th the steam a 
thermal lag would also be introduced into the feedback path. 

Sometimes, it is not possible to measure the controlled variable at the 
required point. For example, in a metal ro l l ing m i l l , i t is impossible to measure 
the thickness of the product unti l i t has emerged from the workrolls (and the 
separation o f the rolls is not a useful measure, due to significant bending and 
flattening effects). The resulting time delay as the metal moves from the m i l l to 
the sensor means that such a measurement can only be used to compensate 
for slowly varying changes (such as thermal expansion o f the rolls and ro l l 
wear), and not for transient changes o f thickness (which w i l l have 'gone' from 
the m i l l before the measurement is made). This means that more complex 
schemes have to be used to control ro l l ing m i l l output thickness. I f the sensor 
could be placed at the point where the measurement is required, things would 
be simpler. 

(2) Large, frequent measurable disturbances should be compensated for by feed
forward control. Consider the single-loop control system shown in Figure 
4.25(a). The controller consists o f the forward path compensator Gc(s) and the 
comparator. Also indicated are the actuator dynamics Gx (s), the plant dynamics 
G(s) , the sensor dynamics H{s) and the disturbance input D(s). Two examples 
are now given o f systems that this model might represent. 

The model could represent a valve-actuated system wi th LTF Gx(s\ 
controlling the flow of some l iquid into the plant whose LTF is G(s). D(s) 
would then represent temperature disturbances (variations) affecting the 
viscosity, and hence the flow rate, o f the f luid, and G2{s) would be a transfer 
function converting temperature changes into equivalent flow changes. 

In another example, again taken from the metal ro l l ing field, Gx(s) 
could represent the dynamics o f the 'screwdown' system setting the ro l l gap, 
G(s) would be the dynamics of the propagation o f thickness variations 
through the m i l l , D(s) would represent a disturbance in metal thickness 
entering the m i l l , and G2(s) would represent the effect o f the incoming 
disturbance on the m i l l rolls, including a transport delay to represent the 
propagation o f incoming thickness disturbances from the point o f measurement 
to the ro l l gap. 
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Figure 4.25 A suitable 
system for the use < 
feedforward control, (a) The 
original system, (b) The 
system plus a feedforward 
loop. (b) 
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Figure 4.25(b) shows the same system wi th feed-forward control. For the 
fluidic example given above, Hf(s) would be a temperature sensor and Gf(s) a 
compensating network. 

For the metal rol l ing example, Hf(s) would be a thickness sensor at the 
incoming side of the m i l l and Gf(s) would be a compensator which generated 
the necessary control signal to remove the disturbance, and delayed its 
application unti l the moment the disturbance would arrive in the m i l l . The 
necessity for an accurately calculated delay is one difficulty wi th such schemes 
- i f i t is wrong, then the wrong piece o f material w i l l be 'corrected'. 
Nevertheless, this method is routinely used in modern rol l ing mil ls . 

In either case, for removal of the effect o f the disturbance from the input o f 
G(s), i t is clear from Figure 4.25(b) that Gl(s)Gf(s)Hf(s) must be made the 
same as G2(s), so that: 

r (A - G 2 W 

^ - G . W W ) 

(3) Where possible, minor disturbances should be eliminated by introducing a 
cascade controller (see Figure 4.26). I f , in the fluidic example given, the 
temperature changes were small but st i l l produced flow disturbances, they 
could be compensated for by placing a cascade controller around the valve 
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Figure 4.26 A system with 
an inner ('cascade control') 
feedback loop. 
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Gx(s), as shown in Figure 4.26 (note that a 'standard' forward path controller is 
sometimes called a cascade controller - the context dictates which is intended). 
Here Hcc(s) represents the flow sensor dynamics, and Gcc(s) the cascade 
controller compensator. Wi th this scheme the master controller is providing the 
setpoint value for the slave cascade control system. 

Such arrangements are also often found in complex electrical drive 
systems. Again using a metal rol l ing m i l l as an example, i f the m i l l has several 
stands, it is necessary to control the tension between them, so as to avoid 
damaging the product (and the m i l l ) . This tension is typically controlled by 
slight relative variation of adjacent stand speeds. The tension control loop 
typically provides a set point value to the speed control loop; and the speed 
control loop in turn provides a set point to the motor current control loop. 
Sometimes, four or five loops w i l l be found cascaded in this way in such drive 
systems. In order to avoid severe problems of interaction between the loops, i t 
is normal practice to arrange for the inner loop to have the fastest dynamics, and 
the outer one the slowest. 

(4) Mul t i loop systems in which the operation o f an external loop depends on the 
operation of an inner loop should be avoided. This is not always possible, as for 
example in cascade control for disturbance rejection. However, as a general 
rule loops should be independent. 

(5) The control structure should be such that the failure o f a loop, or any element in 
the loop, does not tend to make the overall system unstable. 

(6) The manipulated variable should not be saturated. Aircraft control surfaces can 
deflect only by a certain amount; fluid flows are fixed between certain l imits; 
motors have maximum torques. Once a loop saturates, the system becomes 
nonlinear and there is often a significant recovery time before the loop becomes 
fully operative again. The saturation values provide design constraints. 

(7) A proposed design should be checked to ensure that i t is effective during start
up and shutdown conditions, and not just during normal operation. 
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4.5.2 PID controllers 
Control systems which have a forward path compensator consisting o f some PID 
combination have proved suitable for most industrial applications. Since 
maintenance and failure problems associated wi th non-standard equipment can 
prove costly, i t is normal practice to use a commercially available PID controller 
whenever possible (hundreds of such devices are readily available worldwide) . The 
PID control concepts introduced in Section 1.3.5 and Example 1.6 w i l l now be 
expanded. 

The first of the two standard PID arrangements to be presented is the most 
convenient mathematically, in that the three terms are completely non-interacting. 
Consider Figure 4 .1 , in which the compensator K(s) represents the three-term 
controller, and the sensor dynamics are assumed negligible (H(s) = 1). 

The proportional term of the controller produces a control signal proportional 
to the error in the system, so that u(t) = Kpe(t) or U(s) = KpE(s). I t is simply a 
forward path gain, the effects of which have been considered previously (see 
Example 4 .1 , or the whole of Section 4.4, for example). Typically, given a step 
change in setpoint, low values of Kp give rise to stable responses, but large steady-
state errors. Higher values of Kp give better steady-state performance, but worse 
transient performance (longer settling times, more overshoot and so on). I f Kp is 
made too high, then instability w i l l result (as seen in the root locus plots in Figures 
4.24(a), (c) and (e), for example). 

I f steady-state error is a problem, then instead o f increasing Kp, the controller's 
integral term is activated. Here, the control signal generated is proportional to the 
integral o f the error signal. That is 

where is the integral gain. 
The integral term gives a controller output which is a ramp, when fed wi th a 

constant non-zero input. When the controller input is zero, its output is held steady 
at its existing value. In a stable closed-loop control system containing integral 
action, the steady-state error (controller input) is normally zero, the output of the 
integral term then being held steady at whatever value o f u(t) is needed to maintain 
the plant output y(t) equal to the reference input r ( r ) , thus maintaining the zero error 
condition. 

Although the steady-state error may be reduced to zero by this 
controller, such performance is achieved at the expense of stability. This is 
because the integral term increases oscillation and settling time by 
introducing an extra 90° phase lag at all frequencies, thus reducing the phase 
margin. In some systems, this is not serious. In others, assuming a combined 
proportional plus integral controller, it is possible to regain satisfactory operation 
by reducing the value of proportional gain, thus reducing oscillation. This is 
acceptable, since one reason for using a high value of Kp is to reduce steady-state 
error, which should now be eliminated by the integral term. I t can be seen from the 
Ziegler-Nichols tuning rules (introduced in Section 3.3.4) that the proportional gain 
is set 10 per cent lower in a PI controller than in a purely proportional controller for 
the same plant. 
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I f i t is not possible to reduce oscillation sufficiently using a PI controller, then 
the third term can be added. This term gives a control signal proportional to the time 
derivative (rate of change) of the error signal. Thus, 

u ( t ) = K d ^ - or U(s)=sKdE(s) 

where Kd is the derivative gain. Since the output signal from this third term 
responds only to the rate of change of error, i t has no effect upon steady-state 
operation (when rate of change is zero). 

During a transient, the 90° phase lead introduced by the zero at the or igin of the 
s-plane increases the system's phase margin and hence increases the damping (thus 
reducing the oscillations) of the closed-loop system. This increase in damping 
allows higher values of Kp and Kt to be used than would otherwise be the case. 
Again, typical increases can be seen by examining the appropriate Ziegler-Nichols 
rules. (Note that derivative action must be used wi th care in 'noisy' environments, 
as the response to the high rates of change of the noisy input signal causes 
problems.) 

The foregoing description leads to a complete three-term controller whose 
transfer function is: 

G ^ ) = ^ = KP+J+^ (4-22A) 
where 

K = proportional gain, selected for adequate rise time 

K{ = integral gain (units of gain per second), selected for steady-state 
accuracy without making performance unacceptably poor 

Kd = derivative gain (units of gain x seconds), selected to overcome 
excessive oscillation or too long a settling time 

Often, although less convenient in terms of the interactions created, the controller 
is rewritten as: 

G^ = W>=Kp(l+^+sTd) (4-22b) 

where (when compared wi th Equation (4.22a)): 

Ti = integral action time (or 'reset t ime ' ) (seconds) = Kp/Ki 

Td = derivative action time (or 'rate t ime ' ) (seconds) =Kd/Kp 

Further, the gain is often expressed as a 'proportional band', PB, where 

PB = {\/Kp) x 100 per cent 

PB is the percentage of the controller's input range which w i l l cause a change of 
100 per cent in its output range. For example, i f Kp = 5, then the PB = 20 per cent. 
Under these conditions an error signal change of 20 per cent o f the controller's 
input range would cause the controller output to change by 100 per cent o f its 
range (that is, by the fullest possible amount). I f the gain Kp was low (Kp = 1, say) 
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Figure 4.27 Physical 
meaning of integral and 
derivative action times. 

Controller 
output u(t) 

Controller 
output u(t) 
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then the proportional band would be high (100 per cent in this case). Wi th a 
proportional band of 100 per cent, an input error change of 20 per cent o f the scale 
(3.2 m A in the case o f a common analog electronic 4 to 20 m A system, for 
example) would cause the controller output to change by only 20 per cent o f fu l l 
scale. 

Tt is the time required for a PI controller to duplicate the effect o f the P term 
acting on a step input (see Figure 4.27(a)). 

Td is the time by which the output of a PD controller (to a ramp input) is 
advanced compared wi th the P term acting alone (Figure 4.27(b)). 

In practice, the proportional channel w i l l have a bias. For proportional control, 
the actuation signal U(s) is related to the error signal E(s) by the equation 

U(s)=KpE(s) + b 

where b is the controller output bias. 
Figure 4.28 shows the closed-loop block diagram of such a proportional 

controller. In this system the bias provides an offset for the zero error point. Wi th no 
bias signal and an open-loop system transfer function o f type 0, E(s) can be zero in 
the steady state only i f R(s) and Y(s) are zero. However, even i f the bias is not zero, 
the zero steady state E(s) point sti l l requires R(s) and Y(s) to be equal (assuming 
H(s) = 1), but they w i l l not be identically equal to zero. The bias therefore shifts the 
control system's operating point. Normally, the selected operating point is 
somewhere in the actuator's mid-range of operation, so that i t can respond to 
both positive and negative error signals. 

Ideal derivative action cannot be achieved in practice, so a practical PID 

Figure 4.28 A proportional 
controller with output bias. 
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controller approximates derivative action via a lead compensator, whose action 
may be described by 

where typically, for a commercial device, a is fixed somewhere between 1/6 and 
1/20. The lead compensator is placed in series w i th a PI controller. The commer
cial P ID controller transfer function is therefore the product o f those o f a PI con
troller and a lead compensator described by the equation: 

For further details on lead compensation, see Section 4.5.4. 
The reason why a pure derivative control element is impossible can be seen by 

visualizing the frequency response o f any real system. As frequency increases to a 
very high value, the system w i l l cease to respond (that is, its gain w i l l become zero). 
Even atoms cannot vibrate at infinite frequency. The corollary o f this statement is 
that the Bode magnitude plot of any real system must have a high frequency ro l l -o f f 
of at least - 2 0 dB per decade. I t w i l l usually be more than this. I t cannot be flat, nor 
can it rise at 20 dB per decade (which the Bode plot o f a pure differentiator would 
do). Therefore, the model of any system should have more poles than finite zeros. 

The model sK used to represent the ideal differentiator would only be val id 
over an extremely restricted frequency range. I f a crude differentiator was buil t 
using an operational amplifier, having its inverting input connected to the outside 
wor ld by a series capacitor (C farads), and having a resistive feedback path (R 
ohms) back to its inverting input from its output, the transfer function may be 
derived on paper as -sK, where K — CR (such an arrangement would appear as in 
Figure 4.45(a) in Section 4.7, below, wi th R{ and C 2 omitted). In practice, at high 
frequencies, the resistive effects in a real capacitor and the capacitive and inductive 
effects around the amplifier and feedback resistor would introduce some significant 
poles, causing the Bode magnitude plot first to level off, and then to fa l l . 

Many CACSD packages (including M A T L A B ) w i l l not accept a transfer 
function whose numerator is of higher order than its denominator, because such a 
system is physically unrealizable. Also, from a mathematical viewpoint, such 
packages do most of their analysis (transparently to the user) using state-space 
models. In Section 2.5.1 it was seen that it is impossible to obtain such a model i f 
the corresponding transfer function's numerator is o f higher order than its 
denominator. 

PID controller tuning 
There have been many techniques proposed for the time-domain tuning o f PID 
controllers, but in practice the Ziegler and Nichols methods seem to have become 
the recognized standards in the process industries. Using their settings produces an 
underdamped response (see Section 3.3.4). For process control such responses are 
desirable, since the oscillations tend to average out, and the overshoot helps to 
eliminate the effects of stiction and backlash in the valves and actuators ( 's t ict ion' 
is static friction, the init ial resistance to motion o f contacting surfaces). However, 
wi th servo control systems, oscillations are not usually desirable and additional 

(4.23) 
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damping w i l l therefore be required. In most cases this can be achieved by reducing 
the controller's proportional gain during online tuning. 

The effect on a system's root locus plot of introducing a PID controller has 
been examined in Section 4.4.2. Proportional control is ideally suited to the root 
locus design method. Wi th PI control the design procedure is normally an iterative 
one. However, a PI controller introduces a pole at the origin o f the s-plane and a 
zero at — 1/Tt and this requires the selection o f two parameters: Th which defines the 
position of the zero in the open- and closed-loop transfer functions, and K, which 
locates the closed-loop pole positions. The pole at the origin of the s-plane slows 
down the response, so T{ is normally chosen so that its associated zero is close to the 
pole, so as to speed up the response. I f derivative action is included i n the controller, 
then a further pole-zero combination is introduced, the relative positions o f which 
depend on the selection of a (see Equation (4.23)). In general, integral action is 
introduced to increase the system's type number and hence improve its steady-state 
tracking capabilities. Since most systems contain some noise, derivative action is 
often not used; however, when it can be used (see Section 4.5.1) the effect is to 
increase the system's speed of response. 

For selecting the settings for a PID controller using frequency-domain 
techniques, design guidelines have been developed. Typically, a proportional 
controller should satisfy a given gain margin criterion. For example, the Ziegler-
Nichols setting for a proportional controller is based on a gain margin o f 2. Checks 
are then carried out on the phase margin and Mp value to ensure satisfactory 
performance. Wi th a PI controller the proportional gain would be adjusted to meet 
the Mp specification (this is effectively defining the closed-loop damping ratio). The 
introduction of integral action reduces the system's bandwidth, hence reducing the 
response speed of the closed-loop system. The zero introduced by the PI controller 
is then used to increase the bandwidth, therefore reducing any loss of response 
speed. One way of achieving this is to set the integral action time at 

where cop is the resonant frequency (the closed-loop frequency corresponding to 
Mp). This places the zero in a position where it removes most of the integration 
phase angle lag at the point where the resonant peak occurs. The introduction of 
this combined PI action changes the closed-loop response, and consequently the 
proportional term must be readjusted to meet the bandwidth specification. I f at this 
stage (op is essentially unaltered, the design is complete; otherwise the integral 
action time must be recalculated from Equation (4.24) and the process repeated. 

The frequency-domain design of a fu l l PID controller gives three adjustable 
parameters. A typical procedure for selecting them is first to design a PI controller. 
The derivative action time Td is then chosen so that the lead compensator network 
gives its maximum phase angle advance (see Figure 4.34, below) at the - 1 8 0 ° point 
on the Pi-controlled open-loop frequency response curve. Again, the closed-loop 
frequency response changes wi th the introduction o f new terms, and the various 
design stages must be repeated until there is no appreciable change. 

Finally, note that it is possible to arrange for a PID controller to tune itself in 
response to changing plant conditions. Such controllers are discussed in Chapter 11. 
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4.5.3 Velocity feedback (or rate feedback) 
Derivative action has the attraction that i t improves a system's rise time without 
producing an over-large overshoot or excessive oscillations. Despite this, i t finds 
li t t le practical application because of its intolerance to noise. There is also another 
wel l -known problem wi th derivative action, known as 'setpoint k i c k ' . This occurs 
when the setpoint to a control loop is suddenly changed to a new value (thus 
approximating a step change in demand). Since the feedback signal cannot change 
instantaneously, such a step is passed directly to the error signal. A derivative 
controller term acting on an approximation to a step change in error w i l l 
immediately cause an impulsive-type response to the maximum (that is, saturated) 
controller output. Although such an impulse in the control signal w i l l only occur 
once per demand change, i t is nevertheless undesirable from the viewpoints of 
linearity and plant actuator wear. 

W i t h some systems these problems can be avoided by using the derivative of 
the output signal, rather than the error, and summing it w i th the output o f a PI 
controller. Wri t ing the error signal as e(t) = r(t) - y(t) (cf. Figure 4.1 wi th 
H(s) = 1), i t can be seen that the derivative of the error signal is simply the inverse 
of that o f the output, so long as the setpoint is not changing (so the derivative of 
r ( r ) = 0). In some systems it is also possible to measure the derivative of the output 
variable directly and so avoid the problems of noise. For historical reasons, the 
direct measurement of the derivative of an output for control purposes is known as 
velocity feedback, or rate feedback. 

A classic example of direct derivative measurement is the use o f a 
tachogenerator to measure the angular velocity o f rotational position control 
machinery. Figure 4.29 shows the block diagram of such a system incorporating 
velocity feedback. The block Kvs represents the tachogenerator, so its output is 
proportional to the derivative of Y(s). Assuming Y(s) to be an angular position, the 
output of this block is therefore directly proportional to angular velocity. The 
closed-loop transfer function for this system is given by: 

Y(s) = G(s)Gc(s) 

R(s) 1 + G(s)Kvs + G(s)Gc(s) 

I t is left as an exercise for the reader to show that, i f Gc(s) is a PI controller, then 
the closed-loop characteristic equation from the above LTF is identical to that of 
the system under ideal PID control. This is found to be true i f Kv = KTd, where K 
and Td are the gain and derivative action time of an ideal PID controller (see 
Equation (4.22b)). 

Although velocity feedback produces the same characteristic equation as a 

Controller Plant 

R(s) 

A 

Figure 4.29 A velocity 
feedback loop. 

GJß) G(s) Y(s) 

Velocity feedback 

Position feedback 
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PID controller, PID action introduces a zero into the closed-loop system, whereas 
velocity feedback does not (see Example 4.7). 

4.5.4 Simple compensators 
When i t is not possible to meet the desired performance specifications simply by 
adjusting the system's closed-loop gain, dynamic compensation is required. The 
simplest form of dynamic compensation is provided by the lag, lead and lag-lead 
compensators. Wi th these devices, either singly or in combination, i t is normally 
possible to adjust the system's response sufficiently to achieve the required 
performance. In this sense, the PID controller and its various derivatives are specific 
combinations of lead and lag compensators. 

The fol lowing subsections consider the design o f lag, lead and lag-lead 
compensators using root loci and frequency domain methods. 

Lag compensation 
A stable closed-loop design which has a satisfactory transient response, but too 
large a steady-state error, can often be improved by means o f lag compensation. 
The transfer function of a lag compensator is 

^ / n 1 + Ts 
Gc(s) = — , a > 1 

The compensator's pole-zero map is shown in Figure 4.30. Since the pole is 
located at s = — 1 /aT, this compensator is a more general form of PI controller. A 
PI controller has its pole at the origin of the s-plane, corresponding wi th otT being 
very large. 

Using the root locus design technique, the pole o f the compensator is placed 
close to the origin of the s-plane in order to improve the steady-state error. Since the 
response is deemed to be satisfactory, the original shape of the root locus plot 
should remain unchanged. The change brought about by compensation can be 
minimized by placing the zero close to the pole. A useful rule o f thumb is that the 
angle contributed by the compensator at the original dominant closed-loop poles 
should be less than 5° . 

The various frequency design methods enable closed-loop performance to be 
described in terms of Mp, cop and the static error coefficients. The usual design 
procedure is to fix Mp and then determine the corresponding frequency cop and loop 
gain K. F ixing Mp essentially defines the damping ratio, and from cop is found the 
undamped natural frequency ojn. The value of cvn, together wi th the damping ratio, 
determines the response settling time. 

Ljú) 

- e -
-1/T 

Figure 4.30 Pole-zero map 
of a lag compensator. 

— 
-1/(exT) s-plane 
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The frequency response function o f the lag compensator is 

1 +](oT 
1 + ocjcoT 

Bode plots for this compensator are shown in Figure 4.31 for a = 2, 5 and 10. 
These can be added to the Bode plots of an uncompensated open-loop system in 
the manner illustrated in Example 3.11. Phase lag compensation is normally 
applied to the very low frequency end o f the open-loop frequency response. I f the 
object is to reduce the steady-state error o f a type 0 system, then a is selected to 
give the required increase in gain (that is, the forward path gain is adjusted so that 
the right-hand end of the magnitude plot in Figure 4.31 coincides w i th the mid-
frequency gain of the uncompensated system, thus a l lowing low-frequency gain to 
rise). Typically, for the same gain and phase margins as the uncompensated 
system, the loop gain of the compensated system has to be increased by a. There 
are practical l imits on the magnitude of a, and normally a would not be greater 
than 10. Once a is selected, T is chosen so that the corner frequency o f the zero is 
wel l away from the critical frequency range o f the system (otherwise the extra 
phase lag introduced by the compensator may destabilize the system). A n 
acceptable value is 

T~ 10 

The above design procedure is intended only as a guide; in an actual study 
adjustments to these values are l ikely to be required before an acceptable solution 
is reached. 

Figure 4.32 shows the effect o f lag compensation on a type 0 system. In this 
figure the gain of the compensated system has been increased so that i t has the same 
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1.5 i - ImGfs) 

Figure 4.32 The effect of 
adding lag compensation to 
a type 0 system. 

gain and phase margins as the original system. As a corollary, i f the steady-state 
error o f the original design were acceptable, no increase in loop gain would be 
required and the gain margin of the compensated system would be increased. The 
increase in gain margin would be accompanied by an increase in phase margin. 

In general, the effects of lag compensation are as follows: 

• The bandwidth is reduced. 

• The predominant time constant of the system is usually increased, producing a 
more sluggish system, as lag compensation introduces a pole close to the 
imaginary axis. 

• For a given relative stability the steady-state error is improved, and the system 
has better tracking capabilities. 

• For a given steady-state error the gain margin is improved. 

The M A T L A B Multivariable Frequency Domain Toolbox (Ford et al, 1990) has a 
phlag command for designing such compensators. The phlead command can also 
be used. The difference is that phlag works in terms of a specified dB gain change, 
whereas phlead works in terms of a specified maximum phase change. 

Lead compensation 
Lead compensation is normally used to improve the speed of response o f stable 
systems of type 1 and higher. I t can also be used to advantage in systems wi th time 
delays. 

The compensator transfer function is given by 

Gc(s) = a 
l+Ts 

1 + a 7 s 
a < 1 

or 

Gc(s) 
s+l/T 

a < 1 (4.25) 
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There are practical l imits to the amount by which the magnitude of a may be 
decreased, and typically a is not less than 0 .1 . 

The inclusion of a lead compensator can have a pronounced effect on a 
system's root locus plot. For this reason the root locus design procedure in which 
the compensator's pole-zero positions are fixed (see Figure 4.33) is normally one o f 

LjCO 

Figure 4.33 Pole-zero map 
of a lead compensator. 

- e -
-1/(ccT) -1AT s-plane 

t r ial and error. However, an approach which can be used to good effect on systems 
of type 1 or higher is to choose the zero position so that i t cancels the most positive 
(that is, the most dominant) real pole of the open-loop system. (It is assumed that 
poles at the origin of the system are excluded, and that al l other open-loop poles and 
zeros are in the left-half s-plane.) The frequency response function o f the lead 
compensator is 

Gc{jco) = a 1 , y . _ 
\+OLJLX>T 

and its Bode plots are shown in Figure 4.34 for a = 0 .1 , 0.2 and 0.5. Again , such 
compensator Bode plots can be added to those o f the open-loop system. 

I n the frequency domain, lead compensation is commonly used to improve a 
system's phase margin. Improvements in phase margin are accompanied by 
increases in bandwidth and copy and hence also by an increase i n the closed-loop 
transient response speed. One method of selecting the parameters o f the lead 
compensator is first to choose the desired phase margin, The frequency coB is then 
found at which the phase angle of the open-loop plant GH(s) is given by 

aigGH(s) = - ( 1 8 0 ° - j 8 + r<5) 

where 

P = desired phase margin 

r = system type number 

S = maximum phase advance of the selected compensator 

I t may be shown that 

5 — t a n - 1 -—-^r and occurs at a frequency co 
2 y ^ Tyß 
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I f T is now chosen such that 

then the frequency at which the maximum compensator phase lead occurs w i l l 
coincide wi th coB. I f the gain o f the compensated system is adjusted to give a 
magnitude ratio o f 0 dB at coB, the system w i l l be found to have the desired phase 
margin /?. 

The effect of a phase advance compensator on the polar plots o f type 1 and 2 
systems is shown in Figure 4.35. 

I n general, the effects of lead compensation are as follows: 

• The bandwidth is increased. This could be a problem i f there is significant noise. 

Figure 4.35 The effects of 
a lead compensator on the 
polar plots of type 1 and 2 
systems, (a) Type 1 system; 
(b) type 2 system. 
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• The predominant time constant of the system tends to be reduced, producing 
faster response times. 

• A system's gain and/or phase margin is increased. When increases in phase 
margin of more than 55° are required (corresponding to a = 0.1), a number o f 
lead compensators is cascaded together. 

The M A T L A B Multivariable Frequency Domain Toolbox (Ford et al, 1990) has a 
phlead command for designing such compensators iphlag can also be used as 
noted above). 

Lag-lead compensators 
I f both the transient and steady-state responses o f a system are unsatisfactory, it is 
usually more economical to use a combined lag-lead compensator instead o f 
individual lag and lead elements. The transfer function o f this type o f compensator 
is 

( i + r , 5 ) ( i + r 2 j ) 
G A S ) = 7 - — — r y - — — — T - T - , a > 1, i i > i 2 

Figure 4.36 shows the compensator's pole-zero plot, and Figure 4.37 a sketch o f 
its Bode plots. 

kjco 

Figure 4.36 Pole-zero map 
of a lag-lead compensator. 

-a 
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Design techniques for the lag-lead compensator combine the methods 
previously described for the lag and lead elements. 

In general, a lag-lead compensator has al l the advantages o f both lag and lead 
compensation, and very few of their usually undesirable characteristics. The use of 
lag-lead compensators therefore makes i t possible to meet many system 
spécifications without incurring the penalties o f excessive bandwidth or over-
sluggish response. 
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Example 4.6 Lead compensation of the antenna 
positioner 
In Section 2.7, Figures 2.47 and 2.48, a simple model was derived for an antenna azimuth 
control system. The open loop LTF was found to be: 

Y(s) = 5 

U(s) ( j + 5 ) ( i + l ) j 

Design a closed-loop controller to give the system zero steady-state error to a step input, a 
settling time of better than about 5 seconds to wi th in 2 per cent of the steady output and 
as l i t t le overshoot as possible. 

As an ini t ia l investigation, the root locus plot appears as Figure 4.38(a) and the 
closed-loop step response wi th unity negative feedback as Figure 4.38(b) (the open-loop 
step response does not reveal much, because this is a type 1 system, so the output simply 
ramps after the ini t ial transient period). Figure 4.38 could have been produced manually, 
using the rules in Section 4.4.1. In this instance M A T L A B was used, and the appropriate 
m-file w i l l be found as fig4_38.m on the accompanying disk (it generates some on-screen 
instructions). 

From Figure 4.38(a) (or by running the M A T L A B m-flle), i t is found that the gain for 
critical stability is K — 6 (note that this is extra gain, so the LTF numerator would become 
30 for this condition). This is easily verified by a Routh test (Section 3.3). 

However, Figure 4.38(b) shows that, rather than needing to increase the gain, i t must 
be reduced. This is because there is already a large amount of overshoot (about 20 per 
cent) and the settling time is too long (about 11 seconds). Increasing the gain would only 
make these parameters worse. 
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Figure 4.38 Uncompen
sated antenna-positioner 
system, Example 4.6. (a) 
Root locus plot, (b) Closed-
loop step response (with 
UNF). 

There is no steady-state error problem wi th this system, so an experiment can be 
£ performed to investigate the effect of simply reducing the gain. App ly ing the magnitude 
* criterion to the root locus plot at the real axis breakaway point (corresponding to unity 

damping ratio and hence zero overshoot) would give the value K = 0.2257 (this value was 
- obtained by running the M A T L A B m-file in this case). This implies a corrected numerator 
ft term in the open-loop LTF of 5 x 0.2257 = 1.1285. However, i f this value is used, and the 
$ closed-loop response is recalculated, i t is found that there is indeed zero overshoot, but the 

n settling time extends to about 15 seconds, which is too long. I n fact, there is no reduced 
value o f gain capable of meeting the specification. A proportional-only controller w i l l 

| therefore not suffice and so a dynamic compensator is required. 
A lag compensator is used when the transient response is satisfactory, but there is a 

steady-state error. Neither of these is the case here, so a lag compensator is inappropriate. 
* For the same reasons, a PI controller (which is a special case o f a lag compensator) is 
, inappropriate. What is required is a PD controller, to damp out the oscillations and reduce 
* settling time. A real PD controller is equivalent to a lead compensator, so that is the 

appropriate compensator to try for this system. 
The design 'rule of thumb' suggests that the compensator zero should cancel the most 

/ dominant non-zero system pole. In this case, this is the pole at s = - 1 , so the lead 
5 compensator w i l l be: 

^ + l ) x , where a < 1 (Equation (4.25) w i t h 7 = 1 ) 
(s - h i / a ) 

, i The controlled system is now as shown in Figure 4.39 and i t remains only to choose the 
? value o f a. This was carried out by trial and error using the M A T L A B m-file, and a value 
T o f a = 0.5 gave the response of Figure 4.40. 

Note that this compensator is only just capable o f meeting the specification. By 
i setting a = 0.56, a settling time of just under 4 seconds can be achieved. W i t h faster 

responses, the overshoot becomes too large and the settling time too long. 

Compensator Plant 
R(s) Ms) 

Figure 4.39 Lead 
compensator applied to the 
antenna positioner. 

(s + 1) U(s) 5 
(s + 1/a) (s + 5)(s + 1)s 

Y(s) 
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Example 4.7 Velocity feedback control of the 
antenna positioner 
Since the velocity signal appears in the antenna-positioner model (Figure 2 . 4 8 ) and could 
presumably be made available to the controller by use o f a tachogenerator, i t would be 
particularly easy to try to control this system using velocity feedback. The arrangement is 
shown in Figure 4 . 4 1 . 

A root locus plot can be used to investigate the behaviour as Kv varies. For this 
purpose, a closed-loop characteristic equation is needed of the form: 

l + t f v G ( j ) = 0 

From Figure 4 . 4 1 , the overall forward path transfer function can be seen to be: 

' 5 " 

(S + 5 ) ( S + 1 ) + 5A:V_ 

With unity negative feedback, the resulting closed-loop characteristic equation is: 

. ( J + 5 ) ( J + 1 ) + 5 J C V . 

E{s) s 

Output Output 
velocity position 

Figure 4.41 Velocity 
feedback applied to the 
antenna positioner 
(Example 4.7). 
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f and may be rearranged to give the required form: 

s{s + 5)(s+\) + 5Kvs + 5 = 0, 

1 4- 5KyS = 1 4- 5KyS = 0 
j ( j + 5 ) ( i + l ) + 5 s 3 + 6s 2 + 5s + 5 

Again using M A T L A B , the resulting root locus plot for varying Kv appears as Figure 4.42, 
which can be generated using the m-file fig4_42.m on the accompanying disk. 

This root locus shows that the system w i l l remain stable for any positive value o f Kv. 
•/ However, the greatest relative stability w i l l occur at the point indicated on the plot, where 

Kv « 0.98. Wi th this value of Kv, there w i l l be no overshoot in the closed-loop step 
response. This analysis is also carried out by fig4_42.m. 

However, the settling time definition allows about 2 per cent overshoot, so the value 
of Kv can be slightly reduced to give a faster response. After a l i t t le experimentation, a 
value o f Kv = 0.85 gives a response similar to that of Figure 4.40, but w i t h a settling time 
of about 3.7 seconds (given modelling inaccuracies, predictions o f this slight an 
improvement may bear lit t le resemblance to what would happen in practice). 

Figure 4.42 Root locus for - 6 - 5 - 4 - 3 -2 -1 0 
varying Kv in Figure 4.41. Real axis 

4.6 The Smith predictor 
So far the problem of controlling plants having significant time delays has not been 
considered. In Chapter 3 (Section 3.7), i t was shown that the time delay in a system 
would add to the phase lag at a given frequency without altering the magnitude. 
This increase in the phase lag reduces the system's stability margins and can make 
the system difficult to control. A potential solution for some plants is to adopt a 
digital control strategy (see Section 7.7). 

In practice unfortunately, there is l i t t le to choose between the performance of 
digital and continuous controllers for plant having a significant time delay. Indeed, 
for disturbance inputs, unless the digital controller samples very rapidly indeed, i t 
can be worse than a continuous controller; the reason being that the sampled system 
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takes longer to detect the disturbance. Under these circumstances one often very 
successful solution is to use a Smith predictor (named after O. J. M . Smith, who 
published the method in 1958). 

Consider a plant having the transfer function 

Gp{s) = G(s)e-W 

The Smith predictor attempts to remove the effect o f the T second time delay 
(represented by the LTF e~xs) from the closed-loop control system, so that the 
controller can be designed as i f there were no time delay present. To achieve this, 
Smith proposed the control scheme shown in Figure 4.43. Ignoring the dashed 
lines, what happens in Figure 4.43 is that a delay-free model o f the plant is used to 

Controller Plant 
R(s) 

A 

E(s) 

Figure 4.43 The Smith 
predictor arrangement. 

S(s) 

Gc(s) 
U(s) 

Gc(s) Gp(s) = G(s)e-" 

Delay-free Delay 
model model 

G(s) 

Y(s) 

generate the output signal which would exist i f the delay were absent (assuming a 
good model). This delay-free signal is then used in the usual feedback loop (via 
B(s))y instead of the plant output. To help to account for errors in the delay-free 
model, the delay itself is also modelled, and used to generate what should be a 
model of the actual plant output, including the delay effect. The dashed lines show 
how this is then compared wi th the actual output, Y(s)y so that a modelling error is 
also fed back into the control loop via B(s). I n this way, the effects o f errors i n the 
model of G(s) are reduced. 

Figure 4.44 shows an alternative representation o f Figure 4.43, in which the 
various feedback elements have been combined by block diagram reduction, to 

Controller Plant 
R(s) 
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E(s) 

Figure 4.44 A n equivalent ^( s ) 
arrangement for the Smith 
predictor. 

Gß) 
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show a predictor block, which effectively predicts the system output. Analysing 
this structure by further block diagram algebra shows that: 

Y(s) = Gp(s)U{s) 

and 

B(s) = G ( J ) ( 1 - e~u)U{s) + Gp(s)U(s) = G(s)U(s) ( 4 . 2 6 ) 

Eliminating U(s) from Equation ( 4 . 2 6 ) 

or 

B(s) = e+zsY{s) 

That is, the predictor block predicts the effect o f the manipulated variable U(s) on 
the plant output Y(s) and adjusts the feedback signal accordingly. 

Further examination of Figure 4.44 allows the stability requirements o f the 
scheme to be assessed. In fact, Figure 4.44 turns out to be similar to an arrangement 
known as the 'internal model control ' ( I M C ) scheme, examined in Section 13.3. 
Although it can be analysed by the approach o f Chapter 13, block diagram 
reduction w i l l serve for the present. First, imagine moving the Gp(s) block to the 
right o f the feedback take-off point in Figure 4.44, and adding a copy of i t into the 
vertical feedback path to compensate (as in entry 3 o f Table 2.11). This gives two 
parallel feedback paths, feeding back U(s)9 whose transfer functions can simply be 
added to give Gp(s) + G(s)(l - e~xs). Now, from the original definitions, 
G(s)e~TS = Gp(s). Therefore, this block becomes simply G(s). The overall transfer 
function is then easily seen to be given by: 

Y(s) Ge(s) 

R(s) 1 + Gc(s)G(s) 

Making the fol lowing substitution: 

W \+G(s)Gc(s) 

the closed-loop transfer function becomes: 

GJs) ( 4 . 2 7 ) 

^ = K(s)Gp(s) ( 4 . 2 8 ) 

Noting that Gp(s) does not appear in K(s), Equation (4.28) shows that for the 
closed-loop system to be stable both K(s) and Gp(s) must be stable. Therefore a 
Smith predictor can only be used wi th open-loop stable plant. In addition, Equation 
(4.27) shows that in terms of stability (pole locations) the Smith predictor 
effectively removes the time delay. 

Therefore, the stability of the closed-loop system is identical to that obtained i f 
the plant's time delay had originally been ignored. However, the closed-loop 
transfer function contains a time delay in its numerator (since Gp(s) = G(s)e~xs in 
Equation (4.27)) and this w i l l modify the response o f the system compared wi th that 
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of the time delay free plant. Like all control system design methods this technique 
depends upon an accurate plant model (particularly, an accurate model o f the 
delay). 

4.7 Some notes on controller implementation 
Compensators, and the controllers which contain them, are often implemented 
digitally, see Section 5.8 and Chapter 7. I n this section, the basis o f analog 
implementation w i l l be considered. 

In Chapter 2 (Figure 2.15 in Example 2.4 of Section 2.4.2) an electrical lead 
compensator was constructed from passive components. Similarly, Figure 2.20 in 
Example 2.7 (Section 2.4.3) showed a mechanical lead compensator constructed 
from springs and dashpots. Rather than considering al l the various realizations, a 
single example is selected and used to illustrate some important aspects of 
implementation. 

Consider the electrical lead compensator analysed in Chapter 2, which had the 
differential equation model (see Equation (2.16)): 

R { R l C It V " W + { R l + / ^ V * W = Jt V/W +^2V/(0 

Taking Laplace transforms wi th zero ini t ia l conditions and gathering terms 
together gives: 

(RxR2Cs + Rx +R2)V0(s) = (RlR2Cs + R2)Vi(s) 

or 

V0(s)= RxR2Cs + R2 = s+l/T 

Vfe) RxR2Cs + RX+R2 s + 1 /(ocT) [ ' } 

where 

T = RXC 

and 

R2 

a = — 
Rx +R2 

This result is in agreement wi th Equation (4.25), confirming that the circuit is a 
lead compensator. 

I f an electrical compensator is to be used, then presumably the plant to be 
compensated has electrical input and output signals. The electrical input signal 
requirements ( in terms of voltage range and current capacity) must be matched by 
the compensator. Also, the lead compensator has an insertion loss factor of a (the 
d.c. gain o f the LTF of Equation (4.29) can be seen to be a, and a < 1). Some 
amplification w i l l therefore usually be necessary, both to recover the lost gain due to 
inserting the compensator, and to boost the power to a sufficient level to drive the 
plant input. 

I t is normal to combine the compensator o f Figure 2.15 wi th an operational 
amplifier, in order to recover the insertion loss (an operational amplifier is an 
extremely common electronic 'building block' whose principal features are a very 
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high open-loop gain, very high input impedance and very low output impedance). 
Simply fo l lowing the circuit of Figure 2.15 w i t h a high input impedance amplifier 
(so as not to load R2) is certainly an option. However, the operational amplifier 
circuit of Figure 4.45(a) is a neater way of solving the problem, and has the added 

(a) 

Figure 4.45 Analog 
electronic lead or lag 
compensator, (a) 
Operational amplifier 
circuit arrangement; (b) 
equivalent arrangement for 
LTF evaluation. (b) 

advantage that i t can actually be either a phase lead or a phase lag compensator, 
depending upon the component choices. I n either case, the transfer function o f such 
an operational amplifier circuit is obtained by v iewing i t as in Figure 4.45(b), and 
wri t ing the LTF as 

1 7 7 T = - ^ T T (4-3°) 
where Zf(s) and Z^s) are the complex (Laplace transformed) impedances o f the 
feedback and input networks, respectively. This result follows directly from the 
basic characteristics of operational amplifiers. 

For each of the parallel RC combinations in Figure 4.45(a), the combined 
impedance is found by putting the resistance in parallel w i th the capacitive 
reactance. This reactance is Xc = 1 /{jcoC) which, i n the Laplace domain, becomes 
l/(sC). 
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Thus, by the normal rules for calculating parallel impedances: 

1 1 1 1 1 „ 1+sCR 
+ 7T = ^ + SC = • 

parallel impedance Z R Xc R R 

or 

Z = — (4.31) 
1 + sCR K J 

Using the component designations from Figure 4.45(a) in Equation (4.31) and 
substituting the results into Equation (4.30) gives the compensator LTF as 

V0(s) _ R2/(l+sC2R2) = R2 ( l + s C , f i , ) 

V,(s) RJil+sC^) Rx (l+sC2R2) ( • 

Equation (4.32) can be compared wi th the LTFs o f both the lag and lead 
compensators given earlier, and made equivalent to either by careful choice o f the 
four component values. For a lead compensator, i t is possible to make Equation 
(4.32) look like Equation (4.25) by rearranging i t as follows: 

V0(s)= Cx [s + \/{CxRx)\ 

V,(s) C2 [s+l/(C2R2)} 

Comparison wi th Equation (4.25) then shows that T = and 
a = (C2R2)/{CXRX). Furthermore, using the final value theorem for the response 
to a step input in Equations (4.32) or (4.33) shows that the magnitude o f the d.c. 
gain o f the compensator w i l l be R2/Rx (which could also be seen directly from 
Figure 4.45(a), since the capacitors have no effect at steady-state d . c ) . The 
requirement that a must be less than unity for a lead compensator is also catered 
for by appropriate component selection. 

Note also the fol lowing points: 

• Unless the plant actuation system has bui l t - in power amplification, i t is l ikely 
that more power w i l l be required to drive the plant input than a standard 
operational amplifier can provide (that is, more than a few m W ) . There are then 
two options. A power operational amplifier can be used. These are readily 
available wi th output ratings of up to ± 3 0 V at a few amperes - but whereas 
standard operational amplifiers are extremely cheap, good high power versions 
are relatively costly. Alternatively, an extra power amplifier can simply be 
inserted between the compensator and the plant input. 

• Note that there is a minus sign in the compensator transfer function. This cannot 
be ignored, as it produces 180° of phase shift. I t is considered in the fo l lowing 
example. 

• From the point of view of good electronic design, the direct connection from the 
non-inverting input of the operational amplifier, down to the 0 V common rail 
(that is, down to the bottom line in Figure 4.45(a)), should strictly be replaced by 
a resistor having a value equal to the parallel combination of Rx and R2. The 
purpose of this is to minimize offset effects due to imperfections in the 
operational amplifier. 

• Not shown in Figure 4.45 are the power supplies for the operational amplifier. 
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These are often omitted from such circuit diagrams, on the understanding that 
± 1 5 V (or some other suitable voltage) supplies are connected to the two 
appropriate pins of the amplifier chip. There is no zero volts supply to standard 
operational amplifiers, except for deliberate referencing o f one input to a 
common 0 V line, as in the case of the non-inverting input in Figure 4.45(a). 

Example 4.8 An analog implementation of a lead 
compensator for the antenna positioner 

i 
I n Example 4.6, a lead compensator for the antenna positioner was designed. It had values 
of T = 1 and a = 0.5. Now assume (for illustration purposes) that the input range to the 

i j drive system of the antenna positioner is ± 1 0 V, and that the actual antenna position is 
• measured by a 360° potentiometric transducer, connected across a ± 1 5 V supply. Design 

an analog electronic system to implement the controller. 
For the sake of this example, assume that the antenna can be rotated through a ful l 

360° . This would probably not be the case in practice for two reasons: 

g (1) A 360° measurement potentiometer must have a slight gap in its track, in order to allow the 
two 'ends' of the power supply to be connected (see Figure 4.46). Further, the wiper cannot 
be allowed to come to rest in this gap, otherwise control w i l l be lost. Note that helical 
potentiometers, al lowing several revolutions, are available. 

(2) I f complete rotation were allowed, there would be the possibility of more than one 
revolution in any given direction, thus making reliable electrical connections costly. 

in 
Next assume that the middle of the measurement potentiometer track is arranged to 
coincide wi th a 0° datum position, so that the potentiometer output w i l l be zero volts at 

™ this position as shown in Figure 4.46. The total possible output position range is then (just 
less than) ± 1 8 0 ° , and corresponds to the ± 1 5 V of the transducer power supply. 

The next assumption is that the setpoint w i l l be generated using a similar ± 1 8 0 ° 
potentiometer, connected to the same ± 1 5 V supply. Note that the fo l lowing detailed 
design would be different i f the setpoint potentiometer were to be fed from a ± 1 0 V 

8 supply so as to match the drive system input. Note also that the setpoint potentiometer and 
I the sensor potentiometer must be good quality servo potentiometers w i th 'quiet ' tracks. 
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* This is because the lead compensator (being roughly equivalent to proportional plus 
*« derivative action) w i l l tend to amplify electrical noise (see Figure 4.45(a)). 
2 To implement the comparator, another operational amplifier can be used. A sign 

inversion w i l l be required in the comparator operational amplifier, to cancel out that in the 
* LTF of the compensator (the minus sign in Equation (4.33)). The error signal should be 

R — Y, but the inversion o f this is Y - R, which is the error signal which must be formed. 
This can then be connected to the compensator of Figure 4.45(a) to complete the 
arrangement of Figure 4.39. 

Note that i f the setpoint potentiometer is at 0° (the middle o f its track, where 
R = 0 V ) , then the error signal (Y - R) can swing between ± 1 5 V (the range of Y). 
However, i f the setpoint is at one end of its track (very near to - 1 5 V say) then the error 
signal (Y - R) can swing between + 3 0 V and 0 V as Y changes between ± 1 5 V. Similarly, 
for R very near to +15 V, the error could swing between 0 V and - 3 0 V. The error signal 
can therefore apparently cover twice the range of the setpoint signal. Whi le this is 

r theoretically true, i t actually represents an error range o f ± 3 6 0 ° , or two complete 
revolutions. Such errors are impossible, given the assumptions, and i t may be taken that 

^ the error signal also has a working range of ± 1 5 V (which corresponds to one complete 
revolution, so real error signals should be much smaller). 

The only difficulty which might be encountered wi th this assumption is i f sudden 

u changes of setpoint can be made of more than 180° magnitude. Such a change would 
cause saturation o f the error signal. In these cases, large changes must be rate limited so 
that they are applied as a gradual ramp, rather than a sudden step, thus al lowing the output 
to 'keep up' wi th the setpoint, and keep the error magnitude relatively small. Adding such 
a rate l imiter between the setpoint potentiometer and the comparator would be equivalent 
to adding the pre-fdter block P in Figure 1.5. 

I t only remains to calculate the component values for the compensator. Recall that the 
compensator's d.c. gain is set by R2/R\. In this example, the requirement is to match the 

* ± 1 5 V error signal to the ± 1 0 V plant input, so R2/R\ = 2 /3 . 
The value o f T is 1 second, so CXRX = 1. 
The value o f a is 0.5, so 0.5 = C2R2/CXRX = C2R2. 

: These can be summarized (in terms of numerical magnitude) as: 

~ * i = l / C i R2 = 2Rx/3 C 2 = 1 / (2K 2 ) 

' Using these relationships can give impractical component values as Cx has to be large to 
*•" keep the resistor values manageably small. The problem wi th a large Cx is that i t must be 
% ' a bipolar type. These tend to be expensive and have poor tolerance at large values. The 

problem wi th very large R values is that they tend also to have poor tolerance, and to be 
noise-prone. However, a compromise is to choose Cx as 0.5 uF (sti l l relatively ' large' for a 
bipolar capacitor), which gives Rx —2 M Q (a 'large' resistance, but probably usable), 
R2 = 1.33 M Q and C 2 = 0.375 uF. 

Using these components, the final system is as shown in Figure 4.47. Notice that in 
order to obtain the error signal Y — R (as required above) from the comparator, we have 
fed +/? and —Y to an inverting summing amplifier. The signal —Y has been obtained by 
the simple expedient of reversing the transducer supply connections compared wi th 
Figure 4.46. 

The implementation of a lag compensator follows the steps given in Example 4.8. 
A lead-lag compensator can be obtained by cascading two separate compensators 
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1.33M 

Figure 4.47 Analog 
implementation of Example 
4.8. 

(although there are specific lead-lag operational amplifier circuits which achieve 
the same thing more efficiently). 

Similarly, there are special operational amplifier arrangements for three-term 
(PID) controllers. However, it is easy enough to bui ld the three terms (or two i f only 
PI or PD action is required) separately, each fed from the error signal, and sum their 
outputs using a summing amplifier (like the one used as the comparator in Figure 
4.47). This gives the PID arrangement o f Equation (4.22a), i n which each term is 
independently adjustable. Each term takes the form of Figure 4.45(b). For the 
proportional term, Zy and Z{ are both resistors, and Kp = Rf/Ri (volts per error vol t ) . 
For an integral term, Zf is a capacitor, Z, is a resistor and Kt= 1 / (RC) (volts per 
second per error volt) . For an approximate derivative term, Zf is a resistor, Z, is a 
capacitor and Kd = RC (volt seconds per error vol t ) . 

Note that each term w i l l have a negative gain, due to the inversion i n the 
operational amplifier, but that the inversion in the fo l lowing summing amplifier w i l l 
correct this. The comparator in front of such a PID controller w i l l therefore not need 
to form the inverse of the error, but must form the error 'proper'. Note also that 
unless extremely high quality components are used, and good electronic design 
practice is used when designing the circuit layout, the integral term is l ike ly to 
'd r i f t ' , and the derivative term to be extremely approximate (it w i l l be approximate 
even wi th the best possible techniques, for reasons discussed earlier). 

A PID controller circuit built along the lines indicated may be fine for 
laboratory trials, or for use on a pilot plant. However, i n an implementation for 
commercial use there are many other considerations. There is the problem of 
providing an offset to the controller output, mentioned previously. There is also the 
problem of obtaining a 'bumpless transfer' from manual control to automatic 
control, when the PID controller is first switched into the loop. This involves 
pr iming the integral term so that the ini t ial controller output matches the manual 
setpoint at the time of switching on the controller. This, and other similar matters 
mean that, for most applications, a proprietary three-term controller offers the best 
solution. (Note that such issues are discussed in greater detail w i th respect to a 
digital implementation in Section 9.7.) 
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4.8 Conclusions 
This chapter dealt wi th several aspects of single-input-single-output control system 
design. Nyquist 's stability criterion was covered, and used as the basis for 
assessing absolute and relative stability of system models. The root locus 
technique was then introduced. It was demonstrated that the method can be applied 
to show the variation of closed-loop poles wi th any given system parameter. This 
allows it to be used for three-term (PID) controller tuning (for example), where 
one parameter at a time can be varied and its effect on the closed-loop poles noted. 

The PID controller was studied in some detail. Other common SISO 
compensators, such as lag and lead compensators and the use of velocity feedback, 
were also introduced, and demonstrated by worked examples. Some aspects of 
analog controller implementation have also been discussed. 

Finally, the Smith predictor was described as a means o f controlling systems 
wi th time delays. 

4.9 Problems 
4.1 On separate Argand diagrams, draw the locus of the 

functions/i(0) = e& for +90° > 9 > - 9 0 ° and 
f2(0) = ej9 for - 9 0 ° < 9 < +90°. 

Find the inverse functions f\(9)~l and / 2 (0 ) - 1 and plot 
the inverse functions on separate Argand diagrams. 
How would these functions be represented in polar 
coordinates? 

Hint: The function fx(9) matches the large 
semicircular section of the Nyquist D-contour with R 
set equal to 1, see Section 4.3.1. To find/i(0)_1, 
select a number of 9 values (say 9 = 4-90°, +45°, 0°, 
- 4 5 ° and -90° ) . For each 9 value find the 
corresponding rectangular coordinate (ax + jbx) and, 
using the normal rules of complex algebra, find 
(ax +jbx)~x. These points may be mapped into the 
/ ^ - ^ p l a n e . 

4.2 Produce the root locus plots for closed-loop control 
systems with unity negative feedback, and having the 
open-loop transfer functions given below. In each case 
the roots of the characteristic equation may be solved 
directly, and positive values of K assumed. 

K „ x K K{s+\) 
(a) (b) 

s(s + 2) ' v " y s2 + 4s + 3 ' v w / s2 + 2s + 1 
4.3 A feedback system has the open-loop transfer function 

w s2 - 2s + 2 
Use Evans' rules to plot the root locus diagram for the 
closed-loop system. Find the gain K that will give the 
closed-loop system a damping ratio of 0.707. With this 
value of gain, what would be the system's 5 per cent 
settling time? 

4.4 For the following closed-loop characteristic 
equations, plot the root locus diagrams for positive 
values of K: 

(a) s3 + (2 + K)s2 + (4-2K)s + K = 0 

(b) s 3 + (5 4- K)s2 + (6 + K)s + 2K = 0 

(c) sA + Ks3 + {IK - 5)s2 + \2Ks + 4 = 0 

4.5 A control system with unity negative feedback has 
an open-loop transfer function given by 

K 
GH(s) = 5(5 + 3 ) (5 + 6) 

(a) Show that the points sx = —0.55 + y3.0 and 
s2 = 1.1 +y'1.4 are, to a sufficient degree of 
accuracy, on the root locus. In each case give 
the corresponding value of K. 

(b) Determine the gain K that would give the 
dominant closed-loop poles a real value of 
-0.8. 

(c) With the gain calculated in part (b), what is the 
closed-loop transfer function? 

(d) Use the graphical method to find the response 
of this closed-loop system to a unit step input. 

4.6 The open-loop transfer function of a closed-loop 
control system with unity negative feedback is 

G(s) = * s(s + 3)(s2 + 6s + 64) 

Plot the root locus diagram for this system, and 
hence determine the closed-loop gain that gives an 
effective damping ratio of 0.707. 
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4.7 The open-loop transfer function of a closed-loop con
trol system with unity negative feedback is given by 

r m _ 9 0 5 + 9  

w 800s 2(55+1) 
Construct the root locus diagram for this system and 
hence determine the closed-loop poles. 

4.8 A unity negative feedback system has an open-loop 
transfer function given by 

G(s)= *<1+*> 2 

5(l + 1 0 5 ) ( l + 5 ) 2 

Draw the Bode diagrams and determine the loop 
gain K required for a phase margin of 20°. What is 
the gain margin? 

4.9 For the system of Problem 4.8, set the gain K to 
1.52 and find the closed-loop transfer function. 
Draw the closed-loop Bode plot and determine Mpy 

cop1 the bandwidth and the cut-off rate. 

4.10 Use the Nichols chart shown in Figure 3.59 to 
obtain the closed-loop Bode plots from the open-
loop Bode plots of Problem 4.8. 

4.11 A lag compensator (see Section 4.5.4) with the 
transfer function 

r (A 1 + 1 0 5 

is added to the system of Problem 4.8. Use Bode 
diagrams to find the reduction in steady-state error 
following a ramp change in the reference input, 
assuming the phase margin of 20° is maintained. 

4.12 A lead compensator (see Section 4.5.4) with transfer 
function 

r ( \ 5 + 0 1 

is added to the system of Problem 4.8. Use Bode 
diagrams to find: 

(a) the new phase margin (K = 1.52); 
(b) the increase in phase margin frequency and the 

gain K required if the phase margin is returned 
to 20°. 

4.13 Plot the Nyquist diagram for a plant having an 
unstable open-loop transfer function given by 

Afo + 0.4) 
G < { S ) = 5 ( ^ + 2 5 - 1 ) 

Determine the range of gain K for which a closed-
loop control system with unity negative feedback 
which incorporated this plant would be stable. 

4.14 An integral controller having the transfer function 

Gc{s) = K/s 

is placed in the forward path of a control system 
having unity negative feedback and an open-loop 
transfer function 

G W = ( J + 1 ) ( 2 J + 1 ) 

For this system: 

(a) determine the value of K that will give a gain 
margin of 2.5; 

(b) using this value of Ky plot the full Nyquist 
diagram and hence prove that the closed-loop 
system is stable; 

(c) find the system's phase margin. 

4.15 A closed-loop control system with negative 
feedback has an open-loop transfer function given 
by: 

G(s) = % 
(5 + 3 ) 3 ( 5 + l ) 

From the polar plot, determine: 

(a) the gain K that will make the closed-loop 
system marginally stable; 

(b) the gain margin when the gain K is adjusted to 
give a phase margin of 45°; 

(c) the phase margin when the gain K is adjusted to 
give a gain margin of 3. 

4.16 Figure P4.16 shows an M circle in the G(s)-plane. 
As usual, the circle has a radius M/(M2 — 1) and is 
centred at M2/(M2 — 1) (see Section 3.5.2). A line 
Oa is drawn which is tangent to the M circle at a 
and passes through the origin of the G(s)-plane, as 
shown. Prove that: 

(a) the angle \jt is such that sin \jf = 1/Af; 
(b) a line perpendicular to the real axis which 

passes through the point of tangency intersects 
the real axis at — 1. This is the line ab shown in 
Figure P4.16. 

ReG(s) 

Figure P4.16 M-circle construction. 

4.17 The relationships proved in Problem 4.16 are used 
to design control systems having a given closed-
loop peak magnification Mp. The procedure used is 
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first to draw a line from the origin of the G (5) -plane 
at angle \f/, where sin ij/ = \/Mp. By trial and error 
a circle is found which is centred on the real axis 
and is tangent to both the G(jco) locus and the line 
at angle ip. From the tangency point of the line and 
circle, a line is drawn perpendicular to the real axis. 
Let this line intersect the real axis at —T. Now, if 
the closed-loop peak magnification is to be Mp, then 
the loop gain must be adjusted by an amount JC, 
such that Tx = 1. Hence to produce the required 
closed-loop peak magnification, the loop gain must 
be adjusted by 1 /T. 

Construct a polar plot for the system 

° ^ = J(1+0.5$)(6 + Ì) 

and determine the gain K that will give the closed-
loop system a value of Mp = 1.4. With this gain, 
what are the system's gain and phase margins? 

4.18 A frequency test on an open-loop system produced 
the following results: 

co, rad s _ 1 2.5 3 3.5 4 4.5 

ReG(ya)) - 2 -1.75 -1.5 -1.25 -1.0 

hnG(jco) -2.5 -1.67 -1.17 -0.8 -0.5 

Show that Mp has a value of 2.3 when co = 4.7. 

Determine the change in system gain required to 
give an Mp value of 1.5. What is the new resonant 
frequency? What is the new damped frequency? 

4.19 Construct an inverse polar plot for the system 

G ( I ) = 5(1 +0.5s) (6 + 5) 

and determine the gain K that will give the closed-
loop system a value of Mp = 1.5. With this gain, 
what are the system's gain and phase margins? Also 
determine the closed-loop bandwidth. 

4.20 A closed-loop control system with negative 
feedback has the open-loop transfer function 

G ( 5 ) = ? ( 7 T T o ) 

The closed-loop system is to be stabilized by means 
of a forward path compensator. The required closed-
loop performance specifications are a 5 per cent 
settling time of 5 seconds, and a subsidence ratio of 
about 5:1. 

Select an appropriate compensator, and use the root 
locus method to find suitable values for its 
parameters. 

4.21 Repeat Problem 4.20 using frequency domain 
methods. 
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5.1 PREVIEW 
5.2 THE TIME-DOMAIN (STATE-SPACE) APPROACH 

TO FEEDBACK COMPENSATION 
5.3 CONTROLLABILITY AND OBSERVABILITY 
5.4 STATE VARIABLE FEEDBACK 
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SIMULATION STUDIES 
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5.9 CONCLUSIONS 

5.10 PROBLEMS 

5.1 Preview 
In Chapter 4, the root locus and frequency-domain 
approaches to control system design were studied, 
but time-domain techniques were not considered. 
There are two reasons for this. 

First, Chapter 4 concentrated on simple single-
input-single-output (SISO) systems, and these are 
usually treated by techniques based on frequency 
response methods. In this chapter, state-space 
techniques are introduced. These are time-domain 
methods which also work with SISO systems, but are 
equally applicable to multivariable systems (that is, 
systems with multiple inputs and/or outputs - Ml MO 
systems). The techniques of Chapter 4 are not 
applicable to such systems without severe 
modification (as explained in Chapter 10). 

Secondly, it is normal to implement state-space-
based controllers digitally, so these time-domain 
methods were saved for this chapter, where we also 
take a first look at digital control, using the z-
transform. 

Topics covered in th is chapter inc lude : 
control of the dynamic behaviour of a system by 
feeding back simple multiples of the state 
variables to the input 
descriptions of tests which can be carried out on 
state-space models to determine whether or not a 
desired controller can actually be built 
consideration of spare 'degrees of freedom' in 
state-space designs, which might profitably be 
used for various purposes 
how the eigenvectors of a system contribute to its 
time response 
the use of the z-transform to represent discrete-
time systems in a transfer function form 
the design of computer control schemes which 
work by 'digitizing' continuous-time designs 
the use of discrete-time models in digital computer 
simulations of control loops. 

NEW MATHEMATICS FOR 
THIS CHAPTER 

Several aspects of matrix 
algebra, described in 
Appendix 1, are used for 
the first time. Readers 

unfamiliar with matrix algebra should read Appendix 1 at 
this point. 

The z-transform is introduced for discrete-time 
systems by making various substitutions for s in the 
Laplace transfer function (the 'true' z-transform is 
introduced in Chapter 7). 
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5.2 The time-domain (state-space) approach to feedback 
compensation 

In previous chapters, the possibility of altering a system's performance by putting a 
compensator in the feedback path, rather than the forward path, was considered. For 
example, Section 3.5.2 introduced the inverse polar (Nyquist) plot and Section 4.5.3 
looked briefly at velocity feedback. 

In time-domain controller designs, the use of feedback compensators is 
common. In fact, it is the basis for most state-space control designs, which take the 
state variables o f the system and feed them back to the input through a suitable 
matrix (which effectively plays the part of a feedback compensator). 

Although the reasons for doing this w i l l appear different from those given for 
designing frequency-domain feedback compensators, there can be distinct s imi
larities between the two. For example, consider the frequency-domain model o f a 
position control system, including a velocity feedback loop, as shown in Figure 
4.29. 

Here, the performance of a proportional plus derivative type of controller is 
achieved, but without the need to differentiate the output signal explicit ly. By 
avoiding signal differentiation, noise problems are reduced, since the 'veloci ty ' 
signal is measured directly. Figure 4.29 shows that signals proportional to output 
position and output velocity are both fed back. 

Now reconsider Figure 4.29 from a state-space viewpoint, and let position and 
velocity be chosen as state variables for the system. The two feedback loops are 
therefore feeding back to the input, signals representing the state variables - hence, 
i t is effectively a state variable feedback (or SVF) scheme. 

In essence, velocity feedback and SVF improve a system's closed-loop 
performance by feedback compensation using multiple (appropriate) measure
ments. This chapter sets out the basis for the design o f feedback control systems 
using state-space models and SVF. Before studying how SVF systems work, and 
how they can be designed, there are some tests which can be carried out on state-
space models to inform this design process. Some of these tests are described in the 
next section, before studying SVF itself in Section 5.4. 

5.3 Controllability and observability 
I n the frequency-domain design techniques studied in Chapter 4, a controller 
structure was chosen (typically one using a forward path compensator cascaded 
wi th the plant, and an overall unity negative feedback loop) and then the 
compensator contents were designed to achieve the required results. The design was 
carried out using considerations such as stability margins on frequency response 
plots, or root locations on root locus plots. Such design procedures can often be 
iterative - iterating around the 'change-the-design-and-check-the-new-frequency-
response' procedure (for example) a number of times, unt i l the result is deemed 
acceptable. In such an approach, the possibility seldom occurs to the designer that 
the system may not be able to be controlled at all ; i t is just a matter o f finding out 
how much performance improvement the controller can be made to provide. 

The design of SVF systems (and of most other systems using state-space 
models) is very different in approach. As w i l l be revealed later, i t is a synthesis 
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approach, in which the desired closed-loop performance is specified in advance 
(perhaps by specifying the required set o f closed-loop poles, as we shall see). The 
information about the required performance, together w i th the state-space model o f 
the open-loop plant, is fed into an algorithm (normally mechanized in a computer 
program, although Section 5.4 contains 'by-hand' examples to illustrate how the 
techniques work) . The algorithm then produces the details o f the required controller 
(synthesized from the information provided). I t is possible for certain combinations 
of poles and zeros wi thin the open-loop plant to prevent the controller design 
algorithm from working properly. Therefore, in state-space work, i t becomes 
appropriate to ask, in advance, whether or not a certain design is possible. This 
section introduces some of these ideas. 

The concept of controllability w i l l be needed immediately in Section 5.4 - i t 
tells the designer whether or not a SVF system can be synthesized to give the 
required performance. The concept of observability is not needed unti l Chapter 9, 
but is so closely linked to controllability that i t is also introduced here (for interest, 
note that Chapter 9 is concerned wi th the problem of estimating the values o f 
internal states of a system which cannot be directly measured, and the observability 
test tells the designer whether or not this can be done). 

Consider the system shown in Figure 5.1(a), w i th input U(s) and output Y(s). 
Using the block diagram reduction techniques described in Section 2.6, the Laplace 
transfer function (LTF) model relating the output to the input is found to be: 

Y(s) _ s - 1 

TJ(s) ~ S + 4 

Also indicated in Figure 5.1(a) are the Laplace transforms of two state variables. 
Describing the same system using these state variables in the time domain (namely 
xY(t) and x2{t)) leads to a state-space model o f the usual form: 

x = Ax + bu and y = cx + du 

or, in fu l l (see Example 2.28 in Section 2.7 i f revision is needed o f the technique 
for obtaining such a model): 

- 3 - 4" ' * i ( 0 " + "4" 

- 1 0 *2v0. 
+ 

1 
u(t) 

and 

y ( 0 = M - 1 ] 
* i ( f | 

*2(0. 

Now the LTF model above suggests that the system is stable, w i th a single pole at 
s = - 4 . However, it is clear from Figure 5.1(a) that the system should be second 
order (there are two poles in the system). The eigenvalues of the A matrix i n the 
state-space model (see Section 3.2.1) are Xx = - 4 and k2 = + 1 , indicating that the 
system does, indeed, have two poles, and that one o f them is unstable. 

What has happened here is that a pole and zero at the same location (s = + 1 ) 
were unwit t ingly cancelled out during the derivation o f the L T F model, whereas the 
state-space model preserved all the internal behaviour o f the system. In frequency-
domain control, such cancellations are often made in deriving LTF models; 
normally in state-space derivations, they are not (occasionally, a 'min imal 
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Figure 5.1 A plant for 
discussion of controllability 
and observability, (a) Block 
diagram, (b) Unit step 
responses. 

•o 

t 0 

E < 
-2 

-A 

^7 

(b) 

y(t) 

10 15 20 
Time (s) 

25 30 35 40 

realization' is used, in which such cancelling poles and zeros are deliberately 
removed from the state-space model, but not in this text). 

Using control terminology, the unstable mode of response due to the pole at 
5 = 4-1 (that is, e+u) is said to be unobservable at the output Y{s). I f the pole were 
observable, it would appear in the LTF model. The problem is that even though the 
LTF model makes the system appear to be stable at the output, the unobserved (and 
unstable) pole at s = + 1 would cause system failure. 

Figure 5.1(b) shows the unit step responses o f the state variables and the 
output. I t can be seen that the output appears stable, as predicted by the LTF model. 
However, i t can also be seen that the internal states both behave in an unstable 
manner, and the system is clearly going to fail wi th in 40 seconds. 

The closely related concepts of observability and controllability describe the 
effects of identical, but uncancelled, pole-zero pairs in state-space models. 
Observability was introduced above. Controllability is concerned wi th the question, 
'is it possible to use the input u(t) in some closed-loop scheme which w i l l move the 
open-loop poles to more favourable locations?'. In the present case (Figure 5.1), is 
it possible to design a controller to move the unstable open-loop pole at s = 4-1 into 
the left-hand half of the s-plane, thus stabilizing the system? 
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Note that the observability of a particular pole is unimportant i f information 
regarding that pole is not required for control purposes (but i f the pole is unstable, as 
above, then the designer must be aware of its existence); while controllabil i ty is not 
important i f the open-loop system pole under consideration is already in an 
acceptable s-plane location. 

5.3.1 Controllability 

Definitions 
A mathematically based definition is that a system is completely state controllable 
i f i t is possible to cause the state vector to move from any ini t ia l value, to any other 
value, in a finite time. 

A n alternative (more pragmatic) view of controllabil i ty is that a system is 
completely state controllable i f i t is possible to move al l o f its open-loop poles, by 
state variable feedback, to any arbitrary closed-loop locations (except that complex 
conjugate pairs of poles must be moved as conjugate pairs). 

Note that the two definitions are equivalent, and that the loose term 
'controllable' w i l l be used rather than 'completely state controllable' f rom now on. 

Comments 
The word 'other' in the first definition is carefully chosen. I t does not say, 'any 
final value', and the 'other' value may only be transiently achievable. Problem 5.5 
illustrates this. 

Another point is that although a system may be shown to be theoretically 
controllable (according to the above definitions), nevertheless, i t may not be 
possible in practice. The reason is that a completely unconstrained system input 
vector is assumed by the definitions. Thus, the plant input is assumed to be able to 
take arbitrarily large or small values, and to be capable of arbitrarily large rates o f 
change. These factors are always l imited in practice. 

Finally, the techniques to be presented for assessing the controllabil i ty of a 
system, even i f i t is proved to be controllable, give no clue as to how such control 
may be achieved in practice. 

Controllability test 
One method of testing the controllability o f the state-space model 

x = Ax + Bu, y = Cx + Du 

involves finding the rank of the fo l lowing partitioned matrix (see Appendix 1) 
made up of combinations of the A and B matrices: 

[B AB A2B ••• An~lB] (5.1) 

This matrix w i l l often be rectangular, having more columns than rows, and 
Appendix 1 covers this case. I f the test matrix is of fu l l rank (that is, o f rank equal 
to the number o f rows in B), then the system is completely state controllable. I f i t 
is not of fu l l rank, then the system is only partially state controllable - that is, only 
a subset o f elements of the state vector (or the positions o f a subset o f the poles) 
can be adjusted from the input. The rank deficiency o f the test matrix is equal to 
the number of uncontrollable modes in the system. 
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The proof of this test's validity is not given here (see, for example, Friedland 
(1987)). Computer-aided control system design packages (such as M A T L A B ) can 
do the test very easily. 

Example 5.1 Controllability of the antenna-
positioning system 
In Example 2.28 in Section 2.7, the fol lowing state-space model of an antenna-positioning 
system was derived (see Figure 2.48(b) and Equations (2.103) and (2.104)): 

A = 

' 0 1 0" "0" 

0 - 1 1 0 

0 0 - 5 _ _5_ 

and c=[l 0 0] 

Although the design of SVF schemes is not discussed unti l Section 5.4, imagine that i t is 
desired to use such a scheme to obtain a closed-loop system, whose performance is 
determined by a set of closed-loop poles at completely different locations from the open-
loop pole set. Would such a design be possible? In other words, is the system controllable? 
For this system: 

Ab 

0 

5 

-25 

and A2b=A[Ab] = 

5 

- 3 0 

125 

To obtain A2b (for example) by hand, take the existing vector Ab and pre-multiply i t 
by A, as indicated above. In this way, all the columns of the test matrix can be 
obtained (whatever the order of the system) without raising A to any power higher than 
unity. 

The controllability test matrix is therefore: 

' 0 0 5 

[b Ab A2b) = 0 5 - 3 0 

_5 - 2 5 125 

This has a non-zero determinant and is therefore o f ful l rank (three), so the system is 
completely state controllable (the actual SVF design is done later, in Example 5.4). 

To carry out the rank test using M A T L A B (Appendix 3), the fo l lowing commands 
may be used: 

» a = [0 1 0; 0 - 1 1; 0 0 - 5 ] ; % enters the A matrix 

> b = [0; 0; 5] ; % enters the b vector 

> test = ctrb(a,b); % forms the test matrix 

> rank(test) 
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The rank command wi th no semicolon w i l l display the result, namely the rank of the test 
matrix, from which the controllability is determined. The last two commands can be 
merged: 

> rank(ctrb(a,b)) 

Some further comments on controllabili ty fo l low Example 5.2. 

5.3.2 Observability 

Definition 
A system is completely observable i f i t is possible to reconstruct the state-vector 
completely from measurements made at the system's output, y (as mentioned 
earlier, it w i l l be necessary to do precisely this, i n Chapter 9). 

Observability test 
A rank test may also be used to discover whether a system is observable in the 
above sense. In mathematical language, observability is the dual o f controllabili ty. 
This means that the observability test matrix can be generated from the 
controllabili ty one by using A T instead o f A , C T instead o f B, and then transposing 
the result. Sometimes, since transposing a matrix does not affect its rank, the last 
step is not carried out, giving the fo l lowing test matrix: 

[ C T A T C T ( A T ) 2 C T ••• (AT)n~lCT] (5.2) 

I f this matrix is of ful l rank (that is, the rank is equal to the number of columns in 
C), then the system is completely observable (so that the values o f all the states can 
be found from information available at the system's output). I f i t is not o f fu l l rank, 
then the system is only partially observable (meaning that some, but not a l l , o f the 
system's state information can be obtained from output measurements). The rank 
deficiency of the test matrix is equal to the number o f unobservable modes in the 
system. 

Although Equation (5.2) is easily remembered, since it is similar in form to 
Equation (5.1), i t is often easier to work wi th the transpose i f calculations are being 
made by hand. Thus, an equivalent observability test is to check the rank o f the 
matrix: 

- C 

CA 

_CAn~l. 



314 A first look at state-space and digital control 

Example 5.2 An observability example 
A t the beginning of Section 5.3, an introductory example of an unobservable system was 
given (see Figure 5.1(a)). The observability rank test should be able to predict this 
unobservability. 

From above, the state-space model corresponding to Figure 5.1(a) is: 

c = [-l - 1 ] , d=l 

To form the observability matrix using Equation (5.3) also requires cA = [4 4] . The test 
matrix is then given by: 

"-3 - 4" "4" 

- 1 0 1 

c " - 1 - 1" 

cA 
4 4 . 

This matrix is not o f ful l rank, since its determinant is zero. The system is therefore not 
ful ly observable. The actual rank o f the matrix is one, so the rank deficiency is 2 — 1 = 1, 
and there is therefore one unobservable mode. 

Using M A T L A B to test the observability requires the A and c matrices to be entered 
in the same way as were A and b in the previous example, and the command: 

>̂ rank(obsv(a,c)) 

These tests have confirmed that the system is not fully observable, and the earlier reason 
suggested for this (that there was a pole-zero cancellation in the LTF model) can now be 
checked by deriving the LTF from the state-space model. 

The LTF model of the system can be found either by using Equation (2.97), or by 
using the M A T L A B command [num,den] = ss2tf(a,b,c,d). The further commands 
roots(num) and roots(den) would then give the factors in Equation (5.4), below. 

Using the approach o f Equation (2.97), the LTF model is given by: 

U(s) 
= c[sl-A^b + d^ [ - 1 - 1] 

5 + 3 4" -1 "4" 

1 s 1 
+ 1 

. 1 - 1 - 1 ] 
s2 + 3s - 4 

[ - 1 - 1 ]  
s2 + 3s - 4 

s2 - 2s + 1 

4s 

s -

- 4 

,s + 3 

+ 1 

+ 1 

-45 + 4 • 5 + 1 
5 2 + 35 - 4 

+ 1 

_(s-l)(s-\) 
5 2 + 35 - 4 (5 - l ) ( 5 + 4) 

(5.4) 

The expected pair of an identical pole and zero is clearly seen, and cancellation of these 
would yield the original LTF model. 

The reason that the plant is not completely observable is that i f some disturbance 
signal excites the mode e+t arising from the denominator term (s - 1), the dynamic effects 
w i l l be cancelled out by the simultaneous response of the numerator term (s — 1), thus 
leaving no visible effect at the output. This can be seen happening in Figure 5.1(b). 
Therefore, by measuring the output, it is not possible to tell that the mode e+t is present in 
the system. 
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Incidentally, checking the controllability o f this plant shows it also to be not 
completely controllable. The mode eM therefore cannot be excited from the plant input 
either. This means that i f a disturbance signal affects the mode there w i l l be no 
possibility o f removing the effects by driving the plant from the input - this would not be 
an easy plant to control! 

In Example 5.2, the system examined was found to contain both uncontrollable 
and unobservable modes, and these were the same mode in this case. In general, 
this need not be the case. Imagine a plant LTF model split into two cascaded (that 
is, series) blocks. In one block is a certain pole (plus other dynamics), and in the 
other block an identical zero (plus other dynamics which differ from those in the 
first block). Only i f the LTF models of the two blocks are mul t ip l ied together w i l l 
this pole and zero be cancelled. 

I f the block containing the pole comes before that containing the zero, the 
plant w i l l be controllable (because the mode in question can be driven from the 
input), but unobservable (because the dynamic response of the zero in the second 
block w i l l cancel that of the pole, so the associated mode w i l l not be visible at the 
plant output). 

I f the block containing the pole comes after that containing the zero, the plant 
w i l l be observable (because the mode in question w i l l contribute directly to the 
output), but uncontrollable (because the dynamic response of the zero in the first 
block w i l l cancel that of the pole in the second, so that the pole cannot be driven 
from the plant input). 

Only i f the identical pole and zero occur in the same part o f the plant w i l l it be 
simultaneously uncontrollable and unobservable (as was the case in Example 5.2). 

This example indicates that controllabil i ty and observability are not 
necessarily fundamental attributes of a given overall LTF model o f a system (that 
is, o f a system's input-output model), but that they depend upon the particular state-
space representation chosen (that is, on the internal structure o f the model). Simply 
by looking at the transfer function of Equation (5.4), no knowledge can be obtained 
as to how the system is arranged internally. This would only be gained from an 
appreciation of the real system. 

However, any mode cancellations are a fundamental attribute of the real plant 
being modelled. Therefore, i f one state-space model o f a plant is uncontrollable but 
ful ly observable, and a transition is made to a different state-space model (by 
effectively choosing a different set o f state variables) which is ful ly controllable, 
then the new model w i l l be found to be unobservable because the mode 
cancellations w i l l stil l be present somewhere in the model. 

This is another drawback of Laplace transfer function plant models. I f 
identical numerator and denominator terms are cancelled out, the LTF can only 
represent those subsystems of a plant which are both completely observable and 
completely controllable (the state-space model corresponding to this LTF model is 
then called a minimal realization, and can be found using the M A T L A B minreal 
command). 

Finally, note that this also indicates caution when designing frequency-domain 
controllers which include the concept of pole-zero cancellation. Once again, the 
apparent order of the final system w i l l be lower than the actual order, w i th 
uncontrollable and/or unobservable modes present. However, these modes sti l l 
actually exist in the physical wor ld - they do not go away when cancelled on paper. 
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I n a real system represented by the model o f Figure 5.1(a), all the (s - 1) terms 
in Equation (5.4) physically exist - they are just not seen in an overall LTF model. 
They could be excited by unmodelled noise or disturbance signals, thus causing 
behaviour which would be unexpected i f only frequency-domain approaches are 
used. 

I t is worth noting that mode cancellations are not the only cause of a lack 
of controllability or observability. For example, repeated eigenvalues (multiple, 
identical poles) can cause such problems. 

5.3.3 Stabilizability 
To end this discussion of various tests on state-space models, there is more to be 
said about systems which are not completely controllable. One very frequent 
application o f state-space methods is to use a feedback system in which the state 
variables are fed back to the input. One val id reason for doing this is to stabilize a 
system which has some unstable modes in open-loop. For the opening example of 
Section 5.3 (Figure 5.1), the specification for the design might be, 'move the 
unstable eigenvalue (pole) at X = 1, to X = - 1 ' (that is, replace the unstable open-
loop mode e+t wi th the stable closed-loop mode e~*). 

I f the system is proved to be completely state controllable, then the design can 
be carried out, by the methods to be described later in this chapter. I f the system 
fails the controllability test, what then? 

It is inevitable that any system must have some controllable modes, even i f 
only one. This is clear from the rank test, since the test matrix must have a rank of at 
least one (unless the b vector is empty, implying a system wi th no inputs which can 
be driven - and we would not be trying to control such a system!). I t is also clear 
physically - any real system of interest must have an input which can affect at least 
one of its internal states (again, the b vector would be empty otherwise). 

The question then arises as to which modes are the uncontrollable ones. I n 
other words, i f a pole needs to be moved in order to stabilize the system, is that pole 
a member of the class of controllable poles, or not? I f i t is, the system is said to be 
stabilizable, and the design can proceed to move the unstable pole. I f the system 
failed the controllability test, there w i l l be some modes which cannot be affected 
from the input, but so long as the unstable ones can be moved, the system, although 
not completely controllable, is stabilizable. 

To find out which modes can be moved in this way, and which cannot, a matrix 
(sometimes called the sensitivity matrix, although that term does have other 
meanings) is formed corresponding to each eigenvalue of the system in turn (/ = 1 
to n for an nth-order system): 

S ( l , ) = [A - A,7 B] (5.5) 

I f rank(5( / l / ) ) is less than n, then A, is an uncontrollable mode. 
This type of test can also be used to determine which modes of a system are 

unobservable, by using the dual of Equation (5.5) (that is, replacing A w i th AT and 
B w i th C T - it is not necessary to transpose the result, as only its rank is of interest). 
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Example 5.3 An investigation of stabilizability 
Given a system 

r _ i n n i 

c = [l 0], 
" - 1 3" "1" 

0 , b = 0 2 1 

its stability can be checked by finding the eigenvalues o f the A matrix. In this case, since 
A is upper-triangular, the eigenvalues are obviously Xx = — I and X2 = + 2 . In general the 
eigenvalues would be found by using the characteristic equation (Section A 1.2) or, more 
l ikely, by using a computer package - such as the M A T L A B command eig(a). 

The eigenvalue X2 = 4-2 implies an unstable mode e + 2 t in the time response, so it 
might be decided to try to use a state variable feedback controller (the design o f which we 
discuss below) to move this eigenvalue to some negative value instead. 

Checking for controllability, i t is found that 

[b Ab] = 
1 2 

1 2 

which is not o f ful l rank, therefore the system is not ful ly controllable. The rank deficiency 
is one, so there must be one uncontrollable mode. 

The test of Equation (5.5) is then applied to discover which mode is the controllable 
one. Really, the test need only be applied to the mode i t is desired to move, but both 
modes w i l l be considered here. 

S ( A , ) = S ( - 1 ) - 1 3" - 1 0" "1 "0 3 r 
0 2 0 - 1 1 0 3 1 

and 

- 1 3" "2 0" "1" "-3 3 1" 
0 2 0 2 1 0 0 1 

S(X2) = 5(2) 

Rank(S(2)) = 2 (ful l rank), and r a n k ( 5 ( - l ) ) = 1 (rank deficient). Therefore, the mode 
corresponding wi th X2 = +2 is controllable, while the mode corresponding wi th kx = —\ 
is not. This system is therefore stabilizable, because the pole corresponding to the unstable 
mode can be moved (although the mode for Xx = - 1 could not be moved by state-variable 
feedback, since that mode is the uncontrollable one). 

There is no unique M A T L A B command for the stabilizability test, but i t is easy to 
construct one. In the code below, the A and b matrices are entered, the eigenvalues of A 
are saved in a vector (lambda), and a for loop is used to give the rank o f each sensitivity 
matrix in turn. This could be written in a more elegant and efficient way, but would then 
be harder for a non-MATLAB-exper t to read. Also wi th this many lines, i t would be wise 
to enter the commands into an m-file for ease of error correction (see Appendix 3). Note 
that the numerical values in these commands are for the system of Figure 5.1(a). This 
confirms that that system is not stabilizable by state variable feedback: 
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» a = [ - 3 - 4 ; - 1 0 ] ; b = [4; 1]; 

^ lambda = eig(a) % no semicolon, so the eigenvalues are displayed 
% to show the order in which the results w i l l appear 

» f o r k = 1:2 

s = [a-lambda(k)*eye(2) b] ; % eye(2) is the M A T L A B 2 x 2 identity 

% matrix 

rank(s) 

end 

I f a system model proves not to be completely controllable, some familiari ty 
wi th matrix algebra might suggest the use of a similarity transform (Section A 1.6) 
to change to a system model which may be completely controllable - for example to 
change to the direct-programming type of result in which the companion form is 
always controllable (Section 2.5.1). There is a similarity transform which w i l l , in 
principle, transform any state-space model to the companion form (see also the 
description of Ackermann's method, in Section 5.4.7). Unfortunately, i t w i l l only 
work i f the system model is controllable already, so the approach is doomed to 
failure! 

The only way it can be achieved generally is to convert the uncontrollable 
state-space model back to a transfer function model, being careful not to cancel any 
modes in the process, and then go from the LTF model to the companion state-space 
form by direct programming. 

The M A T L A B commands below w i l l achieve this: 

y [num,den] = ss2tf(a,b,c,d); 

> [ a l , b l , c l , d l ] = tf2ss(num,den); 

Note, however, that the states of the new model (a 1 , M , c l , d l ) are related to those 
of the original model (a,b,c,d) in an unknown manner. Note also that i f the 
original model was uncontrollable, the new one w i l l be unobservable, as discussed 
earlier. 

5A State variable feedback 
In frequency-domain control, closed-loop systems are typically designed by 
feeding the plant output back to the input in some way (Chapter 4). The objective 
is usually to obtain a satisfactory compromise between dynamic (transient) 
performance and steady-state performance. To give a measure o f progress, such 
indicators as gain and phase margins, rise time, settling time, peak overshoot and 
steady-state error are used. 

To meet such specifications, either the plant itself can be modified (usually not 
an option), or a controller of some kind can be added (for example, i n a cascade 
arrangement, or in a feedback path). 

The mechanism by which such controllers achieve their effects is the 
introduction of extra poles and zeros into the overall transfer function of the closed-
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loop (controlled) plant. The most obvious examples are the lead and lag 
compensators of Section 4.5.4. The locations o f such extra poles and zeros are 
typically not chosen by the designer directly, but result from fixing stability margins 
based on the inspection of Bode, Nichols or polar plots, or a root locus diagram (all 
discussed in Chapters 3 and 4). Moreover, i f there are undesirable poles in the open-
loop system model, they are frequently 'cancelled' by zeros in the compensator 
which, as has been discussed i n this chapter, can lead to unexpected problems. 

Sometimes, a pseudo-time-domain design w i l l be done using a root locus 
diagram, in which a compensator is sti l l designed using frequency-domain transfer 
functions, but is designed to give a specific required time-domain performance. 
This would be done by making the two dominant poles o f the closed-loop system 
model (the pair nearest the imaginary axis in the s-plane) have specific locations in 
the 5-plane. These locations would correspond wi th a certain percentage overshoot 
and damping ratio in the time response o f the closed-loop scheme, and the designer 
would hope that the other poles and zeros o f the system were sufficiently far away to 
the left in the s-plane so as not to mar the result substantially. Again , such a design 
would be based on pole-zero cancellations, a typical design rule being to use a lead 
compensator ( i f appropriate) whose zero cancels the slowest non-zero open-loop 
pole o f the system (as in Example 4.6). 

In time-domain controller design using state-space methods, this choosing of 
closed-loop pole locations is also a commonly used approach. However, now the 
desired closed-loop pole locations in the s-plane o f all the plant poles w i l l be 
specified. Thus, the aim is to design a controller which effectively moves some (or 
all) o f the open loop poles to the desired closed-loop locations. For obvious reasons, 
this approach is often called pole-placement control. 

In order to achieve the desired closed-loop pole locations, a very successful 
method is to feed back the state vector to the system input in some way, the design 
of which is the subject o f this section. Note that this concept is not entirely alien to 
frequency-domain control, as was discussed in Section 5.2. However, placing two 
poles accurately is the best that can usually be achieved by those methods. A n y 
other poles tend to end up in rather random locations. 

5.4.1 The basic state variable feedback (SVF) approach 
Given the usual state-space representation o f a system x = Ax + Bu,y = Cx + Du, 
consider the effects o f feeding the state vector back to the input. This is done via a 
feedback matrix K as shown in Figure 5.2, so as to al low any required combination 

>*Ì D 

Figure 5.2 State variable 
feedback - the general 
arrangement. 
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of the states to be fed back to each input in the general case. For a system wi th n 
states and m inputs, as shown, K must be an m x n matrix (see Section A 1.1.1). 

Directly from the figure, it can be seen that wi th the feedback in place, the 
closed loop state equation is given by: 

x = Ax + Bu = Ax + B[r - Kx] 

or 

x = [A - BK]x + Br (5.6) 

I f the D matrix is absent from Figure 5.2, the output equation remains unchanged: 

y = Cx 

I f the D matrix is present, it can readily be shown that 

y= [C-DK]x + Dr 

Assuming, for simplicity, that D is absent, the result is effectively a state-space 
model of the closed-loop plant, relating r and y, w i th the same state vector as the 
open-loop plant, and of the form 

x = Acx + Br, y — Cx 

where Ac = A — BK is the closed-loop plant matrix (from Equation (5.6)). 
The eigenvalues of Ac are therefore the same as the closed-loop poles o f the 

system. Thus, the elements of K can be chosen to give Ac any required set o f closed-
loop eigenvalues (poles), so long as the original system is completely state 
controllable (Section 5.3.1). 

There is more than one method of choosing the elements of K. Perhaps the 
easiest to understand is that of making a direct comparison between the required 
closed-loop characteristic equation (CLCE) and the C L C E which w i l l be obtained 
from Ac = A — BK, and fixing the elements of K to make the two agree. This 
procedure is illustrated by Example 5.4. Note that this basic method of designing 
SVF schemes produces regulators, which seek to maintain the system at a steady 
state, and reject disturbances. Their conversion to tracking systems (capable of 
fol lowing varying setpoints) is considered later. 

Example 5.4 A state variable feedback regulator 
for the antenna positioner 
In Figures 2.47 and 2.48 in Section 2.7, an open-loop system for positioning a 
communications antenna was introduced. In Example 2.28, a state-space model o f the 
system was obtained, using the physically meaningful state variables shown in Figure 
2.48(b). The model appears in Equations (2.103) and (2.104), and is given by: 

' 0 1 0" ~0~ 

A = 0 - 1 1 0 

0 0 - 5 _ _5_ 
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Earlier in this chapter (see Example 5.1) this model was shown to be ful ly controllable. I n 
principle, an SVF controller of the form of Figure 5.2 can therefore be designed to place 
the closed-loop poles in any desired locations. 

Given the dimensions of this model (three states and one input), the 'K matr ix ' in 
Figure 5.2 w i l l actually need to be a 1 x 3 row vector. Wr i t ing this as k = [kn kl2 * 1 3 ] , 
the closed-loop plant matrix for use in Equation (5.6) is given by: 

"0 1 0~ ' 0 

= A - bk = 0 --1 1 - 0 

0 0 - 5 _ _5 

0 1 0 

= 0 - 1 1 

. - 5 * i i " "5*12 5 - 5 £ 1 3 _ 

The actual closed-loop pole locations w i l l be given by the eigenvalues of this matrix, that 
is, the roots of the CLCE: 

\XI-Ar 

X 

0 

5*„ 

-1 

5* 12 

0 

- 1 

X + 5 + 5*, 

= X3 + (6 + 5kl3)X2 + (5 + 5k{2 + 5kl3)X + 5 * n = 0 (5.7) 

Now the required C L C E can be specified from the desired closed-loop pole positions and 
compared wi th Equation (5.7) to fix the elements o f k. This rather begs the question as to 
where the closed-loop poles should be placed! 

A discussion of how to choose a sensible set o f closed-loop pole locations in practice 
is postponed unti l Section 5.4.8. For the present, a rather arbitrary set o f closed-loop pole 
locations w i l l be specified, designed not particularly to be a sensible choice, but to 
illustrate various points as the system is reconsidered from time to time in later chapters. 
The resulting controlled system w i l l have a response wi th rather more overshoot than 
would typically be desirable (about 20 per cent, in fact) and a 10-90 per cent rise time 
designed to be faster than one second. 

Bear in mind that the open-loop dynamics contain an element wi th a one-second time 
constant, which alone would contribute a rise time of about 2.2 seconds, and i f the design 
attempts to improve the performance too much, very large and fast input changes w i l l be 
demanded. 

For now, the closed-loop poles should be placed at locations in the s-plane given by 
X — — 1 ± 2j and X = —10. Since eigenvalues are the same thing as poles, the required 
C L C E for the system is therefore: 

{X + 1 + 2j){X + 1 - 2j)(X + 10) = X3 + \2X2 + 25X + 50 = 0 (5.8) 
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Comparing the actual C L C E wi th the required one (Equations (5.7) and (5.8)), the 
coefficients o f À3 are equal, so the other coefficients can be compared directly. Doing this, 
it is found that: 

6 + 5* 1 3 = 12 therefore kl3 = 1.2 

5 + 5 £ 1 3 + 5kl2 = 25 therefore jfc12 = 4 - kl3 = 2.8 

5ku = 50 therefore k n = 10 

so that k — [10 2.8 1.2]. 

The feedback signal kx is therefore given by IOJCJ + 2.8JC2 + 1.2JC3, leading to Figure 
5.3, and the unit step response appears in Figure 5.4. These are discussed below. (Section 
A3.9 describes how M A T L A B can produce the plot.) 

Figure 5.3 The antenna-
positioning system with a 
state variable feedback 
regulator. 
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Although the design is now complete so far as the original specification is 
concerned, it is instructive to pursue two more aspects o f this system before 
moving on. 

Firstly, wi th a simple SISO system like this one (Figure 5.3), i t is easy enough 
to use normal block diagram reduction methods to check that the closed-loop 
system is, indeed, the one it was intended to design. I f the procedures of Section 
2.6.2 are applied to the arrangement o f Figure 5.3, the overall transfer function 
relating the output position y to the reference input r is found to be: 

l ( s ) =

 5- 
R J 3 + (6 + 5 * 1 3 ) i 2 + 5(1 + k n + kl3)s + 5kn 

s3 + 12s2 + 25s + 50 
(5.9) 

So the C L C E is clearly correct (compare the denominator wi th Equation (5.8)), 
and the closed-loop eigenvalues (poles) must therefore be at the desired locations 
(except for the presence of modelling errors). 

5.4.2 Regulator systems - steady-state performance 
The second point of interest in Example 5.4 is the steady-state error (s.s.e.) in the 
system. I f this system was expected to fol low faithfully the unit step applied at r , it 
does not seem to perform very wel l (the output y = xx i n Figure 5.4 settles at only 
0.1 unit). This can be confirmed theoretically by applying the final value theorem 
(Section 2.5.5) to the transfer function o f Equation (5.9), when i t w i l l be found that 
the steady-state output fol lowing a unit step input is given by 

• ¿ - = 0.1 (5.10) 

This can also be confirmed pragmatically by inspecting Figure 5.3, and noting 
that the only condition which can produce a steady state is when the integrator input 
(JC2) is zero (an integrator output w i l l always be ramping unless its input is zero). For 
this to be the case, x3 and u must also be zero; therefore r — lOjtj at steady state. I f 
r = 1, the output xx must therefore be 0 .1 . This agrees wi th Equation (5.10). 

The reason for this behaviour is that this system is a regulator. Regulators are 
control systems which are designed solely to maintain a plant in a steady state in the 
face o f disturbances which are trying to move it away from that steady state. 

Many control systems need to have this regulatory behaviour. For example, 
many temperature control systems for buildings, ovens, furnaces and other 
industrial processes are designed to hold the set temperature constant in the face o f 
disturbances. Drive systems in process lines are often required to hold constant 
speed in the face of load disturbances. Many processes require the maintenance of 
constant pressures or fluid levels. Sheet material leaving ro l l ing mi l l s usually needs 
to be produced at constant gauge (thickness) and shape (flatness). Automobile 
cruise control systems seek to maintain the set speed uphi l l , or down. Turret-
levelling systems for tanks and warships must maintain gun-barrel attitude 
irrespective of vehicle motion. Inertial navigation platforms must maintain the 
given heading. Positioning systems for dr i l l ing ships and survey vessels must keep 
station above a given position on the ocean floor. Many control systems in the 
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human body can be modelled as regulators (those for temperature, blood sugar level 
and light intensity at the retina, to name but three). The list could be almost endless! 

The models of such systems used for control system analysis and design are 
derived at the required setpoint, and are studied for deviations from that setpoint. 
For such models, the reference input is therefore zero (because there should be no 
deviation from the required conditions). For state-space models, i t is also arranged 
that the state vector w i l l have the relationship x = 0 at the setpoint. In effect, for a 
linear system model, the real-world numerical values o f the reference input and 
state vector at the setpoint condition have been subtracted from the block diagram, 
so as to give the required zero reference and zero state vector at the setpoint (this 
does not apply to nonlinear systems - see Chapter 14). During analysis and design 
studies, the model then predicts deviations o f the state vector (and hence the output) 
from the setpoint values. The setpoint values can be added back in to obtain the 
real-world values of the output and state vector i f necessary. 

The simple SVF pole-placement procedure used in Example 5.4 designs 
regulators. Therefore, the model of Figure 5.3 is assumed to be operating at the 
required output position. During the modelling process, this required (steady-state) 
operating position w i l l have been subtracted from xx, leaving xx = 0. The reference 
signal causing the setpoint output w i l l have been subtracted from r, leaving r = 0. 
x2 and x3 w i l l similarly be zero. Some texts would place a minus sign on the 
elements of k, and omit the reference signal and summer altogether, in order to 
reinforce this point. 

Apply ing a unit step to the system at r therefore disturbs i t from its setpoint 
condition. The regulator attempts to reject this disturbance and return all the state 
variables to zero, but wi th the dynamics specified by the desired closed-loop pole 
locations. In this light, the system behaves quite wel l . The steady-state output o f 0.1 
unit shown in Figure 5.4 means that 90 per cent of the disturbance has been rejected 
from xx, while all the disturbance is rejected from states x2 and x3. The transient 
behaviour o f the system during this disturbance rejection is that specified by the 
desired pole locations, which were achieved by the feedback system. 

I f the state-space model of the system of Figure 5.3 is entered into M A T L A B 
(Appendix 3), the linear system simulation command Isim can be used to confirm 
the regulatory action as follows (this is demonstrated by running the m-file fig5_4.m 
on the accompanying disk - its contents can be viewed using any A S C I I text editor, 
or entering type fig5_4 at the M A T L A B prompt): 

• Form the closed-loop (SVF) system. 

• Set up a reference signal which is zero at every time step. 

• Set up a non-zero init ial condition state vector. 

• Use the Isim command to perform the simulation and plot the results. 

5.4.3 Tracking systems 
In a number of the examples of regulators, given above, i t is clear that the setpoint 
for the system w i l l have to be altered from time to time. The regulatory action must 
then take place about the new setpoint. I f the system is passably linear, and the 
change of setpoint is relatively infrequent, then the new setpoint values (reference 
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and state vector) can be subtracted from the system model to give a model having 
zero reference signal and a zero state vector at the new setpoint - the system can 
then continue to be regarded as a regulator. 

However, i t w i l l often be the case that the closed-loop system must have zero 
steady-state error fol lowing a step input change (that is, it must exhibit a steady 
state gain of 1 to a step input). A system which is designed to fol low a varying input 
(reference) signal is called a tracking system, or sometimes a servomechanism. I f 
a tracking system's reference signal is held constant, i t effectively becomes a 
regulator, so there are not really any fundamental differences between the two types 
of system, other than the need for a tracker to be able to fol low a varying input. 

Examples of tracking systems include any o f the regulators mentioned before 
in which a change of setpoint cannot be accommodated by a simple subtraction of 
values in a linear model; for example, a speed control system in a process line 
which, in addition to holding a constant speed in the face o f disturbances, must start 
from rest, bui ld up speed according to a predetermined acceleration profile, and 
slow down in a similar way. Other specific examples include target tracking systems 
for telescopes, missiles and the like; automatic pilots for aircraft and ships; drive 
systems which must fol low a pre-set trajectory, such as numerically controlled 
machine tools; and some activity-dependent systems in the human body, such as 
adrenaline production. 

How can the SVF regulator design be altered so that it designs tracking 
systems? First, a general approach w i l l be presented, and then two other methods 
w i l l be introduced which are much simpler, but are applicable only to certain 
classes of systems. 

5.4.4 General tracking system design using SVF 
The closed-loop regulator designed in Example 5.4 (Figure 5.3 and Equation (5.9)) 
was of the same order as the original system (both being third order). I t is a general 
property o f SVF regulators that they do not increase the system order, whereas 
dynamic compensators, designed by frequency-domain methods (as in Chapter 4), 
always increase the system order. This means that SVF has the advantage o f 
simplicity, but the potential disadvantage that the system order may need to be 
increased i f steady-state error (s.s.e.) is to be avoided. This explains why a SVF 
regulator w i l l not necessarily exhibit zero s.s.e. to a varying input signal. 

The requirement for increasing the system order is evident from the frequency 
domain approaches, where it is often found to be necessary to introduce integral 
control in order to remove s.s.e. fo l lowing a step input change (the integral control 
is added to increase the system type number, but thereby increases the order too). 

This gives a pointer as to how s.s.e. might be removed in the SVF arrangement. 
The approach w i l l be to form the output error and add integral action to remove i t , 
as shown in Figure 5.5. Unlike standard SVF, this does increase the system order 
due to the extra integrators in the forward path, but hopefully to good effect. 

In Figure 5.5, the heart of the system can be seen st i l l to be an SVF regulator 
wi th its input at q and its feedback gains in K. The extra components comprise a set 
of individual integrators (equal in number to the number o f plant outputs y, and 
hence to the number of output reference setpoints in r ) . These integrators can have 
zero inputs (that is, zero error between r and y), while providing the non-zero 
signals at q which are necessary to hold the regulator in the required non-zero state. 
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Figure 5.5 SVF tracking 
system using integral action. 

For a system having p outputs, this means that p new integrators w i l l be 
introduced into the system, and hence p new state variables, which can be called x{ 

(the ' integral ' states). The new (m x p) matrix KY is necessary to match the number 
of these integral states to the number of open-loop plant inputs at u. Also, the new 
poles due to the integral states w i l l need to be placed in some desirable closed-loop 
locations, and the elements of Kx give sufficient degrees o f freedom to achieve this 
(that is, the elements are tuneable parameters). In general, the new poles w i l l be 
placed significantly to the left in the s-plane wi th respect to the existing ones, so as 
not to affect substantially the closed-loop dynamics which the regulator has been 
designed to achieve. However, i f they are placed too far to the left, unrealistically 
large and fast control signals w i l l be called for. 

The design process is identical in principle to that employed in Example 5.4. 
Namely, the block diagram of Figure 5.5 is analysed to find the overall closed-loop 
state-space model of any system arranged in this form, and then the unknown 
parameters (the elements of K and KY) are selected to give the overall closed-loop 
' A ' matrix the desired set of eigenvalues. 

From Equation (5.6), it is known that the SVF system at the heart o f Figure 5.5 
can be described by the fol lowing equation, in which q comes from Figure 5.5, and 
simply replaces the original r used in deriving Equation (5.6) from Figure 5.2: 

x = [A - BK]x + Bq 

Now, from Figure 5.5, it is also seen that q = Kxxx and xx = r —y = r — Cx. 
Combining these equations gives: 

x = [A - BK]x + BKYxx and 

X j = -Cx + r 

These yield the fol lowing overall closed-loop state-space model, where the overall 
state vector is the original state vector wi th the new integral states appended to i t . 
Here use is made of partitioned matrices, wi th the partitioning lines omitted for 
clarity. Such matrices are described in Section A1.3 of Appendix 1. 

The eigenvalues of the system matrix of Equation (5.11), 

A - BK BK{ 

-C 0 

x 
A 

A-BK BKX 

-C 0 
X + 
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are thus those of the closed-loop (controlled) plant, and can be placed as desired 
(so long as the system is controllable) by choice o f K and KY. The procedure is 
illustrated by returning to the example. 

Example 5.5 A state variable feedback tracking 
system for the antenna positioner 
The antenna-positioning system has only one input and one output (see, for example, 
Figure 5.3). To arrange it in the form of Figure 5.5, the SVF structure o f Figure 5.3 w i l l 
be required (but wi th different numerical values for the feedback gains), together w i th a 
single unity negative feedback loop feeding back the output to a single reference input, 
and a single integrator wi th a scalar gain kx operating on the resulting error signal. The 
final system is shown in Figure 5.6, which may be inspected to illustrate the structure, 
although the numerical values shown for k and kY are yet to be designed. 

The closed-loop plant matrix from Equation (5.11) (wi th A , b and c as before) is 
therefore: 

0 1 0 0 

0 - 1 1 0 

5*] i 5&J2 5 SkX3 5/̂ j 

- 1 0 0 0 

A = 
A - bk bkx 

-c 0 

and so the closed-loop characteristic equation is \XI — Ac\ = 0 , which is easily obtained by 
expanding the resulting determinant by the last row, and using the previous result from 
Equation (5.7), as: 

X4 + (6 + 5kl3)X3 + (5 + 5kn + 5kl3)X2 + 5knk + 5 ^ = 0 (5.12) 

It is now necessary to compare Equation (5.12) wi th the desired CLCE. Since the same 
closed-loop pole locations as before are required, the C L C E from Equation (5.8) can be 
reused, and modified to include the new pole due to the extra integrator. This new pole 
might be placed at an s-plane location X= - 3 0 . The required C L C E is therefore: 

(X + 30)(A 3 + 12A2 + 25X + 50) = x 4 + 42A 3 + 385A 2 + 800A + 1500 = 0 
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Figure 5.6 The antenna 
positioning system with a 
state variable feedback 
tracker. 
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and comparing coefficients wi th those in Equation (5.12) then gives: 

5*, = 1500 so kx = 300 

5 * n = 800 so k u = 160 

6 + 5kl3 = 42 so k n = 7.2 

5 + 5kn + 5* 1 3 = 385 so k n = 68.8 

so that k = [160 68.8 7.2] and kY = 300, leading to Figure 5.6. 
The resulting unit step response appears in Figure 5.7, and can be seen to exhibit 

almost the same dynamics as Figure 5.4 (the slight differences are due to the presence of 
the extra pole arising from the new integrator). However, there is now zero steady-state 
error to the unit step input, as required. 

Note that the M A T L A B m-file fig5_7.m on the accompanying disk contains a simple 
modification to allow the plant input signal u to be added to this plot. Doing so indicates 
that the input signal peaks at a level of about 7 units in response to the unit step reference 
change. This is wi th in the plant input magnitude saturation l imits ( i f we take one unit to 
be one volt , and the input range is ± 1 5 V ) , but the rate of change is fairly large due to the 
integral gain of 300 V s " 1 . Considerations such as these indicate that a unit step is about 
the most severe change to which this system should be subjected. 

5.4.5 Tracking system design by gain variation 
Equation (5.10) predicted that the steady-state output o f the SVF regulator o f Figure 
5.3, fol lowing a unit step input, would be l / £ n = 0 .1 . In a simple case such as this, 
it may be possible to achieve the required output simply by gain variation. Since the 
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output settles at 10 per cent of the input step, the system could apparently be made 
to behave as a tracking system, and thus produce the traces o f Figure 5.7 (except for 
JCJ, which would not be present of course) simply by adding a gain of 10 in series 
wi th the reference input r in Figure 5.3 ( in other words, in the position of a pre-filter, 
as shown in Figure 1.5). 

This approach would be fine in simulation, but would not be a good idea in 
practice for two reasons. Firstly, i t would potentially place large signal variations on 
w, which the system may not be able to fol low, thus leading to nonlinear responses. 
Secondly, this gain of 10 would effectively be open-loop. A n y error in setting its 
value, or any variation in its value during use, would be uncorrected by the feedback 
system, and would therefore result in uncorrectable steady-state errors at the output. 

However, the same effect can be obtained by effectively moving the gain 
inside the feedback loops. Since the steady-state output fo l lowing a unit step is 
\/kxx = 0 . 1 , dividing k u by a factor of 10 ought then to give a steady-state output 
of unity. However, although the steady-state error depends only upon k n , the 
closed-loop pole locations are determined by the characteristic equation, which 
contains every element of k. Al ter ing only kx x w i l l therefore give zero steady-state 
error, but w i l l upset the desired closed-loop pole locations. 

To maintain these, it is necessary to maintain the gains around each loop at the 
designed values. A gain of 10 must therefore be added in series wi th u (that is, in the 
forward path of Figure 5.3, but inside the feedback summer) to compensate for the 
division by 10 in the feedback path via kxx. This extra forward path gain of 10 in 
turn means that both the gains in the other two feedback loops must be divided by 
10. A simple exercise in block diagram manipulation w i l l rapidly show that 
increasing the forward path gain in Figure 5.3 by a factor o f 10, while reducing the 
three feedback gains by a factor of 10, gives the same overall transfer function as 
inserting a gain of 10 in series wi th the reference input, as was originally suggested. 

Adding a gain of 10 in the forward path, and using the feedback vector 
k = [1 0.28 0.12], gives the required responses (those o f Figure 5.4, but wi th the 
vertical scale mult ipl ied by a factor of 10). These extra gains are inside the feedback 
loops, and therefore enjoy the benefits of reduced sensitivity to error, common to all 
negative feedback systems. Also, the final system is sti l l o f only third order. 
However, the maintenance of steady-state error at zero w i l l s t i l l not be as reliable as 
in the 'proper' tracking system of Figure 5.6. 

5.4.6 Tracking system design by use of inherent integration 
The last approach to be considered is quite elegant, but only works for systems 
which have pure integrators in their forward path in open-loop. Several systems fit 
this description (but still only a minori ty o f all systems). For example, any system 
whose output is a linear or angular position derived from a velocity signal, or any 
system having linear final actuators such as hydraulic cylinders, which effectively 
integrate flow rate to give position, w i l l be modelled as having a pure integration in 
their forward path. 

In systems such as these, i t is sometimes possible to use the bui l t - in integral 
action to achieve zero steady-state error to a step input, instead o f adding extra 
integrators deliberately. Example 5.6 demonstrates the application o f this method to 
the antenna-positioning system which, due to the output integrator, is a suitable 
candidate for the method to succeed. 
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Example 5.6 A state variable feedback tracker 
using inherent integral action 
The presence o f the integrator in the plant model in Figure 5.3 allows the steady-state 
condition for the plant to be determined, since the integrator input must then be zero. It 
has already been noted that this implies x2 = x3 = u = 0. 

From Figure 5.3, the steady-state signal generated at u w i l l thus be simply r - kxxxx, 
and this must therefore be equal to zero. With k n = 10 and r = 1, this can only happen 
wi th xx = 0 . 1 (which agrees wi th the result obtained from the final value theorem in 
Equation (5.10)). 

However, there is another way in which u = 0 can be obtained (and hence 
x2 = x3 = 0) while maintaining the design values of the feedback gains in k. That is to 
move the point o f application of the reference signal, so that i t becomes a reference for the 
states rather than the output. The proposed arrangement is shown in Figure 5.8. Note that 
reference signals ought also to appear on x2 and x3, but they have been omitted, as they 
should be zero. 

Apply ing a unit step to the reference signal on xx in Figure 5.8 now results in the 
system being driven (wi th the correct dynamics, since the loop gains are unaltered 
compared wi th Figure 5.3) until xx = r at steady state - that is, unti l there is no steady-
state error. This works only because the integrator producing xx from x2 can have any 
desired signal at its output, while its input is steady at zero. 

The responses of the system arranged in this manner are indistinguishable from those 
of Figure 5.4, but wi th the vertical scales multiplied by 10 as required. The maintenance o f 
zero steady-state error is reliable, as the integral action forces i t to happen. The only real 
drawbacks are firstly, that the plant input at u may again be required to fol low very large 
signals (r is now mult ipl ied by 10 compared wi th the arrangement o f Figure 5.3), and 
secondly, that the approach only works for the l imited class o f systems having this type of 
configuration. 

5.4.7 Ackermann's method and the use of MATLAB 

Figure 5.8 Tracking 
system generation by 
relocation of the reference 
input. 

The procedure of comparing actual and required closed-loop characteristic 
equations in order to design feedback gains (as in Example 5.4) is manageable 

Drive Load 
system dynamics 

1.2 1̂3 2.8 /c 1 2 10 *11 
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by hand for low-order systems, but is not easy for higher-order systems. Nor is i t 
easy to mechanize the procedure in a computer program. In 1972, J. Ackermann 
published an algorithmic approach to calculating the required feedback matrix for 
an SVF scheme, using a modified approach. This makes it easy to generate such 
schemes by use of a computer program. 

The method applies only to controllable systems, and was originally developed 
for single-input-single-output systems only. The method w i l l not be derived here, 
but w i l l be illustrated in use by hand. In practice, a computer package such as 
M A T L A B would be used to apply the method. For more detail see, for example, 
Phillips and Harbor (1991). Furuta et al. (1988) contains details o f an extension o f 
the method to multi-input-multi-output systems. M A T L A B has a command acker 
which executes the method for single-input systems (there is a second pole-
placement command, place, which is numerically more reliable, and also works for 
multivariable systems and for systems which are not completely controllable). 

Ackermann's method is based upon the fact that it is easy to generate the 
required feedback matrix for a plant whose A matrix is in the controllable canonical 
companion form (Section 2.5.1). Therefore, assuming the system is ful ly state 
controllable, a similarity transform (Appendix 1) is found which puts the plant into 
companion form, the required feedback matrix is calculated, and the inverse 
transform back to the original states is finally applied. This is all done in a single 
procedure, so that the user is not aware o f the three distinct steps. 

The SISO version of the method could be executed by hand as follows: 

• Write down the required C L C E from the desired pole locations. 

• Rewrite the required CLCE, substituting the plant matrix (A) for the Laplace 
operator (s) (or for X i f the C L C E is writ ten in terms of eigenvalues). 

• M u l t i p l y it out to yield a matrix called a ( A ) . 

• Form the controllability test matrix for the plant (Equation (5.1)) 

V=[b Ab A2b ••• An~lb] 

• Calculate the required feedback gain vector as 

* = [ 0 0 0 ••• 0 l ] ^ _ 1 a ( A ) (5.13) 

Example 57 State variable feedback regulator 
design by Ackermann's method 
The design o f Example 5.4 is repeated to illustrate the use o f Ackermann's method, 
although this would normally not be done by hand. 

The desired closed-loop poles are to be at k = - 1 ± 2j and X = - 1 0 . The required 
^ C L C E for the system is therefore (Equation (5.8)) A 3 + 1222 + 25/1 + 50 = 0. The matrices 
^ for the state equation are 

"0 1 0 ' ~0~ 

0 - 1 1 and b = 0 

0 0 - 5 _ _5_ 
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so a (A) is: 

and 

"0 1 0" 
• 

"0 1 0" 2 "0 1 0 

«(A) = 0 - 1 1 + 12 0 - 1 1 +25 0 - 1 1 

0 0 - 5 _ 0 0 - 5 _ 0 0 - 5 

"50 14 6" 

= 0 36 - 1 6 

0 0 100 

"0 0 5" 

«"= [b Ab A2b] 0 5 - 3 0 (from Example 5.1). 

5 - 2 5 125 

+ 50 / 

* = [ 0 0 l ] ^ " 1 a ( A ) = [0 0 1] 

The feedback gains are therefore found, using Equation (5.13), to be given by: 

^0 0 5 1 _ 1 [ 5 0 14 6 

0 5 - 3 0 0 36 - 1 6 

^5 - 2 5 125J |_ 0 0 100 

= [10 2.8 1.2] 

which is the same result as was obtained in Example 5.4, leading to the arrangement o f 
Figure 5.4, thus confirming the use of this approach. 

Using M A T L A B to do the design, which would be far more usual, the commands 
would be: 

» a = [0 1 0; 0 - 1 1; 0 0 - 5 ] ; 

> b = [0; 0; 5] ; 

)> p = [ - 1 + 2j — 1 — 2j - 1 0 ] ; % vector of desired closed-loop pole 
% locations 

y k = acker(a, b, p) 

The place command can be used simply by replacing the word 'acker' w i th the word 
* place'. 

5.4.8 Choice of locations for the closed-loop poles 
The question of where the closed-loop poles ought to be located has not yet been 
addressed. There are various means of deciding this, but usually a degree o f tr ial and 
error w i l l be necessary. M A T L A B (or other CACSD) simulations o f the designed 
system can easily be persuaded to display the driving inputs to the plant. This is done 
by defining new system outputs (which w i l l become the same as the inputs it is 
required to display) and setting appropriate elements of D in the resulting state-space 
model to unity, thus connecting the inputs of interest to the extra system outputs 
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whose responses can then be displayed. The rows o f the C matrix corresponding to 
the new outputs would be set to zero. The file fig5_4.m on the accompanying disk, for 
example, contains this method for adding the input signal to Figure 5.4. The required 
modifications can be seen by viewing the file in any A S C I I text editor. 

The input signals can thus be easily inspected for unrealistic amplitudes or 
rates o f change, and the pole locations adjusted in the light o f the guidance below, 
unti l matters are satisfactory. 

A common approach is to adopt the philosophy of approximating the desired 
response by that of a second-order model. The response can thus be specified in 
terms of damping ratio and natural frequency, leading to a second-order transfer 
function whose characteristic equation w i l l provide the desired pole locations. This 
only specifies locations for the two dominant closed-loop poles, o f course. Usually 
there w i l l be several more! In order to maintain the performance specified by the 
dominant poles, any other poles must, by definition, be less dominant. They must 
therefore be placed as far to the left in the s-plane as possible. However, there are 
some general rules to bear in mind when doing this, i f excessive control actions 
(which may wel l cause the plant input to saturate in terms o f either amplitude, or 
rate o f change, or both) are to be avoided. A knowledge o f how root locations in the 
s-plane affect transient response is vital (see Section 4.4 on the root locus method). 

The most general rule is to move the open-loop poles as l i t t le as possible. I f an 
open-loop pole location is acceptable in closed-loop, do not move i t . The further a 
pole is moved, the more control energy w i l l be required. This is because higher 
gains are required in the feedback matrix to move a pole further, and therefore 
larger signals are applied at the inputs. 

It w i l l also be found that the feedback gains increase as the controllabil i ty of a 
system decreases - a system that is only weakly controllable w i l l require a lot of 
energy to control it . This is because weak controllabil i ty implies a pole rather close 
to a zero (almost cancelled in the transfer function). From Section 4.4 on the root 
locus method, i t is known that zeros attract poles, so it is always going to take a lot 
of control effort to separate a pole from a neighbouring zero. 

Another useful rule is that i f right-half-plane poles are to be moved ( in order to 
stabilize the system), then left-half-plane locations which are a direct reflection in 
the imaginary axis are often a good starting point. 

I f the desired pole set contains some relatively fast poles (to the left in the s-
plane) and some slow ones (close to the imaginary axis), then the fast ones w i l l 
require a lot o f control input to make the transients die away rapidly, but the slow 
ones, requiring much lower inputs, w i l l dominate the response. This is not an 
efficient use of the control inputs. The most efficient expenditure o f control energy 
is achieved i f the closed-loop poles are the same distance from the or igin in the s-
plane (that is, they lie on a semicircle). 

I f the poles are to be located on a semicircle, the result could be the 
configuration of a Butterworth filter. I f the required radius o f the semicircle is con 

(remembering that circles in the s-plane are contours o f constant undamped natural 
frequency), and i f it is required to place n poles, then the pole locations w i l l be 
given (Friedland, 1987) by the roots of: 

(5.14) 
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where con is chosen to give a high enough rate o f response. The roots o f this 
equation imply a set of poles, on a semicircle of radius con, symmetrically spaced 
about the negative real axis, and wi th the extreme rightmost ones at angles of 
(90/n) degrees to the imaginary axis. This means that as the number o f poles to be 
placed (n) increases, this rightmost pair w i l l occur very close to the imaginary axis. 
For stability, it w i l l then be wise to move them somewhat further to the left in the 
s-plane than Equation (5.14) would suggest. 

Other sets of polynomials also give roots useful as closed-loop pole sets 
(Franklin et al, 1994). 

The methods of optimal control (Chapter 12) w i l l select the closed-loop pole 
locations in a SVF scheme automatically. 

5 .5 Muinvariable systems - links with other topics 
To cope wi th systems having several inputs and/or outputs, no modifications are 
needed to any o f the methods described in this section (except that Ackermann's 
method as described above is for single-input systems only - the M A T L A B place 
command can be used instead). 

The only difference is that when the characteristic equation o f the closed-loop 
plant matrix [A — BK] is compared wi th the desired closed-loop characteristic 
equation (as was done in Example 5.4, for instance), a set o f homogeneous 
equations w i l l result. That is to say, there w i l l be more unknowns in the equations 
(the elements of K) than there are equations to solve for them - leading to an 
infinite number of possible solutions. This is entirely predictable. 

For a single-input nth-order system, there are n poles to be placed and n states 
to be fed back via k to the single input, k is therefore o f size 1 x n, and has n 
unknown elements to be found from the n simultaneous equations which result from 
the comparison of the two nth-order CLCEs, so the solution is unique. However, 
i f the nth-order system (so comparison o f the CLCEs w i l l st i l l generate n 
simultaneous equations) now has m inputs, K must now feed back the n states to the 
m inputs, so it must be of size m x n. There w i l l thus be (m x n) unknowns to fix 
using only n equations. The same happens when stabilizing an uncontrollable 
system, as there must be at least one unmovable pole, thus leading, once again, to 
fewer equations than unknowns. 

This excess of unknowns can be used in a number of ways. The most common 
are: 

• Assign arbitrary values to elements of K unt i l only n unknowns remain to be 
solved for. This can be useful i f some elements of K can be set to zero. I f it is 
possible to set all the elements in one column of K to zero, no connection need be 
made to that state variable, as no feedback is required from it . I f the state is 
unmeasurable, this may avoid the need to bui ld a state estimator (Chapter 9). 
Similarly, i f one row of K can be set to zero, no connection need be made back to 
the corresponding input. Of course, the practical desirability o f deciding not to 
use any information from one of the state variables, or not to control at an 
available input, must be assessed before such design decisions are made. 

• Use the excess feedback gains to try to control the directions of the closed loop 
eigenvectors as wel l as the positions of the closed-loop eigenvalues. This gives 
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even more possibilities for shaping the closed-loop time response (as Section 5.6 
w i l l show). However, whereas there is complete freedom in choosing the closed-
loop pole locations (subject to controllability, moving complex pairs together and 
not doing anything practically unrealistic), i t is not possible to specify closed-loop 
eigenvector directions at w i l l , since the closed-loop eigenvectors are constrained 
to lie in a certain sub-space of the state-space. One use o f the technique is in 
systems wi th uncontrollable poles. Even though an eigenvalue cannot be moved in 
such a system, its associated eigenvector can probably be altered so as to minimize 
the contribution of the uncontrollable mode to some particularly sensitive state 
variable of the system (for example, its output). For more information on entire 
eigenstructure assignment consult D ' A z z o and Houpis (1995). 

• Rather than using a pole-placement approach, use some k ind o f optimization 
procedure wi th the flexibili ty to calculate all the feedback gains, so as to obtain 
the best possible performance in some predefined sense. Chapter 12 on optimal 
control pursues this approach. 

5.6 Eigenvectors of the plant matrix, and their contribution to 
the time response 

Although space does not permit coverage of entire eigenstructure assignment (see 
above), the role of the eigenvectors of a system in shaping its time response w i l l be 
described. 

Since the eigenvalues of the A matrix are characteristic values of the system 
model, whatever state vector is chosen, i t might be expected that the eigenvectors 
(Section A1.2) w i l l be, too. I t turns out that they are not! A different choice o f state 
variables (leading to a different A matrix) normally leads to a different set o f 
eigenvectors, even though the eigenvalues remain the same. What then is the role of 
the eigenvectors? 

In Appendix 1 a geometrical interpretation o f eigenvalues and eigenvectors is 
given, wi th reference to Figure A 1.6. This reinforces the general point that the 
eigenvectors only specify the direction o f something (so they are vectors in the 
sense of physics, as wel l as the sense of mathematics). Their lengths are not defined. 

Example 5.8 Eigenvectors of the antenna-
positioning system 
Using the methods of Appendix 1, find the eigenvectors for the original state-space model 
of the antenna-positioning system (Equations (2.103) and (2.104)). 

The original system A matrix is: 

0 1 0 

0 - 1 1 

0 0 - 5 

and the eigenvalues (by inspection, or from Example 3.1) are Xx = 0, À2 = — 1 and A 3 = —5. 
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Now, from the ful l characteristic equation of the system, [XI - A]v = 0 (Equation 
(A1.6) , Appendix 1): 

i f 

M 

[XI-A]v-

0 0" ' 0 1 0" 

1 0 - 0 - 1 1 > 

0 1_ 0 0 - 5 _ 
> . v 3 1 . 

- 1 

A + 1 

0 

"0" 

v21 = 0 

. V 3 1 . 0_ 

(5.15) 

Expanding these equations: 

^ v n _ v 2 i = 0> + l ) v 2 i - v 3 1 = 0 and (A + 5 ) v 3 1 = 0 
Each eigenvalue is substituted separately into Equations (5.15), so as to find the 
corresponding eigenvector. The eigenvectors corresponding to the eigenvalues A l 5 A 2 and A 3 

are v{, v 2 and v 3 respectively. The elements of these eigenvectors w i l l be denoted as, for 
example, v l z j to represent the second element of the first eigenvector. 

For Xx = 0, Equations (5.15) reveal that = v l z j = 0, while v l n can have any value. 
This freedom of choice arises because a characteristic direction is being evaluated, and 
not a magnitude. The scaling of the vector elements makes no difference to its direction. 
Normally, one element of the eigenvector is set to unity, or the eigenvector is normalized 
to unit length. In this case, we choose to set v l n = 1. 

For A 2 = - 1 , Equations (5.15) show that v2ll = 0> v2 2 1

 c a n ^ anything, and 
v 2 = —v7 . We choose to set v? = 1. 

z l l ¿21 ¿11 

For A 3 = - 5 , Equations (5.15) give v3^ can be anything, v 3 z i = - 0 . 2 5 v 3 3 i and 
v 3 n = - 0 . 2 v 3 2 i . Again, the first element is chosen as unity, v 3 n = 1. These choices give a 
set of eigenvectors of: 

V r 
1̂ = 0 - l 

0 0 

and 

1 

- 5 

20 

(5.16) 

These eigenvectors are linearly independent, as they specify independent directions in the 
state-space. This w i l l be true for the eigenvectors of any system having non-repeated 
eigenvalues. 

I f the eigenvectors for one of the other state-space models o f the same system are 
calculated (for example, the direct programming result in Equation (2.99)), again fixing the 
first element in each equal to unity, the results w i l l be found to differ from Equation 
(5.16). Different state variables give different characteristic directions. 

As usual, packages such as M A T L A B take all the hard work out of such calculations. 
For example, the pair of M A T L A B commands: 

» a = [0 1 0; 0 - 1 1; 0 0 - 5 ] ; 

» [v, e] = eig(a) 

w i l l return the eigenvalues of A as the diagonal elements of e, and the eigenvectors of A 
as the columns o f v. Note that M A T L A B scales the eigenvectors to unit length, so the 
numbers differ from those of Equation (5.16), although the directions in the state-space are 
identical - i t is purely a scaling change. 
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5.6.1 Modes of response 
The modes o f response of a system represented by a state-space model can be 
specified in terms of the eigenvalues and eigenvectors o f the system. This is not 
surprising, as the eigenvalues are the same as the poles o f the system; and the poles 
have already been shown to determine the modes o f response o f the system. 

To investigate the modes o f response, the solution o f the state equation is 
required. A solution via the Laplace transform was derived in Section 3.2.1, where 
the Laplace domain solution was found to be (Equation (3.13)): 

X(s) = <P(s)X(0) + 4>(s)BV(s), 

where tf>(i) = [si - A]~l 

Now consider, for simplicity, the unforced system (that is, the system wi th no input 
except ini t ia l conditions on the states). The solution is then: 

X(s) = *(s)X(0) or x(t) = 0(t)x(O) (5.18) 

Example 5.9 State equation solution for the 
antenna-positioning system 
For the example system, taking the same state-space model as was used in Example 5.8, 
the transition matrix is firstly evaluated from Equation (5.17): 

0(s) = [si - A ] = < 

s 0 0" ~0 1 0" 
< 0 s 0 - 0 - 1 1 > 

< 
0 0 s 0 0 - 5 _ 

s - 1 0 
0 5 + 1 - 1 

0 0 5 + 5 

-i - l 

Using the (adjoint matrix)/(determinant) to find the inverse (Section A l . 1 . 3 ) : 

( s + i j ( s + :>j u u n T 

1 
0(s) = 

s(s+l)(s + 5) 

1 1 

5 s(s+ 1) 5 ( 5 + l ) ( s + 5) 

1 1 

( J + 1 ) ( J + 5 ) 0 0 

(5 + 5) 5 ( 5 + 5) 0 
1 5 5 ( 5 + 1 ) 

1 

( 5 + 1 ) ( 5 + l ) ( 5 + 5) 

1 
0 (5 + 5) 
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The time-domain transition matrix &(t) can be found by taking the inverse Laplace 
transform of this matrix (that is, the inverse Laplace transform of each element), giving: 

1 1 
1 1 -t 1 -

e -\ e 
5 4 20 1 1 

0 e-' 

_0 0 e~ 

Using this result in Equation (5.18), to find the responses to the ini t ia l conditions, gives: 

4 
-5t 

x2 

* 3 j 

* 0 i + (1 - 0*0, + Q " \ ^ + ^ e ~ 5 t p 0 3 

(5.19) 

From results such as Equation (5.19), i t is confirmed that the eigenvalues give the 
exponential modes of the system. These appear in the responses o f every state 
variable, in general. The system of Example 5.9 has eigenvalues o f 0, - 1 and - 5 ; 
so terms such as e0t (constants), e~u and e~5t appear. 

The eigenvectors specify the distribution o f the modes between the states. In 
Example 5.8, corresponding wi th the eigenvalue - 5 , was an eigenvector of 
[1 - 5 2 0 ] T . This predicts that the mode e~5t w i l l be found 20 times as much in 
evidence in the x3 response, as in the x{ response; and this is verified by the time 
solution for x at Equation (5.19). Similarly, in the x2 response, five times as much o f 
the e~5t mode would be expected as in the xx response, but wi th a sign change; and 
again this is evident in Equation (5.19). The other two eigenvectors successfully 
predict the distribution of the other two modes in a similar way. 

The eigenvectors therefore show the proportion o f each mode appearing in 
each state response. These proportions remain fixed, whatever the excitation o f the 
system, but the actual numbers involved vary wi th the ini t ia l conditions in x ( 0 ) . 

5.6.2 A tighter link between eigenstructure and time response 
The type of result in Equation (5.19) can be obtained directly from the eigenvalues 
and eigenvectors of the system model, removing the necessity to evaluate the 
transition matrix, or to take inverse Laplace transforms. For systems wi th distinct 
(non-repeated) eigenvalues, the procedure is as follows. 

(1) From the plant matrix A , obtain the eigenvalues Xx, X2, A 3 , . . . , Xn. 

(2) Using the method of Example 5.8 above, calculate the corresponding 
eigenvectors, v u v 2 , v 3 , . . . , vn. 

(3) Form the modal matrix W for the system. This is the matrix whose columns are 
made up of the eigenvectors, so that W = [vx \v2\v3 \ • • • | v j (see Section A 1.3 of 
Appendix 1 on partitioned matrices, i f necessary). 



5.6 Eigenvectors of the plant matrix, and their contribution to the time response 339 

(4) Determine the inverse of the modal matrix, that is, W 1 , and regard it as being 
made up o f a stack of row vectors, such that 

H>9 

(5) The state response to an ini t ial condition vector JC(0), as in Equation (5.19), is 
then given by the fol lowing alternative representation o f the transition matrix: 

x(t) = W diag[eA>', . . . , eKt\ W~lx(0) 

x(0) (5.20) 
z=l 

Example 5.10 Direct method of state equation 
solution for the antenna positioner 
From Example 3.1, the system has eigenvalues kx = 0, À2 = — 1 and À3 = - 5 . From 
Example 5.8 (Equation (5.16)), the corresponding eigenvectors are known to be: 

V r r 
0 - i and v 3 = - 5 

0 o_ _ 20_ 

so that the modal matrix is 

W 

1 1 1 

0 - 1 - 5 

0 0 20 

The inverse o f this is found to be: 

1 1 

0 - 1 

0 0 

1 

5 
1 

~ 4 
1 

20 
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; the rows of which give: 

H>, = [1 1 1], w2=[0 - 1 - I ] and H > 3 = [ 0 0 

Direct application of Equation (5.20) then yields the fol lowing result which, when 
mult ipl ied out, is identical to that of Equation (5.19): 

x(t) = 1£(ex<viwi)x(0) 
1=1 

= < 

V 

< e°< 0 

< 
0_ 

[ ' 1 i ] 

1" 

[ ' 1 i ] 
+ e~u - 1 0 - 1 

0 

+ e -5t 

1 

- 5 

20 

0 0 — 
20 

*(0) 

Problem 5.16 takes these ideas a lit t le further. 

5.7 More on discrete-time models and simulation studies 
Most o f the modelling and controller design work so far has concentrated on 
continuous-time (or analog) approaches. However, in Section 3.6, the use o f 
discrete-time models was briefly discussed, and the time responses o f a couple of 
such models were generated. Now the derivation o f such models w i l l be introduced. 

In many cases, 'digital controllers' are actually analog ones implemented by 
digital methods. Such implementation has a number o f advantages: in particular, i t 
is often much easier to adjust compensator parameters in software than by 
modifying components in a hardware analog controller. Also, although not 
discussed in this book, i t is now normal for large process plants (for example, in the 
petro-chemical industries) to be controlled by very many individual controllers, 
whose setpoints are provided by a hierarchy o f computers in 'distributed control ' or 
SCADA (supervisory control and data acquisition) schemes, and the digital 
approach lends itself wel l to use in such schemes. A balancing disadvantage for 
simple systems is perhaps that of cost, but the difference is diminishing all the time 
as microprocessor technology becomes cheaper as wel l as faster. The major costs o f 
digital control are now often in software development. 

The digital implementation of analog control strategies w i l l be explored in 
Section 5.8. This section continues the investigation o f the parallel possibility o f 
simulating the operation of analog components and systems by means o f a digital 
computer. Such simulation is very useful in that i t allows the soundness of a 
controller to be tested without the risk o f expensive and dangerous plant damage. 
Several proprietary packages exist for performing such simulations and 



5.7 More on discrete-time models and simulation studies 341 

S I M U L I N K (The Mathworks Inc., 1993c, and Appendix 4) w i l l be used as being 
representative of these. In addition, M A T L A B (Appendix 3) has already been used 
to simulate systems on several occasions. Every time the step command has been 
issued to generate figures such as Figure 5.7, a digital computer simulation o f a 
continuous-time model has been performed. 

The basic principles of simulating an analog system by means o f a digital 
computer were outlined in Section 3.6.1 (Example 3.17). Another simple first-order 
example w i l l be used in discussing the derivation o f the discrete-time model, and 
different methods of performing the simulation. 

Consider a simple lag whose LTF model is 

Y(s) = 5 
U(s) 1 + 0.55 

Cross-multiplying gives: 

(1 + 0 . 5 j ) y ( s ) = 5U(s) 

Taking inverse Laplace transforms, wi th zero ini t ia l conditions, the time-domain 
equivalent is: 

0 . 5 ^ + > ( 0 = 5«(f) 

or, dropping the i-dependency and rearranging: 

^ = 1 0 W - 2 y (5.21) 
dt 

The procedure is now to solve this differential equation numerically. The simplest 
approach is by Euler integration whose principle is explained by Figure 5.9. From 
the figure, at time instant tn_x, the slope of the response is approximately given by: 

dy ~yn -yn-\ 
dt tn - tn_x 

I f the sampling interval tn - tn_x = Ts, then the latest value of y (yn) is given by: 

^ dy 
yn~yn-\ + r * ^ 

I f the interval Ts is chosen to be short in relation to the rate o f change of y, 
reasonable accuracy is achieved. The fo l lowing pseudo-code shows how the 
method would work wi th this example. 

Set the time t equal to zero 
Set a quantity last_y equal to the ini t ia l value o f y 
Set, read or input the total simulation time tmax 

Loop: Read or input the value o f u 

Calculate t as t + Ts 

Calculate y(t) as last_y + (10« - 2 x lastly) x Ts (from 
Equation (5.21)) 

Output and/or graph and/or store t and y(r) 
Set last_y equal to y(t) 
End i f t > tmax, else goto Loop 
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5 

Figure 5.9 The principle of 
Euler integration. 

This algorithm could easily be programmed in a high-level language, or even on a 
spreadsheet. The responses of Figure 5.10 were plotted using the M A T L A B m-file 
fig5_10.m on the accompanying disk (of course, M A T L A B is not meant to be used 
like this - the step command would be much better - but i t illustrates how the 
method would be programmed in a general high-level language). I t can clearly be 
seen that integration intervals of 0.05 s or less give a very good representation of 
the actual system output, but that increasing the integration interval causes an 
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increase in the error. Indeed, when the interval became equal to the time constant 
(0.5 s), the response moved to the steady-state value in one interval and stayed there! 

It is important to note that the different responses are purely a function o f the 
use of the numerical integration algorithm (choice o f the integration time step) - the 
real system does not respond like that at all (except, perhaps, in the case o f the 
0.05 s sampling interval). This shows that care is needed in using such simulation 
techniques. 

Better algorithms for numerical integration allow the use o f longer steplengths 
for the integration without accuracy loss, resulting in faster algorithm execution. 
Probably the most widely used method is that o f Runge-Kutta, which works as 
follows in its 'fourth-order' form. Reference should be made to Figure 5.11 during 
this description. 

The procedure starts by calculating dy/dt at the start o f the interval, just l ike 
the Euler method (that is, at time tn_x in the figure). That value is used to calculate 
the amount kx by which y increases during the time step, using kx = dy/dt x Ts. 
That was the whole of Euler's method - and the first step of Runge-Kutta! 

Mathematical common sense suggests that Euler's approach would be more 
accurate i f the average value of dy/dt was known across the interval, rather than just 
the value at the beginning. Therefore, three further values o f dy/dt are used (as 
described below) to find increases k2, k3 and k4, and a weighted average o f those k 
values is taken to be the actual change in y during the interval. 

For determining k2, the value of y halfway across the interval (at time 
tn_x + Ts/2) is estimated as yn_x + kx/2 and is then used to evaluate dy/dt halfway 
across the interval from the system equations (such as Equation (5.21)). The value 
of k3 is determined similarly except that yn_x + k2/2 is used to work out dy/dt 
halfway across. Finally, kA is calculated using the value o f dy/dt at the end o f the 
interval (worked out on the basis of yn_x + k3). Finally, yn is worked out as the 
weighted average: 

y „ = : y , , - i + ( * i + 2 * 2 + 2*3+*4)/6 

5 

Figure 5.11 The principle 
of Runge-Kutta integration. 
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The fol lowing algorithm, converted to M A T L A B code (again, rather an inefficient 
use o f M A T L A B ! ) , was used to produce Figure 5.12 for the example problem (see 
the file fig5_12.m on the accompanying disk). 

Set u — I 
Set the time t equal to zero 

Set a quantity last_y equal to the ini t ia l value o f y 

Set, read or input the time step Ts 

Set, read or input the total simulation time tmax 

Loop: Calculate dy/dt as 10« - 2 x last_y (as in Euler's method) 

Calculate kx as Ts x dy/dt 

Recalculate dy/dt as 10« - 2(last_y + kx/2) 

Calculate k2 as Ts x dy/dt 

Recalculate dy/dt as 10« - 2(last_y + k2/2) 

Calculate k3 as Ts x dy/dt 

Recalculate dy/dt as 10« - 2(last_y + jfc3) 

Calculate k4 as 7^ x dy/dt 

Calculate y(t) as lastly + (kx + 2Jt2 + 2 £ 3 + k4)/6 

Set /tfsr_y equal to y(t) 

Output and/or graph and/or store t and y(f) 

Set t = t + r5 

Goto i f r < tmax 

End 

Figure 5.12 System output 
calculated by Runge-Kutta 
integration. Time (s) 
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Referring to Figure 5.12, it is clear that the calculated results from the simulation 
are very close to the true values, even when an integration interval equal to the 
time constant of the first-order system is used. Despite the much greater number o f 
calculations which Runge-Kutta requires at each iteration o f the simulation, i t 
does allow an accurate simulation to run very much faster than the Euler method. 

Other numerical integration methods exist to deal w i th the case of systems 
which have periods o f slow change of variables interspersed wi th episodes o f more 
rapid change. In such cases, i t can be advantageous to vary the integration interval -
reducing it when the change is rapid and extending i t when change is slower - and 
methods exist to perform the integration wi th a suitably variable steplength. 
Typically, Runge-Kutta methods are modified to incorporate steplength control, but 
there are also other methods such as those due to Adams, Bashforth, Fox, Gear, 
Moul ton and others (see, for example, Conte and de Boor (1972)). Some of these are 
specialized, such as the Gear algorithm which is specifically aimed at the simulation 
o f ' s t i f f systems - namely those wi th a severe discrepancy between their fastest 
and slowest dynamics. Wi th some systems, i t is found that variable step methods 
take a long time to optimize their steplength, so that that they save li t t le execution 
time compared wi th using Runge-Kutta w i t h a short steplength throughout, but 
they may nevertheless effect useful savings in the quantity o f information which 
needs to be stored. 

In practice, control system simulation studies are best carried out using a 
specialist simulation package such as S I M U L I N K . The arrangement shown in 
Figure 5.13 w i l l be investigated using S I M U L I N K as a brief example. 

Figure 5.13 Example for 
SIMULINK simulation. 

Step input 
R(s) 3 

2(s + 2) 500 
1 s + 20 s 3 + 14s2 + 25s 

Output 
Y(s) 

S I M U L I N K is used as in Section A4 .1 .1 , noting also that the discrete l ibrary 
contains the further elements needed to model digital controllers, while extras 
contains some useful specialist blocks including PID controllers. 

Figure 5.14 shows the graphic input for this problem in S I M U L I N K . It is 
noteworthy that the step input is applied by default after one second rather than 

Figure 5.14 SIMULINK 
arrangement for the lead-
compensation example. 

Step 
input Sum 

2s+ 4 
s+ 20 

Transfer fen 

500 
s 3 + 14s2 + 25s 
Transfer fen 1 Auto-scale 

graph 

To workspace 1 
Auto-scale 

graph 1 
To workspace 
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ini t ial ly. This can be overridden, but is often useful in that i t allows the state o f the 
system before the application of the step to be confirmed. However, do not be 
misled into thinking that a one-second transport lag has appeared. The blocks ' y ' 
and ' u ' are those used to pass the variable values back to M A T L A B , as outlined in 
Appendix 4; the corresponding values of time t are passed back by typing t in the 
'Return Variables' window in the 'Parameters' section of the 'Simulat ion ' menu, in 
which the integration algorithm, the permitted range of time step used, and the total 
simulation time are also specifiable. The file fig5_14.m on the accompanying disk 
contains this S I M U L I N K model. To a novice M A T L A B user, its contents w i l l 
probably not mean very much, as S I M U L I N K created i t automatically from the 
block diagram input. However, i t w i l l run in response to the command fig5_14 
issued at the M A T L A B prompt, so long as S I M U L I N K is installed on your system 
(just typing the name of the m-file w i l l load S I M U L I N K automatically and draw 
the block diagram - click on Simulation then Start). Note that the version on disk 
also uses a multiplexer ( 'mux ' ) block from the connections library, so as to display 
both plots on the same graph. 

Figure 5.15 shows the controller and plant outputs resulting from running the 
simulation. Smoother traces could be obtained by taking more samples (reduce the 
'Max Step Size' setting in the 'Parameters' section o f the 'Simulat ion ' menu, so as 
not to allow the integration algorithm to take such long time steps). This w i l l also 
make the 'controller action' look more l ike Figure 5.15, which was achieved wi th a 
maximum integration step size of 10 ms. However, the penalty for doing this is 
longer execution times. 

Figure 5.15 Plant step 
response for the lead-
compensation example as 
plotted by MATLAB using 
data generated by 
SIMULINK. 
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5.8 An introduction to digital controllers 
So far we have discussed control by analog methods. Such methods are important 
not only because they are still used in many areas, but also because many digital 
controllers are in fact implementing analog control strategies, especially PID (three 
term). This section w i l l explore how digital controllers operate; how digital 
algorithms based on an analog controller design may be developed; and the 
advantages and problems of such 'digit ized analog' controllers compared wi th their 
analog counterparts. 

5.8.1 Components in a digital control loop 
A digital controller may be viewed as operating the fo l lowing cycle of events. 

(1) I t reads the value of the signal at its input. This may be the error signal in the 
case of a cascade controller such as a PID, or the digital controller may form the 
error signal itself by reading the values o f setpoint and output and subtracting 
the latter from the former. 

(2) It checks that the read values are wi th in known l imits o f magnitude and rate-of-
change. I t may average several values to perform rudimentary noise filtering. 

(3) I t performs a calculation, based on the input values and on stored values of 
previous inputs and outputs, to work out what its output should now be. 

(4) I t outputs that value after checking it against plant l imits , and modifying it i f 
necessary. 

(5) I t pauses for a moment before restarting the cycle by reading its input again. 

It is noteworthy that the controller output is maintained at its last value unt i l the 
next one is calculated, so that a graph of the controller output against time 
resembles a series of d.c. levels (a 'staircase' type o f waveform) rather than a series 
of impulses. The implications o f the latter point are discussed in Chapter 7. 

The reason for the pause (item 5 above) is that the time between reading 
successive inputs, known as the 'sampling interval ' , must be constant for the 
controller to operate properly to its specification, but the calculation w i l l not always 
take the same length of time ( in particular, i t w i l l be significantly quicker i f one or 
more o f the input and output values proves to be zero). 

The general form of a digital controller to perform such a series o f operations 
is shown in Figure 5.16, and its block diagram representation in Figure 5.17. The 

Reference 
input Anti

aliasing 
filter 

Analog-
to-digital 
converter 

Processor 
system 

Digital-to-
analog 

converter 

Output 

Figure 5.16 General 
arrangement of a digital 
controller. 

Plant 
output Anti

aliasing 
filter 

Analog-
to-digital 
converter 
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Figure 5.17 Schematic 
representation of Figure 
5.16. 

Digital 
compensator 

controller w i l l need to include an analog-to-digital converter for each input, a 
computer (using the word in its most general sense) to perform the calculation, and 
a digital-to-analog converter for the output. 

I t w i l l also be necessary to precede the input or inputs by analog low-pass 
filtering to avoid aliasing. This phenomenon was described in Section 1.3.6 (see 
Figure 1.15). High-frequency (by electromechanical standards) signals can appear 
unexpectedly at controller inputs by electromagnetic action i f the screening is less 
than perfect - those caused by the a.c. mains can be particularly prevalent. I t is such 
signals at higher frequencies than those expected in the control loop, that the anti
aliasing filter must eliminate. Otherwise, they would be under-sampled and would 
appear to the controller as a lower-frequency signal, which might then be 
indistinguishable from a genuine signal at the frequencies expected in the control 
loop. Such an analog filter must offer negligible attenuation at the highest natural 
frequency o f the plant, the controller or the resulting closed-loop system, but must 
offer considerable attenuation above about half the sampling frequency. 

The significance of half the sampling frequency (the so-called 'Nyquist 
frequency') is shown by the frequency response graphs of Figure 5.18, in which the 
responses o f an analog first-order lag and its digital equivalent are shown. The 
response of the digital version is seen to fall to about - 2 6 dB at half the sampling 
frequency o f 100 Hz (or approximately 628 rad s" 1 ) before rising back to 0 dB at 
the sampling frequency owing to aliasing. The exact interpretation o f the 
'considerable attenuation' required depends on the l ikely level o f interference 
and the quality of the screening, but at least 40 dB would be a guide. I t is possible 
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that a similar filter fol lowing the D - A converter w i l l be useful in smoothing the 
discrete steps in the controller action. The plant itself w i l l generally do this 
smoothing effectively, since not many plants can faithfully fo l low a 'staircase' 
waveform, but an output filter might be necessary to prevent excessive plant 
actuator wear. A n example in Section 9.7 develops the implementation aspects o f 
digital control further. 

5.8.2 Digitizing analog transfer functions - the z-transform 
The conversion of an analog controller transfer function to a digital controller 
algorithm is generally best done by one o f the approximations to the z-transform. 
Just as the Laplace transform maps continuous-time quantities into the complex 
frequency domain, thus al lowing linear LTF models to be writ ten in terms of the 
variable s, so the z-transform maps L T F models into discrete-time, and allows 
transfer function models for discrete-time systems to be writ ten in terms of a 
variable z. 

This variable z strictly arises from a discrete-time summation expression, 
related to the integral definition of the Laplace transform. However, i t is usually 
approximated by various substitutions for s i n the LTF, instead. These different 
possible derivations lead to different possible z-transform models o f the same 
system, each having slightly different properties (or, i n some cases, rather more 
than 'sl ightly different')! 

The variable z is first introduced in the simplest manner possible. That is, a 
mult ipl icat ion by z" 1 is used simply as a notation to represent a delay o f one time 
step in a discrete-time signal. Thus, an A R M A model such as the fo l lowing one, 
which was used in Section 2.8.1, can be rewritten as shown: 

yn = Axyn_x + A2yn_2 + A3yn_3 + • • • + B0un + Bxun_x 

+ £ 2 W „ _ 2 + . . . 

transforms to: 

Y(z) = Axz-lY(z)+A2z-2Y(z) + A 3 z " 3 r ( z ) + • • • + B0U(z) 

+ Bxz-xU(z)+B2z-2U(z) + ... 

This can then be rearranged into the z-domain transfer function: 

Y(z) _ B0+Bxz~l +B2z~2 + ---

U(z) ~ 1 - A j Z - 1 - A 2 z " 2 - A 3 Z - 3  

In obtaining z-transfer functions from LTFs by making substitutions for s, many of 
the generally used substitutions depend on the property that mul t ip ly ing by s 
implies differentiation in the time domain. I t has just been demonstrated that 
mul t ip ly ing the z-transform by z" 1 implies an additional delay o f one sampling 
interval. The argument for the simplest o f the substitutions suggests that the 
gradient o f the time response of, for example, e{t) at the present time (instant n) is 
given by 

de 
I t 

(latest sample o f e) - (last sample o f e) (en — en_x) 

(sampling interval) Ts 
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I n the z-domain, when en becomes E(z) (that is, the z-transform o f en), this w i l l 
convert to [E(z) - E(z)z~l]/Ts, or £ ( z ) ( l - z~l)/Ts. Mul t ip ly ing £ ( z ) by 
(l-z~l)/Ts is therefore equivalent to differentiation, that is, to mul t ip ly ing 
E(s) by s. This means that substituting the fol lowing expression for s in a LTF: 

(5-22) 

w i l l give an approximately equivalent discrete-time version (in z) of the analog 
LTF. I t is then easy to convert the z transfer function to an algorithm from which a 
computer program can be written. The procedure for obtaining the algorithm is 
demonstrated fol lowing Example 5.11, below. 

A more exact substitution for s (known as the Justin transformation) is 

s=W-£l (5 2 3) 
r , ( i + z - > ) ( 5 - 2 3 ) 

This more complicated substitution often allows close approximation of the 
behaviour of the analog controller, using a longer sampling interval (Ts) than 
would be the case wi th the simpler substitution for s. The longer sampling interval 
is beneficial in that either a slower processor can be used to perform the 
calculation, or a given processor can cope wi th a faster sampling rate. I t is found, 
however, that the Tustin method is worse for use in a digitized PID controller than 
is the simpler method; the reason w i l l be revealed later in this chapter. 

The 'true' z-transform is not used in this chapter, but is used in Chapter 7, in 
methods of digital controller design which use the discrete nature o f the controller 
output to advantage. It is discussed in Appendix 5. I t gives a more accurate 
response, but the extra effort required does not produce a commensurate 
improvement in controller performance when digit izing continuous-time designs. 

Yet another method of obtaining a digital equivalent o f a particular analog 
controller is the matched pole-zero method. This method relies on the property o f 
the true z-transform that an analog controller pole or zero at s = —a converts to a 
pole or zero of the digital equivalent at z = e~aTs. Each bracket containing (s 4- a) is 
replaced by one containing (z — e~aTs) and an overall gain constant is applied to 
make the low-frequency gain of the version in z equal to that of the version in s. 

These procedures, and the effectiveness of the resulting controllers, w i l l be 
demonstrated by an example. 

Example 5.11 A digital controller implemented 
following various different z-transform methods 
A plant modelled by the continuous transfer function 

Y(s) 10 

U{s) ~ s3 + Is2 4- 6s 
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is to be controlled in the closed-loop with unity negative feedback, using a forward path 
lead compensator of transfer function 

D(s) 
1 . 5 ( 5 + 1 ) 

(5 + 3) 

The compensator is to be implemented in digital form (D(s) has been used so as to match 
the notation D(z) used to represent the z-transfer function of a digital compensator). 
Investigate the performance of implementations having a sampling interval o f 0.1 s and 
being converted into the z-domain by 

(1) the simple method s = (1 - z~x)/Ts\ 

(2) the Tustin method and 

(3) the matched pole-zero method. 

Evaluating the three compensator transfer functions: 

(1) Using s = (1 - z~])/Ts wi th Ts = 0.1 s gives s = 10(1 - z " 1 ) and so 

1.5[10(1 - z " 1 ) + 1] _ (16.5 - 15Z- 1 ) _ (1.2692 - 1.1538Z" 1) 

(1 - 0 . 7 6 9 2 Z " 1 ) D ( Z ) [10(1 - z - 1 ) -f- 3] ( 1 3 - l O z - 1 ) 

(2) The Tustin substitution for s is 

r , ( i + z - ' ) 

(Equation (5.23)) so, wi th Ts = 0 .1 , the transfer function converts to: 

' 2 (1 - z - 1 ) -
1.5 

D(z) T U l + z - ' ) 
+ 1 

2 ( 1 - z - ' ) 

Ul+z-1) 
+ 3 

1.5(20(1 - z - ' ) + ( l + z - ' ) ] 

[20(1 - z " ' ) + 3 ( 1 + z - ' ) ] 

(31.5 - 28 .5z- ' ) _ (1.3696 - 1.2931Z" 1) 

(23 - 17z- ' ) (1 - 0 . 7 3 9 1 Z " 1 ) 

(3) The matched pole-zero method requires the calculation o f e~aT*. For the numerator term, 
e-\x0.\ _ 0.90484 and, for the denominator term, e~3x0 1 = 0.74082. The transfer 
function w i l l therefore be: 

A ( z - 0 . 9 0 4 8 4 )  
[ } (z - 0.74082) 

where A is a constant chosen to make the low-frequency gain the same as for the 
continuous version. From Section 2.5.5, the final value theorem shows that the low-
frequency gain (fol lowing a step input) is determined by setting s equal to zero in the 
transfer function, giving in this instance 1.5(0 + l ) / ( 0 + 3) = 0.5 for the analog 
implementation. For the digital one, Appendix 5 reminds us that z = esT*, so setting s to 
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zero makes z equal to unity. Substituting z = 1 into the digital compensator transfer 
function produces 0.3672A as the low-frequency gain. Therefore, 0.36724 = 0.5, g iving 
A = 1.3618. The compensator transfer function is therefore 

D(z) 
1.3618(z - 0.90484) _ (1.3618 - 1.2322z" 1) 

(z - 0.74082) (1 - 0 . 7 4 0 8 2 z " 1 ) 

The step responses o f the controlled systems may be compared by means of an appropriate 
computer simulation package or by means of the M A T L A B m-file fig5_19.m on the 
accompanying disk. Graphs of the step responses are shown in Figure 5.19 and the 
fol lowing table compares them for the maximum overshoot and the time at which it 
occurs. 

Conversion type Simple Tustin Matched p-z 
Overshoot, per cent 3.6 2.9 3.0 
Peak time, seconds 3.2 3.35 3.35 

For comparison, the analog controller would give an overshoot of 1.6 per cent at 3.5 
seconds, so all the digital implementations produce some degree o f performance 
degradation. 

Figure 5.19 Closed-loop 
step responses for Example 
5.11. 
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In order to produce a digital control system arrangement which w i l l mechanize one 
of the above transfer functions in z, i t w i l l be necessary to produce a suitable 
program for the processor. A first step in so doing is to convert the transfer 
function into a discrete-time (difference) equation from which an algorithm, or 
'pseudo-code', may be developed. The system resulting from the simple 
conversion technique w i l l be used as an example. 
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The compensator transfer function in z is, by definition, equal to the ratio 
U(z)/E(z) o f the z-transforms of the controller action u and the error signal e 
respectively, thus: 

c/(z) = (1.2692 - 1.1538Z- 1)  
[ Z ) E(z) (1 -0.7692Z" 1) 

which can be mult ipl ied throughout by (1 — 0 . 7 6 9 2 z _ 1 ) £ ( z ) to give: 

(1 - 0.7692z" 1)c/(z) = (1.2692 - \A53Sz-l)E(z) 

Such equations can be returned easily to the time domain, by recalling that 
mul t ip ly ing by z - 1 represents a delaying of the associated signal by one sampling 
interval. For example, E(z) represents the latest sample of the error signal and 
z~lE(z) represents the sample at the previous sampling interval. Returning to the 
time-domain notation, i t can therefore be seen that 

un - 0.7692w„_ 1 = 1.2692^ - 1.1538^„_ 1 

or 

un = 0.7692w„_ 1 + 1.2692e„ - 1.1538e„_! (5.24) 

This equation enables the controller to calculate the required value o f u from the 
last value o f u and the present and previous values o f e. 

The outline algorithm could then be: 

Initialize (see below) 

Loop: Reset sampling interval t imer 

Input e ( = e„) 

Calculate un from Equation (5.24) 

Output un 

Set un_x = un 

Set en_x = en 

Wait for end of sampling interval 

Goto Loop 

' In i t ia l ize ' sets the init ial values of un_x and en_x to zero, or to their actual values 
i f they are available. The 'Wait for end of sampling interval ' is because the 
calculations are unlikely always to take exactly the same time and, even i f they do, 
that time is unlikely to be the required sampling interval! The 'Set xn_x — xn' lines 
are included because the value of u (for example) at the present time (un) w i l l be 
un_x at the next sampling interval. Users o f structured languages w i l l doubtless be 
aghast at the use o f the word 'Goto ' ; i t can be readily replaced by a structure o f the 
'Repeat forever' variety. 

The easiest way of ensuring that sampling does take place at equal intervals o f 
time may be to program the 'Loop ' routine as an interrupt routine which is called by 
an appropriate pulse train (often generated by a support chip having a software-
settable t iming signal generator). 
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5.8.3 Digital PID controllers 
The most common type of controller in industrial use is the three-term or PID 
controller described in Section 4.5.2. I t is now used in digitized form more often 
than in analog implementation. The digitization can be performed either by one o f 
the substitutions for s already described, or by the fol lowing direct method. 

The LTF of the ideal PID controller is Kp[l + Tds + 1 / ( 7 » ] from Section 
4.5.2 (Equation (4.22b)). Recalling that multiplication by i is equivalent to 
differentiation, the approximate approach of the ' s = (1 — z - 1 ) / T s ' method is again 
applicable for the derivative term. Since the time integral of a function is the area 
beneath its time response graph, the integral term is more easily dealt wi th by the 
method of Figure 5.20. The integral of error at the end of sampling interval n is the 
integral at the end of interval (n - 1) plus the lighter shaded area A which, by 
geometry, is approximately equal to (en + en_\)Ts/2 (so long as Ts is short relative 
to the dynamics of the signal). The problem of the integral in an algorithm can 
therefore be approached by calculating its latest value as its last one (referred to as 
the previous integral or Pint) plus (e„ + en_l )Ts/2. The value of Pint w i l l require 
initialization at step 0, of course (later, an alternative algorithm is presented, which 
avoids using this 'running sum' approach). The controller action at interval n w i l l 
therefore be: 

{ e " + e ^ + P I n t (5.25) 

giving, in more manageable form, by algebraic manipulation: 

un = Ae„ + Be„_i + C{PInt) (5.26) 

where 

A=Kp(l+Td/Ts + 0.5Ts/T,) 

B=Kp(-Td/T, + 0.5Tt/T,) 

C = Kp/Tj 
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I t w i l l also be necessary to update the value o f the previous integral Pint at each 
sampling interval, by adding on the additional area 0.5(e„ + en_x)Ts. The 
algorithm proves to be: 

Initialize: Set init ial values of en_x and Pint, and the sample time Ts. 

Loop: Reset sampling interval timer 

Input the error en 

Calculate u„ by Equation (5.25) or (5.26) 

Set Pint equal to Pint + 0.5(en + en_x)Ts 

Set en_x equal to en 

Wait for sampling interval duration to reach Ts 

Goto Loop 

This algorithm does not include provision for detecting and protecting against 
integral wind-up. This is the phenomenon whereby the plant input actuator 
saturates (for example), so that further increasing the magnitude o f the control 
signal has no effect. Nevertheless, i f there is st i l l a non-zero error in the loop, the 
integrator 'running sum' w i l l continue to add extra area to the integral at every 
time step. When conditions change, such that the error signal eventually changes 
sign, the large magnitude which the integral term w i l l have reached prevents the 
actuator from responding until the integral term has 'unwound ' . A t best, this 
introduces long time delays, having the usual destabilizing effect. There is an 
additional problem in the digital version because, in fixed-point implementation, 
the accumulating integral term ( i f unchecked) could overflow its register and cause 
the controller output u to swing suddenly from ful l positive to ful l negative (or vice 
versa) - clearly any system which actually permits such behaviour has been very 
poorly designed! 

Such wind-up can be protected against in an electronic analog controller by 
installing Zener diode clamps around the integrator operational amplifier. In the 
digitized version, a command can be included in the algorithm after the updating o f 
the previous integral, to monitor its value and, i f i t has exceeded some pre-set 
percentage of its maximum, to l im i t i t to that value. 

Another thing missing from the algorithm is any facil i ty for switching between 
manual operator control and automatic computer control. This requires steps to be 
taken to achieve a 'bumpless transfer' between the two. Whi le in manual control, 
the plant input must be monitored, and the integral term must be kept properly 
initialized (by setting the value of Pint) such that the digital controller is always 
outputting the same value as the manual operator. When automatic control is 
switched in , the plant w i l l then see no difference ini t ia l ly . 

The previous comments about checking input and output signal levels against 
magnitude and rate l imits should also be borne in mind. 

In respect of digital PID control, the above method based on explicit 
integration and the method of substituting s = (1 — z~l)/Ts w i l l give comparable 
performance to that of an analog controller, i f an appropriate value of the sampling 
interval Ts is chosen. Unlike the case of the lead compensator, however, the Tustin 
substitution is much less successful. 
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Example 5.12 Comparison of an analog and 
various digitized PID controllers 
A plant o f transfer function 

Y(s) 10 

U(s) ~ s3 + %s2 + 175 + 10 

is to be controlled by a PID controller having Kp = 3,Td = 0.333 s and T z = 1.5 s. 
Investigate the performance of the closed-loop system both wi th an analog PID 
implementation and wi th the PID digitized by the methods discussed above. 

The investigation w i l l be performed by simulation using M A T L A B (Appendix 3). O f 
course, M A T L A B w i l l also use a digital simulation o f the continuous analog PID 
controller, so the comparison is not absolutely fair. However, i t is assumed that 
M A T L A B ' s simulation w i l l be sufficiently realistic to allow the comparison to be made. 

Firstly, except for the analog version, i t is necessary to calculate the parameters o f the 
digitized controller. The criteria for selecting a suitable sampling interval w i l l be discussed 
shortly but, for now, a sampling interval of 0.1 s w i l l be used. 

The PID transfer function is Kp[l + Tds + 1/(7,5)] from Section 4.5.2 (Equation 
(4.22b)), so substituting the values of Kp, Td and T z gives 3[1 + 0.3335 + 1/(1.55)] 
= 3 + 5-h2/5 . I t w i l l prove to be simpler to convert to the z-domain i f a common 
denominator of 5 is used, giving 

For the simple method, substituting 5 = (1 — z~l)/Ts = 10(1 — z - 1 ) gives: 

= f ( ' ) = W 1 ~ z " ' ) l 2 + 3[10(1 ~ * - ' ) ] + 2}  
K ) E(z) 1 0 ( 1 - z - 1 ) 

_ (13.2 - 23z~' + 10z" 2 )  

- ( T ^ F Ô 

i This transfer function is easily describable to M A T L A B in precisely the same way as a 
continuous transfer function. The main pitfall is that the missing coefficient of z~ 2 must be 
supplied in the denominator (imagine mult iplying throughout by z 2 to see why) . A suitable 

L M A T L A B command would be: 

» n u m c = [13.2 - 2 3 10]; denc = [ l - 1 0 ] ; 

For the explicit-integration method, use of Equation (5.26) produces values o f 13.10 for A , 
—9.90 for B and 2.00 for C. The previously existing 'running sum' integral value {Pint) 
prevents a transfer function approach being used in simulation by M A T L A B , because 
Equation (5.26) cannot be arranged in transfer function form. A custom m-file has been 
written to determine the step response wi th this controller. 
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A Tustin-substitution version w i l l also be derived and investigated to demonstrate the 
problems encountered wi th the method when applied to P ID controllers. The substitution 
for s is 

1 
I 

i 

. 2 ( 1 - z ' 1 ) 
r,(i + z - ' ) 

(Equation (5.23)), so its use, followed by algebraic manipulation, gives the fo l lowing 
transfer function in z: 

U{z) (23.1 - 39.8z-' + 17.1z- 2 )  
{Z'~E(z)- ( l - z - 2 ) 

which is described to M A T L A B as: 

» n u m c = [23.1 -39 .8 17.1]; denc = [ l 0 - 1 ] ; 

i The closed-loop step response achieved wi th each of these digit ized controllers was plotted 
1 by simulation using M A T L A B . The m-file is fig5_21.m on the accompanying disk. The 
'1 resulting step response graphs are displayed in Figure 5.21. 

Figure 5.21 Closed-loop 
step responses for 
Example 5.12. 

2 2.5 3 
Time (s) 

The fol lowing points are noteworthy in comparing the PID controller results from 
Example 5.12: 

• There is l i t t le difference in the performance o f the controllers digitized by the 
simple algorithm and by the explicit-integration method. 

• Both of those controllers give a slightly increased step overshoot as compared to 
the analog implementation (6.7 per cent and 7 per cent in this case as against less 
than 2 per cent for the analog controller). 
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• The Tustin version produces a response which is significantly closer to the analog 
one except for an oscillation at half the sampling frequency. The graph of 
controller output against time shown in Figure 5.22 shows clearly what is 
happening! 

Figure 5.22 Controller 
action in the PID system of 
Example 5.12. 
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The Tustin version has a controller output which is changing value quite violently 
at every sampling instant. The oscillation is dying away, so the system is not 
actually unstable, but a heavily oscillatory controller action such as this w i l l cause 
wear in the controller and plant hardware and an increased level o f energy 
consumption, in addition to any difficulties that may be caused by the actual 
oscillation in the plant output. The cause of the oscillation is a ' r inging pole' in the 
controller (see Section 7.6 for an explanation of this phenomenon). For the 
moment, it w i l l suffice to note that the Tustin substitution is generally unsuitable 
for digit izing PID controllers. 

The velocity algorithm 
There is a more commonly used version of the digital PID controller, which 
operates in an incremental manner, rather than an absolute manner. That is to say 
that, whereas a mechanization of Equation (5.25) w i l l calculate an absolute 
positioning signal for the plant actuator every time step, the velocity algorithm 
calculates only the change required from the previous position. This has some 
advantages as follows: 

• I f the controller fails in certain modes (for example, broken connections or 
computer failure causing zero control output), then the actuator w i l l simply stay 
put. Using Equation (5.25) the actuator would move rapidly to zero. 
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• Many modern plant actuators designed for digital control are incremental in 
nature. For example, some stepper motor systems require a control increment as 
an input, rather than an absolute position. 

• I t w i l l become apparent that there is no need to keep account o f the ' running 
sum' necessary for integral control in Equation (5.25). 

• Bumpless transfer from manual control is easier, because when the controller is 
first turned on, i t simply has to calculate the first incremental movement. I t does 
not have to be initialized to give the same absolute position as the manual 
operator's control, as did Equation (5.25). 

To generate the incremental algorithm, Equation (5.25) is effectively evaluated at 
two successive time steps, and the results are subtracted to leave the incremental 
change. 

Equation (5.25) gave the controller output un at step n. To work out the change 
in control signal required at step n compared wi th step n — 1, i t is necessary to write 
down the similar equation one time step earlier (that is, for step n — 1), and subtract 
the two. To be able to do this, Equation (5.25) is in i t ia l ly rewritten so that the 
'previous integral ' term Pint is replaced by a similar term referring to the 'previous 
integral ' which existed one time step earlier. Then, when the two results are 
subtracted, this term w i l l cancel out. 

Reference to Figure 5.20 shows that the new area added to the integral at step n 
is (en + en_x)Ts/2. By the same reasoning, the 'new' area added at the previous 
time step (n - 1) would have been (en_x + en_2)Ts/2. Pint can therefore be 
replaced by PIntn_x, by wri t ing: 

PInt= Pint, n— 1 + 2 

and then Equation (5.25) becomes: 

(5.27) 

Now, wr i t ing Equation (5.25) one time step earlier gives: 

(5.28) 

Subtracting Equation (5.28) from Equation (5.27) then gives: 

Aun = u n - u n _ l =KJen - en-\ + 
Td(*n ~ 2 e n - \ +Cn-2 

T 
1 s 

(5.29) 
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Equation (5.29) is the required form, in which Aun is the change required in the 
plant actuator position at time step n. 

A controller (but not a PID one) including code for integral desaturation and 
bumpless transfer is developed in Section 9.7. 

5.8.4 Sampling interval considerations 
So far a figure has been assumed for the sampling interval. In practice, i t is 
necessary to determine a suitable value wi th regard to the open-loop and intended 
closed-loop time constants of the system, and to any constraints imposed by the 
appropriate hardware choice. 

Too long a sampling interval w i l l lead to a degradation of the accuracy o f the 
chosen algorithm and often to closed-loop instability, because the sampling process 
effectively introduces a transport lag of half the sampling interval. Making the 
interval too short also introduces a problem in that very small changes in controller 
coefficient values cause a considerable change in the response. This difficulty is 
most severe i f the controller arithmetic is to be performed in fixed-point form 
(which is l ikely, to allow the use of a simpler and cheaper processor). The problems 
w i l l be demonstrated by an example. 

Example 5.13 Performance variation of a digital 
PID controller with varying sampling interval 
Investigate the performance of the PID controller of Example 5.12, i f the simple algorithm 
is used wi th sampling intervals of (a) 0.01 s, (b) 0.1 s and (c) 0.5 s. 

The first step is to determine the D(z) for the controller in each case. 
For Ts = 0.01 s, the algebra gives: 

, (103.02 - 203Z" 1 + 100z" 2) 
D(Z) = (l-FT) 

for Ts = 0.1 s, Example 5.12 gave: 

( 1 3 . 2 - 2 3 z - 1 + 102- 2 ) 

and for Ts = 0.5 s, an analysis gives: 

(6 - 7z - ' + 2z" 2 ) 
D ( z ) = . 

( 1 - z - i ) 

The closed-loop performance was simulated using M A T L A B as described in the previous 
example and the step responses of the three systems are shown in Figure 5.23. The 
performance o f the system wi th a sampling interval o f 0.5 s is clearly unsatisfactory, while 
that wi th a sampling interval of 0.01 s appears to be a perfect replica of the analog version 
(or, at least, M A T L A B ' s digital simulation of i t ! ) . Unfortunately, the 0.01 s version proves 
to have two practical disadvantages. It is only achieved at the cost o f a very heavy 
controller action (an ini t ial peak of over 100 units, as indicated in Figure 5.24) and it is 
very easily degraded i f the coefficients of the digital version have to be rounded (as they 
do in practice, especially for fixed-point arithmetic implementation). 
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Figure 5.23 PID controller 
closed-loop responses at 
varying sampling intervals. 

Figure 5.24 Controller 
action from the PID 
controllers. 
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The controller action problem in Example 5.13 is caused by the derivative term of the 
controller. When a step is applied to the closed-loop system, there is no instantaneous 
output change, so there is ini t ia l ly no change in the feedback signal. The error signal 
(the controller input signal) therefore undergoes the same step change as the setpoint 
signal. In principle, the derivative of that step is an impulse (infinite height, zero 
width) while the digital controller treats i t as having risen in one sampling interval. I f 
the step is o f height h, therefore, its rate o f rise during the interval in which i t is 
applied is given by h/Ts. That is why shortening the sampling interval increases the 
ini t ia l controller action in the case of a digital P ID controller. 

It is possible to overcome the problem of heavy controller action by l imi t ing 
the rate o f change of the reference signal to a max imum value at which the 
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controller action is not excessive, and the fol lowing algorithm indicates how such 
rate-limiting could be performed. It w i l l be assumed that the maximum permitted 
rate of change of the reference input r is a quantity inc per sampling interval. 

The discrete-time controller transfer functions, given by the three versions o f 
D(z) above, can each be written in an equation of the fo l lowing general form, to 
evaluate the controller action u (from D(z) = U(z)/E(z)). 

un = Aun_{ + Ben + Cen_x + Den_2 (5.30a) 

For the implementation pseudo-code, the fol lowing variables are used: 

u = A x lastu + f i x e + C x laste + D x lastle (5.30b) 

where (for example) laste means 'the value of e at the last sampling instant (instant 
n - 1)' and lastle means 'the value of e at the last sampling instant but one 
(instant n — 2)\ 

A n algorithm for the implementation of the controller would then be: 

Initialize: Set lastu, laste, lastle, lastr all to zero or to their actual 
previous values i f available 

Loop: Reset the sampling interval timer to zero 
Input the reference input r and the plant output y 
Calculate dr as (r — lastr) 
I f dr > inc then set r = lastr + inc 
I f dr < —inc then set r — lastr — inc 
Set e = r —y 
Calculate u by Equation (5.30) 
Output u 
Set lastr = r 
Set lastle = laste 
Set laste = e 
Set lastu = u 

Wait for sampling interval timer to expire 

Goto Loop 

The fol lowing criteria apply when considering the choice of a suitable sampling 
interval. 

Shannon's sampling theorem requires that, for all the information in a signal to 
be retained on digitization, the sampling rate must be at least twice as high as the 
highest frequency contained in the signal. In the context o f a control system design, 
that would mean sampling at a minimum of double the highest cut-off frequency of 
the system (open- or closed-loop). Unfortunately, sampling at that frequency, it is 
impossible to produce a satisfactory anti-aliasing filter! 

In practice, it is therefore usual to sample at about 10 times the highest cut-off 
frequency present. The trade-off is between the difficulty of avoiding aliasing 
(which requires a high sampling frequency) and the performance requirement of the 
computing device used (which indicates a low sampling frequency). The latter 
consideration is made worse by the fact that, for a given system, faster sampling 
requires more computing precision i f the algorithm is to work as intended. The 
fol lowing example uses the results of Example 5.13 to make that point. 
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Example 5.14 An investigation of accuracy 
requirements for proper controller operation 
Investigate the requirements on the accuracy of the parameters in the results o f Example 
5.13, for proper functioning of the controllers. 

; The controller z-transform for a sampling interval o f 0.01 s was found to be: 

> _ t / (z) _ (103.02 - 203Z- 1 + lOOz- 2 ) 

m [Z)~E{Z)~ ( 1 - z - 1 ) 

ft, g iving an equation for the controller output u of: 

"t'A 

| un = 103.02e„ - 203e„_! + \00en_2 + un_x 

i-

Jr This equation presents considerable problems because, i f a steady state has been reached 
| (so that the error e is constant), the dependence upon e is only 

i 
| *( 103.02 - 203 + 100) = e x 0.02 

I 
| t I f 8-bit fixed-point arithmetic is used, only the integers 0 to 255 are allowed or, i f negative 
| values are to be included, —127 to +127 . The overall range o f controller coefficients is 
| from —203 to +103.02. This means that the coefficients would need to be scaled 
| downwards to fit them into the available range (see below) but, even before such scaling, 
| j the 0.02 cannot be distinguished from zero. This w i l l destroy the effect o f the integral term 
H altogether. 
H Sixteen-bit arithmetic allows a number range from - 3 2 7 6 7 to + 3 2 7 6 7 , so the effect 
| | o f the 0.02 could be retained - though not wi th its fu l l precision. For example, scaling the 
*g coefficients by a factor of 128 to make best use o f the number range (while st i l l using a 
g power o f 2 - see below) would give 128 x 0.02 = 2.56, which must be rounded either to 2 
f | or to 3. Note that this is st i l l not the whole story. It may also be necessary to take into 
i | account the fact that a 12-bit A - D converter is being used, for example, w i t h an obvious 
H penalty i n accuracy. 
§ I f the long sampling interval of 0.5 s is used instead, the transfer function i n z is: 

I 
n ( , U(z) ( 6 - 7 z - * + 2 z - 2 ) 

S and the equation for the controller output u is: 

i un = 6en - len_x + 2en_2 + un_x 

1 
U N o w only a number range from - 7 to + 6 in integer steps need be represented, which even 
| 8-bit arithmetic can easily do! 
U To indicate a l i t t le more about how scaling might be used, note that the coefficients in 
* the implementation wi th a sampling interval o f 0.1 s, given i n Example 5.12 as 13.2, - 2 3 
J and 10 respectively, can be scaled for use in an 8-bit fixed-point representation by 
* mul t ip ly ing them by 4 to give 53 (approximated from 52.8), - 9 2 and 40, which are al l 
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j . . , _ . . (53 - 02- : + 40z - 2 ) 
D { Z ) = ( 4 ^ ) 

mi 
which w i l l re-convert to the time domain as: 

4un = 53en~92ea_1+40en_2+4ua_1 

The result w i l l be four times its true value, but a final division by four is easy to achieve 
by shifting the answer two binary places before it is output. That is why the apparently 
more accurate approach of mult iplying the numerator and denominator o f the z-transform 
by five instead of four (because then the coefficient 13.2 would become an integer value, 
while 5 x 23 would st i l l fit the number range) is not particularly good - the final division 
by five would introduce rounding errors and would also be slow to execute. I t is generally 
therefore better to use powers of two as scaling factors, since these just require shifting 
operations in the processor. For a much fuller discussion of matters such as these, see 

I Wil l iamson (1991). 

5.9 Conclusions 
In this chapter a further selection of controller design and implementation 
techniques has been examined. The foundational state-space approach of state 
variable feedback was studied, on which most of the more complicated state-space 
methods of later chapters are based. 

It was found that a system can be tested for controllability and, so long as i t 
passes this test, a controller can be designed (in principle) to position the closed-
loop poles of the system at any desired s-plane locations. In practice, the control 
energy requirements and the effects on plant actuator wear, o f the selected closed-
loop pole locations, must be borne in mind. The allied concept of observability, 
which is needed later in the text, was also introduced. 

Finally on the topic of state variable feedback, i t was noted that sometimes 
there is some flexibility in the design process, which might be used to achieve 
other things than simply positioning the closed-loop poles. One possibility 
mentioned was that of affecting the closed-loop eigenvectors in some way and, by 
way of an introduction to that topic, the part played by the eigenvectors in shaping 
the time response was investigated. 

The other major topic in this chapter was that of digital control. In Chapter 7, 
purely digital designs are presented, but here the parallel concept o f digit izing 
continuous-time designs was investigated, so as to allow digital computer 
implementation. 

The z-transform was introduced and used to obtain discrete-time transfer 
functions of various continuous-time compensators. From these transfer functions, 
algorithms were generated which would allow the compensators to be mechanized. 
Finally, some of the pitfalls of digital implementation, such as the influence of the 
sampling period on the results, and the effects of finite wordlength arithmetic in 
the computer system, were mentioned. In addition, the basics of digital computer 
simulation were presented, and two commonly used numerical integration 
techniques were described. Again, the effects on these of the choice of sampling 
interval were studied. 
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5.10 Problems 
5.1 Figure P5.1 shows a plant comprising a closed-loop, 

in which the integral of the error in the loop drives a 
subsystem modelled by a simple first-order lag. For 
the system shown in Figure P5.1, determine the 
closed-loop transfer function. By consideration of 
any mode cancellations (or the lack of them), say 
whether you would expect the closed-loop system to 
be controllable and/or observable. 

s + 6 
Y(s) 

Figure P 5 . 1 A simple closed-loop system. 

5.2 For the system of Figure P5.1, obtain a state-space 
model, using the state variables shown. Check the 
controllability and observability of this model, and 
compare the results with those of Problem 5.1. 

5.3 A two-input, two-output system is represented by the 
state-space model: 

' -1 1 0" "0 r 

A = 0 -1 0 B = 1 0 

0 0 -1 1 0 

c = 
1 0 0' 
0 1 0 

0 0" 
D = 

0 0" 
0 0_ 

5.4 

Test the controllability and observability of the 
system. Evaluate the various transfer functions in the 
system, and comment upon the links between these 
and the results of the controllability and observability 
tests. 

(a) Investigate the stability of the system represented 
by the state-space model: 

- 2 l-5j' b = [ 4 

(b) Show that the system is not completely 
controllable, but that it is nevertheless possible to 
design a state-variable feedback scheme to move 
the unstable pole to the location s = —4. 

(c) Carry out the design of such a scheme. 
(d) Draw a simulation diagram of the system with 

the feedback in place. 

A = 

(e) How could the design flexibility in part (c) be 
used to cope with the situation in which state xx 

was unmeasurable? 

5.5 The type of system represented by Figure P5.5 was 
first proposed as an interesting controllability 
example by Elgerd (1967). For this system: 
(a) Taking the voltages (strictly, potential differences) 

across the capacitors as both the state variables and 
the system outputs (three states = three outputs), 
develop a state-space model of the system. 

(b) Find out the conditions under which the system is 
fully controllable. 

(c) If the system is fully controllable, the implication 
is that the capacitor voltages (the states) can be 
moved from any arbitrary set of initial voltages 
to any other arbitrary set of voltages in a finite 
time. Think of a way in which this might be 
achieved using the single input voltage in Figure 
P5.5, and sketch the form of the resulting 
responses to illustrate how your method achieves 
its result (no calculated values are required). 
What would be the practical limitations on the 
control that could be achieved? 

Hint: This can be done in principle, and in 
practice within the limitations mentioned above, 
without adding anything (such as state variable 
feedback) to the diagram. However, you will not 
find the solution in the text - it is up to you to 
think it out from practical considerations. It is 
given as an example of the situation in which 
the mathematics says that the system is 
controllable, but you might not be able to 
think how! You may find it easier initially to 
consider a system having only two of the RC 
networks present. 

Input voltage 
u(t) = v(t) J L _ L 

Figure P5 .5 An electrical system for controllability 
investigation. 

5.6 Equation (5.5) presented a test matrix for 
determining the controllability of individual modes of 
a system. By using the dual of this matrix (see the 
text preceding Equation (5.2) for a definition of the 
dual), devise a test which will determine the 
observability of individual system modes. 
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5.7 Apply the test devised in Problem 5.6 to the system 
of Example 5.2 in Section 5.3.2, and hence confirm 
the results of that example. 

5.8 Consider the system shown in Figure P5.8. 
(a) Obtain a state-space model of the system. A 

selection of possible state variables is indicated. 
(b) Develop a state variable feedback controller to 

place the closed-loop poles at s — - 7 and 
s = -0.6 ± 2j. Note that the model of part (a) 
may contain too many states - a third-order 
model is required for a third-order system, and if 
you have a fourth-order one, you should 
eliminate one of the states before trying the 
design. 

(c) Sketch a modified version of Figure P5.8, with 
your SVF system in place. 

(d) What would be the effect on this design if the 
feedforward gain in Figure P5.8 were to be 
changed from 2 to 1? Why? 

U(s) 

s + 3 s + 2 
1 

s + 3 *1 
J{s) 

Figure P5.8 An open-loop system for state variable 
feedback control. 

5.9 A system has a transfer function 

G ( 5 ) = s 3 + 6 5 2 + 9 5 - 5 0 
(a) Obtain a state-space model of the system. 
(b) Using state variable feedback, move the unstable 

pole at s = 2 to a stable location. The other two 
poles should not be moved, and these two poles, 
together with the moved pole, should lie on a 
semicircle in the s-plane. 

5.10 (a) Using the system of Problem 5.9(a), and the 
same closed-loop pole set as in Problem 5.9(b), 
design a tracking system which will have zero 
steady-state error following a step input. Place 
the new integrator pole so that it is five times as 

system and verify its closed-loop eigenvalues 
and its tracking performance. 

Hint: In order to use the MATLAB 
feedback command to feed back the state vector, 
you will need to define the states as outputs by 
altering the c and d quantities in the state-
space model (because the feedback command 
feeds back outputs, not state variables). The 
easiest way is to use the augstate command, 
which adds extra outputs to the system model, 
each one being one of the state variables (type 
help augstate and help feedback for details). 
Also, try inspecting (and, indeed, modifying to 
suit this problem) the m-files on the 
accompanying disk. 

5.11 Given a system having the following state-space 
model: 

13 '0 ' 

0 

1 

-1 1 a 

0 - 2 1 

0 0 - 3 

c= [1 0 0], d = 0 

(a) Draw its simulation diagram. 
(b) Are there any values of al3 for which the 

system would be unstable? (You should be able 
to answer this part purely by inspection of the 
state-space model above). 

(c) By considering the s-plane pole-zero pattern of 
the system, determine whether there are any 
values of al3 which would result in an 
uncontrollable or unobservable mode (there are 
three values of al3 leading to such behaviour -
but one of them is impractical). 

(d) Confirm the results of part (c) using rank tests. 

5.12 The design in this question is similar to previous 
questions, but the result does not drop out so easily. 
This is included to illustrate the amount of manual 
calculation which can be involved, in even a simple 
design, if computer assistance is not used. The 
computer-aided solution is easy! The problem 
involves an unstable system with the following 
state-space model: 

fast as the fastest pole in the SVF regulator. 1 1 0" 2" 
(b) Produce a sketch showing how your tracking 

controller interfaces with the plant, assuming A 0 -1 1 , b = -1 

that you can measure all the state variables 13 -1 -2_ - 2 
(problems in Chapter 9 address systems in 
which this is not the case), 

(c) If you have access to MATLAB and the control 
systems toolbox, build a simulation of the 

c = [1 1 0], d = 0 

(a) Determine the eigenvalues of the A matrix, 
confirming the instability. 
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(b) Design a state variable feedback system to move 
(only) the unstable pole to s = —3 in closed-
loop. 

(c) Draw a simulation diagram of the resulting 
scheme. 

(d) Show that the resulting closed-loop system will 
have the required eigenvalues. 

(e) If a package such as MATLAB and its control 
systems toolbox is available, repeat the whole 
exercise with as much computer assistance as 
you like. 

5.13 (a) Obtain a state-space model for the system 
2 - s 2 

U V " Y 5 3 + Is2 + 65 + 3 
(b) Design a state variable feedback regulator 

(assuming that all your chosen state variables 
are measurable) to position the closed-loop 
poles in a Butterworth configuration at an 
associated frequency of 2 rad s _ 1 . 

(c) Calculate the steady-state output of the closed-
loop system in response to a unit step 
disturbance on the new 'reference' input, and 
comment on its value. 

(d) Convert the design to that of a tracking system, 
placing the integrator pole five times as fast as 
the fastest closed-loop system pole. Confirm, by 
calculation, that the new closed-loop steady-
state performance is as required. 

5.14 (MATLAB and the control systems toolbox, or a 
similarly featured CACSD package will be 
necessary to attempt this problem.) 

(a) For the regulator system designed in part (b) of 
Problem 5.13, determine (by simulation) the 
peak amplitude of the system input signal (u) 
following a unit step disturbance to the closed-
loop 'reference' input. 

Hint: If using MATLAB, alter the ' C and 
'£)' quantities in the state-space model so as to 
define an extra system output which is simply 
equal to the input (add an extra row of zeros to 
C, and a '1' as an extra row for D). The 
MATLAB step commands etc. will then plot its 
response, as they always plot all outputs. 

(b) Using the simulation of part (a) discover, by 
experimentation, to what value the frequency 
associated with the Butterworth pole-set design 
would have to be altered, in order that the plant 
input signal would not exceed 1 unit following 
the unit step 'reference' disturbance. 

5.15 (a) For the system model with A matrix 

2 r 
- 4 - 3 j ' 

find the eigenvalues and eigenvectors. 
(b) Assess the stability of the system. 
(c) Find the responses of xx(t) and x2(t) due to each 

of the following sets of initial conditions: 

(i) and (ii) JC0 

5.16 

Use both the direct method, and the method via 
the transition matrix and inverse Laplace 
transform, as a cross-check. 

Notice how the eigenvectors always 
specify the distribution (proportion) of the 
modes between the state variables. 

(a) Find the eigenvalues of 
6 -3" 
4 1 

(b) Comment on the stability of the system. 
(c) Find the eigenvectors, and hence write down the 

equation of the state response to a general initial 
condition vector x0. 

(d) Plot the eigenvectors in the state-space (xl vs. x2 

plane, in this case). 
(e) Choose some initial condition vectors aligned 

with each eigenvector, and use the result of part 
(c) to calculate the time responses for each. 

You should find that, in every case, only 
the mode corresponding with the eigenvector to 
which the initial condition vector is aligned, 
appears in the response. This is because such 
initial condition vectors generate zeros which 
cancel the poles associated with the non-
appearing modes. 

5.17 A system has eigenvalues kx = —2, k2 = ~4 and 
k3 = —3. Write out its characteristic equation, and 
hence the companion form of the A matrix for a 
state-space model. 

5.18 Repeat Problem 5.17 for the system with 
eigenvalues kl9 k2 = -1 ± 2j. Use a similarity 
transform (see Section A 1.6) W _ 1AW (where A is 
the companion form plant matrix and W is the 
corresponding modal matrix), to transform A to a 
diagonal matrix having the eigenvalues k] and k2 

on the diagonal. 

5.19 Write a program in a suitable high-level language 
(or MATLAB or spreadsheet if you prefer) to 
obtain the step response of the first-order system 
50/(5 + 20) over a period of 0.2 s. Use (a) Euler 
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and (b) 4th-order Runge-Kutta integration with 
steplengths of both 0.005 s and 0.2 s in each case. 
Run your simulations and compare the results. 

5.20 Use an appropriate simulation package to 
investigate each of the following systems. 

(a) A plant 
Y(s) _ 40 
U{sj ~ s2 + 10s + 20 

controlled by a PID controller having Kc = 2, 
Td = 0.1 s and T{ = 0.5 s. Can you achieve a 
faster response without causing more than about 
5 per cent step overshoot, by varying the 
controller parameters? Note that most packages 
should not allow you to use the PID controller 
in its ideal form; you will need to make the 
controller transfer function 
^ ) = ^ 2 + 5 T i / r , . ) 

E(s) J ( A J + 1 ) 

where A is a small number, in order to make its 
transfer function 'proper' (A = 0.02 worked 
well). SIMULINK has a PID controller block 
available (in a 'PID controllers' library within 
the 'Extras' library). 

(b) An inertial accelerometer, consisting of a frame 
which is fixed to the object whose acceleration 
is to be measured. Within the frame, a small 
mass m is suspended by a spring (of stiffness 
Ks) and a parallel damper (of damping 
coefficient Kd), so that it can move relative to 
the frame, in the direction of acceleration. 

If the displacement of the frame from some 
datum position is xx (m) and that of the internal 
mass m from the same datum position is x2 (m), 
then the displacement of the accelerometer mass 
relative to its frame is (x2 — xx) (m). This 
displacement is measured, and is assumed to 
represent the acceleration 
d2xx 

according to the transfer function 
X2(s)-Xx(s)= m 

s2Xx(s) ms2+Kds + Ks 

Let m be 0.2 kg, Ks be 5 Nrn - 1 and Kd (in 
N/(ms - 1)) is yet to be determined. Investigate 
the accelerometer with a view to determining 
the circumstances in which it will measure 
acceleration and not, for example, velocity. A 

suitable value for the damping constant Kd 

should be found by experiment or otherwise. 
Frequency and/or step response data could be 
used. 

5.21 A plant of transfer function 
Y(s) _ 20 
U(s)~ s(s+ l)(s + 10) 

is to be controlled in the closed-loop with a 
cascade lead compensator of transfer function 

n< \ - M - 1 Q ( 5 + 1 )  
K ) ~ E(s) " ( 5 + 1 0 ) 

implemented in digital form. Obtain the transfer 
function in z for the controller converted using a 
sampling interval of 0.1 s in conjunction with: 

(a) the 'simple' conversion method; 
(b) the Tustin conversion method; 
(c) the matched pole-zero conversion method. 

5.22 In Problem 5.21, what sampling interval would you 
have recommended on the basis of the 'ten times 
the closed-loop natural frequency' rule? Would it 
have been in reasonable agreement with that using 
the 'five times the highest natural frequency in the 
loop' rule? 

5.23 Repeat Problem 5.21 with sampling intervals of 
0.2 s and 0.05 s used with the simple conversion 
method. Use an appropriate computer simulation 
program to investigate the performance of the 
resulting controllers. 

5.24 A PID controller having Kc = 1, Td = 0.2 s and 
T{ = 1 s is to be implemented in digital form. 

(a) What sampling interval would you recommend? 
(b) Obtain the transfer function in z for the required 

digital controller using the 'simple' conversion 
method. 

(c) Use your transfer function to write an algorithm 
for the controller. 

5.25 Obtain an algorithm for the digital PID controller 
of Problem 5.24 using the explicit-integration 
conversion method. The algorithm should include 
rate-limiting for input steps and appropriate 
measures to combat 'integral wind-up'. 

5.26 Use the Tustin substitution to obtain a transfer 
function in z for the controller of Problem 5.24, and 
show by computer simulation that an oscillatory 
controller action results. 
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6.1 Preview 
This chapter can be understood without having 
studied much of the remainder of the text. A basic 
familiarity with feedback control concepts and with the 
PID (three-term) controller is required; and Section 
4.7 on controller implementation should be read. 

Every other chapter of this text involves the 
analysis or design of feedback control loops that 
operate continuously (be they controlled by analog or 
digital controllers). There is another class of control 
systems, in which sequences of actions must be 
performed in order, at the correct times relative to 
each other, or when certain sets of conditions become 
true. Anyone who has seen robotic manufacturing 
systems in operation has witnessed the results of this 
kind of control. 

Such sequential control systems are often 
ignored in control engineering texts, because the 
control systems themselves (but not the applications -
such as the robots) are perceived to require little 
analysis, and are seen as 'common sense' (as 
indicated by the first sentence of this chapter). 
However, an outline appreciation of this type of control 
can be extremely useful, not least because the most 
common device for performing such control (the 
programmable logic controller) is now able to perform 
many other kinds of control too (such as PID loops), 
and is therefore the preferred means of 

implementation for many control schemes where a 
mixture of continuous and sequential control is 
required. 

In th is chapter, the top i cs s tud ied inc lude : 
the idea of the 'on -o f f type of control as opposed 
to the control of an analog variable 
some methods by which such control can be 
achieved, and the relative advantages and 
drawbacks of each method 
programmable logic controllers (PLCs) and their 
application to 'on -o f f control 
practical implementation of the controllers treated 
in earlier chapters, including the use of PLCs. 

NEW MATHEMATICS FOR 
THIS CHAPTER . 

There is no new 
mathematics in this 
chapter. The one numerical 
example does use a 

difference equation, of the kind introduced in Section 
2.8.1. The basic concept of a digital logic signal is also 
used, whereby a signal can adopt one of two levels: 'logic 
1' (representing a condition which is true, or a voltage 
level of, say, +15 V), or 'logic 0' (a false condition, or a 
voltage level of, say, 0 V). However, the associated 
logical operations of AND, OR, NOT, and so on are not 
used in this text. 
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6.2 'On-off control 
Many practical control problems consist solely of the requirement to switch 
equipments on and off in the correct sequence, at the right time, or when a particular 
combination of events occurs. For the purposes o f this chapter, such systems w i l l be 
termed 'sequential' control systems. Even systems which predominantly involve 
continuous or digital control loops (using, for example, PID control) may also 
contain such sequential control requirements. 

Such a system is exemplified by the simple arrangement o f Figure 6.1, the 
specification for which is as follows. The conveyor is to be started when push
button PB1 is pressed and is to be capable of being stopped by an emergency-stop 

Article 

Q 

Heater H1 and 
detector D1 

Detector D2 • 
Conveyor D 

Emergency 
Start PB1 stop PB2 

Figure 6.1 A simple 
conveyor system. 

button PB2, which closes a switch when pressed (often, for 'fail-safe' reasons, an 
emergency-stop button w i l l open a circuit, but PB2 in this example closes one). 
When the article on the conveyor reaches detector D l (assumed to close a switch 
when the article reaches i t) the heater H I is to be energized for five seconds. The 
conveyor is to continue to run until the article reaches detector D2 (also closing a 
switch when the presence of the article is detected). 

The technology that can be used to perform the control includes the fo l lowing. 

• Switches, relays, and timer units. A relay is a switch operated magnetically by a 
current in a coi l ; either the switch is open wi th no current and closes when a 
current flows ( 'normally open'; shown in diagrams as N/O) or vice versa 
( 'normally closed'; N/C) . Various changeover configurations and latching 
arrangements are also possible. The arrangement for the 'normally closed' case 
is shown diagramatically in Figure 6.2, in which the operating current flows in 
the coi l , causing the normally closed switch to open. The coi l is normally 
electrically isolated from the switch contacts. The control approach using 
switches and electromechanical relays has the advantages o f simplicity and 
direct connection between the components implementing the control logic and 
the system outputs. The balancing disadvantages are that significant voltages and 
currents are being handled throughout the control system, which is wasteful o f 
power and causes contact wear on the switches; and that any timer elements are 
l ikely to be electronic anyway (although pneumatic timers are available). The 
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Relay operating 
current 

Figure 6.2 An 
electromechanical relay 
(normally closed type 
shown). 

Coil 
\ A A A / Magnetic contact moves up 

when the coil is energized 
and breaks the circuit 

Current in 
controlled 
circuit — 

method is l ikely to be the most effective one i f the logic is relatively simple in 
relation to its number of outputs; it might actually be the best in this case, and 
almost certainly would be were t iming functions not required. The circuit 
principles o f the method are replicated in the 'ladder diagram' method of 
programming PLCs (see later in this chapter). 

• Hard-wired electronic logic is l ikely to prove cheaper than switches and relays i f 
the logic functions required are complicated in relation to the number o f inputs 
and outputs, because logic circuits are now very cheap and consume li t t le power. 
Again, however, there are balancing disadvantages. The logic circuit outputs are 
typically OV for a logic 0 and either 5 V or 15 V for a logic 1. The current 
capacity is poor, so circuitry wi th adequate drive capability must be connected 
between the logic system outputs and the loads to be controlled. Such circuitry 
(often based on opto-isolated devices) frequently costs more than the logic itself. 
It is also necessary to provide an adequate stabilized power supply for the logic. 
I f 5 V logic is used, it can be difficult to achieve sufficient immuni ty from 
electrical 'noise' in some circumstances. Finally, the method shares wi th the 
'switches and relays' approach the drawback that any changes require hardware 
modification to the circuit (except perhaps timer settings, which may be 
adjustable via thumbwheel or other switches). I t is unl ikely to offer advantages 
over switches and relays in an example such as that o f Figure 6.1 , except in 
respect o f the timer for the heater. 

• Fluidic logic systems are also available. These are expensive to install and 
maintain compared wi th the other methods, but their major advantage is that o f 
intrinsic safety, having no electrical connections (important for operation in 
inflammable atmospheres). 

• Dedicated microprocessor-based systems offer the advantage over hardwired 
logic that the logic functions implemented are performed in software so that, 
provided that the same input and output connections are to be used, amendments 
can be made simply by downloading a new program or inserting a new R O M (a 
read-only memory chip) containing the new program. The method therefore has 
the advantage of flexibili ty which often makes it the first choice. I t shares wi th 
electronic logic the drive capability problem and the power-supply requirements, 
and it tends to be more expensive i f the logic functions required are reasonably 
simple; the more complicated they are, the more the software approach comes 
into its own. I t also shares the interfacing difficulty o f hardwired logic, which 
means that a specialist electronic engineer is l ikely to be needed to implement the 
hardware side of such a system. It was for that reason that PLCs were introduced. 

• Programmable logic controllers (PLCs) are often now the standard solution 
where the logic requirements are not ultra-simple. They are, technically, 
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microprocessor-based systems, and therefore have the same flexibil i ty o f 
software implementation of the required control logic. They also have inputs 
which operate by detecting the state of switches connected across them (making 
them compatible wi th switch and relay logic) and outputs which open and close 
switches which can be connected in external circuits. They can generally be 
programmed in either of two ways: in a code resembling a computer assembly 
language, or by ladder diagrams. The latter are simply representations o f the 
logic as i f it were implemented by means o f switches and relays! The method 
originated in the American automobile industry (as did the PLC itself) , to meet 
the needs of car assembly lines which had to be regularly changed to produce a 
different model. The programmable flexibil i ty o f the PLC made such changes 
relatively cheap and easy, while the ability to program the PLC using ladder logic 
meant that the technicians familiar wi th switch and relay logic systems could 
easily perform the programming. No specialist electronics engineers or 
programmers were necessary. Over the past few years, PLC systems have 
become much more sophisticated than simple switching and t iming devices, 
being able to handle analog signals and PID control loops too, for example. As a 
result, PLCs are now one of the most popular choices for rapid and relatively 
inexpensive implementation of straightforward control systems. 

6.3 Ladder logic and PLCs 
The term 'ladder logic ' describes a diagrammatic form of expression of on -o f f con
trol situations in which the requirements are drawn as i f they are to be implemented 
in the form of switches, relays, delay elements and associated blocks. I t is the most 
usual method of input of such systems to a programmable logic controller (PLC) 
and, as mentioned above, i t was originally introduced to make PLC programming 
easier for works electrical staff whose previous experience was wi th such hardware 
devices rather than wi th software. The method is explained via the PLC 
arrangement of Figure 6.3, in which two user equipments are controlled on an 
on -o f f basis in response to three switch inputs connected to terminals 00,03 and 05. 
These could be ordinary hand-operated switches, or detectors of an on-off type such 
as l im i t switches. The large box represents the PLC itself, so that all components 
shown inside it are internal to the PLC. Although the PLC is based on 

Figure 6.3 A typical simple 
PLC arrangement. 
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microprocessor technology, throughout this chapter the terms 'contact', ' c o i l ' , 
' relay' and so forth w i l l be used as though these elements wi th in the PLC are 
physical devices. Of course, they do not physically exist, being just parts o f the 
software, but that fact is transparent to the user. 

The elements X00, X03 and X05 on the left-hand side o f the diagram represent 
the operating coils of relays which are connected in series w i th the external 
switches and a power supply as shown. I f a switch is closed the corresponding relay 
coi l is energized. There w i l l be more inputs available on a practical PLC (there can 
be hundreds); just a few have been shown in order to illustrate the principle. Notice 
that the external switches connected to X00 and X05 are normally open (N/O) while 
that on X03 is normally closed (N/C). In practice, some of these switches would be 
detectors such as l imi t switches or inductive or capacitive sensors, which would 
indicate when an object had reached a particular position, or a variable had reached 
a particular value. 

Referring now to the middle circuitry in the PLC, the 'capacitor-type' symbols 
represent switch contacts which w i l l open or close as i f they were relay contacts 
operated by the appropriate coi l . For example, switch X 0 0 is open i f coi l X00 is not 
energized and closed i f it is. The same principle applies to the other switches except 
for X03 , which is closed i f coi l X03 is not energized and open i f i t is. 

YO and Y l are similar in principle to X00 , X03 and X05 , but as wel l as being 
able to operate switches wi th in the middle block of the PLC, they can also operate 
those such as YO and Y l on the right of the diagram, which are directly controlling 
equipments external to the PLC. I t is usual for these external switches to have a 24 
volt supply to them from within the PLC. I f other voltages, or powers beyond the 
capability of the PLC switches, are to be switched, the currents supplied by the PLC 
outputs can be used to operate heavier-duty switching devices outside the PLC. 

The element TO operates l ike the other 'relay coi ls ' , except that the operation it 
controls is delayed by the time specified by the constant (K20 here) beside the coi l . 
Such timers often only delay a closing of the switch (or only an opening i f it is 
normally closed), the opposite operation being undelayed. A more complicated 
arrangement is needed i f the opening operation also requires delaying. For the 
purposes of this chapter, it w i l l be assumed that energizing a timer coi l closes the 
l inked normally open switch after the specified delay, but de-energizing it reopens 
the switch immediately. 

Arrangements o f switches and relays o f the type contained in the middle block 
of the PLC are known as 'ladder logic ' (from the resemblance o f the diagram to a 
ladder) and the principle is that i t works exactly l ike a similar electric circuit. To 
program the PLC, a computer-based device is attached and the ladder logic is built 
up on the computer screen by means of the keyboard and suitable computer 
software. This software both arranges the screen and converts the ladder logic into 
the code (resembling computer assembler code) that the PLC actually uses. It is also 
possible to program the device from a keyboard in its assembler code, but that 
method is less frequently used. For either method o f programming, the 
programming device is normally detachable from the PLC, partly because of cost 
(one device can be used for several PLCs) and partly to make i t impossible for 
unauthorized persons to alter the program - a real possibility i f i t is controll ing a 
manufacturing process whose operator is paid according to output! 

To show how a 'ladder diagram' program works, the availability of the 
elements shown in Figure 6.3 w i l l be assumed. They are based on those of 
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Mitsubishi-made PLCs, but their range and function has been simplified for easier 
understanding during a first treatment. The first example o f this chapter w i l l explore 
how the system of Figure 6.1 could be controlled by such a PLC. 

Before beginning to solve the example, it is worth noting the portion o f the 
arrangement in Figure 6.3 including X00, X05 , and YO. It is a ' la tching' 
arrangement whereby, assuming that switch X05 is closed, YO w i l l be latched on 
(by its own 'contacts') when switch X00 closes, even i f X00 is only closed for an 
instant. YO can subsequently be switched off only when switch X05 opens - even i f 
again it is only for an instant. Such a latching circuit is important i f the external 
switches are o f the push-on-release-off type, or i f they are detectors which operate 
only momentarily. 

I t is noteworthy that although most types of PLC can be programmed either in 
assembler language or by the ladder-logic method, the ladder logic is much the 
more common approach in practice. There are also other methods o f programming 
PLCs, as mentioned later. 

Example 6.1 Produce a ladder diagram for PLC 
control of the system of Figure 6.1 
The fol lowing connections w i l l be assumed: 

XO is the 'start' push-button PB1. 

X I is the 'emergency-stop' push-button PB2. 

X 2 is the detector D2. 

X3 is the detector D l . 

YO is connected in the conveyor circuit. 

Y l is connected in the heater circuit. 

The conveyor is to start when the push-button switch PB1 (XO) is pressed, and is to stop 
when either detector D2 (X2) or push-button PB2 ( X I ) produces a switch closure. It would 
be easier i f D2 and PB2 opened a switch (as noted earlier, this could often be the case for 
an emergency-stop button, such as PB2). This point can easily be solved in the PLC by 
using the inputs corresponding to PB2 and D2 to operate normally closed contacts wi th in 
the PLC. 

The first rung of the ladder diagram in Figure 6.4 (containing XO, YO, X I and X2) 
uses the 'latching on ' idea mentioned above. I f D2 and PB2 have not operated, the two 
normally closed switches w i l l be in the closed position, so momentary operation of PB1 
w i l l close the XO contacts and output YO w i l l then be energized and w i l l latch on via its 
own contacts in parallel wi th XO, thus running the conveyor. When either PB2 or D2 gives 
a contact closure (even momentarily), the conveyor w i l l stop. Incidentally, note that for 
safety purposes, the emergency-stop button (PB2) would be linked directly into the 
conveyor drive system, and not only via the PLC. 

The second rung includes a timer element; it is assumed that a timer TO is available, 
which delays the operation of any switch (controlled by the timer contacts) by the number 



6.4 Practical 'continuous' controller implementation 375 

Figure 6.4 PLC 
implementation of conveyor 
control. 

of tenths of seconds specified by the timer constant (shown as K 5 0 here). I t is interesting 
to note that switch-off is not delayed, so a more complicated circuit is needed here 
because the switch-on o f the heater is to be immediate when D l closes, but the switch-off 
is to be delayed. This is achieved by using detector D l to energize coi l X 3 , latching the 
circuit on and closing switch Y l to operate the heater. The timer TO w i l l not have any 
effect until 50/10 = 5 seconds have elapsed, when i t w i l l interrupt the circuit to Y l and 
switch it o f f - also 'unlatching' its own input. 

For a simple example like this, the PLC may be too expensive in comparison to 
switches, relays and a timer, but the example serves to illustrate the basic principles o f 
PLC operation. 

It is noteworthy that PLCs can also be used to implement digital control of 
continuous systems, as w i l l be described shortly. For more detail on PLC systems 
see Webb (1992) and Kalani (1988). 

6A Practical 'continuous' controller implementation 
The word 'continuous' is in inverted commas because a digital controller, strictly 
speaking, deals wi th discrete rather than continuous quantities; the notion of 
'continuous' in this context is to distinguish between sequential (that is, o n - o f f ) 
control and the control of variables which can adopt any value wi th in a given range. 

Controller design discussed elsewhere in the text is centred on obtaining a 
transfer function for the continuous controller, be it analog or digital . This section 
w i l l focus briefly on methods of producing a controller wi th that transfer function. 
First, the analog electronics approach using operational amplifier (op-amp) circuits 
w i l l be very briefly described, fo l lowing on from the ideas introduced in Section 
4.7; then the possibilities for digital control in 'continuous' situations, including the 
use o f PLCs. Finally, some of the methods o f interfacing the controller to the plant it 
controls w i l l be described briefly. 

It is perfectly possible to make non-electronic analog controllers (pneumatic, 
or even purely mechanical in some situations), but they are now rare in new 
equipment (their op-amp successors are increasingly so, too). Figure 6.5 shows an 
op-amp based PID controller having Kc = -(R2/R\ + C , / C 2 ) , Td = -C}R2/KC, 
and Tj = —KCRXC2. The derivation of these expressions is left as an exercise for the 
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Figure 6.5 Operational -
amplifier based controller 
circuit. 

O-

c. 

reader (who is reminded that the gain for the inverting op-amp configuration is 
given by Equation (4.30) in Section 4.7). 

Unfortunately, the capacitor directly from the input to the inverting input o f the 
op-amp has low impedance at high frequency and therefore makes the circuit liable 
to high-frequency noise (a problem with PID control in general). In addition, it can 
be seen that i t is not possible to set the values of all three controller terms 
independently of each other. A n alternative PID arrangement is suggested in 
Section 4.7, where a lag-lead compensator circuit is also given. Most transfer 
functions can be generated by circuits such as these, but they suffer from the normal 
op-amp limitations - especially drift (the slow variation of output voltage wi th 
temperature) in slow systems, which many control systems are. They also lose out 
in comparison wi th digital controllers in respect o f being less flexible ( in software, 
i t is possible to change parameters easily, or even to change the complete control 
strategy) and in being generally unsuitable for installation in digital distributed 
control networks or SCADA systems (discussed later in this section). They do, 
however, sti l l have a place in low-cost equipment; in controllers which must 
operate on very 'fast' plant, for which the sampling times of digital controllers are 
too long; and in interfacing situations as w i l l shortly be described. 

Before leaving op-amps, the question of their connection to the plants to be 
controlled, and to the transducers measuring the controlled variables, w i l l be 
considered. Here the op-amp has the advantage over digital systems in that, l ike the 
real wor ld of the plant, i t is analog. The transducer wi th its detection system is l ikely 
to give an output based on accepted standards: a voltage between 0 and 5 V or 0 and 
10 V, or a current between 0 and 20 m A or, more usually, 4-20 m A . The 4-20 m A 
version has the advantage that it is easy to check i f the loop is complete, as the 
situation of zero current cannot arise during normal operation (the pneumatic 3¬
15 p.s.i. pressure standard works on the same principle). The voltage possibility 
offers few problems to the op-amp based controller (it can be easily amplified and/ 
or level-shifted i f required - see Figure 6.6, in which these operations are achieved 
by the variation of R3 and R2 respectively) and i t can be easily converted by an 
analog-to-digital converter to give a digital input. The current-based possibilities 
are a lit t le more complicated to handle, but standard electronic modules to convert 
either current range to a voltage, or to digitize i t directly, exist. Actuators o f most 
types are made to accept inputs of one of the above formats. 

There is now a considerable choice of technologies for the implementation o f 
digital controllers. I t would be possible in principle to use hardwired logic, but that 
approach suffers from the disadvantage of inflexibil i ty - i t is necessary to modify 
the hardware configuration to change even a coefficient value. Practically all digital 
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Figure 6.6 A level-shifting 
circuit. 

controllers are therefore based on some form of processor; the fo l lowing are some 
of the possibilities. 

• A small general-purpose computer such as a PC is easy to buy or make. 
Appropriate input-output cards can be inserted containing the necessary filters, 
A - D and D - A converters, and circuits to give the required 4-20 m A current 
output or the appropriate voltage range. Such a computer is able to act as an 
operator interface and display and it can be programmed in a high-level 
language. Its balancing disadvantages are that i t is expensive for use simply as a 
controller because of its keyboard, screen and large memory provision and that 
its general-purpose processing chip is nevertheless l ike ly to be slow in 
performing multiplications, which are inherent in the operation o f digital 
controllers. However, the speed of modern PCs means that programs for 
performing straightforward digital control operations can cycle at up to a few 
kHz, which is usually more than adequate for the purpose. The situation is 
different i f they have to perform rapid matrix operations (such as those involved 
in on-l ine identification for self-tuning control (Chapter 11), or for state-
estimation using a Kalman filter (Chapter 9)). For use on plant, PCs in 
ruggedized, hose-proof cases are available, but at extra cost. 

• A dedicated microprocessor-based system w i l l be cheaper than a general-
purpose computer, in that the system can be designed to include only the features 
required for control purposes. These w i l l s t i l l include the converters, filters and 
analog circuits described earlier; the program for implementing the control 
algorithm w i l l probably be stored in R O M , wi th parameters normally being user-
settable. The setting was traditionally done via a keypad or thumbwheel switches 
on the unit itself, but it is now common for many controllers to be distributed 
around a plant, and to be networked to a central computer which sets both the 
parameters and setpoints, as wel l as a l lowing monitoring o f plant outputs. Such 
an arrangement is known as a SCADA system (supervisory control and data 
acquisition - see Kalani (1988) and Webb (1992)). 

The processors used in the controllers themselves may be general-purpose 
microprocessor cards (often 16-bit), or - more commonly recently - digital 
signal processing (DSP) chips. Eight-bit microcontrollers are also employed, 
especially where most of the task involves sequential on-off control rather than 
analog control (for which the l imited arithmetic capabilities o f 8-bit controllers 
make them rather slow). Originally, DSP chips performed basically fixed-point 
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arithmetic, but devices wi th floating-point capabilities wi th in their own 
instruction set are now becoming popular. I t is sti l l possible to perform the 
numerical calculations faster in fixed-point arithmetic, however, and Example 
6.2 (below) shows how the coefficients can be determined so that such an 
approach can be used. 

The advantages of the DSP chips over general-purpose ones are that they 
can perform multiplications as fast as additions (it takes much longer to 
mult ip ly by shifting and adding as would be usual in a general-purpose 
processor) and they often have useful hardware features such as timers and 
interrupts which make it easy to branch to the routine which performs the 
calculations at equal intervals of time as is necessary for digital controllers. 
Additionally, their support chips performing the A - D and D - A conversion are 
not only appropriately fast but often are linked to the main processor via a high
speed serial l ink, saving pins, and incorporate their own anti-aliasing filter (see 
Section 1.3.6) whose cut-off frequency can be set i n software. Care is needed in 
this respect as these filters are intended for digital filtering applications and they 
often have a low-frequency cut-off as well as a high-frequency one. This is not 
normally appropriate for control systems, where steady-state performance is 
usually important. 

• The capabilities of programmable logic controllers (PLCs) in executing the o n -
off type of control have already been examined, but the more versatile varieties 
are capable of performing digital control of analog quantities. In keeping wi th 
the idea o f a PLC being a directly applicable control device which contains its 
own means of interfacing wi th the outside wor ld , the A - D and D - A 
arrangements are included and work from and to the standard voltage or current 
ranges (for example, 4-20 m A ) . One word o f caution is to check whether anti
aliasing filtering is included. They are again programmable either in ladder logic 
or in their own form of assembler code. It must be said that ladder logic is not 
very convenient for this type of operation, as Example 6.2 w i l l show. However, 
the recent IEC 1131-3 standard and the use o f higher-level PLC programming 
languages (see, for example, Lewis (1995)) promises to improve matters, as they 
provide for reusable code blocks and other higher-level 'software engineering' 
improvements. In Example 6.2, below, the use of ladder logic for analog 
operations is illustrated. 

In practice, industrial control systems normally involve both on -o f f and analog 
control, which makes the PLC a particularly strong candidate as the more 
advanced types can perform both tasks in the one unit, as wel l as interface wi th a 
central SCADA computer for logging, operator display and supervisory control. In 
a large distributed application, the solution is often to use several PLCs for the o n -
off control and often a purpose-built microprocessor-based controller unit for each 
process variable, as this means that less expensive PLC types can be used. A 
central computer w i l l again communicate wi th all the local control devices and 
allow central operator monitoring and operation. 
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Example 6.2 To implement a simple controller by 
computer, DSP and PLC 
Consider a simple controller which has the equation: 

u = (0.6 xe) + (0.4 x last_e) 

where u is the controller output, e is the latest sampled value o f the error (that is, the 
controller input) and last_e is the value of the error one sampling interval ago. Show how 
this simple controller task can be implemented in floating-point arithmetic by a general-
purpose computer; in fixed-point by a device such as a DSP chip; and in ladder logic for a 
PLC. 

The equation is firstly arranged in the form of an algorithm: 

Set last_e equal to 0 

Loop: Input e 

Calculate u = (0.6 x e) + (0.4 x last_e) 

Output u 

Set last_e equal to e 

Wait for the next sampling instant 

Goto Loop 

A computer program written in BASIC (chosen for this demonstration as i t is easily 
understood even by those unfamiliar wi th i t , whereas (for example) ' C is much less so) 
might be: 

10 let laste = 0 

20 let e = input( port address) 

30 let u = 0.6*e + 0.4*laste 

40 output(port address, u) 

50 let laste = e 

60 gosub 600: rem go to subroutine to provide the delay 

70 goto 20 

It is assumed that a subroutine to provide a suitable delay w i l l begin at line 600. I t could 
be o f the fo l lowing form: 

600 let delay% = 500: rem % means it is an integer 

610 let delay % = delay % - 1 

620 i f delay % > 0 then 610 

630 return 
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The operation is that the number 500 is reduced by 1 every time the loop 610-620 is 
executed; the return instruction in 630 is executed when the number has decremented to 
zero. 

It w i l l also be necessary in practice to scale the incoming value o f e which is input 
from the A - D converter, and to perform the inverse scaling on the calculated value o f u 
prior to its output. 

It is clear that the high-level language program is a straightforward solution, though a 
short ini t ia l block w i l l also be needed to initialize the input and output ports. The delay 
subroutine is a somewhat inaccurate method of performing the t iming to obtain the 
appropriate sampling interval, as the time to execute the multiplication instructions w i l l 
vary slightly; in particular, it w i l l be shorter i f a multiplicand is zero. A more accurate 
way o f performing the t iming of the sampling would be to write lines 20 onwards (wi th 
the delay subroutine call omitted) as a subroutine called by an external timer-driven 
interrupt. 

The fixed-point version of the solution (for use wi th a DSP chip, for example) has to 
be modified to suit the situation, in that the mult iply instruction w i l l either mul t ip ly two 
8-bit quantities to give a 16-bit product, or it w i l l mult iply two 16-bit quantities to give a 
32-bit product. It is necessary both to scale the multipliers appropriately and to do likewise 
wi th the quantity to be output. In this case, for simplicity, i t w i l l be assumed that the 
inputs can be between 0 V and 10 V and that those voltages convert to decimal numbers 
between 0 and 255. I t can be noted that mult iplying an 8-bit binary number by 256 shifts 
it eight places to the left, so that OOOOOOOOxxxxxxxx mult ipl ied by 256 decimal becomes 
xxxxxxxxOOOOOOOO. This suggests a straightforward method of doing the calculation 
required here. I f 0.6 is converted to 0.6 x 256 = 153.6 (rounded to 154) and 0.4 to 
0.4 x 256 = 102.4 (rounded to 102), a procedure similar to the fo l lowing could be used. 

Clear register B 

Loop: Input e and place it in register A 

Calculate u = (154 x e) + (102 x contents of B) ; put the answer in 
registers C and D 

Output u from C (the most significant 8 bits of the product) 

Set last_e equal to e, storing it in register B 

Wait for the next sampling instant 

Goto Loop 

This version required more careful consideration of the scaling than was required for a 
program in a high-level language. The problem would have been more difficult i f (as is 
often the case) 0-255 actually had to represent a range such as - 5 V to + 5 V. A n offset 
would then have been needed in the program. The l ikely approach would have been to 
subtract 128 from the value read in from the A - D converter. The negative value would be 
stored in the computer and used in the program in '2's complement' form. 

Two's complement arithmetic works by representing negative numbers by their 2's 
complement form, obtained by changing every digit (1 to 0 and 0 to 1) and adding 1 to 
the result. For example, decimal 27 in 8-bit binary is 0001 1011. In 2's complement, - 2 7 
would be 1 1 1 0 0 1 0 0 - h i = 11100101. Using this format means that the most significant 
digit always represents the sign, not a magnitude; thus, for example, an 8-bit number can 
only represent a number range of - 1 2 7 to +127, or 0-255. The representation has the 
fol lowing advantages: 



6.4 Practical 'continuous' controller implementation 381 

• Subtraction simply means forming the 2's complement o f the number to be subtracted 
and adding i t to the number from which the subtraction was to be done. For example, 
48 — 27, using the 2's complement representation o f 27 from above, is 

0011 0 0 0 0 + 1110 0101 = 0001 0101 or 21 decimal. 

• Mul t ip l ica t ion and division sti l l work. I f the most significant bit of the result is a 1, then 
the result is negative, and the 2's complement o f the result w i l l give the magnitude. 

Examination of the PLC ladder-logic solution confirms that analog control by such an 
approach is somewhat long-winded! Many PLC types, however, have PID elements 
provided, so that only the required PID parameters would have to be input. Even without 
that facility, the PLC implementation does have the balancing benefit that many of the 
hardware problems have already been solved inside the unit. Wi th reference to the program 
of Figure 6.7, the fo l lowing points are noteworthy. 

(1) The format of each instruction is that the operation to be performed is indicated to the 
PLC in an op-code which is entered in a register F670. Parameters for the instruction 
are entered in registers F671, F672 and so on before the line containing the op-code. 
The first instruction in the example program (Figure 6.7) clears the register (number 
720) in which the quantity last_e is to be stored. So the three sub-rungs o f the 
instruction read: 'Constant 0 . . . into register 720 . . . put ' . The instruction w i l l be carried 
out whenever the contact labelled M400 closes. 

M400 

K720 

M401 

K33 

K412 

K721 

K85 

K721 

K78 

K720 

K4 

K724 

- ^ 6 7 0 ^ ) -
K78 

Constant 0 ('last_e') 
in register 720 

Rung A (see text) 
Reads in an analog 
input at input port 412 

Multiplies the input 
read into 721 by 6, 
storing the answer 
in registers 722-3 

Multiplies 'last_e' from 
register 720 by 4, 
storing the answer 
in 724-725. 

Rung B 
(see text) 

F671 

F672 

F673 

F670 

F671 

F672 

F673 

F674 

F670 

F671 

F672 

Figure 6.7 A PLC example 
using 'analog' instructions. 

K724 

K726 

K59 

K726 

K10 

K0 

K730 

K730 

K1 

K86 

Add the numbers 
from register pairs 
722-3 and 724-5, 
putting the answer 
in register pair 
726-727. 
The result is 
(6 x e) + (4 x last_e). 

This block divides 
by 10 to give 
(0.6 x e) + (0.4 x lastj 
stored in 730-731. 
Note that 731 will 
now contain zero. 
732-733 will hold 
the remainder 
from the division. 

The value in register 
730 (the answer) is 
output at port 001. 
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(2) The second instruction (Rung A ) w i l l be carried out whenever the contacts M401 close. 
This w i l l be done by the loop timer. The first three sub-rungs acquire the present value 
of e and can be read: 'Analog input value from port 412 . . . into register 721 . . . put ' . 

(3) The input is read in as an 8-bit binary number (which is therefore an integer between 0 
and 255) and it is converted to, stored and manipulated as a three-digit B C D (binary 
coded decimal) number wi th in the PLC. B C D is a common, but not mandatory, number 
format wi th in programmable logic controllers. 

(4) A l l such numbers are integers, so the 0.6 and 0.4 required in the control calculation 
cannot be handled directly. The solution is to mult iply by 6 and 4 respectively and to 
divide the answer by 10. The next four sub-rungs of the ladder do the multiplication by 6, 
and might be read: 'The number in register 721 . . . by a constant 6 . . . putting the answer 
in registers 722 and 723 . . . mul t ip ly ' . It is noteworthy that the product o f two three-digit 
B C D numbers w i l l need a six-digit location, or two three-digit locations, to store it . The 
fol lowing four sub-rungs perform a similar function for mul t ip ly ing last_e by 4; and the 
four sub-rungs after that perform the required addition (labelled ' B ' in Figure 6.7). 

(5) Divis ion is even more complicated! The division instruction used in the next five sub-
rungs after ' B ' divides a six-digit number by a specified six-digit constant (10 is only 
two digits, but the only other available instruction is three-digit by three-digit, which 
may not be adequate for the dividend). The register specification for the answer (730 in 
this case) means that the quotient appears in 730 (least significant three digits) and 731 
(most significant three) and the remainder likewise in 732 and 733. In the present case, 
the quotient cannot exceed three digits (why is this?), so register 730 w i l l now contain 
the answer required. It would be possible to round up to the nearest whole digit by 
reference to the remainder. I f its most significant three digits were 128 or greater, the 
answer in 730 should be incremented. 

(6) A further instruction resembling the instruction to read in the analog input is used to 
produce the analog output. I t w i l l also be necessary to utilize the logic capabilities o f the 
PLC to operate switch M400 once at switch-on, and switch M401 at each sampling 
instant. 

6.5 The real world beyond the controller 
This section w i l l discuss how the low-power analog output of the op-amps or D - A 
converter can be converted to appropriate plant operation. In many practical cases, 
the direct problems for the control engineer can be solved simply by ensuring that 
the controller output signal is of the appropriate form - for example, 4-20 m A 
current - for input to proprietary interfacing circuitry. This section addresses the 
issues raised by the next stage of the operation. 

For a position- or speed-control arrangement, it w i l l be necessary to convert 
the voltage or current into a force or torque. One method is by an electric motor, 
which w i l l probably require much more voltage and current than the controller can 
itself supply (though power op-amps are available which can supply enough current 
to drive a small motor directly). I f i t is a d.c. motor, a generally successful approach 
is to use the controller output to control the duty cycle of a 'chopper' circuit (as 
indicated in Figure 6.8(a)) to control the armature current and voltage. The chopper 
is basically a switch which at any instant is either ful ly closed or ful ly open, so that 
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no power is consumed in the switching devices; i t is therefore a very energy-
efficient control device. The electronic switching devices in practical choppers do 
not switch absolutely instantaneously, so practical choppers do consume some 
power in operation, but it is very much lower than would be the case i f an analog 
current controller such as a power transistor operating in linear mode were to be 
used. The chopper method is also good in respect o f linearity, as the average value 
of the armature voltage is proportional to the time tx in Figure 6.8(a). 

Another approach is to use controlled rectification o f an a.c. supply (Figure 
6.8(b)), in which the average output voltage is varied by varying the delay angle at 
which the rectifier is allowed to begin to conduct. A disadvantage o f this method is 
that i t is not linear - the average voltage depends on the cosine o f the delay angle -
and so the controller may need to be modified to insert an opposite nonlinearity. 
These methods of power control are ful ly discussed in power electronics texts such 
as Wil l iams (1992). For the purpose of designing the overall control system, it is 
often possible to treat the interface between the controller and the motor simply as a 
linear amplifier without dynamics. 
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Figure 6.9 A hydraulic 
system for positioning a 

Enlargement of value spool 

mass. OFF OFF 

It is also possible to use hydraulic or pneumatic technologies in implementing 
position and speed control; a commonly used hydraulic arrangement is shown in 
Figure 6.9. Hydraulic systems are at their best when the movements are quite 
l imited (although they are used in passenger lifts!) but the required forces are very 
high, which circumstances are often found in rol l ing and forging operations in the 
metal-forming industries, and in machinery used in the construction industry, for 
example. 

In Figure 6.9, the accumulator represents the arrangement which maintains a 
supply o f hydraulic fluid at high pressure. When it is required to move the load M to 
the right, an appropriate current is caused to flow in the operating coi l of the spool 
valve. The spool is moved by magnetic action to allow fluid to flow through channel 
A l into the left-hand end of the hydraulic cylinder, which exerts a pressure on the 
piston, moving it to the right. Its movement w i l l displace fluid from the right-hand 
end of the cylinder to flow back to the tank via channel A 2 . I f a right-to-left move
ment is required, the spool-valve current is reversed, moving the spool the other 
way and allowing fluid to flow into the right-hand end of the cylinder via channel 
B l and from the left-hand end of the cylinder via channel B2. The channels are 
shown diagrammatically to illustrate the principle of operation - they w i l l be more 
complex in their actual routing in the spool, so as to stay separate from each other. 

The spool valve is designed so that the relationship between spool 
displacement and spool current is reasonably linear, so that the spool can be 
modelled as a linear system (usually second-order to a reasonable approximation). 
The hydraulic situation is rather more complicated, wi th some deadband (the spool 
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movement from the centre ' o f f position must exceed a min imum value before any 
hydraulic fluid flows) and the valve position-flow relationship is usually nonlinear, 
even when flow does begin. 

It is possible for inexpensive spool valves (but not the more expensive ones 
intended for proportional control in servo systems) to have to move 20 per cent of 
their travel from the ' o f f position before fluid flow begins. I t is possible to reduce 
this by techniques such as applying a small a.c. signal of appropriate amplitude and 
frequency (known as a dither signal) to the valve spool. Al though this greatly 
reduces stiction (static friction - see Chapter 14), and reduces the effects of the 
deadband, nevertheless some deadband w i l l remain. Without i t , even slight wear on 
the spool would allow flow into both ends of the cylinder, pressurizing it 
permanently and causing fluid leakage past the piston seals. Chapter 14 examines 
the analysis of systems containing such nonlinearities. 

The dynamics from the cylinder onwards are dependent on the compressibility 
of the o i l (which changes as it ages and acquires dissolved impurities) and the 
properties of the load itself. 

Many thermal and flow processes also depend on valves which are electrically 
operated in order to control the flow of a gas or l iquid (which would be the fuel or 
coolant in the case of a thermal process). For a large valve, a two-stage approach is 
often used; a small electrically operated valve, possibly o f the spool type, controls 
the flow of air from a compressed-air reservoir (or less commonly hydraulic fluid) 
which operates a larger valve controlling the main flow. The use of hydraulics or 
pneumatics to provide the power for the system is often more economic than an al l-
electrical solution, especially i f a compressed air supply or equivalent hydraulic 
system provision is required for other purposes also. The balancing disadvantage 
is that hydraulic valves normally have significant deadband about their closed 
position ( i f they did not, leakage would be l ikely to occur as noted above). 

6.6 Conclusions 
This chapter has introduced the idea that not all control systems are continuously-
acting, and not all controllers involve feedback loops designed by frequency-
domain or state-space methods. 

The PLC was introduced as a popular and flexible approach to the control of 
sequential systems. It was pointed out that modern PLCs can also handle systems 
involving continuous control loops (of the PID variety, for example). A n example 
of the use of a PLC to handle analog quantities was given. 

Finally, some basic aspects of controller implementation, and of the 
interfacing of controller and plant, were discussed. 
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6.7 Problems 
6.1 Explain the operation of the PLC program shown in 

Figure 6.3 (the first rung has already been explained). 
6.2 Modify the PLC program of Figure 6.4 to make the 

conveyor return the article to its starting position 
after a 10-second pause, once it reaches detector D2. 
(You will need to define an additional detector to 
ascertain when it has reached the original position, 
and an additional output for reverse movement of the 
conveyor.) 

6.3 An analog controller is to be implemented digitally 
by means of a general-purpose computer working in 
a high-level language. The input and output voltage 
ranges are - 5 V to +5 V and the input and output 
operations are performed by 8-bit converters such 
that - 5 V converts to 1 and +5 V converts to 255. 
(a) What number does 0 convert to? 
(b) If 128 is subtracted to give a binary value with 

zero in the correct place, and if the 2's 
complement representation of negative values is 
used, to what will 
(i) - 2 V and 
(ii) +2 V convert? 

(c) It is proposed that the coefficients of the 
controller should be converted to binary on the 
basis that a coefficient of 1.0 should convert to 
64. What should coefficients of +0.5 and -0.5 
convert to if 2's complement arithmetic is used? 

6.4 Write a ladder-logic program to input one of the 
quantities mentioned in Problem 3 above, and 
subtract its offset. How could negative values be 
managed in such a program for multiplication, if 
10's-complement arithmetic were used? (10's 
complement works like 2's complement - see 
Example 6.2. The number is subtracted from 
.. .00000 to perform the conversion. Thus -27 
becomes .. .99973, and 48 - 27 = 00048 + 99973 
= 00021. Its properties in respect of multiplication 
and division correspond to those of the 2's 
complement form.) 

6.5 In a small practical process control application, three 
process temperatures are to be controlled. Local 
alarms are to be activated if any temperature goes 
too high or too low, and data are to be logged by a 
central SCADA PC. Discuss the technology which 
could be used to implement the control. 
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7.8 A COMPARISON OF THE TRUE' DIGITAL 
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7.1 Preview 
The reader should be able to understand this chapter 
if Chapters 1 to 4 and Section 5.8 have been read. 

In Section 5.8, the design of digital controllers by 
producing an analog design and Implementing it 
digitally was explained. That approach is widely used 
and is very successful in many instances. In 
particular, it enables the robust capabilities of PID 
control to be combined with the benefits of digital 
controllers in respect of precision and ability to 
communicate with and be supervised by an overall 
supervisory computer. A balancing disadvantage is 
that digitization must always produce some 
degradation of the 'analog' controller dynamics, so 
that, in an ideal world where operational amplifiers did 
not drift, had no nonlinearities and no noise, the 
analog controller would be superior in performance. 

An alternative approach is to design the 
controller from the outset on the basis that it is digital, 
and to make use of the fact that its output is constant 
between sampling instants. This chapter will show 

that, in suitable cases, it is possible to produce higher 
performance from such a controller than an analog 
one could achieve. 

The analysis is best performed by the z-
transform approach using the 'true' z-transform (rather 
than one of the approximations which were used in 
Section 5.8). The reason for choosing to use the 'true' 
z-transform will emerge as the chapter proceeds. 

In th is chapter, the reader wi l l learn: 
the nature of 'true' digital controllers as opposed to 
those produced by digitizing analog controllers 
how to produce a z-transform representation of a 
plant whose Laplace transfer function is known 
how to obtain the transfer functions in the z-
domain for controllers based on dead-beat, 
Kalman and Dahlin algorithms 
how to modify the Dahlin controller to remove the 
effect of 'ringing poles' in the controller 
the benefits and problems of each type of 
controller discussed. 

NEW MATHEMATICS FOR 
THIS CHAPTER 

The 'true' z-transform is 
covered in Appendix 5 and 
referenced there as 
required. 
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7.2 A z-transform representation of a digital control system 
Figure 7.1 represents the arrangement of a simple digital control system. The 
switches represent the sampling action of the control computer as i t inputs the value 
of the error signal e, performs its calculations, and outputs the required value of the 
controller action u. (In practice, the computer would probably sample the input r 
and the output y and subtract y from r to give e as the first step of its sums, but the 
analysis is unaffected as we explain later.) 

T 

e(f) 

Figure 7.1 A simple digital 
control system. 

T 

Digital 
controller 

ZTF = D(z) 

Hold Hold Plant 
y(f) , 

LTF = 
ZTF; 

G(s) 
G(z) 

One complication is the way in which the output of the computer is used in 
order to produce the controller action u. The computer is producing a number every 
sampling interval and outputting it as shown by the shaded impulses in Figure 7.2, 
but common sense suggests that a signal like the broken or solid lines in Figure 7.2 
w i l l be more effective in practice. 

The signal represented by the broken lines in Figure 7.2 is produced from the 
shaded impulses by simply 'catching' the computer output at each sampling instant 
and holding u constant at that value until another output is produced. The solid-line 

"(f) A 

Figure 7.2 Representations 
of a sampled signal. 

signal in Figure 7.2 is a 'smoothed' version of that represented by the broken lines -
in other words, it is what we think the signal probably ought to look like in 
continuous-time, based upon its known values at the sampling instants. Intuitively, 
the solid-line signal w i l l be the best version to use, but there are three powerful 
arguments to the contrary: 

(1) I t is easy in practice simply to 'catch' and hold the output value, but more 
difficult to smooth it effectively (see also point 3 below). 
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(2) The plant w i l l itself prove to be a very effective source of smoothing i f the 
sampling rate is reasonably high, so we need not do it (except perhaps as a 
result of considerations such as reducing actuator wear). 

(3) I f we smooth, we cannot enjoy the advantages of the ' true' digital control 
approach, which utilizes the discrete nature o f the controller output. One o f the 
problems wi th 'smoothing' is that this implies filtering o f the signal in some 
way, which would inevitably introduce some phase lag. The 'smoothed' 
version would therefore occur later in time than shown in Figure 7.2 - we 
cannot actually generate the signal represented by the solid line in Figure 7.2, 
but only some degraded version of i t . 

We call the device which catches and holds the computer output a zero-order hold. 
The 'zero-order' means that i t catches only the value o f the output and not, for 
example, its rate of change. I f the rate o f change were stored and held constant, the 
hold would be called a first-order hold. The difference in their performance is 
shown in Figure 7.3. In practice, first- and higher-order hold elements are not used, 
as negligible advantage would result. 

The rules for converting the elements of a diagram such as Figure 7.1 to a r-
transform representation are: 

• I f the block in question has, or behaves as i f i t has, a sampler both before and 
after i t , its Laplace transfer function should be converted directly to a z transfer 
function by means of the tables (Table A5 .1 in Appendix 5). 

• Any blocks which are not separated by a sampler should be combined in Laplace 
form before conversion. 

• When all blocks have been converted to the z-domain, the usual rules of block 
diagram handling apply (Section 2.6); and the z-transform of the response of the 
system to any input may be determined by mul t ip ly ing the overall transfer 
function in z by the z-transform of the applied input. 

• In determining the response, it must be borne in mind that the z-transform only 
gives the value of the response at the sampling instants. 

"(f) A 

Figure 7.3 Zero-order and 
first-order holds compared. 
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Referring to Figure 7.1, we w i l l seek to do the conversion to the z-domain by using 
the rules above. The 'ho ld ' and the plant are not separated by a sampler (the hold 
would not work i f they were!) so they must be combined in the s-domain before 
conversion. This means that we must determine the Laplace transfer function 
(LTF) of the hold. The fol lowing derivation refers to Figure 7.2, but considering 
only the samples themselves (the shaded impulses). 

The input signal to the hold is a series of pulses, the strength o f each of which 
is equal to its height (that is, the value of u at the peak of the impulse) times the time 
for which the switch is closed (T), giving ux. When a new pulse arrives, the hold 
must discard its last value and acquire the new one. To acquire the new one, it 
converts an impulse of strength ux to a steady value of u. Integration w i l l convert 
the impulse into a steady value equal to the strength (area) o f the impulse - and in 
Laplace terms integration means dividing by s. We w i l l also have to divide by the 
time x as we wish to hold w, not ux. The next problem is how to remove the value 
already stored! I f we just integrate, the new value w i l l be added to the old one, but 
here it is required to replace the old value, so the latter must be subtracted when the 
new one is stored. 

So 'catching' the new value implies a transfer function 1/CST). Discarding the 
old one therefore implies the subtraction of a similar quantity representing the 
impulse 'caught' one sampling interval (T) previously, and that delay can be 
represented by e~sT or z" 1 . The combination leads to a transfer function for the hold 
of 

1 esT 1 _ esT 
or 

sx sx sx 

The T in the denominator appears to be unknown and therefore a problem, but it 
w i l l divide out in due course wi th the x which, as is explained in Appendix 5, is 
'h id ing ' wi th in the z-transform. The practical conversion for the zero-order hold is 
therefore 

1 - e~sT 

s 

This is now combined with the G(s) for the plant before the combined transfer 
function in s is converted to one in z. The procedure is simplified by the fact that 
the (1 - e~sT) just converts to (1 - z " 1 ) . 

Example 7.1 Converting a system like Figure 7.1 
to the z-domain 
Consider a system arranged as in Figure 7.1, wi th the plant LTF G(s) = k/s. For simplicity, 
at this stage, we shall imagine that the digital controller simply has a gain of unity. Find 
the z-domain transfer function relating y to r. 

G{s) combines wi th the LTF of the zero-order hold (discussed above) to give 
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Note now that this is of the form F(s)(\ — e~sT) = F(s) — e~sT F(s). The z-transform of 
the first term w i l l be the z-transform of F(s) (= F(z), say). The z-transform of the second 
term w i l l also be F(z), but delayed by one sampling period, that is, z~lF(z). The overall 
z-transform is therefore (1 — z _ 1 ) F ( z ) . Thus, returning to the example, the numerator term 
simply transforms to (1 -
tables, we find this to be 

z *) , leaving us to transform the remaining term k/s2. From the 

kTz 

(z-iy 

We also note that ( 1 — z 1 ) 

z - 1 kTz 

(z — l ) / z . Mul t ip ly ing the two terms gives: 

kT 

( z - 1 ) 2 ( z - 1 ) 

Figure 7.4 A z-domain 
unity negative feedback 
system. 

fl(z) kT 
z-1 

Y(z) 
— 

The system has therefore already been reduced to that shown in Figure 7.4. It is now 
possible to apply the ' G / ( l + GH) rule' of block diagram reduction (Section 2.6), because 
all the remaining blocks are effectively separated by samplers. Note that, as the samplers 
all open and close simultaneously, it w i l l make no difference i f the digital controller is 
arranged so as to form the error signal itself, by inserting further samplers between the 
reference input and the summer and in the feedback l ink. There is effectively a sampler at 
the output, as it has been noted that z-transforming only gives signal values at sampling 
instants. The closed-loop transfer function in z is therefore 

y(z) = kT/(z-l) = kT 

R(z) l + W / ( z - l ) z-l+kT [ ' 

As the z-transform of a unit step is z/(z - 1), the z-transform of the step response of the 
closed-loop system w i l l therefore be given by 

- 1 z-l+kT 

which can be divided into partial fractions as 

m 1 ' ~ t T 

z - 1 z-(l-kT) 

The step response therefore has two parts. The first, o f transform l / ( z - 1), looks similar 
to the entry z/(z - 1) in Table A5.1 (Appendix 5), which is the transform of a unit step. 
However, there is no numerator term in z, so a mult ipl icat ion by z - 1 must also therefore 
be involved, which represents a one-interval delay. The first term can therefore be deduced 
to be a unit step delayed by one sampling interval. 
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The second term requires a li t t le more thought to match it wi th an entry in Table A5.1 
(Appendix 5). Since (1 - kT) is a constant, as is e~aT, i t resembles a constant times 

z 

z - e~aT 

which is the z-transform of e~aT. However, once again there is no numerator z term, so the 
one-interval delay must be present. Also, for stability, e~aT must be positive and less than 
unity, and we note that (1 — kT) w i l l only be positive i f kT < 1. 

To determine the actual response of the system of Example 7 .1 , we need to invert 
the z-transformed result back to the time domain. I t is probably easier to do this 
by the 'difference-equation' method (Appendix 5, Example A5.2) . Doing so 
produces the step response graphs shown in Figure 7.5 (the M A T L A B m-file 
fig7_5.m on the accompanying disk produced the plots), in which the fo l lowing 
points are noteworthy: 

• Only sampling-instant data points are shown; no attempt has been made to j o i n 
them up because the z-transform only tells us what happens at sampling instants. 

• The response depends on the product kT, so increasing the sampling interval has 
the same effect as increasing the system gain. That observation is strictly true 
only for this particular G(s), but i t is invariably found that increases to T and k 
are generally similar in their effect. 

• From Equation (7.1), we see that the closed-loop system has a z-plane pole at 
z = (1 — kT). This is real for all real values of k and T, and w i l l move in the 
negative direction as k or T increases. The z-plane stability rule is that all poles 
must be inside a circle of unit radius centred on the origin for stability (see 

kT = 0.5 

Figure 7.5 Several time-
domain responses for the 
system of Example 7.1. 
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Section A5.5.1), so it w i l l be crossing the stability boundary when 
z = - 1 = (1 - kT), that is, when kT = 2. The responses in Figure 7.5 for 
kT = 1.5, 2.0 and 2.1 confirm that kT = 2 is indeed the stability boundary. 

• The response for kT = 1 is called a dead-beat response, in which the response 
follows the reference signal step wi th a delay o f just one sampling interval. The 
step response therefore settles in one sampling interval from the application of 
the step input. Such a response is clearly a very desirable one from the 
performance point of view, but it is unfortunately unachievable in practice for 
systems above first order. This point is further discussed later in this chapter. 

Unfortunately, most 'plants' are of second order or above, which means that 
modified methods must be used. The first difficulty in respect o f such systems is in 
their conversion to the z-domain, the procedure for which w i l l be explained by two 
examples. 

Example 7.2 Obtaining z-transfer functions for 
higher-order systems 
Produce z-transfer functions for systems having each of the fo l lowing LTFs preceded by a 
zero-order hold, and assuming a sampling interval o f 0.4 s: 

(a) G(s) = — I and (b) G{s) = -
w w s2 + 5s + 4 w w s2 + 2s + 4 

System (a) 
The first step is to mul t ip ly G(s) by the LTF of the hold 

to give the overall LTF of the system. We remember that the expression (1 — e~sT) simply 
multiplies the result in z by (1 — z _ 1 ) , so we w i l l leave it out for the moment. The 
transform in s to be converted is therefore 

1 8 8 
or 

s s2 + 55 + 4 ' s(s2 + 5s + 4) 

Unfortunately, nothing precisely analogous to this expression appears in the table 
(Table A5.1) , so i t w i l l have to be split into partial fractions. First, we test the denominator 
factor (s2 + 55 + 4) to see i f i t w i l l factorize further. I t does, and can be writ ten as 
(s + l)(s + 4). There is also the s term mul t ip ly ing everything, so we need the fo l lowing 
partial fractions: 

A B C 

+ 7 + -S 5 + 1 5 + 4 
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These w i l l go over a common denominator as follows: 

A(s + + 4) + Bs(s + 4) + Cs(s + 1) 8 

5 (5 + l){s + 4) " J ( J + 1 ) ( J + 4) 

Comparing the coefficients on each side, we obtain 

s2: A+B + C = 0 

sl: 5A + 4B + C = 0 

5°: 4A = 8 and so A = 2 

Substituting the last result back into the first two and solving for B and C, we obtain: 

B = - 8 / 3 and C = 2/3 

So our LTF becomes 

9 8 2 
z 3 1 3 
5 5 + 1 5 + 4 

and we convert from the tables, where we find that 

1 z 1 z and 
5 z - 1 5 + 1 z - e~0A 5 + 4 

The resulting expression is 

2z I z \z 

: + - 3 
z - 1 z - e~T z - e~4T 

which we must now mult iply by the contribution from the hold element, that is, 
(1 - z " 1 ) = ( z - l ) / z , giving 

2 ! ( * - ! ) , § ( * - ! ) 
z _ ^ - 0 . 4 " h z _ ^ - 1 . 6 

Now comes the worst aspect of the task! It is necessary to put this expression over a 
common denominator and calculate all the actual numbers. This leads to the result: 

2(z - e-°A){z - e~1-6) - f (z - l ) ( z - e~L6) + \ (z - l ) ( z - g"°- 4 ) 

( z - e - ° - 4 ) ( z - ^ - 1 6 ) 

0.3471z +0 .1792 

z 2 - 0 . 8 7 2 2 z + 0.1353 

It is as wel l to perform a static check on such results, as they are very liable to algebraic 
error! The check is most easily done via the frequency response, that is, we put 5 = jco in 
the Laplace version (and a> = 0) and z = ej(oT in the z version (and z = 1 when co = 0). 
The Laplace version gives 8/4 = 2, whereas the z version gives 

0.3471 + 0 . 1 7 9 2 0.5263 _ 
2.0004 1 - 0 . 8 7 2 2 + 0.1353 0.2631 

The slight discrepancy is caused by numerical rounding errors. 
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System (b) 
The second system, having G(s) = 8 / (s 2 + 2s + 4 ) , w i l l now be converted. Again we 
mult iply by 

1 - e -sT 

S 

-sT\ for the hold and temporarily omit the (1 — e s l ) , g iving 

s(s2 + 25 + 4) 

Again partial fractions w i l l be needed - but of a different type, as it now proves that the 
denominator quadratic term has complex roots. We must now express the LTF as: 

A Bs + C _ A(s2 + 2s + 4) + s(Bs + C) _ 8 

s s2 + 2s + 4 ~ s(s2 + 2^ + 4) ~ s(s2 + 25 + 4) 

Comparing the coefficients on each side, we obtain 

5 2 : A + B = 0 

5 1 : 2A + C = 0 

5°: 4A = 8 and so A = 2 

Substituting the last result back into the first two, we obtain: 

B = -2 and C = - 4 

So we have 

2 _ 25 + 4 

5 5 2 + 25 + 4 

We now know how to convert the 2 /5 , but the other term is a 'new' problem! The 
tables (Appendix 5) give the fol lowing clues: 

co ze~aT sin coT 
and 

(7.2) 

(5 + a ) 2 + Qji z2 - 2ze~aT cos coT + e>- 2" r 

5 + a z 2 — z e ~ a r cos co7 

; ( s _|_ a ) 2 + w 2 z 2 2 z e - a r cos co7 + e-2^ 

The next step is to sort out what a and co need to be. The denominator of both the above 
, Laplace expressions multiplies out to (s2 + 2^5 + a2 + co2), which has to correspond to the 

^ denominator term (s2 + 25 + 4) from Equation (7.2). I t therefore follows that 2a = 2, so 

m a = 1, and that a2 + co2 = 4, so co = >/4 - a 2 = y/3 = 1.732. So we have the transform 
f pairs: 

I 1.732 ^ ze- Q - 4 sin(1.732 x 0.4) 

f' ts + i ) 2

 + 3 ^ z 2 - 2ze~ 0- 4 cos( 1.732 x 0.4) + e" 2* 0- 4 a n d 

5 + 1 z2 -ze~0A cos( 1.732 x 0.4) 
( j + i ) 2 + 3 ~* z 2 - 2 z ^ - ° - 4 cos( 1.732 x 0.4) + ¿-2x0.4 
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What we actually require is 

25 + 4 

s2 + 2s + 4 

and the procedure is to construct the latter expression from multiples of the two former 
ones (which is feasible, because the denominators already match). 

I f we took twice the second transform pair, the numerator would be (25 + 2). The 
term in s is now correct, so we just need to find the remaining 2 from the first transform 
pair. Its numerator is actually 1.732 as it stands, so we must mul t ip ly i t by 2/1.732. 

So our 

25 + 4 

becomes 

5 2 + 25 + 4 

2[z 2 - ze~0A cos(1.732 x 0.4)] + ^ [ze~0A sin(1.732 x 0.4)] 

z 2 - 2ze~0A cos( 1.732 x 0.4) + e ~ 2 x 0 A 

which works out numerically to 

2z 2 - 1.03157z + 0.494361z 2z 2 - 0.537209z 

z 2 - 1.03157z + 0.449329 z 2 - 1.03157z + 0.449329 

Now all that remains is to subtract that expression from 2z/(z - 1) (for the original 
2/5 term in Equation (7.2)) and mult iply by (1 - z " 1 ) = (z - l ) / z from the hold: 

2z 2z 2 - 0.537209z \ z - 1 

~ ~ z 2 - 1.03157z + 0.449329) z 

Putting it all over a common denominator we obtain: 

2(z 2 - 1.03157z + 0.449329) - (z - l ) (2z - 0.537209) 

z 2 - 1.03157z +0.449329 

and simplifying gives: 

0.474069z + 0.361449 

z 2 - 1.03157z +0.449329 

(Static check: 

0.474069 + 0.361449 _ 0.835518 _ 2 Q Q 

1 - 1.03157 + 0.449329 0.417759 ~ 

which is exactly correct.) 

The analysis involved in converting block diagrams to the z-domain is quite 
laborious algebraically; the reader may be relieved to discover that the subsequent 
calculations to produce the z-transfer function of the required digital controller are 
significantly easier! I t is also possible to obtain assistance from M A T L A B 
(Appendix 3) and other packages wi th the 5-to-z conversion. There are some 
examples in Section A5.5.5. 

(7.3) 
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7.3 Obtaining the z-transfer function of the controller 
Referring to Figure 7.1, i n which the digital controller w i l l have a z-transfer 
function D(z) and the open-loop plant a z-transfer function o f G(z), the procedure is 
as follows: 

(1) Specify the required closed-loop unit step response y(t). 

(2) Obtain its z-transform Y{z). 

(3) Determine the required closed-loop z-transfer function 

W) = G{Z) 
by dividing Y(z) by the z-transform of a unit step, z / (z — 1). 

(4) We know from the ' G / ( l + GH)' result that 

D{z)G{z) 
( Z ) = l + D ( z ) G ( z ) ( ? - 4 ) 

and we now know G(z) from the analysis in Section 7.2. Rearranging Equation 
(7.4) gives: 

G'(z) = D(z)G(z) - G'{z)D{z)G{z) and 

(5) Ensure that no undesirable oscillation of controller output u(t) or plant output 
y(t) occurs between sampling intervals (or otherwise in the case of u). The 
procedure for this check w i l l be explained by subsequent examples. 

The procedure sounds rather complicated, but the fo l lowing specific cases w i l l 
clarify how to use it in practice. 

7.4 A dead-beat controller 
A dead-beat response was described fo l lowing Example 7.1 as being one in which 
an input step (or, in fact, any other input) is faithfully fol lowed wi th only one 
sampling interval of delay. I t was also stated that such a response cannot be 
achieved for plants higher than first order. The fo l lowing analysis w i l l attempt to 
derive G(z) for such a controller. The numbering refers to the steps outlined in 
Section 7.3. 

(1) The intended response is that of a unit step delayed by one sampling interval, 
so: 
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(2) The closed-loop z-transfer function is therefore 

G ( z ) = z 7 ( ^ T ) = z 

(3) From Equation (7.5), 

D ( z ) - G ' W - ^ 
[l-G'(z)}G(z) [ l - l / z ] G ( z ) 

Example 7.3 Obtain the z-transfer function D(z) 
for a dead-beat controller 
This dead-beat controller is to work in the configuration of Figure 7.1, wi th a plant 
modelled by the G(z) given in Equation (7.3). Substituting this G(z) into the result o f step 
(3) above, we obtain: 

1/z z 2 - 1.03157z + 0.449329 
0.474069Z + 0.361449 ~ ( z - l)(0.474069z + 0.361449) 

[ / Z ) z 2 - 1.03157z +0.449329 

z 2 - 1.03157z + 0.449329 
0.474069z 2 - 0.11262z - 0.361449 

Div id ing throughout by 0.474069z 2, so as to obtain a leading denominator term of unity, 
and only negative powers of z (corresponding to time delays) yields: 

_ 2.1094 - 2.176Z" 1 + 0.9478z" 2 

^ 1 - 0 . 2 3 7 6 Z " 1 - 0 . 7 6 2 4 Z " 2 

Unfortunately, it w i l l emerge that the controller derived in Example 7.3 does not 
actually cause the plant output to settle after one sampling interval. The actual 
behaviour w i l l be investigated by each of two methods. 

7.4.1 Investigation of the dead-beat result by simulation of the system response 
This can be done by M A T L A B (Appendix 3), ACSL (Mitchel l and Gauthier 
Associates, 1987), S I M U L I N K (Appendix 4), or other appropriate packages. The 
M A T L A B m-file fig7_6.m on the accompanying disk produced the response of 
Figure 7.6 for a unit step input to the closed-loop system (in the M A T L A B 
environment, S I M U L I N K would actually be better, and is used later on). I t w i l l be 
seen that, i f we examine the response at the sampling instants only, i t does indeed 
seem as i f the plant has settled. Looking between the samples reveals the true 
situation! It is the digital control equivalent of a M r Bailey who, in pre-national 
power grid days, was in charge of the control room in a power station in a city in 
Northern England. He was not very expert at the precise control of frequency, but 
his superiors remained in ignorance because he did manage to achieve almost 
exactly 50 hertz (the British standard mains frequency) on the hour and half-hour 
when readings had to be logged. He was known to his colleagues as 'Passing-
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through-50' Bailey, and the frequency he achieved must have resembled Figure 7.6, 
though it is not certain that his oscillation was even a decaying one. 

7.4.2 Investigation of the result by inspecting the output of the controller 
Assuming that the output y has settled, then the loop error e must have done so too. 
In the case of the dead-beat controller, the error signal e is very simple in form; i t is 
1 at time t — 0 and 0 thereafter. I t is therefore possible to investigate the controller 
output by converting D{z) into difference-equation form. 
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From Example 7.3, we have 

_ ^ - 2.1094 - 2.176Z-1 + 0.9478z~2  

W " E(z) ~ 1 -0.2376Z"1 - 0 . 7 6 2 4 Z - 2 

Mul t ip ly ing out, this gives 

t / ( z ) ( l - 0.2376Z"1 - 0.7624z"2) 

= £(z)(2.1094 - 2.176Z"1 + 0.9478z~2) 

Remembering that mult iplying by z~n is equivalent to delaying the time-domain 
quantity by n sampling intervals, we can write: 

un - 0 .2376M n _! -0.7624w„_ 2 = 2.1094^ -2.176^_! +0.9478^_ 2 

and rearranging to obtain un we obtain 

K„ = 0.2376^.! + 0.7624w„_2 + 2.1094e„ - 2.176eII_1 +0.9478^_ 2 

For the present system, we start wi th en = 1 and all the other e and u terms equal to 
zero. This makes un equal to 2.1094. That value becomes un_l in the next interval, 
at which time en_x w i l l hold the init ial value of 1, and all the other e terms 
(including en) w i l l be zero. The value of u after one sampling interval is therefore: 

un = 0.2376 x 2.1094 + 0.7624 x 0 + 2.1094 x 0 

- 2.176 x 1 +0.9478 x 0 = -1.6748 

This is opposite in sign to the last value, so the system has clearly not settled. The 
fol lowing two types of controller were devised in order to keep as many of the 
advantages of dead-beat control as possible, without the troublesome inter-sample 
oscillation. 

7.5 Kalman's controller algorithm 
Kalman reasoned that, while it is impossible to cause a system to settle in one 
sampling interval i f i t is above first order, i t may be possible to make i t settle in a 
greater, but sti l l finite, number of intervals. His analysis revealed that a number o f 
intervals equal to the order of the system is required, and that the fo l lowing analysis 
produces the correct D(z) for a second-order system. Reference is made to 
quantities in Figure 7.1, which are init ial ly expressed as time series. 

The reference input, being a unit step, can be expressed as: 
R(z) = 1 + z - 1 + z - 2 + z - 3 + The system output for a second-order system 
should settle in two sampling intervals, so it w i l l start at zero, reach some value a 
after one sampling interval, and settle at a value of unity after two sampling 
intervals. Its series in z w i l l therefore be: Y(z) — 0 + a z - 1 + z~ 2 + z - 3 + 

The controller output needs a lit t le more thought. I t must give an output in 
excess o f the steady-state value in the first sampling interval, then 'apply the brakes' 
in the second one, in order to 4stop' the output in the right place. Subsequently the 
controller output must settle at the value required to give the required steady-state 
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output - that is, the required output value o f 1 divided by the steady-state gain o f the 
plant. The series for the controller output w i l l therefore be: 

U(z) = fi + rz'1 + - (z-* + z~> + z " 4 + (7.6) 

where k is the steady-state gain of the plant. I t is now possible in principle to work 
out the closed-loop transfer function by using Y(z)/R(z), but both appear to be 
unhelpful infinite series, and we do not yet know what the required value of a is. 
The first problem is easily resolvable as R(z) is expressible in closed form as 
z / (z — 1), or 1/(1 - z - 1 ) . To divide by R(z), therefore, we mul t ip ly by (1 - z - 1 ) . 
I f we mul t ip ly the series for Y(z) in that way, we obtain 

Y{z)/R(z) = ( az " 1 + z " 2 + z - 3 + • • •) - ( a z " 1 + z~2 + z~ 3 + • • -)z~l 

= az~ 1 + ( l - a ) z ~ 2 (7.7) 
(The purists w i l l argue that a term in z~°° has been ignored, but by that time the 
plant w i l l have been scrapped and we shall have retired.) We now note that G(z) is 
equal to Y(z)/U(z). Again, this relation does not look very helpful as both Y(z) and 
U(z) are in the form of infinite series. This problem can be solved by mul t ip ly ing 
both by (1 - z " 1 ) , giving for Y(z): 

(1 - z~x)y{z) = (1 - z~l)(0 + a z " 1 + z " 2 + z " 3 + • • •) 

az + (1 - a ) z - 2 

and for U(z) from Equation (7.6): 

( l - z - > ( z ) = ( l - z - ' ) jS + T z " 1 + - ( z - 2 + z - 3 + 

f} + {r-fi)z-x + [ - - r ) z 

Therefore: 

U(z) 
G(z) 

ccz + (1 -a)z~ 

p + (r-p)z-i + 

(7.8) 

r z 

As G(z) is known, it is now possible to determine a, jS and T by comparing 
coefficients, and then proceed to determine the required D(z). There is one hidden 
pi t fa l l , which w i l l be explained by obtaining D(z) for the same arrangement as was 
used i n the dead-beat controller example. 

Example 7.4 Obtain a Kalman controller to be 
used in place of the dead-beat one in 
Example 7.3 
This example reconsiders the design of the digital controller D(z) for Example 7.3, but 
using a Kalman controller in place of the dead-beat one. 
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Comparing the expression for G(z) in Equation (7.8) wi th that known from Equation 
(7.3), we have 

0.474069Z- 1 +0 .361449z - 2 _ az" 1 + (1 - a )z" 2 

1 - 1.03157Z- + 0 .44932*-* = , + ( r _ ^ + g_ / ^ 

Direct coefficient comparison does not work because the coefficients in the numerator on 
the right-hand side (RHS) of Equation (7.9), being a and (1 - a), add up to unity, but 
those on the LHS do not. The transfer function on the LHS has therefore to be scaled by 
mul t ip ly ing numerator and denominator by an appropriate factor, so as to make the 
numerator coefficient sum equal to unity. A little thought w i l l reveal that the required 
factor is the reciprocal o f the present sum of the numerator coefficients. In this instance, 
that factor is 1/(0.474069 + 0.361449) = 1.1969 and so Equation (7.9) becomes 

0.567Z- 1 + 0.433z" 2 az" 1 + (1 - a )z" 2 

1.197 - 1.235z"1 + 0.538z" 2

 n / r , n x , f\ 
i? + ( r - i S ) z - i + Q - r ) z - 2 

Coefficient comparison now produces: 

a = 0.567 by inspection 

ft — 1.197 by inspection 

(r-P) = -1 .235 , so r = -1 .235 + 0 = -1 .235 + 1.197 = -0 .038 

Finally, (l/k - T ) = 0.538, so l/k = 0.538 + r = 0.5 and k = 2. (The value of k should 
agree wi th that from our previous static gain check which, encouragingly, i t does.) 

To find D(z), we remember from Equation (7.7) that the closed-loop transfer function 
was G'(z) = a z - 1 + (1 - a )z" 2 . We also have the result from Equation (7.5) that 

° [ Z ) [ l - G ' ( z ) ] G ( z ) 

D(z) 
0.567z" 1 + 0.433z" 2 

l - ( 0 . 5 6 7 z - 1 - h 0 . 4 3 3 z - 2 ) G ( z ) 

_ (0.567Z" 1 +0 .433z- 2 ) (1 .197 - 1.235Z"1 + 0 . 5 3 8 z " 2 ) 

(1 - 0.567Z" 1 - 0.433z- 2 )(0.567z" 1 + 0.433z" 2 ) 

_ 1.197 - 1.235Z"1 + 0 . 5 3 8 z " 2 

1 - 0.567Z" 1 - 0.433z" 2 

This controller performs wel l , as the step responses of Figure 7.7 clearly show (The 
M A T L A B m-file fig7_7.m on the accompanying disk produced the figure). The graph o f 
u(t) in Figure 7.7 confirms that the calculated values of P and r are indeed the values o f 
u(t) i n the first two sampling intervals (there may be a hint o f movement at the third 
sampling instant, due to numerical rounding errors). 
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Figure 7.7 Step responses -0.2 
of a closed-loop system with 
a Kalman controller. 
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7 6 Dahlin 's controller algorithm 
Unfortunately, the Kalman controller involves a difficult compromise in respect of 
the sampling interval, between needing a heavy controller action ( i f the interval is 
short) and leading to problems of avoiding aliasing (Section 5.8.1) ( i f i t is too long). 
A n alternative approach is to use a modified dead-beat algorithm which produces a 
first-order exponential response to an input step, that is, the form of the unit step 
response is (1 — e~at), where a is a constant. In this way, the speed of the response 
can be adjusted by means of the controller parameters, without changing the 
sampling interval. This is known as the Dahlin approach, and leads readily to the 
determination of the required D(z) by the usual method. 
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I f y(t) = 1 - e "', then from tables (Appendix 5) 

(1 - e - a T ) z 
Y(z) 

(z - e-°T)(z - 1) 

The closed-loop transfer function G'(z) is readily determined by dividing Y(z) by 
R(z), the latter being z/(z - 1) again for the unit step. This operation gives 

G ' ( z ) = ^ 5 (7-10) 

We can then again use 

G'(z) 
D(z) 

[\-G'{z))G{z) 

from Equation (7.5). 

Example 7.5 A Dahlin controller with a time 
constant of 7.5 s for the exponential rise 
This example again uses the plant of Examples 7.3 and 7.4, and develops the controller 
D(z) using Dahlin's method. 

As before, 

0.474069Z- 1 +0 .361449z" 2 

G(z) 1 - 1.03157Z-1 +0 .449329z - 2 

A time constant o f 1.5 s gives a — 1/1.5. The previously defined sampling period is 
T = 0.4 s so, from Equation (7.10): 

1 - e~aT 1 - e - 0 4 / 1 - 5 0.23407 
G'(z) = 

iquati 

D(z) 

z - e~aT z - ¿-0.4/1.5 z - 0.76593 

Then, from Equation (7.5), 

0.23407/(z - 0.76593) 0.23407 

D(z) = 

[1 - 0.23407/(z - 0.76593)]G(z) (z - l ) G ( z ) 

0.23407(1 - 1.03157z-1 + 0.449329z" 2) 

(z - 1)(0.474069z- 1 + 0.361449z" 2) 

0 . 4 9 4 - 0 . 5 0 9 z - 1 + 0.222z- 2  

1 - 0 . 2 3 7 6 z " 1 - 0 . 7 6 2 4 z " 2 

The closed-loop system using the controller designed in Example 7.5 was 
simulated and the step responses of Figure 7.8 resulted. I t w i l l be noted that the 
output y(r) is broadly of exponential form but there is, as was observed in the dead-
beat controller, a decaying oscillation superimposed upon the exponential. Once 
again, the exponential is exactly followed at the sampling intervals. The controller 
output u(i) shows the nature of the problem; like the digitized PID controller using 
the Tustin transform (Section 5.8.3, Example 5.12) the controller has a ' r inging 
pole ' . One way to avoid this is to replace the ' r inging pole' w i th an equivalent 
steady-state gain. 
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Figure 7.8 Step responses _o.i 
of a closed-loop system with 0 

a Dahlin controller. 
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Time (s) 

I f we examine the denominator o f D(z) in Example 7.5, i t can be seen to 
factorize as 

(1 - z " 1 ) (0.474069 + 0.361449Z" 1) 

The poles are therefore at z = 1 and z = -0 .361449/0.474069 « - 0 . 7 6 . The 
latter is a real pole to the left o f the (z-plane) imaginary axis, and w i l l therefore 
display ringing ( i f the closed-loop poles o f the entire system comprising D(z), G(z) 
and the U N F loop are evaluated, i t w i l l be found that this pole at z « - 0 . 7 6 
appears in the closed-loop pole set, and is accompanied by a matching one at 
z « +0 .76 as discussed in Section A5.5.2). I t is therefore probably best to replace 
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the ' r inging pole' by an equivalent static gain (that is, at z = 1) o f 
1 / ( 0 . 4 7 4 0 6 9 + 0 . 3 6 1 4 4 9 ) = 1 . 1 9 7 . This substitution gives 

, 1 . 1 9 7 ( 0 . 4 9 4 - 0 . 5 0 9 Z - 1 + 0 . 2 2 2 z " 2 ) 
D(z) = * i 

1 — z 1 

_ 0 . 5 9 1 - 0 . 6 0 9 Z - 1 + 0 . 2 6 6 z ~ 2 

1 - Z " 1 

This controller was found to give the step-response results shown in Figure 7 . 9 . A 
slight (about 3 per cent) overshoot has resulted, but the controller action is much 
less oscillatory. The files fig7_8.m and fig7_9.m on the accompanying disk w i l l 
produce these figures. 

Plant output y(r) 

0.3 

0.2 

0.1 

Figure 7.9 As Figure 7.8, rj ' > i i i ! 
but with the * ringing poles' 0 1 2 3 4 5 6 
removed. Time (s) 
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7 7 Modification for plants with transport lags 
The same analytical approaches are st i l l applicable to situations which are 
complicated by transport lags. In each case, i f G(z) is the open-loop plant z-transfer 
function wi th no transport lag, then z~n G(z) w i l l be that for the plant w i th transport 
lag, where n is the number of sampling intervals in the transport lag. 

Since the plant cannot respond unti l the transport lag has elapsed, the desired 
response Y(z) must also be delayed by that time (that is, be mult ipl ied by z~n). A 
transport lag containing an integer number of sampling intervals is a great help in 
that respect! 

Example 7.6 Obtain Kaiman and Dahlin 
controllers for a plant with a transport lag 
The plant for this example is 'system (a)' from Example 7.2, but w i th a transport lag o f 
0.8 s. I t is sampled at 0.4 s intervals. The Dahlin controller is to have a time constant o f 
2 s. The z-transfer function of the plant excluding the transport lag (from Example 7.2) is 

Note that the figures for this example could be produced by M A T L A B m-files similar to 
those used for the previous figures. However, in this case, the files fig7_10.m and 
fig7_ll.m on the accompanying disk contain S I M U L I N K models (see Appendix 4) , which 
were used instead. Readers wi th S I M U L I N K installed can simply enter the filename at the 
M A T L A B prompt ( S I M U L I N K w i l l then load automatically) and c l ick on Simulation then 
Start. 

(a) Design of the Kalman controller 
There are two 0.4 s sampling intervals in the transport lag, so the G(z) and the output Y(z) 
must be mult ipl ied by z~2. 

From Equation (7.7), the closed-loop transfer function G'(z) w i l l be: 

G'(z) = Y(z)/R(z) = z~2((xz-1 + (1 - a ) z " 2 ) = az~ 3 + (1 - a )z" 4 (7.11) 

Using this result to generate G(z) in Equation (7.8) and comparing wi th the G(z) above 
leads to the values of a, ß and r as follows (G(z) is expressed as 'numg' / 'deng ' for use 
below): 

G(z) = 
0.3471z- 1 + 0.1792z" 2 

1 - 0 . 8 7 2 2 z - 1 + 0.1353z" 2 

G(z) 
numg(z) _ (0.3471z- 1 + 0 . 1 7 9 2 z - 2 ) z - 2 

den#(z) " 1 - 0 . 8 7 2 2 z - 1 + 0 . 1 3 5 3 Z " 2 

( a z - 1 + ( l - a ) z " 2 ) z - 2 
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As before, i t is necessary to scale the fraction on the LHS by dividing numerator and 
denominator by (0.3471 + 0.1792) to make the numerator coefficient comparison valid. 
The division produces the fol lowing result: 

= 0.6595Z- 3 + 0.3405Z- 4 _ az~ 3 + (1 - a)z~ 4 

[ Z ) ~ 1.9001 - 1.6572Z" 1 + 0 . 2 5 7 1 z - 2 ~ 
/? + ( r - j 8 ) z - i + ^ - r j z - 2 

By inspection, a = 0.6595 and 0 = 1.9001. Also r — ft = -1 .6572 , so r = 1.9001 
-1 .6572 = 0.2429. We also have l/k - T = 0.2571, so l/k = 0.2571 + 0.2429 = 0.5000, 
and k = 2, which is precisely in accord wi th the 'static test' value (setting z = 1 in the 
original G(z)) . 

From Equation (7.5), 

[ l - G ' ( 2 ) ] G ( z ) 

and from Equation (7.11), 

G'(z) = az" 3 + (1 - a)z~ 4 = 0.6595z~ 3 + 0.3405z~ 4 

Therefore 

(0.6595z" 3 + 0.3405z- 4)[den^(z)] 
D(z) = 

(1 - 0.6595z" 3 - 0.3405z" 4) [numg(z)] 

1.9001 - 1.6572z-1 + 0.2571z- 2  

1 - 0.6595z- 3 - 0.3405z" 4 

When tested by simulation, the system gave the step-test results shown in Figure 7.10. I t 
can clearly be seen that, though the response is clearly a Kalman-type one, i t does not 
begin unti l the end of the 0.8 s transport lag. 

(b) Design of the Dahlin controller 
: : The Dahlin derivation also follows the same pattern as that wi th no transport lag, but the 

output y(t) is delayed by 0.8 s, or two sampling intervals. From the analysis leading to 
Equation (7.10), Y(z) w i l l therefore be 

z ( l -e~aT)z-2 

( z - \)(z-e-aT) 

and the closed-loop transfer function w i l l be: 

y(z) y ( z ) ( z - i ) ( i - g - a r ) z - 2 

Cr (Z) = — = = ^ 

step(z) z z - e~aT 

We now apply Equation (7.5) again: 

G'(z) 
D(z) = 

[1 - G'(z)]G(z) 
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Figure 7.10 Step responses 
of a closed-loop system with rj.2 
a transport lag, controlled 
by a Kalman controller. 
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and, as e a T — 0.81873, a fairly serious bout o f algebra produces the result: 

D(z) 
0.18127(1 - 0 . 8 7 2 2 z - ' + 0.1353z" 2 )  

(0.3471z" 1 + 0 .1792z- 2 ) ( -0 .18127z" 2 + z - 0.81873) 

0.18127 - 0.1581z" 1 + 0.02453z- 2  

0.3471 - 0.10498z" 1 - 0.14672z" 2 - 0.06292z- 3 - 0.03248z" 4 

which would finally be divided throughout by 0.3471 to obtain an easier form for 
implementation. The system using this D(z) was again tested by simulation and produced 
the step responses o f Figure 7.11. 
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Figure 7.11 Step responses I—M 
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a transport lag, controlled 0 1 2 3 4 5 6 7 8 9 1 0 
by a Dahlin controller. Time (s) 

7.8 A comparison of the 'true' digital controllers 
It is clear from Figure 7.6 that the 'dead-beat' controller is not really dead-beat at 
all ; in fact, its output for second- and higher-order systems at best only settles in 
infinite time, and the step response displays considerable overshoot and an 
oscillation which decays only slowly. It may therefore be dismissed as a practical 
controller type. 

The Kalman controller appears to give an excellent step response, settling in 
only two sampling intervals in the case of second-order systems. It is therefore an 
attractive option where it can be used, but its use suffers from the fol lowing 
difficulties: 
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• The settling time is very closely related to the sampling interval. The maximum 
sampling interval which can be used is restricted by Shannon's sampling 
theorem and the need to avoid aliasing (see Section 5.8.1) and, even i f the usual 
min imum sampling frequency of five times the highest natural frequency of the 
closed-loop system, or any element, is used (that is, the longest feasible sampling 
interval), the required value of the controller output may be unachievably high. 

• The Kalman controller performance is less robust in the face o f plant parameter 
changes and nonlinearities than is that of, for example, a digital P ID controller. 
This characteristic is especially pronounced i n the case of a variable plant 
transport lag, though the true digital controllers, including the Kalman controller, 
are actually better able than 'digit ized analog' controllers to cope wi th a constant 
transport lag. 

• The analysis for systems of higher than second order is more difficult (but st i l l far 
from impossible). 

The Dahlin controller, as derived and before the removal o f its r inging pole, 
suffers from the main drawback of the 'dead-beat' controller in having inter-sample 
oscillations, though they are much less pronounced than those o f the dead-beat type. 
They can be looked upon as arising because the intended step response is that of a 
first-order system whose rate of change of output becomes non-zero immediately 
the step is applied. This is not the natural step response of a second-order system! 
As wel l as producing the inter-sample oscillations, the Dahl in controller often 
results in a higher ini t ial controller output than a 'digi t ized analog' controller of 
comparable overall performance. The removal o f the ringing pole cures the inter-
sample oscillation problem, but also causes some degradation o f the performance 
( in Example 7.6, a maximum overshoot o f zero became just over 3 per cent, which 
would admittedly often not be a problem in practice unless the system were for 
parking a car or for landing a rigid space vehicle on the Moon!) . 

A n additional feature of all the controllers explained in this chapter concerns 
the trade-off between the required controller gain and the sampling interval - very 
short sampling intervals result in very high controller gains being required. This 
point is perhaps intuit ively clearer for the Kalman than for the other controllers, as 
the settling time (after any transport lag has elapsed) is proportional to the sampling 
interval and, the faster a system is to be driven, the higher w i l l be the signals 
required to drive it . The reader may wish to experiment wi th software such as 
M A T L A B to verify this point. 

These difficulties wi th all the ' true' digital controller types have biased most 
practical control engineers towards the 'digi t ized analog' approach. This is 
sometimes unfortunate as especially the Kalman controller can be an excellent 
choice when circumstances allow its use. 
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7.9 Conclusions 
In this chapter, the principles, derivation and performance of ' true' digital 
controllers have been treated in some detail. Firstly, the notion of designing the 
controller from the beginning on the basis of its being a sampled system was 
explained, and the need to produce a discrete-time plant model via the true z-
transform was argued. The derivation of such a model including a zero-order hold, 
always effectively present in practice, was performed and appropriate worked 
examples given. 

The principle of defining the required step response, obtaining the appropriate 
closed-loop transfer function in the z-domain, and deriving the controller z-transfer 
function was explained, and controllers based on the dead-beat, Kalman and 
Dahlin algorithms were derived for plants wi th and without transport lags. In the 
case of the Dahlin controller, the removal of the ' r inging poles' in the controller 
was discussed. Finally, the performance of the various types of controller was 
examined and discussed relative both to each other and to controllers based on 
analog principles. 

7.10 Problems 
7.I Produce a z-transform representation of the system 

shown in Figure P7.1. Use it to determine: 
(a) What is the range of values of K which wil l 

result in a stable system, i f a sampling interval of 
0.1 s is used? 

(b) What range of values of the sampling interval Ts 

will result in a stable system i f a gain K of 5.0 is 
used? 

(c) For each of the cases (a) and (b), what are the 
conditions which wil l produce a dead-beat 
response to a step input? 

Sampler Zero-order 
hold 

Y(s) 

Figure P7.1 The system to be discretized for Problem 7.1. 

7.2 Obtain the z-transfer function for each of the 
following plants in cascade with a zero-order hold, 
using a sampling interval of 0.1 s in each case. 

(a) 
50 

s2 + 9s + 20 
(b) 

50 
r 2 + 4 i + 20 

7.3 For the plant of Problem 7.2(a), obtain the z-transfer 
function of a controller to achieve closed-loop 
control with unity negative feedback by each of the 
following strategies: 
(a) Dead-beat 
(b) Dahlin (for a response time constant of 0.5 s) 
(c) Dahlin (as above but with the ringing pole 

removed) 
(d) Kalman (for a settling time of 0.2 s). 
Test their operation by simulation i f possible. 

7.4 For the controllers of Problem 7.3, determine the 
initial controller action produced in response to a 
unit step input to the closed-loop system. Examine 
the controller actions of the various controllers by 
simulating the system if possible. 

7.5 Consider a plant which has the transfer function of 
Problem 7.2(b) in addition to a transport lag of 0.2 s. 
The plant is to be controlled in a unity negative 
feedback configuration, using each of the following 
controllers. A sampling interval of 0.1 s is to be 
used. 
(a) A Kalman controller. 
(b) A Dahlin controller of exponential time constant 

0.5 s. 
Obtain z-transfer functions for both controllers and 
modify that of part (b) to remove any ringing poles. 
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8.1 PREVIEW 
8.2 THE PRINCIPLES OF CORRELATION TESTING 
8.3 PRACTICAL ASPECTS OF CORRELATION 

TESTING 
8.4 CHOICE OF PRBS PARAMETERS 
8.5 ANOTHER LOOK AT BODE IDENTIFICATION 
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SYSTEMS 
8.7 CONCLUSIONS 
8.8 PROBLEMS 

8.1 Preview 
In Section 3.9, we investigated the use of simple step 
tests and frequency response tests. The idea was 
that these could be carried out on existing systems, 
to aid the process of generating models for them. 
This chapter builds on that work. There are 
alternative test signals which can be used in plant 
identification. One class of such signals is low-level 
pseudo-noise signals, which can (in principle) be 
superimposed on the input of a plant during normal 
operation. That is clearly a potential advantage, and 
is usually not the case with step or frequency 
response test signals. 

Thus, the emphasis in this chapter is on models 
generated using correlation techniques, after testing 
the plant using a pseudo-random binary sequence 
(PRBS testing). In particular, it proves to be possible 
to obtain results equivalent to those obtained by 
frequency response testing, but with much less time 
spent on plant than that kind of testing demands. 

We also mentioned in Section 3.7 that time 
delays (transport lags) cannot be included accurately 
in continuous-time state-space models. In this 
chapter, we extend our general discussion of 
modelling, by looking at how approximate 

continuous-time state-space models can be obtained 
for systems containing time delays. 

In th is chapter, the reader wi l l learn: 
how a system can be modelled by cross-
correlation testing to determine the impulse 
response 
what types of input are suitable for such a test 
how to generate a pseudo-random binary 
sequence (PRBS) for use as such an input 
how to perform such a test in practice 
how to obtain the frequency response from the 
results of such a test 
how to represent time delays as rational functions 
in the Laplace operator s. 

NEW MATHEMATICS FOR 
THIS CHAPTER 

The ideas of correlation 
functions are introduced 
and explained as required. 
The Pade approximation is 

discussed and applied to the modelling of time delays. 
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8.2 The principles of correlation testing 
The techniques of step, impulse and frequency response testing were explained in 
Section 3.9, where i t was seen that frequency responses plotted in the form of Bode 
diagrams allowed plant transfer functions to be determined readily by the 
application o f a standard procedure. It even proved to be possible to use curve-
fitting methods to obtain an accurate transfer function model from the results of a 
step or frequency response test, provided that the general form of the transfer 
function was known (or accurately guessed) beforehand. It therefore appeared that 
the available approaches constituted a complete 'armoury' o f methods which could 
determine the transfer function of any reasonably linear system. This assumption is 
not enormously wide of the mark in respect o f what the methods are capable o f 
achieving, but all three offer some difficulties in practice. 

The step response, in view of its sharp change in input level, can produce 
system output behaviour violent enough to cause system damage (on susceptible 
plants) or to cause the engineers in charge of the plant to forbid this type of test 
because of fears of system damage (quite frequently). The application o f a small 
enough step input to overcome this objection often does not work wel l in the case o f 
systems which have slight stiction (static friction - see Section 14.3.2) but are 
reasonably linear for bigger inputs. This problem reduces the usefulness o f the step-
response test in practice, though it is still useful and widely employed on suitable 
plants. 

As was explained in Chapter 3, the feasibility o f impulse response testing is 
restricted by the fact that a true voltage impulse (for example) has a finite voltage-
time area but zero duration - therefore implying infinite voltage! The practical 
feasibility o f the method therefore depends on the ability of the tester to generate an 
impulse of sufficient energy to produce an accurately measurable response, while 
sti l l being of sufficiently short duration that the system response approximates wel l 
to that which would be produced by a true impulse. The impulse response o f a plant 
is nevertheless very useful in that i t can be very readily converted by simple 
software into a frequency response. In the time domain, the impulse response is also 
interesting in itself, as it w i l l give the transfer function directly i f a time response 
function is fitted to it and the Laplace transform taken, though the conversion to the 
frequency response is l ikely to prove to be the easier and more systematic method. 

The latter comment begs the question 'but why not just measure the frequency 
response directly?', which w i l l now be answered. The difficulty wi th direct 
frequency-response determination is the time taken to perform the test. Unless a 
sweep oscillator is used (generally not an accurate method in any case, especially 
wi th regard to phase, as the system does not settle to a steady state at any 
frequency), a range of frequencies w i l l have to be applied, the system allowed to 
settle to the steady-state a.c. response at each frequency, and the magnitude and 
phase of the response measured. This procedure could be very time-consuming on a 
plant wi th long time constants. A n idea o f the relative timescales of obtaining a 
frequency response by the method to be described in the next two sections, and by 
the direct method, can be gained from a recent test by the authors on a piece of 
electro-thermal laboratory equipment having time constants between 0.1 and 1.0 s. 
The direct method took about 20 minutes to perform, while the time actually 
collecting results on the equipment by the alternative method was less than one 
minute! Analysing the results took rather longer, but that operation can be 
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performed 'back at base', thus disrupting plant operation for a much shorter period 
in a real-world case. 

This section w i l l explain how the system impulse response can be obtained by 
a steady-state method involving the cross-correlation of the system output and 
input, and using a type o f input signal (a pseudo-random binary sequence or PRBS) 
which does not provoke a violent ini t ia l system response and can often be 
performed while the plant is actually running normally. The impulse response of the 
plant is directly related to its Laplace transfer function, as the latter is the Laplace 
transform of the unit impulse response. 

The fol lowing analysis appears quite involved mathematically, though it is i n 
fact more straightforward than it seems. I t may help the reader i f i t is first explained 
that the purpose of the analysis is as follows: 

A . To show that the graph produced by plott ing the output o f the linear system of 
Figure 8.1 against the delay T is the same as the graph o f the impulse response of 
the plant against time, provided that a suitable input signal is used. 

Input signal 

Figure 8.1 Experimental 
arrangement for cross-
correlation testing. 

u(t) 

v(t) 

System Multiplier under test Multiplier 

Delay of 
Tseconds 

Averager 

u(f-x) 

B . To determine what types of input signal w i l l produce the situation o f A . 

Consider the arrangement of Figure 8.1. This is the test method we shall use, so 
we shall analyse it to discover its behaviour. A t this stage, the input u(t) can be 
anything. We first obtain the output y(t) by regarding the input u(t) as being 
composed o f a large number of impulses as shown in Figure 8.2. I f we determine the 
response at a time t due to the general shaded impulse shown, then we can evaluate 
the output y at a time t by combining the responses at t ime t due to al l the impulses. 

I f the system under test has a response to a unit impulse at time t = 0 given by 
h(t) (and we remember that i t is h(t) which we are t rying to determine) and the 
system is assumed to be linear, its response to the shaded impulse applied at time 
(t - X) is given by: 

u{t -X)dXx h(X) 

where 

u(t - X) dX is the strength (area) of the applied impulse 

h(X) is the response of the system to a unit impulse applied a time X 
previously 
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Figure 8.2 The response to 
a general input signal, 
represented as a series of 
impulses. Time 

I f we now assume the input u(t) to have been applied since ' t ime immemoria l ' 
(that is, t = - c o ) , we can determine the complete response y(t) by letting dX tend 
to zero and integrating wi th respect to X: 

J'OO 

u(t - X)h(X) dX 
0 

We now mult iply by u[t - x) to give the mult ipl ier output. 

y(t)u(t " T ) = [ | U(t- X)h(X) dX u(t - T) 

(8.1) 

(8.2) 

Finally we obtain the averager output. The method is to calculate the area under 
the function in Equation (8.2) by integration from time t = 0 to time t = T, and 
then to divide by T to obtain the average. Developing the analysis from Equation 
(8.2) in that way, we obtain: 

Jo y(t)u(t - T) dt = 1 [ Jo u{t - X)h(X) dX u(t - T) dt 

(8.3) 

The left-hand side of this equation represents a common definition o f the cross-
correlation o f y and u and it represents the output o f the averager in our test system 
of Figure 8.1. The fol lowing analysis w i l l attempt to make sense of the right-hand 
side of Equation (8.3). In that context, we note two points: 

(1) u(t - X) has no x terms in i t and is therefore a constant in integrations wi th 
respect to T. 
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(2) u(t - T) has no X terms in it and is therefore a constant in integrations wi th 
respect to X . The u(t - z) can therefore go inside the integration wi th respect to 
X, making the right-hand side of Equation (8.3) equal to: 

J | u{t-X)u(t-x)h{X)dX dt (8.4) 

We can now change the order of integration, g iving: 

(t - X)u(t - T) dt h(X)dX (8.5) 

Our attention now focuses on the inner integral wi th in the square brackets. I f i t was 
simply: 

1 ( T 

f\oUitHt- x)dt (8.6) 

it would, by the same definition as the cross-correlation o f y and u above, be 
the autocorrelation of u. I f we could use an input test signal u(t) whose 
autocorrelation plotted against delay T happened to have a similar graph to an 
impulse, then this would have to be (from Equation (8.6)) a 'spike' when T = 0. 
However, in respect of the inner integral of Equation (8.5), the spike would be at 
T = X, not T = 0. The version in Equation (8.5) is therefore that in Equation (8.6) 
but shifted to the right along the T axis by X . 

This means that the integration wi th respect to X in Equation (8.5) w i l l be 
performed on the product of h(X) and the spike as shown in Figure 8.3, and the 
integral w i l l be equal to the product of the area o f the spike and the value o f h(X) 
where the spike occurs. By varying the value o f T in our experimental arrangement, 
we can therefore produce corresponding values o f h(x) times the area of the spike. 
A l l we need is a suitable input! 
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8.2.1 Selection of a suitable input test signal 

The fol lowing signals satisfy the autocorrelation requirement. 

An impulse 
The product of an impulse and a delayed version of itself is only non-zero i f the 
impulses are simultaneous, that is, i f the delay is zero. Unfortunately, i t is very 
difficult to generate an impulse of significant power - signals of finite 'area' and 
zero duration need to be of infinite magnitude! That difficulty also militates against 
direct impulse-response testing. 

White (Gaussian) noise 
A true white-noise signal has a mean value of zero, is equally l ikely to be positive or 
negative at any instant, and has normally distributed amplitude wi th probability 
symmetrical about zero. Its autocorrelation at zero delay (equal to the mean-square 
value of the signal) is non-zero as, in the averaging over time, we always have + 
coinciding wi th + , or - coinciding wi th - ; the product is therefore always positive 
or zero. 

Wi th a delay, however, the product is equally l ikely to be positive or negative 
and observes the same amplitude probability distribution in the positive and 
negative directions, so its average value is zero. White noise is therefore a good test 
signal for our purpose, but i t does introduce certain problems. 

• The above properties only strictly apply to white noise of infinite bandwidth. 
What can be generated experimentally is an approximation to bandlimited white 
noise, which w i l l give a reasonable approximation to the autocorrelation 'spike' . 

• Producing a wide-bandwidth analog delay without attenuation (which would be 
required for the cross-correlation test setup of Figure 8.1) is quite difficult. 

A pseudo-random binary sequence (PRBS) 
A PRBS is an effectively random sequence of logic 1 levels and logic 0 levels. For 
use as a test signal in this respect, logic 1 w i l l be a positive voltage V and logic 0 an 
equal negative voltage -V. I t is a very convenient signal to use because it can be 
generated very easily by means of a serial-input shift register wi th feedback via an 
exclusive-OR gate. The signal is not truly random because the sequence repeats 
itself every 2n - 1 bit intervals for an Az-bit shift register. I t is noteworthy that not all 
combinations of bits for the feedback connection work; tables o f ones which do 
work are given in Horowitz and H i l l (1980) and Godfrey (1993). Figure 8.4 shows 
one successful possibility for a 9-bit register. 

Figure 8.4 A PRBS 
generator using a nine-bit 
shift register. 

Exclusive 
OR 

Shift register 

Clocking arrangements 
not shown 

PRBS out 
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Figure 8.5 A seven-bit 
PRBS and its 
autocorrelation function. 

One sequence 

PRBS 

Autocorrelation 
J I I L 

Time 
(Bit intervals) 

Delay 
(Bit intervals) 

The autocorrelation properties o f a PRBS resemble those o f white noise but, 
unlike white noise, it is very easy to delay. The autocorrelation o f a 7-bit PRBS is 
shown in Figure 8.5, along wi th the sequence itself. We note that: 

• The autocorrelation repeats itself every seven bit intervals o f delay. This is to be 
expected - so does the PRBS! 

• A spike at the origin is observed (like white noise) but, unlike white noise, i t is 
triangular wi th a height V 2 and a base of two bit intervals. Between spikes, the 
autocorrelation 'sits' on a steady negative level o f —V2/n rather than on zero 
(n = 7 in this case). 

8.2.2 The use of a PRBS signal as a test input 
I f we use such a signal as a test input in the arrangement o f Figure 8 . 1 , we are 
assuming that i t has an autocorrelation function which is o f the same shape as a 
time-domain impulse, in order for Equation (8.5) (the averager output) actually to 
provide the impulse response of the test system (thus leading to a model). Since this 
is not quite true, we need to consider the differences. 

The effect of the triangular autocorrelation function is that the cross-
correlation graph obtained in the experiment closely resembles the time impulse 
response but is not identical to it . The main difference is that the cross-correlation 
graph 'sits' on a steady negative value rather than on zero. This difficulty can easily 
be solved by adding the steady negative value to all the averager output readings, or 
simply redrawing the delay/time axis along the steady negative value (effectively 
the same thing). Our cross-correlation graph would then be o f the same form as the 
time impulse response. 

A remaining difficulty is to decide how strong the ' impulse ' (represented by 
the autocorrelation function of the PRBS) was, as the transfer function (which is 
often what we would like to determine) is the Laplace transform of the unit impulse 
response. The answer is quite straightforward - the strength o f the ' impulse ' is the 
area of the autocorrelation triangle, namely, its height mul t ip l ied by one bit interval. 
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8.3 Practical aspects of correlation testing 
In this section, an example w i l l be worked to illustrate the method. The 
effectiveness of the method in the face of nonlinearities w i l l be discussed, as w i l l 
the issues relating to the choice of the PRBS length and bit interval. 

Example S.1 Fitting a Laplace transfer function 
model to a cross-correlation result 
A control system element was tested by the cross-correlation method using a PRBS input 
of sequence length 127 bits, bit interval 0.02 s and levels ± 2 V . The resulting input-output 
cross-correlation is plotted in Figure 8.6. Obtain the transfer function of the system. 

Figure 8.6 Cross-
correlograms for Example 
8.1. 
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By inspection, the response appears to be a decaying sinewave. The cross-correlation 
settles at a value o f -0 .064 V 2 , so we add that value to all the readings, resulting in the 
corrected graph in the figure. That graph has zero crossings at delays o f 0.77 s and 1.52 s, 
giving two almost equal half-cycles averaging 0.76 s. This result indicates: 

(1) I t is a decaying sinewave rather than a cosine wave. 

(2) A n expression Ce~at sin (cot) can be fitted to the curve and, by fitting i t , we can progress 
towards the transfer function by the fol lowing steps: 

(3) As the cycle time is 2n/a>, we have 1.52 = 2n/co and so co = 2n/\.52 = 4.13 r a d s - 1 . 

(4) The quantity a is now found from the delay between successive peaks, which are 0.76 s 
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(half a cycle) apart. The height of the first positive peak is 0.405 V 2 and the depth of 
the first negative peak is ( - )0 .04 V 2 (it is acceptable to consider one positive and one 
negative peak, since the decay envelope is symmetrical about the zero amplitude axis). 
So e-°J6a = 0.04/0.405, and by taking natural logarithms, - 0 . 7 6 a = -2 .315 , g iv ing 
a = 3.05 s"1. 

(5) We can now find the value of C from the value of the cross-correlation halfway across the 
first half-cycle. A t this point, t = 0.38 s and the measured value from the cross-
correlogram is about 0.32. We choose this point because sin(coi) = 1 there, so we can omit 
it from the expression, thus easing the analysis: 

We have now fitted an expression to the curve which, viewed in the time domain, gives 
the system impulse response to an impulse of strength V 2 times the bit interval o f the 
PRBS, which evaluates to 2 2 x 0.02 = 0.08 units. The response to a unit impulse is 
therefore 1/0.08 times our expression, or 1 2 . 7 5 e - 3 0 5 ' sin(4.13f). The transfer function is 
the Laplace transform of the unit impulse response and this is readily found using the 
result that e~at sin(coi) transforms to co/[(s + a)2 + o r 2 ) ] . Our transfer function therefore 
becomes 12.75 x 4A3/[(s + 3.05) 2 + 4 .13 2 ] , which simplifies to 5 2 . 7 / { s 2 + 6As + 26.4). 

The authors w i l l now admit that the cross-correlation results in Example 8.1 were 
calculated on the basis of a 'plant ' o f transfer function 5 0 / ( s 2 + 6s + 25). The 
differences between that transfer function and the one obtained in the example are 
as follows. 

The static gain was obtained as 1.996, rather than 2.0 (an error o f about 0.2 per 
cent). The undamped natural frequency was obtained as 5.14 r a d s - 1 , whereas it 
should be 5.0 (an error of about 2.8 per cent). The damping ratio was obtained as 
0.58 rather than 0.6 (a 3.3 per cent error). The accuracy o f the transfer function 
determination is acceptable in view of the limitations o f graphical measurement and 
the rounding errors in the above analysis. 

I f greater accuracy in determining the parameters is required, i t is possible to 
do the fit by a least-squares procedure. A t each bit interval o f the PRBS, the value of 
the cross-correlation calculated from the fitted expression is subtracted from that 
taken from the graph and the difference of the values, known as the error, is 
squared. The sum of those squares is then calculated. The parameters o f the fitted 
expression are then iteratively adjusted and the new sum of the squares o f the errors 
calculated each time until a set o f parameters which minimizes the sum of squares 
of the errors is found. 

Computer assistance is usually needed to accomplish the fitt ing in a reasonable 
time! Such an approach to fitting the curve is normally necessary for a situation 
where the general form of the curve is more obscure, such as the 'double 
exponential ' response typical of overdamped second-order systems (Figure 8.7) 
where there is no simple accurate method of separating the exponentials. 

For higher-order systems where the structure o f the model may be unclear, i t 
may be better to use a discrete-time model o f the form described in Section 3.6.1: 

0.32 = Ce~3 0 5 x 0 3 8 and so C « 1.02 V 2 

m 
(8.7) 
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Wi th such a model, all we need to decide before fitting the coefficients are the 
required orders of the model for input and output - the m and / in Equation (8.7). I f 
we are unsure of these and do the fitting successively for higher-order models, the 
residual least-squares error w i l l fall very substantially when the correct order is 
reached. The fitting can be done automatically by available computer packages, 
but caution is required in their use. For example, one of the authors successfully 
fitted a result manually to a set of test results for which an automated package had 
simply generated zeros for the A and B coefficients. A computer-aided parameter-
fitting example for the system element of Example 8.1 follows, in which M A T L A B 
(Appendix 3) is used to do the computation. 

Example 8.2 A computer-assisted solution to 
Example 8.1 

> Determine the best-fit parameters C, a and co in Example 8.1. 
We w i l l start from the values estimated in Example 8.1: C = 1.02, a — 3.05, 

. CD = 4.13. The procedure w i l l be to write a M A T L A B m-file to determine the sum of 
*. squares of the errors, given values of C, a and b\ and to use it to find the opt imum values. 

We give the details of the code here so that readers who do not have M A T L A B can see 
how to achieve the same result in another high-level language. The only major difference 
w i l l be that in the 'other language' it w i l l be necessary to use ' for ' loops (or some 
equivalent construction) to perform the vector multiplications which M A T L A B does wi th a 
single multiplication operation. 

We w i l l assume that the first 127 values on the cross-correlation graph (corresponding 
to times from 0 to 126 bit intervals of 0.02 s, that is, 0-2.54 s) are entered into a M A T L A B 
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i& row vector called my (or a suitably-dimensioned array in another language). The m-file 
<* w i l l proceed as follows (see Appendix 3 for more details on M A T L A B m-files). 

% First we produce corresponding calculated values from Cexp(—at)sin(wt): 

¿< t = 0.02 * [0:126]; % set up the time vector 
u 

r r l = c * exp( -a* t ) .* sin(w*t); % calculated values from model (N .B . 
% dot* command to do element-by-
% element multiplications) 

% Then we calculate the errors: 

err = ruy - r r l ; 

% Now to square and add - easy wi th matrices! 

ssq = err * err7 % no semicolon, so we see the 
% sum-of-squared-errors 

The above m-file w i l l now be assumed to have the filename cssq.m. 
The fo l lowing example illustrates the use o f the file; the user input to M A T L A B is 

'* shown fol lowing M A T L A B prompts ( » , and the output from M A T L A B occurs between 
these. The bracketed comments are those of an author after the experiment. 

y c = 1.02; % setting the ini t ia l parameter values 

» a = 3.05; 

4 » w = 4.13; 

> cssq % runs the m-file to produce the sum-of-squared-errors 

ssq = .0051 

>̂ c = 1.03; % try tuning the value o f C 

y cssq 

ssq = .0059 (Worse!) 

» c = 1 . 0 1 ; 

> cssq 

ssq = .0048 (Improving!) 

» c = 1.0; 

y cssq 

ssq = .005 (C = 1.01 was best) 

> c = 1.01; a = 3.04; % now try tuning a 

> cssq 

ssq = .0049 (Worse!) 

(Continue in this way, one parameter at a time, unti l no further improvement is possible by 
altering any parameter in any direction.) 
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The above working makes it apparent that obtaining the transfer function directly 
from the impulse response is rather less straightforward than doing so from the 
frequency response by asymptotic approximation. Fortunately, given the impulse 
response at bit intervals of the PRBS test signal, i t is easy to obtain the frequency 
response in magnitude and phase i f computer assistance is available. 

Suppose the overall time response to a unit impulse is h(t). Section A5.2 shows 
that the Laplace transform of the impulse response sampled at intervals T (and 
therefore the system transfer function, since the Laplace transform o f a unit impulse 
is 1) can be given by: 

T[A(0) + e~sTh(T) + e-^hilT) + • • •] 

or 

CO 

T KnT)e-nsT 

n=0 

Strictly speaking, T is the width of the impulses in Figure 7.2, as discussed in 
Appendix 5. However, in the absence of a convincing brief and rigorous argument, 
it w i l l be left that the right answers result i f we take T to be equal to the sampling 
interval T in the present context! 

The frequency response now results from the substitution of jco for s, g iving: 

00 

h(jco) = Tj2h(nT)e-njwT (8.7) 

In practice, the upper l imi t for n w i l l be the number o f bits in the PRBS but, i f the 
length and bit interval have been chosen correctly, the response should have 
decayed effectively to zero by that time. The M A T L A B m-file eq8_7.m on the 
accompanying disk w i l l perform the calculations o f Equation (8.7) on the series 
ruy(t) (cross-correlation representing the impulse response) o f length 127 bits and 
obtain the decibel gain dB and the phase angle ag in degrees. 

This m-file was used to convert the impulse response from Examples 8.1 and 
8.2 to a frequency response, which is shown in Figure 8.8. The next example 
obtains the transfer function from those graphs and shows that i t is effectively the 
same as that obtained directly from the impulse response. It is noteworthy that the 
response at the highest frequencies is a l i t t le in error because o f aliasing (see Section 
5.8.1). 
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* Example 8.3 Checking the cross-correlation result 
by Bode identification 
Using the derived graphs o f the frequency response, obtain the transfer function and 
compare i t w i th that derived directly from the impulse response. 

Referring to the amplitude graph (Figure 8.8(a)), the asymptotes have been plotted 
and we deduce: 
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(1) The gain at low frequency is constant at 6.15 dB, so the system is o f type 0. 

(2) There is only one high-frequency asymptote and its slope is - 4 0 dB/decade. The 'corner 
error' is - 1 . 5 5 d B approximately, suggesting an underdamped second-order system 
(which is also suggested by the slight peak in the response). 

(3) The net transfer function is of the form 

Kcol 
G(s) 

s2 + 2(>cons + CD2 

(we are assuming that the system is second order and that there are no extra poles and 
zeros so close together that their presence does not greatly affect the plot). 

(4) The undamped natural frequency is easily obtained from the asymptote intersection as 
con — 5 r a d s - 1 . 

(5) K is obtained from the low-frequency gain. 20 l o g 1 0 K = 6.15 dB so 
K = antilog(6.15/20) = 2.03. 

(6) C is obtained by reference to standard second-order system response curves (see Figure 
3.39(a) in Section 3.5.1) or by noting that the magnitude of the system transfer function at 
the undamped natural frequency is given by K/(2Q. The corner error of -1 .55 dB and the 
d.c. gain of 6.15 dB mean that the gain at the corner frequency (which is the undamped 
natural frequency) is 4.6 dB, or 1.7. Since K = 2.03, this suggests a damping ratio of 
approximately 0.6. 

The overall transfer function is now 

2.03 x 5 2 50.75  
W " i 2 + 2 x 0.6 x 55 + 5 2 ~ s2 + 6s + 25 

This answer is accurate, except for the static gain which is 1.5 per cent too high; some 
error is to be expected in view of the use of the logarithmic scale in obtaining the value. 

8.4 Choice of PRBS parameters 
The selection of the bit interval and the sequence length for a cross-correlation test 
using a PRBS follow quite simple criteria. The overriding requirement is that the 
total time duration of the PRBS must be enough to allow the impulse response of 
the test system to decay effectively to zero. Wi th in that constraint, i t would seem 
desirable to use a very long sequence in conjunction wi th a very short bit interval 
for the PRBS, and that would indeed be the best approach i f the test system were 
perfectly linear. Practical 'plants' seldom are, however, and stiction in particular 
w i l l cause difficulties i f the bit interval is so short that appreciable output change 
does not occur during i t . 

A bit interval of about one-fifth of the shortest plant time constant is often the 
best we can achieve. The sequence length is then simply determined by the impulse-
response decay time. 

The method has several advantages over frequency-response testing o f the 
traditional type wi th oscillator, data logger (or even chart or magnetic tape recorder) 
and oscilloscope. One is that plant noise w i l l be removed by the correlation 
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operation as far as the measurements are concerned; tests have shown that white 
noise of several times the magnitude of the PRBS input can be added to the plant 
output without producing more than slight degradation of the results. For the same 
reason, i t is possible in principle to do the test while the plant is in normal use, but 
plant managers tend to be sceptical! Another advantage is that the time required on 
plant can be quite short - the response can be logged at the time and taken away for 
the correlation to be performed offline. 

The method is not, however, suitable for systems having more than slight 
nonlinearities, especially i f they are in the form of stiction or backlash (see Chapter 
14). This l imitat ion is to be expected in view of the linearity assumptions inherent in 
the derivation of the principles of the method. 

As wi th the identification of transfer functions from Bode plots, i t is obviously 
necessary to have some knowledge of the plant, before the method can be 
successfully applied. In this case, some notion o f the order of the plant, and the 
shortest time constant are required. Once again, some simple modell ing from 
physical considerations along the lines suggested in Chapter 2 w i l l be a wise 
starting point. 

8.5 Another look at Bode identification 
In Section 3.9.5, the basic principles o f identifying a system from its Bode 
frequency response plots were introduced. However, only simple systems were 
considered there. In particular, only minimum-phase systems were considered. 
N o w we revisit the process in a lit t le more detail. In this section it w i l l be assumed 
that frequency response data exist, and were obtained from a stable system. 

As we know, for transfer function identification, the reverse procedure to the 
Bode asymptotic approximation is carried out on the plot o f dB magnitude versus 
logarithmic frequency. It consists o f the fo l lowing steps: 

(1) The dB magnitude curve is approximated by a series of piecewise straight lines, or 
asymptotes. The asymptotes are chosen such that their slope is given by an integer; 
a unit change in slope is defined as being a gradient change of 20 dB/decade. 

(2) The asymptotes are decomposed into several components. 

(3) The corner frequencies are noted. 

(4) The corresponding transfer function is writ ten in pole-zero form. 

8.5.1 A note on non-minimum-phase systems 
In using step 4 above, particular attention must be paid to the plot o f phase versus 
frequency response. For a minimum-phase process (one having poles and zeros wi th 
negative real parts), the magnitude and phase frequency responses are 
interdependent: a pole w i l l tend to cause a - 9 0 ° phase shift, and a zero w i l l tend 
to cause a + 9 0 ° phase shift. For a non-minimum-phase process the converse is true; 
a non-minimum-phase pole w i l l tend to cause a + 9 0 ° phase shift, and a non-
minimum-phase zero w i l l tend to cause a - 9 0 ° phase shift (see Section 3.8). Since 
the system is assumed to be stable, all the poles w i l l have negative real parts. 
However, the sign o f the zero must be selected by reference to the curve itself. 
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8.5.2 A note on time delays (transport lags) 
The Bode plots may also be used to determine the presence of a time delay in the 
process response, since the high-frequency phase plot decreases rapidly to minus 
infinity. The value of the time delay can be determined by plotting phase against 
frequency (not log of frequency), and measuring the negative slope o f the resulting 
straight line. This is proved simply by considering the frequency response o f a time 
delay: 

e-sT = e-jcor = x a r g ^ ^ ) 

Alternatively, the normal Bode plots against logarithmic frequency axes can be 
used as follows: 

(1) From the high-frequency slope of the magnitude plot, determine the net system 
order (that is, the multiple of —20 dB/decade slopes present at high frequency). 

(2) Evaluate the expected final value of the phase plot at high frequencies, taking 
into account every pole and zero, including any non-minimum-phase ones, but 
ignoring the transport lag. 

(3) A t a specific value of high frequency, compare the actual phase lag wi th that 
expected from step 2. The excess phase lag is due to the transport lag. Since this 
is equal to -COT, where co is the chosen frequency, the transport lag T can easily 
be determined. 

I f the frequency response is to be calculated from a time domain response using 
the Fourier transform, any time delay should be removed from the time-domain 
output before transformation takes place. 

Example 8.4 Transfer function identification from 
a Bode plot 
Table 8.1 lists the experimentally obtained harmonic responses for a component of a 
system, fol lowing a frequency response test using an input of 0.5 V peak-peak. Find the 
component's transfer function, explaining clearly how the result is obtained. 

A transfer function may be obtained by plotting the data in Bode form and using the 
asymptotic approximation to determine the corner frequencies, and hence the pole-zero 
locations. To do this, the data in Table 8.1 must be changed into Bode form, as in Table 
8.2. Bode plots may now be produced using standard log-linear graph paper, as shown in 
Figure 8.9. 

Ini t ia l ly the Bode gain plot has a slope of + 2 0 dB/decade and the phase plot shows a 
constant phase shift of + 9 0 ° , so the system has a zero at s = 0. Two corner frequencies 
can be identified at 0.1 and 2 0 r a d s _ 1 , and in both cases the gain plot changes slope by 
- 2 0 dB/decade accompanied by a fall in phase. 

The Bode gain plot has a final slope of - 2 0 dB/decade, but the phase plot does not 
tend to —90°. The final slope of the gain plot suggests that the system has one more pole 
than zero, and the fact that the phase plot appears not to be settling at all suggests that the 
component under test contains a transport lag (time delay). 
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Table 8.1 Plant test results for Example 8.4. 

Frequency Peak-peak output voltage Phase shift 
(rad s _ 1 ) (for 0.5 V in) (degrees) 

0.0010 0.008 89.42 
0.0023 0.018 88.69 
0.0052 0.041 87.02 
0.012 0.094 83.24 
0.027 0.207 74.89 
0.061 0.417 58.38 
0.139 0.649 35.26 
0.316 0.763 16.46 
0.720 0.792 5.44 
1.638 0.796 -2.13 
3.728 0.786 -11.16 
8.483 0.736 -27.17 

19.31 0.576 -54.76 
43.94 0.331 -90.57 

100.0 0.157 -135.9 

Table 8.2 Results of Table 8.1 manipulated for plotting Bode diagram. 

Frequency Gain Gain Phase shift 
(rad s"1) (number) (dB) (degrees) 

0.0010 0.0160 -35.9 89.42 
0.0023 0.036 -28.8 88.69 
0.0052 0.082 -21.7 87.02 
0.012 0.188 -14.52 83.24 
0.027 0.414 -7.66 74.89 
0.061 0.834 -1.58 58.38 
0.139 1.298 2.27 35.26 
0.316 1.526 3.67 16.46 
0.720 1.584 4.00 5.44 
1.638 1.592 4.04 -2.13 
3.728 1.572 3.93 -11.16 
8.483 1.472 3.36 -27.17 

19.31 1.152 1.23 -54.76 
43.94 0.662 -3.58 -90.57 

100.0 0.314 -10.06 -135.9 

; The conclusion that the system has one more pole than zero, together w i th the 
:„ previous results, suggests a transfer function (minus time delay) o f the form 

w ( 1 + J / 0 . 1 ) ( 1 + J / 2 0 ) 

However, all we can really say is that the transfer function is likely to be m i n i m u m phase 
(wi th a time delay, yet to be determined). The system could st i l l be non-minimum phase, 

r However, this would require the transfer function to have the same number o f right-half 
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s-plane poles as zeros, which in turn implies that the system is unstable - i f this were the 
case, we should know i t ! 

Also, there may be other minimum-phase poles and zeros present, which are rather 
close to each other, so that their effect is not visible on our rather crude Bode plots. We 
shall assume that we have sufficient knowledge of this system (from an ini t ia l simple 
modelling exercise, or from consideration of the number o f significant energy storage 
elements wi th in the component, which predicts the required order of model) to suspect that 

i , s the above transfer function, together wi th a time delay, is l ikely to be the correct result. 
<i; We have another problem too, compared wi th our earlier simple identification 
% exercises, namely that the 'd.c. gain' is not readily apparent for this system. The Bode 
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gain K in the transfer function above may be determined from the dB magnitude 
expression for the suggested G(s): 

20 \ogl0(G{jco)) = 20 l o g 1 0 K + 20 log 1 0 co - 20 log 1 0 ^ 1 + 
co 

OA 

20 log 10 \ 
A t a frequency of co = 1 rad s 1 the system gain is about 4 d B , so 

4 

20 
= l o g 1 0 K + 0 - 1.0022 - 0.0005 

or 

K= 10 1 .203 16 

Consequently, the transfer function so far becomes 

G(s) 
\6s 

(1 + 10*) (1 + 0.05s) 

N o w we need to consider the transport lag we believe to be present. Since the delay-free 
LTF has one more pole than zero, and is assumed to be min imum phase, we would expect 
a high-frequency phase shift of - 9 0 ° . A t our highest-frequency point, co = 100 r a d s - 1 , and 
the measured phase shift is seen to be - 1 3 5 . 9 ° . The excess phase shift therefore seems to 
be - 4 5 . 9 ° , and this is therefore assumed to be due to the transport lag. 

Before continuing, however, notice that the highest frequency break-point (20 r a d s - 1 ) 
is sufficiently close to 100 rads" 1 for the phase lag due to that breakpoint not yet to have 
reached - 9 0 ° . I n other words, we did not test to sufficiently high a frequency. 

The effect of this can be compensated for, using the expression for the phase lag o f a 
first-order lag element (Equation (3.76) in Section 3.5.1), namely phase lag 
= ( - ) t a n - 1 ( c o / c o c ) . This tells us that, at co = 100 r a d s - 1 , the phase lag due to a pole at 
coc = 20 r a d s - 1 is ( - ) t a n - 1 5 = ( - ) 7 8 . 8 ° . The excess phase lag due to the transport lag is 
therefore not - 4 5 . 9 ° , but - 5 7 . 1 ° . 

Now (from point 3 preceding this example), —57. I e  

co = 100 r a d s - 1 , gives x = 0.01 s. 
The final transfer function is therefore: 

0.997 rad = — COT which, since 

G(s) 
\6se -0.015 

(1 •+ 10s)(l + 0.05s) 

Note that the M A T L A B m-file fig8_9.m on the accompanying disk shows how to 
include the effect of a time delay in a M A T L A B Bode plot. 
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8.6 Modelling time delays in multivariable systems 
Imagine that we have carried out an identification test on a piece of plant, using 
either the methods of this chapter, or the simpler methods discussed in Section 3.9. 
As a result, we shall have acquired information which we can use to form a model 
of the plant. This model may take various forms. We have discussed differential 
equation models, Laplace transfer function models, state-space models, discrete-
time state-space models, difference equation models and z-transform models; and 
there are others. 

We have noted that many process plants contain pure time delays (transport 
lags, or 'distance-velocity lags'), and our identification tests may have convinced 
us that the plant under investigation contains such delays. Since time delays 
generally destabilize control loops, it is important to be able to include their effects 
in any plant models used for design purposes. 

In Section 3.7 we discovered how to include a pure time delay in a Laplace 
transfer function model as Y(s) = e~sxU{s), where T is the duration o f the delay in 
seconds (and we identified one in Example 8.4, above). This also gives us a way of 
handling time delays in multivariable (multi-input-multi-output) systems, because 
we can include such terms in transfer function matrices and then use the methods of 
Chapter 10. We also saw how to include time delays in difference equation models 
in Section 3.7 and in z-transform models in Section 7.7. 

Unfortunately, much of the work on multivariable systems is done using state-
space models, and we have a problem i f we want to use continuous-time state-space 
methods wi th systems containing pure time delays. This is because it is impossible 
directly to convert either the Laplace transfer function model Y(s) = e~sxU(s), or 
the equivalent time-domain model y(r) = u(t - T) into the state-space form. There 
are two basic approaches to overcoming this problem, and we briefly discuss them 
below. 

8.6.1 Discrete-time state-space models 
The most accurate solution is usually to resort to discrete-time state-space models, 
in which the time delay can be included by delaying the appropriate signal by a 
number of sampling intervals equivalent to the delay. However, for accuracy it is 
necessary to have an integer number of sampling intervals corresponding to the 
delay. This is precisely analogous to the way we handled time delays using the z-
transform, so we need not spend much time on i t . I t is also l ikely to increase the 
model order in the same way. 

Example 8.5 A time delay in a discrete-time state¬
> space model 
(. Say we represent a system by a second-order discrete-time state-space model: 

_ [ 0.981 0.019' 

~ -1 .909 0.904 

0.0002 

0.019 
and [1 0]x, JH-l 
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Say that we then discover that this representation is not sufficiently accurate, and that we 
ought to include a pure time delay of two sampling periods in the output equation. For 
simulation studies, the only modification required would be to change the output equation 
to yk+l = [1 0]xk_x (that is, we form the output at any given time step from the value o f 
x{ two time steps ago). 

However, for use in discrete-time state-space design methods (such as those of 
Chapter 12), we need to keep to the general form yk+x = Cxk+l, so that the model remains 

- consistent in time. To achieve this, we might introduce two new state variables x3 and JC4, 

. such that x 3 j t + i = xlk and x4k+i = x3k. I n this way, x4 becomes a version o f xx delayed by 
two time steps, and can be used in the output equation as required. The modified model is 

. therefore fourth order, and would be: 

' 0.981 0.019 0 0 

-1 .909 0.904 0 0 

* M ~ 1 0 0 0 

0 0 1 0 

I f the time delay had been found to be elsewhere in the system, we should proceed in 
exactly the same manner, introducing new discrete-time states as required, and maintaining 

- the correct state-space form. 

"0.0002" 

0.019 
xk + 

0 0 

0 

"k and y M = [0 0 0 \}xM 

8.6.2 Continuous-time state-space models 
To include a time delay in a continuous-time state-space model, the usual approach 
is to use some other function which approximates the behaviour of the time delay, 
and which can be converted to state-space form. Two such approximations are 
given here, but both have potentially serious disadvantages. 

Approximation of a time delay by a series of cascaded first-order 
lags 
Here we simply replace the time delay of T seconds by a term of the form 

(l+sx/n)n 

The higher the value of n, the better the approximation - but the higher the order 
of the resulting model. Figure 8.10 shows some step responses for various values 
of n. 

This model has the advantage that its step response has the correct qualitative 
form, wi th no oscillations, but i t often needs to be of a high order to succeed. 
Another difficulty is that, i f we make the approximation o f sufficiently high an order 
to be realistic, we shall often end up wi th numerical problems in the ensuing 
designs. For example, setting up a 20th-order version o f such a transfer function, 
and asking M A T L A B (Appendix 3) for the step response, results in an apparently 
unstable system. However, the model is not really unstable (after a l l , it is just a 
series o f first-order terms); rather, the computational methodology is at fault. Note 
that this is not a poor reflection on M A T L A B ; the problem is a numerical one and 
the same type of effect is l ikely to occur wi th any package. 
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The Pade approximation to a time delay 
In this approach, the function we desire to approximate (e'^ in this case) is 
expanded as a power series in the Laplace operator s and then equated to the rational 
polynomial 

a0 + a{s + a2s2 H 

bQ + bxs + b2s2 + --¬

proceeding to as high or low an order as we think fit. In general applications, to 

give models wi th finite bandwidths, the order of the numerator would be chosen to 

be lower than that of the denominator. However, they are chosen to be equal when 

approximating pure time delays. 
We can expand the time delay as 

and when equated wi th the general result above, using terms up to order n, the 
mathematics permits a number of arbitrary choices. This means that you might 
see different numerical results in different texts. For example, i f you do the maths 
for a second-order approximation, you w i l l discover that the numerator and 
denominator coefficients of s2 can be any number we wish to choose, so long as 
they are identical. The version of the result used in M A T L A B is as given below, 
and Figure 8.11 contains a few example step responses: 

-ST)1 

This model has the advantage that its step response can be nearer to the correct 
form in terms of 'sharpness', but the disadvantage is the obvious pre-step 
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oscillation, the overshoot and the non-minimum-phase nature of the response. That 
is to say, the step response begins by moving in the 'wrong ' direction, which is 
very misleading for a controller design based on such a model. 

8.7 Conclusions 
In this chapter we have revisited some of the areas we introduced earlier, but in 
greater detail than was appropriate earlier in the text. These areas included the 
identification of Laplace transfer models from Bode diagrams (where we 
mentioned the effects of non-minimum-phase terms and transport lags) and the 
representation of transport lags in state-space models (both continuous- and 
discrete-time). In the continuous-time domain, we introduced two methods of 
approximating time delays by rational functions in s. 

The main topic of the chapter was the use o f PRBS signals for system 
identification. We discussed the theory behind the method, and also the choice of 
PRBS parameters and the fitting of models to the resulting correlograms. The 
fitting was done both 'by hand' and wi th computer assistance. 
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8.8 Problems 
8.1 A pseudo-random binary sequence has a length of 31 

bits, a bit interval of 0.2 s and voltage levels of 
± 5 V. Sketch the graph of its autocorrelation 
function against time. 

8.2 A pseudo-random binary sequence having a bit 
interval of 0.02 s and voltage levels of ± 2 volts is 
used to test three plants by the cross-correlation 
method. The results are shown in Figures P8.2(a) to 
P8.2(c). Obtain the transfer function for each plant. 

1 

-0.4 1 i • • 1 
0 0.5 1 1.5 2 2.5 3 

(a) Delay (s) 

0.3 

0.25 

-0.1 I i i i i i 1 
0 0.5 1 1.5 2 2.5 3 

(b) Delay (s) 

Figure P8.2 (a) First cross-correlogram for Problem 8.2. 
(b) Second cross-correlogram for Problem 8.2. (c) Third 
cross-correlogram for Problem 8.2. 

8 

7 

6 
€ 5 c o 
J2 4 

0 

-1 0 0.5 1 1.5 2 2.5 
(c) Delay (s) 

Figure P8.2 (Continued) 

8.3 The graphs of Figures P8.3(a) and P8.3(b) were 
obtained by converting the unit impulse response 
obtained from the graph of Figure P8.2(a) into a 
frequency response. 
(a) Obtain the transfer function from the frequency 

response. 
(b) The phase response goes beyond -180 degrees, 

despite the fact that the system appears from the 
decibel graph to be second-order. Would you 
expect this? Why? 

8.4 The unit impulse response of a particular plant is 
given by 5e~2t sin(5r), where / is the time in seconds. 
You are advised to do this question by using 

20 

-50 1 : : : = = = ! ; : : : : : ' ' ' : ! ! : : 

10"2 1(T1 10° 101 I 9 2 

(a) Frequency (rad s"1) , 
Figure P8.3 (a) Bode magnitude plot for Problem 8.3. 
(b) Bode phase plot for Problem 8.3. 
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(b) 
irr 1 10° io1 

Frequency (rad s~1) 

Figure P8.3 (Continued) 

MATLAB or a similar package, or by programming 
in a high-level language. 
(a) Set up a sequence of values of t from 0 to 2.52 s 

in steps of 0.02 s (127 values altogether). 
(b) Use the values to generate the frequency 

response in magnitude and phase and plot it in 
the form of a Bode diagram. 

(c) From the Bode diagram, obtain the Laplace 
transfer function. 

(d) Check the answer by taking the Laplace 
transform of the impulse response. 

8.5 An experiment to determine the transfer function of a 
particular control system element by the cross-
correlation method using a 127-bit PRBS produced 
the results plotted in Figure P8.5. The vertical axis is 
calibrated in volt2. The static gain of the plant was 
measured separately as 5.0 units. 
(a) Determine the transfer function. 
(b) What were the amplitude and bit interval of the 

PRBS signal? 

0.15 

.2 0.1 

3 0.05 

-0.05 

Figure P8.5 Cross-correlogram for Problem 8.5. 
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9.3 SIMPLE OBSERVERS 
9.4 A BETTER ESTIMATOR - THE FULL-ORDER 

OBSERVER 
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9.9 CONCLUSIONS 

9.10 PROBLEMS 

9.1 Preview 
Readers who have studied Chapters 1 to 5 can 
understand this chapter. It is concerned with the 
problem of wishing to measure the state variables of 
a system in order to feed them back in a state 
variable feedback (SVF) scheme, for example (see 
Chapter 5), but finding that some of the state 
variables are unmeasurable. This chapter provides 
some methods of estimating such unmeasurable 
states from measurements of the system's outputs, 
and covers many practical aspects of using such 
systems. 

The Kalman filter is also studied in this chapter. It 
takes things one stage further by considering that the 
plant output signals (from which the state variables 
are to be estimated) may be corrupted by noise. The 
Kalman filter is a rather advanced topic, and its study 
can be omitted if desired, without compromising 
anything else in the book. 

In th is chapter the reader wi l l learn: 
• that unmeasurable system states can often be 

estimated from the system outputs 
• that these state estimates can be used in state 

variable feedback schemes instead of the real 
states 
that the states can even be estimated in systems 
in which the states and the measurable signals 
(outputs) are corrupted by noise 
how to communicate vector-matrix designs to 
those not trained in state-space methods or matrix 
algebra 
the rudiments of digital implementation of a 
scheme containing an observer and a state-
variable feedback tracking loop, including 
bumpless transfer between manual and automatic 
control, and avoidance of integral wind-up. 

NEW MATHEMATICS FOR 
THIS CHAPTER 

Most of the chapter 
requires no new 
mathematics. The matrix 
algebra has all been used 

before, especially in Chapter 5; but i f a refresher is 
needed, take some time to read Appendix 1 now, where 
all the required matrix algebra is presented. Section 9.8 
(on Kalman filtering) requires statistical analysis of 
random signals. This can seem rather daunting on a first 
reading, but it is all covered in Appendix 6 and, i f taken 
one step at a time, can be assimilated by undergraduate 
students. Appendix 6 also provides enough mathematics 
to give a complete derivation of the Kalman filter, i f 
required, which is lacking in most textbooks. 
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9.2 Introduction 
In Section 5.4, we discussed the placement o f the closed-loop poles (eigenvalues) of 
a system by the use of state variable feedback. This required the measurement o f the 
system state variables, so as to be able to feed them back to the plant inputs. We 
assumed that the state variables w i l l always be available for feedback. 

This may wel l be the case in a simple system model such as that of Figure 9 .1 , 
where we choose the state variables to be physically meaningful. However, i t is not 
usually the case, for reasons such as the fo l lowing: 

• There w i l l almost always be blocks in the system which are not adequately 
represented by models of first order. More than one state variable w i l l need to be 
assigned to describe such a block (n state variables are needed for an nth order 
block). Therefore, we shall not be able to manage wi th just one state at the 
block's output (as in Figure 9.1), but w i l l need one or more states 'buried ' inside 
the block somewhere. These w i l l , presumably, not be available for measurement. 

• Some of the state variables may be physically incapable of being measured. For 
example, the temperature inside a metal ingot may wel l be a state variable in a 
model of a reheating furnace. I t would probably be impossible to measure this 
temperature on a routine production basis for use in a continuous temperature 
control scheme for the furnace. 

• Whi le i t may be physically possible to measure some state variables, it may be 
uneconomical to do so. For example, temperatures inside ingots have been 
measured by thermocouples inserted into dril l ings in the ingot, and sent through 
the furnace. However, this was done only as a research exercise, for assistance in 
developing and validating a plant model. I t would be prohibit ively expensive, in 
terms of both time and materials, in normal production. 

• Plant descriptions often arise naturally as simple input-output transfer functions, 
fo l lowing frequency response testing for example (or as transfer function 
matrices for multivariable systems). When such models are converted to state-
space models using techniques such as direct programming (Section 2.5.1), the 
only state variables to which we would have direct access would be ones 
assigned to the plant outputs. A l l other states would be generated by the 
mathematics, and may well not even correspond to physical variables at al l . In 
this case, they clearly cannot be measured for use in a feedback scheme, as we do 
not even know where to look for them. 

Factors such as these mean that usually we cannot implement a fu l l state variable 
feedback scheme wi th the available states (although adequate performance can 
sometimes be achieved by using only the subset o f the states which are available). 

Fortunately, there is normally a way out o f this problem. So long as a system is 
observable in the sense defined in Section 5.3.2, we can estimate the states we 

Figure 9.1 An antenna-
positioning system (open-
loop arrangement). 

lorque 
s V s t e m (Nm) 

L o a d Velocity Position 

u 5 *3 1 *3 1 *1 
5 + s 1 + s S 



440 Observers and state estimation 

cannot measure, and use the estimates in the feedback scheme instead o f the 
unmeasurable values. A dynamical system which performs such state estimation is 
often called an observer. The terms 'state estimator' and 'observer' tend to be used 
interchangeably (even in this chapter!); but, strictly speaking, they are subtly 
different kinds o f system. 

A n 'observer' is strictly a system that includes a model o f the dynamics o f the 
plant, and assumes that the states of the model mirror the behaviour o f those o f the 
plant, usually wi th some kind of feedback to minimize errors (as we shall see). The 
plant states are assumed to be entirely deterministic, so that the states of the model 
are taken to observe (or mimic) precisely the behaviour of those o f the plant. 

A 'state estimator' also contains a model of the plant, but i t is not assumed that 
the model states are automatically identical to the plant states. Usually, the plant 
states and outputs are taken to be corrupted wi th random noise, so that we can never 
be certain o f their true values. The state estimator then reconstructs the best possible 
estimate ( in some sense) of the plant states, from whatever noisy measurements can 
be made. I n such an application, the estimator is deliberately being used to filter 
noisy signals. 

9.3 Simple observers 
There are two ideas that w i l l help to introduce the basic concept o f an observer 
although, as they stand, they are too simplistic for practical applications. 

First, assume that we are using a standard, continuous-time, state-space model 
of the plant, as shown in Figure 9.2. I f C is square and of ful l rank, then C~x exists, 
and i f the D matrix is not present, the output equation y = Cx can be rearranged as: 

x = C l y (9.1) 

Equation (9.1) indicates that we could obtain the state vector x directly from 
measurements at the plant outputs y. I f the D matrix were to be present in the state-
space model, we would obtain x = C " 1 [y - Z)w], and we would then additionally 
use input measurements. 

Unfortunately, the situation in which the C matrix for the plant is square and o f 
fu l l rank is very rare (it implies a system which just happens to have a number o f 
independent outputs precisely equal to the number o f states), so we cannot actually 
use this method. However, the method does indicate that i t may be possible to 
extract state estimates by applying the elements of the system model ( C and D 
above) to plant measurements (y and u above). We can extend this notion into the 
second 'simple-minded' approach that we might adopt. 

Figure 9.2 The standard 
state-space model of any 
linear plant. 
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This is analogous to the 'Smith predictor' used in SISO systems to compensate 
for time delays (Section 4.6). In other words, we run a model o f the plant in parallel 
wi th the plant itself, drive the model from the same input as the plant, and extract 
the state estimates from the model as shown in Figure 9.3. We use the notation x to 
represent the estimated value o f JC. 

In principle, i f we initialize the observer o f Figure 9.3 w i th the same ini t ia l 
conditions as the plant, then the estimates in x should fo l low the actual states in JC. 

In practice i t w i l l not work because the observer is open-loop. Errors are bound to 
arise in the estimation due to the fact that the A and B matrices constitute only an 
approximate model of the real plant, and there is no mechanism for correcting these 
errors in Figure 9.3. In addition, the calculation required to work out the plant ini t ia l 
conditions (that is, working out JC 0) each time the observer is first 'switched on ' , is 
fairly involved. The init ial condition estimates w i l l also therefore be somewhat in 
error. 

The consequence of these weaknesses is that the estimated state vector x w i l l 
diverge more and more from the actual state vector x as time passes, which is o f no 
practical use. 

Figure 9.3 A plant with a 
simple observer to estimate 
the state vector. ^ -- > 

9.4 A better estimator - the full-order observer 
The full-order observer to be described here estimates all the state variables of the 
plant to which it is connected. The order of the observer is therefore the same as that 
of the plant. I t is also sometimes called an ' identity observer', or an 'asymptotic 
state estimator'. The reasons for these other names w i l l become apparent as we 
progress. Such an observer was first designed by David Luenberger, so it is also 
known as a 'Luenberger observer'. 

The arrangement of Figure 9.3 only makes use o f the plant input. A n 
improvement is to make use additionally o f the plant output i n some way, to 'close a 
loop' around the observer, in such a manner as to tend to correct any estimation 
errors. The proposed arrangement is shown in Figure 9.4. We have effectively 
added the C matrix to the observer o f Figure 9.3, so as to form the estimated plant 
output y. This can then be subtracted from the actual output y to form the output 
estimation error [ y - y]. The error can be fed back into the observer in such a way 
as to tend to reduce itself to zero, i n the normal manner o f negative feedback 
systems. 
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Figure 9.4 Intuitive 
arrangement of a full-order 
observer. 1 ! 

The new matrix G is required for two reasons. Firstly, its dimensions match the 
number of outputs to the number of states, so that the feedback connection is 
physically possible. I f the plant has n states and p outputs, G w i l l be of size n x p. 
Secondly, the freedom to choose the values of the elements o f G provides the means 
to give the system a suitable dynamic performance, as we shall discover. 

9.4.1 Derivation of the design rules for full-order observers 
I t is possible to derive the design rules for full-order observers directly from the 
arrangement of Figure 9.4. However, although such an approach has a certain 
physical appeal (because we can see exactly how the system works from Figure 
9.4), we shall use an approach which leads more directly to the design rules. 

The signal fed back to the observer input (that is, neglecting the contribution 
from u for the moment) can be seen, from Figure 9.4, to be Ax - f G [y — y]. N o w 
y = Cx, so we might rewrite this as [A - GC] x + Gy. I f we now define a new 
n x n matrix F, such that: 

F=A-GC (9.2) 

we then have a feedback signal Fx + Gy, leading to Figure 9.5 (which we shall use 
later). 

Equation (9.2) is the design equation for the observer. Now we shall show that 
the system w i l l work, and discover how to assign suitable values to the elements o f 
F (and hence G). 

In Figure 9.4, the ful l observer input is given by x = Ax + G [y - y] + Bu. So 
we are, as originally suggested, using the error between the actual and estimated 
plant outputs to drive the observer, in addition to the plant input. This reduces the 
need for extremely accurate A and B matrices in the plant model, because the 
feedback action w i l l tend to correct errors caused by deficiencies i n these matrices. 
However, as in all feedback loops, the sensitivity to errors is reduced, not 
eliminated, so we should still use the best models we can obtain. 

Although the A and B matrices can now be less accurate than before, the C 
matrix must still be very accurately known. The reason is that the feedback action 
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Figure 9.5 Alternative 
arrangement of the full-
order observer. 

via G w i l l continue to drive the observer unti l y — j ) , and w i l l then cease. Under this 
condition, x w i l l be equal to x i f , and only if , the C matrix in the observer is 
identical to that in the plant. Fortunately, this often can be the case, as outputs tend 
to be chosen to be state variables, often giving a C matrix containing only ones and 
zeros. 

I f the C matrices of the observer and plant differ, the observer w i l l s t i l l settle 
down wi th y = y (assuming it is asymptotically stable - we ensure this later), but x 
w i l l then not be equal to x. The amount o f error w i l l depend upon the inaccuracies 
in C. Thus the observer should work, so long as the C matrix is fairly accurate. The 
fact that the observer should settle wi th i = /JC, where / is the identity matrix, gives 
rise to the name, ' identity observer'. 

As an added bonus, i t is no longer necessary to initialize the observer states to 
have the same values as the plant states at switch-on, which was always going to be 
a problem. The observer states can have any ini t ia l values we wish (usually zero, for 
convenience), because the feedback action w i l l drive the estimates to the correct 
levels as time passes (this is why the observer is sometimes called an 'asymptotic 
state estimator'). We must, however, take steps to ensure that the time it takes for 
the estimates to settle to the correct values is acceptably short (see below). 
Similarly, after the observer is ini t ia l ly energized, we must not use the estimates in a 
control loop unt i l the transients have passed, and the estimates have settled to the 
correct values. 

The dynamic response of the observer w i l l be determined by the eigenvalues 
of the observer's 'system matr ix ' , namely the Fmatrix in Figure 9.5. We therefore 
now have our design procedure (an example follows later): 

• Choose the elements of F to place the observer eigenvalues (poles) so as to give 
the desired dynamic performance from the observer. 

• Use Equation (9.2) to derive the elements o f G necessary to satisfy the design 
equation for the overall system. 
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9.4.2 System analysis with the full-order observer 
The design process is straightforward, and has just been stated. However, we can 
gain more insight into how we might choose the observer eigenvalues, and what 
freedom we have in so doing, by investigating the effects o f the observer upon the 
overall system (that is, the plant + observer combination). This section can safely 
be omitted i f you wish. 

Recall from Section 2.7 that the conversion from a state-space model to a 
Laplace transfer function (or transfer function matrix) is given by 
y(s) = C[sl— A]~lBu(s). Since y(s) — Cx(s), the transfer function relating the 
state vector to the input is therefore x(s) = [si- A]~lBu(s). 

From Figure 9.5, the transfer function relationship between the estimated state 
vector x and the plant input and output vectors is made up o f two parts: one via B 
from w, and the other via G from j , hence: 

x(s) = [sI-F]-lBu(s) + [sI-F]'lGy(s) 

However, for the plant y(s) = C[sl - A]~lBu(s)y therefore, 

x(s) = [sI-F]~lBu(s) + [sI-F]~lGC[sI-A]~lBu(s) 

Taking a factor o f [si - F]~l from the left o f the expression, and a factor Bu(s) 
from the right: 

x(s) = [sI-F]~l{I+GC[sI-A]-l}Bu{s) 

Taking a further factor of [si - A]~l from the right: 

x(s) = [si- F]~l{sl-A + GC}[sI- A]-lBu(s) 

But, from the design equation, Equation (9.2), —A + GC = —F, therefore 

x(s) = [sI-F]-l[sI-F][sI-A]-lBu(s) (9.3) 

- [sI-A]-lBu(s) 

= x(s) (9.4) 

What has happened here is that the interaction between the various inputs to the 
observer has generated some zeros (represented by the term [si - F] in Equation 
(9.3)) which have cancelled out the observer poles (represented by the term 
[si — F]~l in Equation (9.3)). Equation (9.4) shows that this results in an observer 
that gives us an estimate of the system state for any input vector u. 

However, since the interaction generates the zeros at the observer's input, our 
previous work on controllability suggests that the mode cancellations w i l l result in 
an observer that is uncontrollable from the system input (Section 5.3). 

This can be verified by forming the overall state-space equations for the plant 
wi th the observer, using the equations 

x = Ax + Bu (the state equation of the plant) and 

x = GCx + Fx + Bu (the state equation o f the observer from 
Figure 9.5, wi th y — Cx) 
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These can be combined to give a partitioned system (see Section A1.3) : 

X A 0 

x. GC F 

The controllabili ty test matrix for this system (Section 5.3.1) is 

B AB 
B [GC + F]B 

which is not o f ful l rank because GC + F = A (from Equation (9.2)), therefore the 
system is not completely controllable. 

From the partitioned system matrix in Equation (9.5), the eigenvalues o f the 
overall system can be seen to be those o f A and those o f F (because the system 
matrix is block triangular - Section A 1.3). I f the plant (A,B) is controllable (which 
i t usually w i l l be, i f we are taking the trouble to design an observer to allow us to 
feed back its states), then it must be the observer that is not. As a consequence o f 
this, any non-zero ini t ial conditions, or any disturbances entering the system around 
the observer, may excite the observer modes and lead to uncontrollable responses 
appearing in the state estimates. 

To minimize such effects, the observer poles should be placed far to the left of 
the system poles in the s-plane. Thus, such transient disturbances w i l l decay very 
rapidly compared wi th the dynamics of the plant. Also , since such pole locations 
imply that the observer poles are much Taster' than the plant poles, the state 
estimates w i l l converge very quickly (wi th respect to the plant dynamics) onto the 
correct values - another desirable effect. 

9.4.3 Guidelines on observer pole locations 
The previous section (which you may have omitted) suggested that the observer 
eigenvalues (poles) ought to be placed far to the left o f those o f the plant i n the s-
plane. This ensures stability of the observer, and makes i t much 'faster' than the 
plant. I t is directly analogous to the rule used in the design o f instrumentation 
systems, which states that the dynamics o f the measuring instrument ought to be 
significantly faster than those o f the quantity i t is t ry ing to measure (unless some 
deliberate filtering effect is required). Here we are t rying to 'measure' the plant's 
state vector, and the observer is our chosen instrument. 

In the light o f this, i t may seem wise to place the observer poles as far to the left 
in the s-plane as possible. Such an approach has a number o f drawbacks, including 
the fact that the faster the observer is, the more noise i t w i l l pass through to the state 
estimates. Also, the faster the observer, the larger w i l l be the numerical values 
appearing in the algorithm (as fo l lowing examples w i l l show). This can lead to 
computational difficulties. 

As a result, i t is usual to try placing the observer poles so that they are about 
five to ten times faster than the fastest plant pole. Simulations w i l l then help to show 
whether or not the ensuing design is adequate. 

I f there are several observer poles, i t is sometimes decided to place them of f 
the negative real axis, in complex conjugate pairs, such that they exhibit a damping 
ratio of, say, 0.707. This gives the observer a second-order response wi th about 4.3 
per cent overshoot in the step response, and has the fastest rise time that can be 
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achieved without a resonant peak appearing in the frequency response (the latter 
would be undesirable for stability reasons). 

Example 9.1 Design of a full-order observer 
Consider part of a system which controls the pressure in a boiler drum. This particular 
plant can be represented very approximately as a SISO system wi th the transfer function 

U [ S > J2 + 3J + 4 

where Y(s) is the Laplace transform of the drum pressure and U (s) the Laplace transform 
of the signal to the fuel control system. The poles of this system w i l l be found to be at 
approximately s = —1.5 ± 1.3/ It may be desired to speed up the dynamic response o f the 
system and reduce the overshoot by using a state variable feedback scheme to move the 
poles to different locations in the closed loop (perhaps to s = - 3 ± 2j). A state-space 
representation o f the LTF model above (using direct programming, by inspection) is: 

A -
0 1" "0" 0 1" 

, b = 
"0" 

- 4 - 3 1 
c=[l 0] 

Although i t is desired to apply a state variable feedback controller to this plant, the state x2 

is not available to be fed back. Since the state-space model was obtained by direct 
programming, xx is at the output (as we see from the c vector), but x2 is at some unknown, 
and probably unmeasurable, location inside the plant. 

Let us design a full-order observer to estimate the states of this system. 
Firstly, we must check that the system is observable. For a second-order system, such 

as this, the observability test matrix (Section 5.3.2) is 

c "1 0" 

cA 0 ». 

This is of fu l l rank, so we can proceed wi th the design. 
Looking at Figure 9.5, since the observer is always of the same order as the plant for 

this k ind o f design, F must be 2 x 2. There must therefore be two signals at the observer 
summer, so in our case the 4 G matrix ' must actually be a 2 x 1 vector g, so that i t feeds 
these two signals from the single plant output. We write the contents of F and g as 
unknowns, and apply the design equation (Equation (9.2)): 

F=A-gc=> 

From this result we immediately see that 

7 u hi = 
0 1" ~8n [1 0] = 

. /21 fn. - 4 - 3 .821. 
[1 0] = 

- 4 
i n 
-S21 

fn = 1 and fn - - 3 

We also see that 

fn = Six and / 2 1 = - 4 - g2l (9.6) 

Equation (9.6) represents two equations in four unknowns. We use the spare degrees 
of freedom to allow us to choose the observer eigenvalues (pole positions). The procedure 
is: 
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• Decide where we want the observer poles to be located. 

• Write down the observer characteristic equation implied by these desired pole locations. 

• Write down the actual observer characteristic equation in terms o f the unknowns in F. 

• Compare the two characteristic equations and solve for the unknown elements o f iF. 

• Use Equation (9.6) to solve for the unknown elements o f g. 

Where do we want the observer poles to be? 
From the denominator of the original transfer function (or the eigenvalues o f A), the plant 
has poles at s = - 1 . 5 ± j y/f/2. Therefore, to make the observer ten times 'faster' than 
the plant, we might choose to place its poles so that they have real parts o f s = - 1 5 . We 
have two poles to place, so we have three options: 

• Make both poles real, but different, at locations on and to the left of s = - 1 5 . 

• Make both poles real and equal at s — —15. 

• Make the poles a complex conjugate pair having real parts o f s = - 1 5 . 

From our knowledge of second-order systems, we know that the first option w i l l give an 
overdamped observer response. It would be unusual to do this, because we want the 
observer to fol low the plant behaviour as rapidly as possible, so we reject this option. 

The second option w i l l give a critically damped observer, having the fastest possible 
rise time without any overshoot in its step response. This is a sensible possibility. 

The third option w i l l give faster rise times in the estimates, but at the expense of 
some overshoot in their step responses. This may or may not be desirable, depending on 
the application. In any case, the damping ratio would be kept above 0.707 (that is, the 
magnitudes o f the imaginary parts of the observer pole locations must not be greater than 
that of the real part), so as to avoid resonance in the observer's frequency response. This 
value o f damping ratio corresponds wi th a step response overshoot o f about 4.3 per cent. 

For this example, we shall adopt the option o f having both poles real and equal. 

The desired characteristic equation of the observer 
We have decided to place both observer poles at s = - 1 5 . In order to achieve this, the 
observer needs to have a characteristic equation as follows: 

(s + 15) 2 = s2 + 305 + 225 = 0 (9.7) 

The actual characteristic equation of the observer 
The observer dynamics are entirely determined by the eigenvalues o f the F matrix 
(compare the observer in Figure 9.5 wi th the standard state-space model of Figure 9.2). 
Therefore, the actual characteristic equation w i l l be: 

\U-F\ XI fxx 
hx Six 

- 1 

A + 3 

A 2 + ( 3 - / „ M - 3 / n - / 2 1 = 0 (9.8) 
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Comparison of characteristic equations 
In order for the actual system to behave in the way we desire, Equations (9.7) and (9.8) 
must agree. The fact that Equation (9.7) is written in terms o f the Laplace operator sy 

while Equation (9.8) is written in terms of A, is of no consequence. The former was 
written in terms o f poles, and the latter in terms o f eigenvalues, which are the same thing. 

Comparing the two equations, the coefficients of s2 and À2 agree, so we can compare 
the other coefficients directly. 

Comparing coefficients o f s and X shows that 30 = 3 - / n . Hence fn = - 2 7 . 
Comparing the constant terms shows that 225 = - 3 / n - / 2 1 . Hence, f2l = - 1 4 4 . 

Solving for the elements of g 
From Equations (9.6), we now see that fn = - g n so gn = 27 

and / 2 1 = - 4 - g2l so g2l = 140 

Summing up, the required observer is given by: 

" - 2 7 1" ' 27" 
- 1 4 4 - 3 , g = 140 

Drawing the observer, for comparison wi th later results, we have designed the system o f 
Figure 9.6(a), which employs directly the structure of Figure 9.5. I t is a good idea to be 
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able to remove the matrices and vectors from such a diagram, so that the structure can be 
understood by those who do not know anything of state-space methods. This is easily done 
using the methods o f Section A 1.1.1, and then simplifying the direct feedback loops 
around the integrators, to give the more widely understood representation o f Figure 9.6(b) 
(see Problem 9.1). 

Figure 9.7 shows a step response of the full-order observer applied to this system. The 
~ system is init ialized to a steady-state output o f 1 unit, but the observer is init ialized wi th 

its states at zero. I t can be seen that the observer states, as predicted, take a while to home 
: i n on the correct values. However, after the first 600 ms or so, the estimated states 

faithfully predict the real states. 
A n extra step o f 1 unit is applied at the plant input after about 1 s, and the resulting 

behaviour o f the estimated states is indistinguishable from that o f the real states on the 
scales used in the figure. We might expect perfect behaviour from this simulation, because 
we designed the observer based upon a perfect model o f the plant (that is, we use the same 

; model to simulate the plant that we used to design the observer). 
Figure 9.7 was obtained by simulating a single state-space model o f the entire system 

of Figure 9.5, w i th the values of Figure 9.6(a). We derived such a model at Equation (9.5). 
r.i I t is instructive to rerun the simulation, but wi th an altered plant model, so that the 

observer model parameters are effectively incorrect. 

A Computer-aided design 
I t is actually very easy to design a full-order observer using the place command from the 
M A T L A B Control Systems Toolbox (Appendix 3), w i th no need to do all the preceding 
mathematics. However, we leave this unti l the latter part o f Example 9.3. For now, the 

! M A T L A B m-file that created Figure 9.7 is available on the accompanying disk as 
fig9_7.m. 

4 
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9.5 Reduced-order observers 
The full-order observer of the previous section estimates all the system states. In 
practice, i t is possible to obtain at least some of the state information from the 
system output directly (since the output equation is y = Cx + Du, any plant model 
having an output and some finite dynamic behaviour must have at least one state 
which contributes to y). It therefore seems inefficient to estimate every state 
variable - perhaps we can just estimate a subset of them, thus reducing the required 
order of the observer. This w i l l make the observer easier to implement (and hence 
faster, assuming a digital computer implementation is to be used). It w i l l also make 
the observer more accurate, since we shall effectively use the measured values o f 
some of the states, and only use estimated values o f the others. 

As an illustration, in Example 9.1, the plant had a c vector of [1 0 ] . This 
immediately tells us that the output y is the same as the state xx (since y = cx). 
Therefore we do not need to estimate xx at all - i t is the boiler drum pressure, which 
can be measured. I f we can manage to estimate only x2 in some way, the observer 
w i l l be reduced in order from a 2 x 2 system to a scalar (that is, 1 x 1) system, thus 
reducing the required computing power significantly (assuming a computer 
implementation). I n addition, since we w i l l have the measured version o f x{, and an 
estimated version only of JC2, the result w i l l be more accurate. 

The only times when a full-order observer is used in practice are when the 
measurements are very noisy, and the observer can do some useful filtering. I n such 
a case, we might prefer to trust the estimates, rather than trying to use the noisy real 
signals (but we might prefer to use a Kalman filter instead - see Section 9.8). 

In general, for a system having n states and p outputs, the C matrix w i l l be o f 
dimension p x n. I f p is less than n (fewer outputs than states), and C has rank p, 
then the p outputs are independent of each other, and w i l l contain sufficient 
information to deduce the values of p o f the n system states (equivalent to solving 
the simultaneous equations obtained from y = Cx). 

In such a case, we need only estimate the remaining (n — p) states. This gives 
the benefits of reduced computation and increased accuracy mentioned above, but 
at the expense of a more complicated design procedure. As in the case o f the fu l l -
order observer, we shall derive the appropriate design method and then show, by 
example, that it is really quite straightforward to apply. 

9.5.1 Derivation of the design rules for reduced-order observers 
We begin by returning to our original notion that we might be able to obtain the 
states by solving the output equation to give x = C~xy (Equation (9.1)). As we said, 
this is usually impossible. However, we can make use o f the idea as follows. 

Let us define a new vector of signals z related to the system states by the linear 
transform z = Tx, where T is some matrix of our choice (note that this z is nothing 
to do wi th the z-transform!). We can combine this equation and the system's output 
equation in the partitioned arrangement: 

x = Yx (9.9) 

I f we define T to be of such a size that the partitioned matrix !F is square (that is, 
T must be o f size (n — p) x AZ), and i f we are careful about the choice o f contents 
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of J , such that the partitioned matrix is also o f fu l l rank, then V w i l l exist, and 
we can rearrange Equation (9.9) as 

(9.10) 

We know C from the plant model, we can measure the plant outputs in y, we shall 
know the contents of T once we have discovered how best to choose them, so that 
leaves z as the only unknown on the right-hand side o f Equation (9.10). I f we can 
find z, we can calculate the state vector x. I n the observer i t w i l l again be called x 
as it is st i l l an estimate of the state vector (but only a partial estimate this time, as it 
w i l l also contain some measured values). 

Now, from the size of T defined above, and from the arrangement of Equation 
(9.10), i t is clear that z must be a column vector o f length (n — p). We shall use an 
observer of order (n — p) to produce z for us. Since this observer is o f lower order 
than n, i t is a reduced-order observer. O f course, we do not yet know how to design 
the observer. 

As in the case of the full-order observer, we shall fo l low an approach which 
introduces the design rules, and then show that a system fo l lowing such rules w i l l 
work as required. 

Figure 9.8 shows a suitably modified form of our previous design (from Figure 
9.5). The differences are that the observer is of lower order (as indicated by the 
numbers of signals shown against the signal paths), the *P~l matrix has appeared to 
create x from y and z according to Equation (9.10), and another new matrix, / , has 
appeared on the observer input. 

The / matrix (Figure 9.8) is used instead o f B (Figure 9.5) because the 
observer is of lower order than the plant, and so B would have the wrong number of 
rows. We shall define J later. 

c 
— i 

y = !P 1 

T z_ 

Figure 9.8 The reduced-
order observer. 
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From Figure 9.8, we can write the transfer function to z ( in the same way as we 
did in Section 9.4.2) as: 

z(s) = [sI-F)-lJu(s) + [si — F]~lGy(s) 

= [sI-F]-l{Ju(s) + GC[sI-A}-lBu(s)} (9.11) 

In order to be able to extract a factor Bu(s) from the right o f this expression, as we 
did in the derivation o f the full-order observer, we introduce the design definition: 

J=TB (9.12) 

Substituting into Equation (9.11), together wi th the original definition 
z(s) = Tx(s), gives: 

Tx(s) = [sI-F}-l{T+GC[sI-A]-l}Bu(s) 

= [si-F]~l{ T[sl-A] + GC}[sI-A]-lBu(s) 

= [sI-F]-l[Ts-TA + Gqx(s) (9.13) 

To obtain an observer that has the desired effect, we introduce the second design 
definition: 

FT = TA - GC (9.14) 

Substituting for (-TA + GC) in Equation (9.13): 

Tx(s) = [sI-F}~l[Ts - FT]x{s) 

= [si- F]~l[sl- F]Tx(s) = Tx{s) 

So, again we find that cancellation o f poles by zeros generated at the observer 
input has led to a consistent result. Since the result is correct, we may use 
Equations (9.12) and (9.14) as the design equations for such a reduced-order 
observer. 

9.5.2 Design methodology for the reduced-order observer 
In the process of carrying out the design, several unknown quantities w i l l arise. 
Consider, for example, the case of a SISO third-order system. Such a system has one 
output and three states, so n = 3 and p = 1 in Figure 9.8. We therefore have to 
estimate two states. The vector z w i l l contain two elements, and the observer w i l l be 
second order, so that the F matrix w i l l need to be of size 2 x 2 . 

In order to couple the single output into the second-order observer, g w i l l need 
to be 2 x 1. The c vector w i l l be of size 1 x 3 for such a system, and the T matrix 
needs to square this up. T w i l l therefore have to be o f size 2 x 3, in order that V 
becomes 3 x 3 . 

The contents of F, g and J thus constitute 12 unknowns, even in such a simple 
system (note that j w i l l be of size 2 x 1, but is not a new 'unknown' as i t depends 
only upon b and T). 

There are usually more unknowns than we have equations to assign them, thus 
giving some spare degrees of freedom. I t is therefore often possible to assign 
arbitrary values to some of the unknowns. As a starting point in this process, the 
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fo l lowing tip has been found to give useful results over the years, and can reduce the 
algebra in many cases. 

Since plant outputs are often chosen as state variables, it is often the case that 
the C matrix for the plant can be partitioned into the form [/ 0] . I n such a case, it is 
usually beneficial to choose the J matrix as [Tf I] (where T' is a sub-matrix of J , 
of the required dimensions). 

For example, for a third-order plant wi th two outputs y{ and y 2 , we might wel l 
choose xx = y, and x2 = y2, giving 

c= \l ° ° 
L° 1 0 

To square up this matrix, t must be of size 1 x 3 and, according to the suggestion 
above, we might choose t to be [tu tl2 1] so that the matrix 

" 1 0 f j -

c I 0 0 1 0 
t f 1 

0 1 0 

U i hi 1J 
is guaranteed to be of ful l rank and is easily invertible. I f the C matrix is not o f the 
stated form, i t must simply be borne in mind that the inverse o f *F must exist. 

Further reduction of the number o f unknowns is achieved by deciding where 
the observer eigenvalues should be located. This gives constraints on the values in 
the F matrix in order to satisfy the required observer characteristic equation. 

We then use the design equation (Equation (9.14)) to generate several 
simultaneous equations which can be solved for the remaining unknown quantities. 

Example 9.2 Design of a reduced-order observer 
We use the same boiler drum pressure control system as in Example 9 .1 , namely: 

0 1" "0" 
A = 

0 1" 
, b = 

"0" 

- 4 - 3 1 

Information about one state must be available from the (single) output. We therefore now 
seek to estimate only the other state. For this system, w i th such a simple c matrix, i t is 
clear that xx is the measurable state (measurable directly since y = xx is the drum 
pressure), while x2 is the state to be estimated. For systems in general, the outputs w i l l be 

^ linear combinations o f several states, and it w i l l therefore not be clear which are 
r measurable, and which are to be estimated. This information can be determined, but it is 
t, unnecessary, because the design method w i l l sort i t all out automatically. In any case, the 
*J reduced-order observer does not directly estimate the 'missing' state information. Rather, 
m the vector z (Figure 9.8) contains a set of estimated signals which only give the actual 

state estimates when combined wi th the measurements y via the matrix *F~X. 
# Firstly, consider the dimensions of the various vectors involved. Reference to Figure 

9.8 w i th p = 1 and n — 2 (n is the system order, remember) may be helpful: 
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t is required to square up c, therefore t w i l l be a 1 x 2 vector. 

The observer is to estimate a single state, therefore / w i l l be scalar. 

g w i l l couple a single output into the scalar observer, so g w i l l also be scalar. 

j w i l l couple a single input into the scalar observer, so j w i l l be scalar too. 

The design equation (Equation (9.14)) for this system is therefore f t = tA — gc. In terms 
of known and unknown quantities: 

'12] f[tn 

and mul t ip ly ing out gives 

[fin fin] = [-4*12 ~ 8 

Therefore, equating elements: 

0] 

3i , 

fix -4*12 - 8 

and fin — l i \ — 3<12 

(9.15) 

(9.16) 

Here we have two equations in four unknowns. Since c can be partitioned into the form 
[/ 0], we fol low the guideline above, and choose to set txl — 1. 

Also, as in the case of the corresponding full-order observer, we place the observer 
eigenvalue at s = —15. Therefore / = —15. 

Substituting these values into Equations (9.15) and (9.16) we obtain: 

- 1 5 f „ = - 4 

Solving these equations, txx 

(Equation (9.12)), we have 

g and —15 = txx — 3 

= - 1 2 and g = - 1 8 4 . Using the other design equation 

= 1 j = tb= [-12 1] 

Therefore, the final design is: 

f = [ - 1 2 1], £ = - 1 8 4 , / 

and 

-15, 

c - 1 1 0" -1 " 1 0' 

t - 1 2 1 12 1 

The system therefore appears as shown in Figure 9.9(a). Removing the matrix, as in 
Example 9.1, gives Figure 9.9(b). 

Comparing the solution in Figure 9.9(b) wi th that in Figure 9.6(b), we see that a 
significant simplification has been achieved. We also see, as expected, that xx is not an 
estimate at al l , but is the output measurement. The system of Figure 9.9(b) is therefore far 
preferable to that of Figure 9.6(b), being simpler, easier to construct, faster in execution 
(for a computer implementation) and more accurate. The only penalty is the more involved 
design procedure. 
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(a) 

Figure 9.9 (a) Reduced-
order observer for Example 
9.2. (b) Simplified version 
of the observer. (b) 

In the same way as we did leading to Equation (9.5), we can form an overall state-
space model o f the plant plus the observer system. From Figure 9.8, i f we choose the state 
vector for the combined system to be (x stacked over z) we obtain, in the general case: 

X A 0 

i GC F + 

Addit ional ly using the matrix 

T" 1 

T 
to form the state estimates (x) from y and z, a simulation using the values from Figure 
9.9(a), and the same input signal as in Example 9 .1 , gave the responses o f Figure 9.10. 

Again we see that a transient period is necessary for the observer to home in on the 
system states, and again we see that after the first 500 ms or so, the state estimates are 
indistinguishable from the real states. However, in this case we have the added advantage, 
as expected, that x and x, are actually the same signal, and there is no difference between 
them at any time, even during the ini t ia l transient period. As in Example 9 .1 , we have 
tested the observer on the same plant model as we used to design it . Again , i t is useful to 
rerun the simulation wi th a mismatched plant model, and see what happens then. Readers 
who have M A T L A B (Appendix 3) can do this by modifying the m-file fig9_10.m on the 
accompanying disk. 

The example above, being scalar, was very simple. However, application of the 
design procedure to higher-order plants is straightforward. We shall not pursue 
such an example here, as one w i l l occur naturally in the next section. 
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Figure 9.10 Response of 0 1 2 3 4 5 
the reduced-order observer. Time (s) 

9.6 Use of observers in closed-loop systems 
The most common use of observers is to estimate the unmeasurable states o f a 
system for use in a feedback scheme. I t is entirely feasible to design an observer 
along the lines suggested in Section 9.4 or 9.5, and then to use the estimates o f the 
states (that is, the observer outputs) instead o f the real states in a state variable 
feedback controller design, such as that discussed in Section 5.4, or an optimal 
controller (see Chapter 12). I f we have designed our observer correctly, so that the 
dynamics of the estimates are faster than those of the states, such a system should 
work. 

9.6.1 The separation principle 
I n discussing the design o f observers, we have taken care to make their dynamics 
significantly Taster' than those of the plant they are observing. Therefore, we ought 
to be able to treat the state estimates as i f they were the actual states, effectively 
ignoring the observer dynamics. 

I t is possible to take this concept further, and prove that the observer has no 
effect upon the dynamics of the closed-loop scheme (other than transient effects). 
As a result, we can design our observer separately from the feedback loops as 
suggested above, leading to a simpler design process than would otherwise be the 
case. This is called the separation principle. We shall see a (non-rigorous) 'proof ' 
of this as we pursue the design o f such a scheme. 

Our overall policy w i l l therefore be: 

(1) Design the observer to be sufficiently 'fast', so as to give i t a transient 
performance much faster than that o f the plant. 

x2 \ 

\ x1 and x.| 
x2 and x 2 j V x2 and x 2 j 

x2 
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(2) Design the feedback elements so that the closed-loop system has the required 
dynamic performance (that is, eigenvalues). 

9.6.2 Derivation 
Our overall aim is to give the closed-loop system of Figure 9.11a certain dynamic 
performance relating y and r. We shall express this requirement, as in the case o f the 
SVF schemes discussed in Section 5.4, in the form of a required set o f closed-loop 
eigenvalues. In principle, we therefore need to determine the closed-loop plant 
matrix resulting from Figure 9.11, so that its eigenvalues can be found and 
compared wi th the required ones. In practice, we shall describe an easier way, 
which we can use instead, but we shall nevertheless form the closed-loop matrix to 
show what is happening in the closed-loop scheme. 

Note also that it is possible to fix the closed-loop eigenvectors, and the same 
comments apply as were made in Section 5.5. 

From the summations at the integrator block inputs in Figure 9.11, we can 
write the fol lowing equations (the integrator block for x is buried inside the 'Plant' 
block, o f course; but substitution into the state equation o f the signals summing to 
give u gives the same result): 

x = Ax + Bu = Ax - BK 

z = Fz + Ju + Gy = Fz- JK 

Now, from Equation (9.10), the quantity 

+ Br (9.17a) 

+ Jr + GCx (9.17b) 

- I n 

y 

c - 1 y = f r - l y 
J z_ 

Figure 9.11 Reduced-order 
observer in a state variable 
feedback scheme. 
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Also, from the definition of Equation (9.12), we remember that / = TB. Making 
these substitutions in Equations (9.17) leads to: 

x=[A- BK]x + Br 

z = [GC-TBK]x + Fz+ TBr 

or, in partitioned matrix form: 

x A - BK 0 

_z_ GC- TBK F + 
B 

TB 
(9.18) 

The 2 x 2 (partitioned) matrix in Equation (9.18) is the 'system' matrix o f the 
overall closed-loop scheme. It is this matrix whose eigenvalues we must find. 
Since this matrix is block triangular, the eigenvalues are those o f the diagonal 
blocks; namely, those of F (that is, of the observer), and those o f element (1,1) 
which, from Equation (5.6) in Section 5.4, can be seen to be those o f the standard 
SVF arrangement. 

This shows us that the part of the system involving the generation of the vector 
Z (that is, the observer) is dynamically separated from the remainder o f the system, 
and effectively does not form a part of the feedback loop (there is no direct 
contribution from z into x in Equation (9.18) but, o f course, i f the observer were not 
present, we could not have generated Equation (9.18) in the first place - i t is just a 
convenient rearrangement of the system). So, as we suggested earlier, we may 
design the observer first, using the same procedure as in Section 9.5.2, and then 
design A' to give element (1,1) of the partitioned plant matrix in Equation (9.18) the 
required eigenvalues. 

A t this point we illustrate the entire design procedure by an example. 

Example 9.3 Including a reduced-order observer 
in a feedback regulator 
In Section 5.4.1, we considered the design of a ful l state feedback scheme for an antenna 
positioner. The open-loop system is shown in Figure 9.1. 

Let us again design a system to place the closed-loop poles at s = —10 and 
s = — 1 ± j 2. The required CLCE (using X to represent eigenvalues, rather than s to 
represent poles) is therefore as given by Equation (5.8), repeated here as Equation (9.19): 

(X + 1 + 2j)(X + 1 - 2j)(X + 10) = X3 + 12X2 + 25X + 50 = 0 

We shall use the same state-space model as before: 

c = [1 0 0] 

' 0 1 0 ' "0" 

0 - 1 1 , b = 0 

0 0 - 5 _ _5_ 

(9.19) 

(9.20) 

but now we introduce the added complication that it is not possible to make any 
connections to the plant except at the input and output. In other words, x2 and x3 are not 
measurable. 
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From the output equation, y = cx, we see that y — xx. We therefore have a direct 
measurement of xx for feeding back, but we need to estimate the values of x2 and x3. We 
shall therefore design an observer to estimate two states. Al though this w i l l be harder to 
design than a full-order observer, it w i l l be simpler and quicker to implement, and also 
more accurate. 

We have previously checked the controllability of this system (Example 5.1 in Section 
5.3.1). Before proceeding further, we must check its observability (there is no point t rying 
to design an observer for an unobservable system since, by definition, the unobservable 
states w i l l be those that we wish the observer to estimate). 

To form the observability check matrix, we need the fo l lowing components: 

~0 0 0" V "0" 0 

AT = 1 - 1 0 T 
, c = 

0 , ATcT = 1 - l 

0 1 - 5 0 0 l 

So, the check matrix is: 

[cr Alcl (AT)2cT] 

1 0 0 

0 1 - 1 

0 0 1 

which is clearly of ful l rank, so the system is ful ly observable and we are able to proceed. 
U n t i l we become really familiar wi th such designs, i t is always good policy to draw a 

block diagram of the scheme we are about to design, in order to see the required 
dimensions of all the matrices involved. I t has been found, over the years, that students 
(and practising engineers) make far fewer mistakes i f such a step is carried out. Figure 
9.12 illustrates this step. 

From Figure 9.12, we can determine: 

Figure 9.12 Structure for 
the closed-loop design with 
reduced-order observer. 
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• The plant is SISO, so only scalar signals exist at u and y. 

• The matrix T must square up the c vector, so T must be o f size 2 x 3 . Note that even i f 
1 we had no intention of implementing the block which generates x (Figure 9.11), the T 
- matrix must st i l l be of these dimensions for the rest of the matrix algebra to work. 

• The observer must estimate two states, so two signals exist at the observer output and 
input. Note that the observer outputs are not equal to the unmeasurable states, x2 and x3, 

; but form the vector z which, together wi th the plant output y, is used to generate x2 

and x3. 

i t • Bearing in mind that a summation block can only sum signals of the same dimensions, 
all the other dimensions in Figure 9.12 follow naturally (the narrow signal paths are al l 
scalar). 

, • Since the dimensions of a matrix are always (output) x (input) (Section A 1.1.1), we can 
now read of f all the dimensions from Figure 9.13: g and j are 2 x 1 vectors, F is a 
2 x 2 matrix, k is a 1 x 3 vector and T is a 2 x 3 matrix. Also note that the dimensions 
of the design equations (Equations (9.12) and (9.14)) are now automatically correct. 

Observer design 
The c vector for the plant can be partitioned into the general form [/1 0] ( in this case the 
identity 'matr ix ' is simply the scalar unity, and the nul l 'matr ix ' a 1 x 2 nul l vector). We 
can therefore try the 'rule of thumb' introduced previously, which suggests that we might 
choose the T matrix to be a suitably dimensioned version o f [T' | / ] . W i t h our dimensions, 
this means that we try: 

hi 

1 0 

0 1 
(9.21) 

Note that by doing this we have already arbitrarily assigned values to four of our 
'unknowns' (that is, to t l 2 , t l 3 , t 2 2 and t23). We do this because it w i l l reduce the pain in the 
fol lowing analysis, but it is possible that we may not ultimately have the f lexibi l i ty to 
make such assignments. We shall know that this is the case i f we eventually end up wi th 
impossible assignments, such as 2 = 3. I f this happens, we must return to the start, and 
keep these variables as unknowns. However, the 'rule of thumb' generally works wel l , so 
i f we are doing a design on paper it is usually worth taking the risk. We shall see how to 
use M A T L A B to perform a computer-assisted design later on. 

Apply ing the reduced-order observer design equation FT = TA — gc (Equation 
(9.14)), wi th A from Equation (9.20) and 7 from Equation (9.21), we obtain: 

7„ fn hi 1 0" 'hi 1 0" 

fll. hi 0 1 hi 0 1 

0 1 0" 

0 - 1 1 — [1 0 0] 

0 0 - 5 _£21_ 
[1 0 0] 

which, when mult ipl ied out, gives: 

fllhl + fllhl fll fl2 

fnhi + fnhi fu fii. 

-gn tu " I (9.22) 
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4 By comparing elements (1,3) and (2,3) on each side o f Equation (9.22), we see that 

/ fl2 = l and / 2 2 = - 5 (9.23) 

if We can assign values to the remaining elements o f F by placing the observer poles as 
f required. The open-loop system has a fastest pole at s — —5. Note that the closed-loop 

system has a faster pole at s — - 1 0 , but i t is the open-loop system whose states the 
• observer must track. 

i In the interests o f avoiding very large numerical gains in the final scheme, we shall 
place the observer poles at s = - 2 0 . This is only four times as fast as the fastest (open-

f t loop) system pole, and we shall need to test the suitability o f this decision by simulation 
r later. 

Wi th two observer poles at s = - 2 0 , the required characteristic equation for the 
observer is therefore (s + 2 0 ) 2 = s2 + 405 + 400 = 0. 

The actual CE of the observer is: 

\{kI-F]\ = k2 + ( 5 - f u ) k - 5 f u - f 2 l = 0 

Comparing coefficients o f s and k in these two equations, we find that 

fn = - 3 5 and f2l = - 2 2 5 (9.24) 

Substituting these values, and those from Equation (9.23), into Equation (9.22), we now 
have: 

- 3 5 i „ + t2l 

_ - 2 2 5 f n - 5f 2 1 

- 3 5 1 

- 2 2 5 - 5 
-Su 
-821 

1 

Comparing elements (1,2) and (2,2) , we now see that: 

tu = - 3 4 and t 21 -225 

Then, substituting these values into elements (1 ,1) and (2 ,1) , we get: 

gn = - 9 6 5 and g2l = - 8 7 7 5 

Finally, using design Equation (9.12), 

Tb 

' 0 " 
- 3 4 1 0 "0" 

- 2 2 5 0 1 
0 

_5_ 
= 

"0" 

- 2 2 5 0 1 
0 

_5_ 
5_ 

(9.25) 

(9.26) 

(9.27) 

" - 3 5 1" ' -965" "0" ' - 3 4 1 0" 
- 2 2 5 - 5 > g = - 8 7 7 5 , J = 5 

, T = 
- 2 2 5 0 1 

This completes the observer design. The contents of F, J , g and j are given i n Equations 
(9.21) to (9.27), for use in the arrangement of Figure 9.12, as fol lows: 

(9.28) 

Feedback design 
Having completed the observer design, we now turn our attention to the feedback paths. 
The closed-loop eigenvalues we require lead to the C L C E (Equation (9.19)), repeated here: 

k3 + m 2 + 25k + 50 = 0 
We now make use o f the fact that we have designed the observer in isolation from the 
feedback loops. 
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We want Figure 9.12 to have a certain performance, as determined by its closed-loop 
eigenvalue set. I f the states were available for measurement, we could obtain this simply 
by designing a standard SVF scheme (Section 5.4). We have made the states (or, to be 
more precise, their estimates) available for measurement, by including the matrix *P~l 

leading to Figure 9.11, and the separation principle says that we can now apply the simple 
SVF design procedure to give the vector k for feeding back the three estimated states in x 
(for systems wi th more than one input, K would be a matrix, of course). 

We now note that *F~l w i l l effectively be in series wi th the new overall state 
feedback vector k, so we finally mult iply them out to obtain the required feedback 
configuration. 

Adopting this approach, we need to design a SVF vector k, as in Section 5.4, so that 
the eigenvalues of the closed-loop plant matrix [A - bk] match those given by Equation 
(9.19) (that is, we ignore entirely the presence of the observer, and assume the state 
estimates to be correct). Thus: 

"0 1 

< 0 - 1 

< 
0 0 

X - 1 

0 2 + 1 

5*„ 5*12 

[*1 * 1 3 ] 

0 

- 1 

5kì2 X + 5 + 5kl3 

or 

A3 + (6 + 5kl3)k2 + (5 + 5Jfc13 + 5kn)k + 5Jfc„ = 0 

Comparing coefficients wi th Equation (9.19), we find that k = [10 2.8 1.2], as in Example 
5.4. Now, this feedback vector w i l l be connected to the output of the matrix V 1 in Figure 
9.12. We have: 

-1 1 0 0" -1 
" 1 0 0" 

c 
T - 3 4 1 0 = 34 1 0 

1 - 2 2 5 0 1 „225 0 1„ 

and 

x — 

y 

Z21 

(from Equation (9.10)). Now, our feedback signal needs to be 

y 
kx ¿11 

Z 21 

so we obtain: 
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1 0 0~ " y ' 

kx=[lO 2.8 1.2] 34 1 0 z l l 

225 0 1 _ Z 2 1 . 

= lOy + 2.8(34y + z „ ) + 1.2(225? + z 2 1 ) 

= 375.2y + 2 .8z n + 1.2z21 (9.29) 

Removing the vectors and matrices 
Our final system appears as shown in Figure 9.12, w i th the quantities o f Equations (9.28) 
replacing the unknowns, and wi th k and *F~l combined, g iv ing the result o f Equation 
(9.29) for the required feedback signal. However, i t is useful to redraw the system wi th the 
vectors and matrices removed, using the methods of Section A 1.1.1. This allows us to 
communicate our design to an engineer or technician untrained in state-space methods, so 
that he or she can understand how to implement the structure, even i f its derivation is not 
understood. Such a rearrangement is shown in Figure 9.13. 

Simulation studies and computer-aided design 
A selection o f time responses of this system appears in Figure 9.14. These were obtained 
by simulating the overall state-space description o f the system given in Equation (9.18), 
using the M A T L A B him command. This produced the traces o f the actual states x , which 
were extracted from the combined state vector (x and z) resulting from the simulation. The 
estimated states x in the figure were then obtained by forming the vector (xx stacked over 

375.2 

Figure 9.13 The designed 
closed-loop system drawn 
without vectors or matrices. 

8775 

1.2 

x = Ax + bu 
y = cx 

965 

s + 5 

225 

1 
s + 35 

2.8 ^ 
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0 1 2 3 4 5 6 6 7 8 9 10 11 12 
Time (s) Time (s) 

(c) (d) 

Figure 9.14 (a) Closed-loop response of Figure 9.13 to initial conditions. xx and its estimate, (b) Closed-loop response 
of Figure 9.13 to initial conditions. x2 and its estimate, (c) Closed-loop response of Figure 9.13 to initial conditions. x3 

and its estimate, (d) Closed-loop response of Figure 9.13 to a subsequent unit step applied after 6 seconds - all three 
states and their estimates. 

z) and forming the estimates by premultiplying by W~x (Equation (9.10)). The M A T L A B 
m-file is fig9_14.m on the accompanying disk. 

In the previous examples, we initialized the plant at a steady state, and noticed how 
the observer converged onto the correct values. In this case, since the plant is closed-loop, 
we cannot have a steady state until the feedback signals are also correct. In order to show 
how the estimates converge to the correct values, we deliberately set up an ini t ia l non-zero 
output ( y = xx = 0 . 1 rad), wi th all other signals zero, and allow the system to settle for six 
seconds. 

Figures 9.14(a) to (c) show the resulting behaviour. In Figure 9.14(a), we see that the 
estimate o f xx is identical to the actual signal at all times. We would expect this, since the 
reduced-order observer makes use of the fact that xx is measurable. The signal is driven to 
zero as the feedback loops reject the non-zero init ial condition. 
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The other two states (x2 and x3) are not measurable, and must be estimated by the 
observer (by feeding y and z through the matrix W~x as discussed above). Figures 9.14(b) 
and (c) show the responses of these states and their estimates as the system settles to 
steady state. Here we begin to see the problems of large gains arising from the observer 
design. The ini t ia l output of 0.1 radian is passed directly back to the input via the gain of 
375.2 in Figure 9.13, as -37 .52 radians. In the real wor ld , this would saturate the control 
amplifier at the plant input, and a nonlinear response would result. Nonlinear effects are 
considered in Chapter 14, while Section 12.6.2 revisits this antenna-positioning problem 
from an optimal control viewpoint, al lowing the plant input to be l imi ted to an appropriate 
level. Returning to our present example, we see the feedback effect as the very large 
ini t ia l transient in j t 3 , and the rather smaller one in x2. We also see that, as in the 
previous designs, the estimates take some time (about 500 ms) to converge onto the true 
values. 

After wait ing six seconds for the plant to reach steady state, a unit step is applied at r 
(note that desired inputs could be applied at any time after the first 500 ms, once the 
estimates had converged to the correct values). Figure 9.14(d) shows the results. As 
discussed in Section 5.4.2, this is a regulator design, so it tries to reject the change at r as 
a disturbance, and return all the states to zero. It does not quite succeed in this, as xx 

settles at 0.1 rad. However, the important point in the present context is that all the state 
estimates are indistinguishable from the true values on the scale of the plot, so the 
observer system is clearly working. Also, the responses can be compared wi th those in 
Section 5.4.1 (Figure 5.4), which confirms the correct dynamics - so the feedback design 
is also correct (we convert the system to a tracking system in Example 9.4). 

Another thing we can investigate is the choice o f observer pole locations. However, 
changing the observer poles implies repeating the entire design, which is not very 
appealing. It is time to see how a typical computer-assisted design might progress. 

Computer-assisted design 
Using M A T L A B ' s control systems toolbox, it is actually more convenient to design 
an optimal regulator (Chapter 12) using a Kalman filter as a state estimator (see 
Section 9.8), than to perform the simpler design we wish to do. This is because it is 
not particularly straightforward (although it is possible) to explain how to get 
M A T L A B to design the reduced-order observer. 

In order to illustrate the kind o f thing that can be done simply by a CACSD 
package such as M A T L A B we shall revert to a full-order observer to estimate all 
the states, and then use the standard state variable feedback scheme to feed back 
the estimates. The feedback design is therefore identical to that used wi th the 
reduced-order observer in Example 9.3, but the calculated k vector is used directly 
as the SVF gain vector, since the matrix *P~l w i l l not be present in the full-order 
observer. 

A design of this kind is very easy using M A T L A B and the Control Systems 
Toolbox (see Appendix 3). Since we do not rely on the reader having access to 
M A T L A B , we simply present this as one possible CACSD solution. We therefore 
outline the M A T L A B method here, so as not to bore those without access to i t . 
Readers wi th the appropriate M A T L A B setup w i l l find all the commands in the m-
file fig9_15.m on the accompanying disk (but it w i l l need one line 'commenting out' 
as noted in the file, in order to produce plots analogous to Figure 9.14, rather than 
producing Figure 9.15). 



466 Observers and state estimation 

The steps in the m-file are: 

(1) We specify the open-loop plant state-space model (Equation (9.20)). Note that 
M A T L A B needs the full model - including the zero D matr ix ' . 

(2) We design the feedback vector k required to place the closed-loop poles in the 
desired locations using standard SVF. We shall be feeding back the estimates, 
rather than the real states, but the design is identical. We use the M A T L A B 
place command, which requires only the A and B matrices o f the plant, and a 
vector o f desired closed-loop pole locations. 

(3) We design the observer. This w i l l be a full-order observer, as designed in 
Section 9.4, using the design equation F = A - GC (Equation (9.2)), and 
having the structure of Figure 9.5. Here we can again use the place command, 
making use of the duality which often exists in this area o f control engineering 
(for example, the similarity of the controllability and observability rank tests). 
I f we use the transpose of the A matrix, use C T instead o f B, and transpose the 
result, the place command w i l l give us the gain matrix required to feed into the 
observer in order to place the observer poles in the desired locations (that is, the 
G matrix in Figure 9.5). There is one small restriction in the place algorithm, 
namely that we cannot specify more multiple observer poles at the same 
location than the number of plant outputs. In our case, the plant has only one 
output, so we can only place one observer pole at - 2 0 on the real axis. In the m-
file, we arbitrarily put the others at - 1 9 and - 2 1 to allow comparison wi th the 
previous design, although placing them off the real axis wi th a damping ratio 
approaching 0.71 would probably be a better idea from a numerical-reliability 
viewpoint. 

(4) The F matrix is constructed using F = A - gc (that is, the design equation, 
Equation (9.2)). 

The design is now complete, and requires simulation to assess its performance. 
The system we have designed is that o f Figure 9.5, plus an SVF vector k feeding 
back x to be subtracted from a reference input r. I f we analyse the entire closed-
loop system thus formed, we find that the combined closed-loop state equation can 
be written: 

x 

x 

In M A T L A B , we can form the partitioned matrix Ac and vector bc in this equation 
in precisely the same way as they are written here, in order to obtain the overall 
state-space model of the closed-loop scheme. 

I f the buil t - in step or impulse commands are used, only the outputs are plotted 
by default, so i t often makes sense to define every state as an output. The output 
equation is modified to accomplish this. 

To get the same kind of results as in Figure 9.14, we need to specify an ini t ial 
condition of 0.1 rad for xx and zero for everything else; and an input signal at r 
which is held at zero for about six seconds, before rising abruptly to unity. The Isim 
command w i l l then generate the responses. 

A -bk X 
F-bk X + r — An 

x 
x 

+ brr 
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The plots produced by this sequence of operations are indistinguishable from 
those in Figure 9.14(d) between 6 and 12 seconds. In the earlier portion, where the 
estimates are converging on the correct values, there are differences due to the 
different design approach, and the fact that xx is now also estimated. However, these 
differences are not large, and the behaviour is qualitatively the same. In fact, this 
design behaves better, in that no signal magnitude ever exceeds about 3.2 units. I t 
does, however, take more computing time, and is less accurate than the reduced-
order design in the face of disturbances and poor plant models. 

To investigate the effects of changing the observer pole locations, i t is now 
only necessary to rerun the above sequence of commands wi th a different vector o f 
required observer pole locations fed to the place command which designs the 
observer. Experimenting wi th this, we find that the observer can, for this simple and 
well-behaved system, be made very slow before any differences become apparent 
in the 6-12 s region (the unit step response). 

*y \ \ \ 

2 3 4 
Time (s) 

(b) 

2 3 4 
Time (s) 

(c) 

V3 / 
2 3 4 
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8 9 10 
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Figure 9.15 (a) Closed-loop response of a slow full-order observer + SVF, to initial conditions. xx and its estimate, (b) 
Closed-loop response of a slow full-order observer 4- SVF, to initial conditions. x2 and its estimate, (c) Closed-loop response 
of a slow full-order observer + SVF, to initial conditions. x3 and its estimate, (d) Closed-loop response of a slow full-order 
observer + SVF, to a subsequent unit step applied after six seconds. All three states and their estimates. 
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Figure 9.15 shows a set of responses wi th the observer poles selected to be 
actually slower than the fastest open-loop plant pole. The poles used were at - 1 . 4 , 
- 1 . 5 and - 1 . 6 . The transient performance as the observer homes in on the correct 
values can be seen to last much longer than that of Figure 9.14, but the amplitudes 
are much lower, due to the reduced observer gains. Once the correct values are 
attained, i t is almost impossible to detect any differences between the true and 
estimated values during the step response (6-12 s). This would not be true for all 
systems of course; it depends heavily upon the system order and the dynamics. 

9.7 Digital implementation of a tracking feedback system 
including a reduced-order observer 

Students (usually) eventually understand the k ind o f design procedures we have 
gone through in Example 9.3, but have no idea how to implement the result. We 
cannot go into great depth here, but in order to illustrate some of the principles 
involved, and especially to indicate methods o f implementation o f 'modern-
control ' schemes, an outline algorithm w i l l be produced for the system we have 
been using as an example throughout the text. 

For digital simulation, M A T L A B commands could be used to evaluate 
everything. However, for implementation, it w i l l normally be necessary to use some 
other computer language (Fortran, C, and so on). We shall therefore pursue the 
numerical parts of the algorithm without reference to any particular language, and 
we shall assume no language commands of higher level than matrix manipulation 
commands. I f the chosen language cannot directly cope wi th matrix multiplications 
and additions, it is usually an easy matter to write some simple routines to allow it to 
do so (using the rules from Section A 1.1, for example). In Fortran this is particularly 
easy, as the dynamic dimensioning feature allows routines that can cope wi th any 
sizes of matrix or vector to be easily written. In other languages, some ingenuity 
may be necessary to avoid having to write one routine per matrix size. 

Direct digital control (DDC) is a wide topic in its own right, and several texts 
exist which address the issues involved, for example Astrom and Wittenmark 
(1990) , Bennett (1994), Bennett and Linkens (1982), Leigh (1992) and Wil l iamson 
(1991) . In addition, control engineering texts are available which are written from a 
purely digital (or, at least, discrete-time) standpoint, for example Franklin et al. 
(1990), Hostetter (1988), Kuo (1992) and Phillips and Nagle (1990). 

The system we designed in Example 9.3, using the reduced-order observer, can 
be drawn as a simulation diagram containing only summers, integrators and gains. 
Such a diagram would look like Figure 9.13, wi th the two first-order blocks each 
replaced by an integrator wi th a negative feedback gain. It would therefore be very 
easy to implement the system using analog electronics ( in principle, i t could be 
done wi th just five or six operational amplifiers, fol lowing the ideas introduced in 
Section 4.7). However, for more complex (that is, higher order) systems, the 
problems of analog component parameter drift, susceptibility to noise and general 
lack o f flexibility for changes would mean that we would almost certainly prefer a 
digital implementation, in which the matrix algebra could be done directly. 

Computer control would also bring the added benefits o f noise immunity, lack 
of drift, reprogramming flexibility and the capacity to perform other tasks (such as 
displaying trends and printing logs). These days, the only case where the analog 
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implementation really wins is where the system has very fast dynamics (especially 
' s t i f f ' systems containing both very fast and very slow dynamics, which require 
complicated integration algorithms). In such a case, it may not be possible to justify 
(or even to find) a sufficiently powerful computer to allow sufficiently fast signal 
conversion and calculation times. The analog solution, on the other hand, remains a 
'real-time' controller, however fast the plant dynamics may be. Nevertheless, for 
the rest o f this section, we shall assume a computer implementation of the general 
form of Figure 9.16, fol lowing the general principles o f computer control outlined 
in Section 5.8.1. In this case, the calculations to generate the observer output, the 
generation of the feedback signals and the summing of the feedback signals w i th the 
reference are all carried out in software in the computer. 

Figure 9.16 Computer 
control arrangement for 
reduced-order observer and 
feedback loops. 

Digital 
computer 

Digital-to-
analog 

converter 

Analog-to-
digital 

converter 

Power 
amplifier 

x = Ax + Bu 
y = Cx 

Plant 

Anti-aliasing 
filter 

A n important facet of any computer control scheme is the consideration o f 
safety measures, but due to l imited space, we shall only indicate a few aspects of 
programming for safety here. 

It should be borne in mind at all times that we should not assume that the plant 
actuators w i l l always move to the positions demanded by the control computer. A l l 
such movements should therefore be checked - effectively closing a monitoring 
loop around each actuator - and alarm conditions signalled, and action taken, as 
appropriate. 

Similarly, whenever an analog signal is digit ized and sampled by the 
computer, we must consider the l ikel ihood that i t w i l l be contaminated by noise, 
despite anti-aliasing filtering (Section 5.8.1), and that the sample may be taken at a 
peak (for example) of a noise spike, or that input equipment may fa i l . I t is therefore 
wise to check all inputs against known magnitude and rate-of-change l imits , or even 
to average a number of readings for each sample. 

In al l these cases, the computer should raise appropriate alarms and/or print 
logs i f unacceptable conditions are discovered. A n orderly return from automatic to 
manual control may wel l be carried out, i f necessary. 

In order to save space, and to avoid obscuring the issues at hand, such matters 
as these are omitted from the fol lowing discussion, although they would be included 
in a ' real-world ' implementation. Two matters to which we shall give more 
consideration are the fol lowing. 

9.7.1 Bumpless transfer 
The topic of bumpless transfers from manual to automatic control (and back again) 
was introduced in Sections 4.7 and 5.8.3. As a reminder, even when the plant is 
under manual control, the automatic scheme must track the operating conditions so 
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that, when the switchover to automatic mode is made, the computer takes over 
precisely where the manual operator leaves off. This can often mean (as in the next 
example) that the bulk of the calculations must be done irrespective o f whether the 
plant is in manual or automatic mode. 

In order to achieve a bumpless transfer back from automatic into manual 
control, the computer must have some means o f updating the human operator's 
setpoint-setting device, in accordance wi th any changes i t may make to the plant 
inputs during the automatic phase of operation. For example, i f the human 
operator controls the plant by turning a potentiometer, then the potentiometer 
may wel l be o f the type having a shaft which passes all the way through it 
so that, during the automatic phase, the computer can control the plant using the 
self-same potentiometer, via a stepper motor on the rear shaft behind the control 
panel. 

9.7.2 Integral wind-up 
This is another important matter which has been mentioned earlier (Section 5.8.3). 
Again, by way of a reminder, this happens i f elements in the control loop (for 
example, plant actuators) saturate, making it impossible for steady-state errors to be 
removed as quickly as they theoretically ought to be, according to a purely linear 
design. 

Assuming that some kind of integral control is present (which is usually 
the case, so as to remove steady-state errors), the effect of saturated signals is 
that the integrator always 'sees' a non-zero error at its input. Therefore its output 
w i l l continuously increase or decrease as a ramp, wi th the effects noted in Section 
5.8.3. 

To overcome this effect, integral desaturation methods are employed. The 
simplest method is to specify the maximum and min imum outputs allowed from the 
controller, and to refuse to update the integral term i f doing so would violate these 
l imits (thus duplicating the effects o f Zener diode clamping in an analog electronic 
controller). 

9.7.3 The system to be implemented 
In Example 9.3, we designed a SVF scheme to place the closed-loop poles of a 
third-order system, given that we were only able to make measurements at the 
system output. We therefore designed a reduced-order observer to estimate the 
missing state information. The resulting solution appeared in Figure 9.13. 

Recall that the system of Figure 9.13 is a regulator. We did not bother to 
convert i t to a tracking system in Example 9.3 because, at that time, we were only 
interested in observer design. Now, we shall want the output y to track the reference 
input r wi th zero steady-state error fol lowing a step change. We know it does not do 
this at present (see the responses in Figure 9.14(d), where the unit step response 
settles at only 0.1 unit). What is required is some additional integral action o f the 
type introduced in Section 5.4.4. Example 9.4 considers this conversion to a 
tracking system. 
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Example 9.4 Including the reduced-order 
observer in a tracking system 
Again, we can effectively use the approach of ignoring the presence o f the observer, and 
incorporating the matrix into the feedback path, so as not to need to evaluate it 
'onl ine ' . In Section 5.4.4 (Example 5.5), we designed a tracking scheme for the system o f 
Example 9.3 (but without the observer) which involved a forward path integrator wi th a 
gain of 300, and state variable feedback gains o f k = [160 68.8 7.2] (Figure 5.6). To 
apply this to our present design (that is, including the observer) i t is only necessary to 
include the matrix into the previously designed feedback path, as we did leading to 
Equation (9.29) for the straightforward SVF design. Doing this, we obtain the fo l lowing 
values, leading to the arrangement of Figure 9.17: 

- 1 r -, 
" 1 0 0" " y " 

kx = k 
c 

J . 

y 
z 

= [160 68.8 7.2] 34 1 0 z n 

225 0 1_ J 2 \ . 

= 160y + 68.8(34y + z n ) + 7.2(225y + z 2 1 ) = 4119.2y + 6 8 . 8 z n + 7.2z 2 1 

To seven decimal places, M A T L A B reports the closed-loop eigenvalues o f the system of 
Figure 9.17 to be - 1 -h 2j\-l - 2 / - 1 0 , - 2 0 , - 2 0 and - 3 0 . The first three are the 
designed closed-loop eigenvalues of the closed-loop plant, so we have succeeded in 
placing these correctly. The fourth and fifth are the designed eigenvalues o f the observer 
(fast compared wi th the plant) and the sixth is the designed value for the pole location due 

Figure 9.17 Figure 9.13 converted to a tracking system. 
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to the extra state introduced by the integral controller. So long as the observer has had 
time to attain the correct state estimates, the simulated step response of the system o f 
Figure 9.17 is so close to that of Figure 5.7 that the plot is not worth repeating here (there 
is a M A T L A B m-file fig9_17x.m on the accompanying disk that w i l l do i t ) . 

We now wish to implement the system of Figure 9.17. 

9.7.4 Choice of sampling rate 
The control computer must sample all the appropriate signals, make its calculations 
and then send the calculated control signal u to the plant. Only then can it take the 
next sample of the signals. This process w i l l be repeated indefinitely, for as long as 
the computer is required to control the plant. 

The first question we must ask ourselves is, 'how fast must we sample the 
signals and execute the control loop?'. The importance o f this question can be 
viewed in two ways. Firstly, we can use the answer to help us to decide upon the 
type of computer required (in terms of the min imum required processing speed). 
Secondly, once a computer has been specified, we shall then know how much time 
remains in which the computer can do other things (such as logging values, or 
carrying out other control functions). 

The analysis required to obtain an accurate figure for sampling rate is fairly 
complicated, and Leigh (1992) gives a good introduction to the problem. In cases 
where computer speed is not a problem, it is often reasonably safe to sample at ten 
times the rate suggested by the fastest system pole (eigenvalue) - that is, choose a 
sampling time of 10 per cent of the fastest system time constant. However, the 
sampling rate chosen by such an unthinking approach should always be tested in 
simulation studies. For example, i f i t is too fast, then a more expensive computer 
and plant actuators may have to be purchased than are strictly necessary. Also, 
actuator wear w i l l be more rapid, due to more movements per second. On the other 
hand, i f one of the aims of the closed-loop system is to provide a large increase in 
speed of response, then 10 per cent of the fastest open-loop time constant may turn 
out not to be fast enough to obtain the best possible performance. 

Example 9.5 Sampling intervals for the antenna-
positioner example system 
Inspection of Figure 9.1 indicates that the fastest time constant o f the open-loop plant in 
our example is 0.2 s. We therefore aim to update the control signals to the plant every 
20 ms, say. 

In Example 9.3, we placed the observer's poles at s — - 2 0 , implying observer time 
constants of 50 ms. The observer might be regarded as 'not really physically existing' , 
because it is only implemented as code inside the computer program. Nevertheless, i t 
should be capable of exhibiting signals changing wi th time constants o f 50 ms. We must 
therefore resist the temptation to evaluate its algorithm just when a signal is required by 
the plant (that is, every 20 ms), and instead we must 'sample i t ' (that is, perform its 
calculations) say every 5 ms (that is, four times per plant control period). This w i l l 
hopefully give reasonable initialization and state-estimate-tracking performance, but see 
the final comment below. 
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The final dynamic element which the controller must contain is the integrator which 
produces the input-tracking action. Wi th a step input, the output o f an integrator is a linear 
ramp, so the sampling period is immaterial. However, once the integrator becomes part of 
a closed-loop scheme, its behaviour changes to a first-order type response. The integrator 
has an eigenvalue of —30 associated wi th i t , imply ing a time constant o f 33 ms, and a 
sampling period o f 3.3 ms. For convenience, we want the sampling period to be some 
sub-multiple of the others, so we could choose 2.5 ms. However, in the interests of cheaper 
computing, we shall try fixing this sampling interval at 5 ms, the same as that o f the 
observer. 

We might find that sampling at 5 ms is not quite fast enough (because the observer 
apparently ought to be sampled at between 2 ms and 4 ms intervals). 

9.7.5 Other considerations 

Computer wordlength 
Sometimes, this is decided by default, in that i f a 'fast' machine is required in order 
to carry out the high-level vector-matrix processing wi th in the required sample 
period, i t is l ikely that i t w i l l be of the 16-bit or 32-bit variety as a matter o f course. 
Nevertheless, we shall probably sti l l have a choice as to the wordlength o f the 
associated analog-to-digital and digital-to-analog converters. 

The wordlength is chosen on the basis o f the accuracy requirements. Bear in 
mind, though, that roundoff errors w i l l make the requirement more stringent than 
may be suggested simply by the accuracy required in plant measurements. A t 8-bit 
accuracy, the signal resolution is about 0.4%. A t 12-bit and 16-bit accuracies, the 
signal resolution is about 0.025% and 0.0015% respectively. Wil l iamson (1991) 
treats the subject fully. See also the comments in Section 5.8.4. 

Manual/automatic mode change-over (bumpless transfer) 
In manual control mode, the plant w i l l be in the open-loop configuration o f Figure 
9.1. The operator's setpoint (reference) value w i l l be applied directly to the input u 
and no feedback loops w i l l be closed (except via the operator observing (sic) the 
plant behaviour and altering the setpoint in an appropriate manner). 

However, as mentioned previously, the computer w i l l s t i l l need to track the 
value o f reference setting required for a bumpless transfer into automatic control 
mode. I t does this by reading u and y (via the arrangement o f Figure 9.16), and 
calculating all the feedback signals shown in Figure 9.17, just as i f i t was 
controlling the plant. The only difference from Figure 9.17 is that the control loop is 
broken at the point where the symbol u appears, because the manual operator's 
input is being fed in there, not the computer control signal. In addition, the 
computer's reference signal r is not necessarily the same as the manual operator's 
setpoint, but is set equal to y at each time step, so that the tracking integrator input i , 
remains at zero. 

During manual control, we shall also (re)initialize the setpoint-tracking 
integrator's output x{ at each sampling instant, so that this signal (mult ipl ied by the 
gain o f 300), when algebraically summed wi th the two feedback signals which 
constitute kx, causes the computer controller output (which w i l l be applied at the 
point u when in automatic mode) to be the same as the measured value o f u as 
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supplied by the human operator. That is to say, at each time step in manual mode, xt 

is initialized to the value 

_ u + 4119.2y + 68.8zj + 7.2z 2  

X i ~ 300 

where u is the control signal being applied by the human operator. In this way, 
when automatic control mode is selected, the plant w i l l ini t ial ly see no difference 
whatsoever in the value applied at u. 

I f the plant configuration was such that there was no integrator between r and 
u, then the initialization would involve calculating a suitable value of r at each time 
step, so as to match the computed value of u to the humanly supplied one. Since the 
integrator is present, its output can be initialized to any desired steady value when 
its input is zero. 

These things w i l l become clearer wi th reference to Figure 9.18, later. 

Interlocking 
In practice, the arrangements w i l l be more complex. There w i l l probably be 
indicators to show the operator whether control is i n automatic or manual mode. 
There w i l l also be a 'computer healthy' or 'control available' indicator which the 
computer w i l l extinguish under initialization or fault conditions, and which w i l l be 
interlocked wi th the automatic/manual selection hardware (push-buttons, relays, 
PLC outputs and so on). Other interlocking hardware w i l l also be present to ensure 
that: (a) automatic mode cannot be selected unless all permissive signals are present 
(for example, 'computer healthy', ' lubrication on ' , and so on) and (b) the operator 
can always regain manual mode irrespective of the state of the computer. 
Watchdog timer 
A further fail-safe technique is the use of a 'watchdog timer ' . This is simply a 
hardware monostable circuit which w i l l time-out (thereby raising an alarm, 
selecting manual mode, or whatever else may be appropriate) unless it is 
periodically reset by the computer software. Thus, inside the main control loop w i l l 
be an instruction to send a signal to reset the watchdog timer; and unless this is 
faithfully executed (say) every 100 ms, the timer w i l l time-out and raise the alarm. 

Updating the operator s setpoint (reference) setting while in 
automatic mode 
We have mentioned that this needs to be done in order to achieve a bumpless 
transfer from automatic back into manual mode. Again, there are several possible 
approaches. 

One common approach is to work out the change which the computer 
controller applies to the plant control variable u at each sampling interval, and to 
update the operator's setpoint generator (for example, potentiometer) by that 
amount. 

This incremental approach is simple to implement, but has the disadvantage 
that i f the operator moves the setting while in automatic mode, the correct setting 
cannot be regained. Such an approach is therefore only permissible i f i t is not 
possible for the operator to do this (for example, the computer moves the 
potentiometer via a high-torque stepper motor which cannot be rotated by hand). 
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A far better method is an absolute approach, in which the operator's setpoint 
setting is stored by the control computer at the instant when automatic mode is 
selected, and the correct setting relative to that single value is then sent to the 
setpoint generator every time the plant control input is updated. Thus, even i f the 
operator moves the setpoint potentiometer, the computer controller w i l l return it to 
the correct position at the next control instant. 

This effectively means that as wel l as dr iving the plant input to the value u at 
each control instant, the operator's setpoint generating device (potentiometer, say) 
is set to correspond wi th the value u at the same time. The reader may therefore 
wonder why we bother to store the value o f the operator's potentiometer at the 
instant of selecting automatic control, and then add to this value the changes made 
by the computer. Why not just send the actual value o f u to the potentiometer at 
each control instant? The reason is that the method suggested overcomes open-loop 
calibration errors (including human errors such as the control potentiometer having 
been fixed to its shaft at the wrong angle!). 

9.7.6 The observer 
Figure 9.17 contains a continuous-time observer. This is more obvious as the state-
space model in Figure 9.12, on which Figure 9.17 is based (the outer setpoint-
tracking loop being the only addition in Figure 9.17). The observer state equation is: 

z = Fz+ju + gy 

which has the usual convoluted solution for z (see, for example, Equation (3.11) in 
Section 3.2.1, which would be written in terms o f z rather than JC, and would have a 
second input term for gy - note again that this z has nothing to do wi th the z-
transform!). 

For digital implementation purposes, it is far preferable to work wi th a 
discrete-time version of the equation. Such a version was developed in Section 
3.6.2, where its digital computer simulation was also discussed. The only real 
difference between the state equation solved in Section 3.6.2 and the observer 
equation here, is that the observer equation effectively has two separate inputs u and 
y. The only effect this has upon the previous result is that a separate A term is included 
for each input. The discrete-time version o f the observer is therefore given by: 

ZM = ®obsZk + Au

uk + Ayyk 

where 

k = sample number 

hobs = sampling period for the observer 

0 o b s = discrete-time observer 'system' matrix, = eFh°bs 

Au = discrete-time observer ' input ' matrix from w, 

= F~l[eFh°b* - I]j 

Ay = discrete-time observer ' input ' matrix from y, 

= F-l[eFh°* -I]g 
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Recall from Section 3.6.2 that there are various means o f evaluating & o b s , and the 
two A matrices (actually, vectors in this case). However, in our case, since hohs is 
very small (5 ms), the first five terms of the matrix power series expansions given 
in Chapter 3 (fol lowing Equation (3.91)) w i l l probably suffice. 

9.7.7 The setpoint-tracking integrator 
In Figure 9.17 this appears as a simple integrator calculating Xj from i , . Its input is 
(r — y) . The discrete-time equivalent of such a scalar pure integrator is: 

=xik + Krk-yk) 

where 

k — sample number 

h — sampling period for the integrator 

9.7.8 The control software 
We can now consider the implementation o f Figure 9.17 (or its state-space 
equivalent), bearing in mind the deliberate omissions mentioned previously. Figure 
9.18 shows an outline flowchart of the scheme. Note that it is necessary to read 
values from the plant (including the status o f the auto/manual switch), to send 
values to the plant and to be able to time events. Any computer designed for process 
control applications w i l l be able to do these things (indeed, most PCs can do them i f 
equipped wi th suitable I/O cards and software). The details o f these actions are 
omitted as they are machine- and language-specific. 

A further point is that a software flag would be included in order to force the 
program flow to proceed at least once down the manual control route, before 
al lowing the automatic route to be selected. This is to ensure correct initialization of 
the internal computer reference r and the integrator output x{. I t also gives the 
observer a min imum of eight samples (four down the manual route, and four down 
the automatic route) to acquire the correct state estimates. I f an immediate entry to 
automatic mode were allowed, the number would be halved. 

Once under computer control, it should also be noted that any desired setpoint 
changes can simply be summed wi th the internal reference value r. Integral 
desaturation is achieved by testing the new value of JC, generated in the lower right-
hand box in Figure 9.18. I f its value exceeds the set l imi t (either positively or 
negatively), then the l imi t ing value is used instead. This mimics the action of Zener 
diode clamps in an analog controller, and prevents the integrator from ramping into 
unrealistic territory. 

9.7.9 Simulation 
The flowchart of Figure 9.18 forms an excellent basis not only for control of the 
plant, but also for digital simulation of the entire scheme in the language of the 
reader's choice. This can be used to check on the effects o f varying sampling rates 
and so on. To convert the flowchart to a ful l simulation, rather than a plant 
controller, the fol lowing steps are necessary: 
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Q Start ^ 
Initialize known values: 

k J 9 F hobs 

integrator gain (300) 

f 

c Calculate: 

Set up initial condition fo rz : 
z = 0 is OK, since the observer 
will drive z to the correct values 

Note: the initial condition for the 
setpoint-tracking intergrator 
is not set here - see x, in 
manual mode branch below. 

Start (or restart) timer from zero J Note: timer for timing samples 

Read from the plant: 
status of auto/manual switch 

(in manual mode) No 

Do three times: (total time 15ms) 
Read from the plant u y 
Advance observer discrete-time 

model one time step 
Wait for timer to reach hQi 
Restart timer from zero 

end 

auto selected 
? 

Yes (in automatic mode) 

Read from the plant u y 
Advance observer discrete-time 

model one time step 
Calculate SVF via k 
Xj = (u + SVF signal) / 300 
r = y 

Wait for timer to reach hobs 

Note: takes 
total time 
of this 
branch to 
20ms 

Note: takes 
total time 
of this 
branch to 
20ms 

Do three times: (total time 15ms) 
Read from the plant u y 
Advance observer discrete-time 

model one time step 
Integrator input = r-y 
Advance integrator discrete-time 

model one time step (gives x,) 
Wait for timer to reach hni 
Restart timer from zero 

end 

Read from the plant u y 
Advance observer discrete-time 

model one time step 
Calculate SVF via k 
Integrator input = r-y 
Advance integrator discrete-time 

model one time step (gives x,) 
u = 300 xi - SVF signal 
Send u to plant actuator 
Update operator reference setting 
Wait for timer to reach hnHc 

Figure 9.18 An outline flowchart for digital implementation of the system of Figure 9.17. 



478 Observers and state estimation 

• Rather than reading values from the plant, provide sets o f sampled input data to 
give the required values of u at each sampling instant under simulated manual 
control, the state of the auto/manual selector switch at each sampling instant, and 
any disturbances or setpoint changes to be made while under computer control. 

• A t the point in the flowchart where the discrete-time matrices for the observer are 
calculated, calculate those for a discrete-time description of the plant, too. 

• Where the ini t ial conditions are set up, also set up the ini t ia l conditions for the 
plant. 

• Use the known state-space description of the plant to provide the signal y (from 
the input signal stream defined for u) wherever the flowchart asks for y to be read 
from the plant. 

• Ignore all the timer commands. 

• A t some suitable point, store or plot any required values against time 
(time = hobs x number of observer evaluations carried out). 

Example 9.6 Digital simulation of the tracking 
system plus reduced-order observer 
The results of running a simulation, programmed in M A T L A B according to the instructions 
above, appear in Figure 9.19. The appropriate m-file is fig9_19.m on the accompanying 
disk. The code in this file is an incredibly inefficient way to use M A T L A B , but i t has been 
done to make the coding as much like any other high-level language as possible. None o f 
M A T L A B ' s high-level commands (c2d, Isim, and so on) are used. Only the equations from 
Sections 9.7.6 and 9.7.7 are used, together wi th the flowchart o f Figure 9.18. Even the 
discrete-time plant model was obtained by using five terms of the power series expansions. 
The simulation should therefore give results which could be duplicated using any other 
programming language. 

For this simulation, a manual control input of an arbitrary form was applied, and the 
system was allowed to settle for one and a half seconds. Then automatic control was 
introduced, and a setpoint change of 1 unit was superimposed on the internal reference r 
after waiting half a second (the delay is present to show that the transfer to automatic was 
bumpless). 

In order to prove the bumpless transfer, it was necessary to have the open-loop 
(manually controlled) plant in a steady state at the instant automatic mode was selected. O f 
course, the system w i l l work perfectly wel l , whatever state it is i n when automatic mode is 
selected; but i f conditions are not steady, the fact that the transfer is bumpless (which we 
wish to confirm) w i l l be masked by the natural transient response of the plant. The 
presence o f the integrator in the open-loop plant means that a steady state in manual 
control can only be achieved fol lowing impulsive-type inputs. 

Although it cannot easily be deduced from Figure 9.19(a) (but i t can be from reading 
the m-file), the manual part of the control input takes the form of two short positive 
impulses, wi th one negative one in between them. These are applied over the first few 
sampling intervals (by a very fast human operator!) and are very carefully chosen to 
minimize the settling time of the plant (the natural settling time, as we know, is about six 
seconds, so this approach was taken to keep the number o f samples as small as possible, 
purely to minimize data storage and wasted space on the time axis of the plots). 
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Figure 9.19 (a) A digital 
simulation of the system of 
Figure 9.17 and the flow
chart of Figure 9.18. (b) The 
states and estimates for the 
latter part of Figure 9.19(a). 
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Figure 9.19(a) shows the resulting response of the plant output (which is also X\). I t 
can be seen that there is no transient disturbance ( 'bump' ) as automatic control is selected 
at 1.5 s, and that the subsequent unit step performance under computer control (after 2 s) is 
substantially correct (compare wi th Figure 5.7 for example). The differences are slight, and 
are due to the fact that this simulation is carried out i n discrete t ime ( impl ic i t ly assuming 
zero-order holds on the signals), while Figure 5.7 was obtained from a continuous-time 
state-space model of the overall system, using M A T L A B ' s continuous-time simulation 
commands. Also, Figure 5.7 had no observer, so comparison wi th Figure 9.14(d) is another 
possibility (but that system had no tracker, so the amplitude scale is a factor o f 10 'out ' , 
and the dynamics are slightly different due to the lack o f the tracking integrator). 
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Figure 9.19(b) shows the responses of the states and their estimates during the unit 
step response. The behaviour is slightly modified compared wi th Figure 9.14, for the 
reasons just given. However, the accuracy of the output in Figure 9.19(a) indicates that 
they are probably good enough for practical purposes. In order to get much better agreement 
between the states and their estimates, it is necessary to decrease the observer (and tracking 
integrator) sampling period to about 1 ms (while sti l l updating the plant control input every 
20 ms). The M A T L A B m-file contains comments indicating how to try this. 

9.8 The Kalman filter 

Advanced section 
This section contains material which is qualitatively different from that in the rest of the text, in that it deals with random (or 
stochastic) signals. If desired, this section can be omitted without affecting the reader's understanding of anything else in 
the book. 

So far, we have assumed deterministic conditions, by which we mean that so long 
as we can initialize our system models correctly, and so long as we know the 
applied inputs, we can always predict the outputs at any given time. This is not so 
in stochastic systems, where the presence of random fluctuations (noise) makes it 
impossible to predict wi th certainty what the values of any o f the signals in the 
system w i l l be at any given time (in much the same way as it is impossible to 
predict, wi th certainty, the precise arrival time of a bus, the behaviour o f the stock 
market, or next week's weather). 

To handle this uncertainty, we need some rather different mathematical tools, 
based on statistical ideas and probability. Most general textbooks leave these out, 
but we shall not. To try to avoid too much detail, we give the background and 
outline of the Kalman filter here, wi th enough detail to be able to design and use 
one, but we relegate the more detailed mathematical parts to Appendix 6. I t is not 
necessary to understand the whole derivation, but i t can give a better insight into the 
filter's operation. The framework of our derivation follows that o f Healey (1979), 
but wi th the gaps filled in . For a more specialist approach consult Anderson and 
Moore (1979) or Bozic (1979). 

9.8.1 Introduction - the filtering problem 
The observers we have designed to date have all provided nice clean traces o f the 
state estimates (because they used deterministic models). In practice, i t is possible 
that the plant input and output signals, which feed the observer, w i l l be so heavily 
contaminated wi th noise that our observers w i l l not work very wel l . This might be 
electrical noise in the form of switching transients or other signals picked up by 
cabling, or it might be an unavoidable physical effect, such as the effects o f wave 
motion on measurements of ship position (in positioning systems for dr i l l ing and 
survey vessels, for example - Grimble et al. (1979)). 

The observers we have designed estimate the values o f unavailable signals. I f 
the signals used to form these estimates are themselves apparently too noisy to read 
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properly, we need a more sophisticated solution. We are effectively t rying to 
estimate something we do not know, from something whose value is uncertain! 

The Kalman filter (KF) is a rather clever device w i th a number o f applications. 
One application is the extraction of state estimates from noisy signals, and it is this 
possibility that interests us here. In order to work, the K F needs to know something 
about the statistics of the noise present in the signals. The question of how we might 
provide this information in real situations is left unti l later. 

9.8.2 Derivation of the Kalman-Bucy filter 
Although the K F is normally referred to as a 'Kalman Fil ter ' , i t was actually 
developed by both Kalman and Bucy. As we mentioned earlier, we shall give 
sufficient information here to understand the structure and use o f the KF, but the 
hard sums are relegated to Appendix 6. We choose to pursue the derivation in 
discrete time, as it is perhaps easier to fol low than the continuous-time version. 
Also, since the result w i l l normally be implemented digital ly, it is, in any case, the 
most convenient form. 

Consider the discrete-time system (see Section 3.6.2) represented by the usual 
state and output equations (the D matrix is assumed absent, for s implici ty) : 

*k+\ = ®xk + M 

The model of this system is shown in Figure 9.20, where the system is corrupted 
by an additive vector of random noise signals w(t) representing all system 
disturbances, modelling errors and so on; and the output is corrupted by another 
vector of random signals v(f), representing measurement noise, discretization 
errors, and so on. There can be any number of disturbances contributing to w(r) , so 
we need a matrix (/") to couple these into the system. We assume one disturbance 
in v(f) per system output. Figure 9.20 gives rise to the modified model: 

= + M + rwk (9.30) 

= Cxk+i +vk+\ (9.31) 

Assuming that we have access only to the input and measurement signals (u and z), 
we now want to try to extract a meaningful estimate o f x (namely x). This could 
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then be used to represent the states in a feedback control scheme, for example, as 
we have done before. 

Problem statement 
Given all information up to an instant k + 1, we w i l l know the fo l lowing: 

«0, ui, u2, .., uk, u M and ZQ,ZX ,Z2, . . . , zk, zk+x 

From this information, we wish to estimate x M . Remember that this estimate w i l l 
be a random variable, and that we are trying to extract a suitable signal. The 
observers discussed previously are therefore inappropriate. 

Estimate notation 
Let Xj\j = E[Xj\j;] represent the 'best' ( in some sense) estimate of x at step /, given 
information up to and including step j . Our task is therefore to find the value o f 
Xk+\\k+\- See Appendix 6 for the definition of the 'expected value' operator E[-] (it 
is basically the mean value in the present context). 

Development 
For efficient computer implementation, we shall develop a recursive scheme. We 
can therefore assume the previous estimate xk\k to be available, because we shall 
provide the ini t ial value Jc0j0, and application of the recursion w i l l then generate any 
required future value. We also assume the noise signals to be of zero mean value, 
that is, E[wk] = E[vk] = 0 ( i f this is not the case, the means can be subtracted and the 
model adjusted accordingly). 

The best estimate that Equation (9.30) can give us (using the mean value o f 
wk) is then: 

xk+i\k = *xk\k + Juk (9.32) 

and we therefore obtain a one-step-ahead predicted measurement from Equation 
(9.31): 

ik+\ = Cxk+\\k = + Auk) 

A t time step (k + 1), we can measure zk+\ from the plant output, and hence find the 
prediction error z as: 

%k+\ — %k+l — Z*+i 

One way of improving the state estimate given by Equation (9.32) would now be 
to add some proportion of this prediction error to each element o f the state vector, 
in such a way as to try to drive the prediction error to zero; for example, 

= + Kh+\- Using Equation (9.32): 

= 0ik\k + A"k + Kh+\ (9.33) 

Notes 

(1) The matrix K determines the distribution of z between the states, and is usually 
called the filter gain matrix, the Kalman gain matrix, or simply the Kalman 
gain. 
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(2) We have xk+\\k+\ on the LHS of Equation (9.33), because we are now using 
information up to instant k + 1. The new information has been introduced by 
the term zk+\, and so the sequence i\, z2-> • • • , Zk+\ is often called the 
innovations sequence. 

Equations (9.32) and (9.33) now constitute a 'predictor-corrector' system (similar 
to those found in many numerical integration algorithms) which attempts to drive z 
to zero as time passes. 

Substituting the definitions of z k + i and then zk+\ into Equation (9.33), we 
obtain: 

• H + I | * + I = ®Xk\k + M + K[zk+X - C(0iklk + Auk)} 

or 

= [I-KC)[0xklk + Auk] + KzM (9.34) 

Equation (9.34) now represents a recursive estimator, in which the new estimate 
xk+\\k+i depends only upon the current output zk+\, the previous estimate xk\k and 
the previous input uk. 

The choice of the gain matrix K determines the filter's performance. We shall 
consider two choices: one (very briefly) leading to the Luenberger observer, and the 
other ( in ful l) to the Kalman filter. 

The Luenberger observer 
I f the noise signals are zero for all k (that is, the system model is entirely 
deterministic), then Equation (9.34) gives the Luenberger observer. I n this case 
JC « x at every step k, so long as the filter gain matrix K is chosen such that the 
eigenvalues o f [/— KC]& are faster than those o f the plant 0. This is precisely 
analogous to our previous approach to observer design in continuous time, and the 
resulting system, structured according to Equation (9.34), appears in Figure 9.21. 

Figure 9.21 The 
Luenberger Observer 
(deterministic case) or 
Kalman filter (stochastic 
case). 

Unit 
delay 

Predictor (Eq. 9.32) 

T f - - H g ) - L ^ ^ 

f m > I Unit I 
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(Eq. 9.33) 

" xk + 1 \k + 1 
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The Kalman filter 
Since it is defined by the same equation (Equation (9.34)), the K F is identical i n 
structure to the Luenberger observer (Figure 9.21). However, we now consider the 
noise signals to be present. Thus, the signal z, and all the various estimates, become 
random variables. The difference between the schemes is in the way we choose the 
contents o f the filter gain matrix K. 

We now define the estimation error as: 

xk+\ = xk+\ — xk+\\k+\ (9.35) 

which, from Equation (9.34), can be seen to be a function o f K. We also define the 
covariance matrix o f the estimation error (see Appendix 6 for more on covariance) 
as: 

P k = E[ i t iJ] 

The design of the K F follows from a choice of the Kalman gain matrix K, such that 
the covariance matrix Pk is minimized. The K F is therefore a minimum variance 
estimator. 

The derivation of K to achieve this is not exactly straightforward, but is given 
in ful l in Appendix 6, as the authors are unaware o f any other textbook which 
contains the derivation wi th no steps omitted. In Appendix 6, we find that: 

i f xk\k is the minimum-variance estimate o f x at instant k, 

xk is the estimation error (xk — xk\k), 

Pk = cov(xk) = (that which is to be minimized), 

Q = cov(system noise, w) (see below and Appendix 6, Section 
A6.2.4), 

R = cov(measurement noise, v) (see below and Appendix 6, Section 
A6.2.4), 

then the K F for the minimum-variance estimate at the next time step (that is, 
l s g i v e n by the recursive scheme: 

p* = 0pk0T
 + rQrT

 (9.36) 

Kk+l = P*CT[CPfCT + R]~l (9.37) 

W + i = [l-Kk+lC][&xk\k + Auk}+KMzM (9.38) 

P M = [I-KMC]P* (9.39) 

such that the Kalman gain matrix K is chosen on the basis o f the previous error 
covariance and the noise statistics, so as to minimize the variance o f the next 
estimate. 

A selection of practical points and some examples 
We end this chapter wi th a couple of examples o f Kalman filter application. These 
examples w i l l bring out some of the points which need bearing in mind when using 
the KF. Before the examples, we list a number o f the more important things to look 
out for, and one or two design guidelines: 
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• It is most important to remember that although the K F is a clever device, it is not 
magical! I t can only work wi th the information we give i t . Specifically, the K F 
does not evaluate the characteristics of the plant and measurement noise as it 
operates. It cannot do so, because it has no way of knowing for certain what is 
really the correct signal and what is really unwanted noise. Therefore, the only 
information the K F uses about the noise signals is contained in the Q and R 
matrices which we must specify. These matrices (together wi th the r matrix) 
completely determine what the Kalman gain matrix K w i l l do, and what the final 
estimation error covariance matrix w i l l be. I f the characteristics o f the noise 
signals change, the Kalman gain w i l l not alter, unless we give the K F a new Q 
and/or R matrix to tell it about the change. This is discussed further in Example 
9.7, below. 

• In the light of the last point, the accuracy o f the filter's performance clearly 
depends heavily upon the accuracy of Q and R. As w i t h the other observers we 
have investigated, it also depends upon having an accurate C matrix for the plant, 
although A and B need not normally be very accurately known, due to the 
inherent feedback nature of the system (but poor modell ing o f A and/or B w i l l 
lead to poor dynamic performance). 

• Equation (9.38) is very similar to Equation (9.34), the difference being that the 
Kalman gain matrix is non-stationary, but varies from one time step to the next as 
defined by Equation (9.37). A rigorous implementation o f the algorithm, wi th K 
changing every step, therefore allows the K F to cope wi th non-stationary and (to 
an extent) nonlinear systems. 

For linear systems, however, i t can be shown that i f the system of equations 
is iterated, the values in K eventually converge to constants (see the examples 
below). Wi th some loss of dynamic accuracy, but great savings in computational 
effort, it is therefore often possible to use a stationary Kalman fdter, as given by 
Equation (9.34), wi th the matrix Kbeing pre-computed and held constant. Such a 
filter is identical in structure to the Luenberger observer (Figure 9.21), but K w i l l 
have different contents, as the system has different objectives. M A T L A B ' s 
control toolbox commands such as dlqe design such stationary KFs. 

• The covariance matrix for the measurement noise R can often be intelligently 
estimated from plant knowledge. For example, assuming that the noise signals on 
the various measurements are uncorrelated (quite usual i f they arise from 
different sensors), R w i l l be diagonal (see Section A l . 1 . 3 for the definition of a 
diagonal matrix). Each diagonal element is then the variance o f the noise in that 
particular measurement channel. 

Recalling that the variance o f a set of samples o f a signal is the mean square 
of their deviations from the mean value, i f an r.m.s. noise level (or an accuracy 
figure, perhaps) is available for the transducer, this can be squared to give the 
variance (mean square value) for the appropriate diagonal element o f R. 
Discretization errors in analog-to-digital converters can be handled in a similar 
way. 

A n y other plant knowledge available from manufacturers' literature and/or 
measurements on the plant can be included; the more, the better. 

• The covariance matrix for the disturbances to the plant Q is more o f a problem. 
Often, very li t t le real information w i l l be available. A n y that is should be used. 
Although we have assumed in the derivation that the noise vector w contains only 
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white noise, in practice it is supposed to cover all disturbances including steps, 
spikes, coloured (that is, time-correlated and band-limited) noise, modell ing 
errors and so on. 

Again, i f the various noise sources comprising the elements of w are 
assumed to be uncorrected, Q w i l l be diagonal. Sometimes, the ini t ia l diagonal 
elements of Q have to be set more or less at random, and then tuned in fu l l 
simulation studies, including simulations o f every known disturbance signal, to 
get the most believable estimates of the states, before trials on plant. However, 
this can be a very time-consuming exercise for high-order systems wi th many 
disturbance signals. 

This approach seems like avoiding the issue o f setting Q 'properly ' , and 
indeed it is; but pragmatically, it is often the only sensible way to proceed. After 
all , we want a system that works in the real world, not necessarily one in which 
every mathematical nicety is fulfilled. In simulation studies, uncertain elements 
of Q might be tuned empirically until fluctuations in the state estimates remain 
wi th in some pre-specified band. 

• The fol lowing general characteristics of the K F may also be of help in ' tuning ' Q 
and R. 

I f either the elements of Q decrease in magnitude, or the elements o f R 
increase in magnitude, the implication is that there is then relatively more noise 
on the measured signals (that is, the plant outputs) than the states. The K F 
therefore assumes that the state estimates generated by the 'predictor' part of the 
filter are relatively more reliable than the plant output measurements, and reduces 
the magnitudes of the elements in the Kalman gain matrix accordingly, so that 
smaller corrections are made to the predicted state estimates. I n other words, the 
K F places more emphasis on the predictions, and less on the measurements. 

Conversely, i f either the elements of Q increase in magnitude, or those o f R 
decrease, the implication is that there is then less noise on the measured signals 
relative to the states. The K F therefore assumes that the state estimates generated 
by the 'predictor' part of the filter are less reliable, and require more correction. 
The magnitudes of the elements in the Kalman gain matrix w i l l increase 
accordingly, so that the K F places more emphasis on the measurements, and less 
on the estimates from the predictor. 

In all cases, the estimate error covariance matrix P should be symmetric 
(apart from small numerical errors in off-diagonal terms), and in general, small 
elements in P indicate that the K F believes the estimates to be reliable. Large 
elements imply distrust. 

• The diagonal elements of Q cannot simply al l be set to zero, or else the Kalman 
gain matrix K w i l l eventually decay to zero, too. This is because the condition 
Q = 0 represents a no-noise condition on the plant (also implying no modelling 
errors, since the process noise is supposed to include these, too). The K F 
therefore decides that the most reliable thing to do is to make no corrections to 
the state estimates (predictor, but no corrector). Once the initial-condition 
transients have died away, the K F therefore settles wi th zero gain. The K F then 
effectively ends up open-loop, and the estimates w i l l deteriorate as time passes, 
due to the lack of any form of corrective feedback. 

In order to ensure that this does not occur, it is a good idea to choose the 
elements o f Q so that it has no zero diagonal elements (or not many, at least), and 
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to choose r (see below) so that the pair of matrices (<£, r) forms a controllable 
system. Simulation studies must be carried out to confirm correct operation i f 
these conditions are stretched. 

• The matrix r which defines the coupling o f the process noise into the states may 
also be difficult to define in practice. However, a knowledge o f which noise 
sources affect which states can often be gained by thinking about the practical 
system. 

As a silly, but simple example, consider a system for transporting a fluid in 
the open air, having two states: xx representing the torque dr iv ing the system, and 
x2 related to the mass in the system. I f we considered wind and rain as 
disturbances wx and w2 respectively, we would expect the w ind to affect the 
torque and have zero effect on mass, while the rain would have some effect upon 
the mass (probably a rather small effect), and possibly some very minor effect on 
torque depending upon the configuration o f the system. The r matrix for such a 
system might therefore be of the form 

ri I O - 6 -

|0 0.001 

(the actual numbers, of course, depending entirely upon the application). 

• The 'best estimate' vector requires init ialization as x0\0. A sensible procedure is 
to see i f any elements of x appear in z (that is, the corresponding row of the C 
matrix contains a number in the appropriate diagonal position only) ; and, i f so, to 
use a first set of measurements z to initialize these elements o f Jt0|0, the remainder 
being set to zero (unless other elements can be sensibly estimated from other 
plant knowledge or tests). 

• The estimation error covariance matrix also requires init ialization as P0. I t is 
usual to assume poor ini t ial estimates, and to set P0 to some large diagonal 
matrix accordingly. 

The only alternative would be to initialize P^ directly (Equation (9.36)). 
This is the version of P0 which is propagated in the recursion, and is val id 
immediately prior to the next measurement. I f x contains measured values (as 
discussed in the previous point), and there is some confidence in the 
measurement noise covariance matrix /?, then the corresponding elements of 
P% could be initialized to those o f R. 

In linear, stationary systems, the ini t ial values o f P0 are not cri t ical , as the 
feedback action w i l l drive them to convergence. However, i n non-stationary or 
nonlinear systems, more care is required, because the convergence properties of 
K and P w i l l then vary wi th the ini t ial conditions. 

• Sometimes, the plant model w i l l contain a nonlinear output equation, o f the form 
y — f(x), where / represents a set of known nonlinear functions. In this case, 
the extended KF can be used, in which the fu l l nonlinear output equation is used 
to calculate the measurement prediction £. I t is then found that a Jacobian matrix 
of the form df(xk+x)/dxM can be used, in place o f C, to calculate Kk+X (see 
Section 14.4 for a discussion of Jacobian matrices). 
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Example 9.7 Investigation of a Kalman filter for a 
simple system 
Consider the simple open-loop system shown in Figure 9.22(a). Assume that this system 
has an electrical input signal, and that we are going to drive it wi th a unit step (1 V ) . The 
input signal is corrupted by noise of 0.1 V r.m.s., and the output measurement by noise of 
1.414 V r.m.s. Both these noise signals are of zero mean value. We wish to estimate x{ 

and x2y as they are not otherwise available. 
I t is no use trying to use our previous observer designs. A full-order observer might 

do a li t t le filtering for us, depending upon the positions o f its eigenvalues, but the output 
noise is of rather large amplitude wi th respect to the signal level, and some of the noise 
w i l l inevitably be passed onto the estimates. A reduced-order observer w i l l pass all the 
output noise onto the estimate of xx, unattenuated (because it w i l l treat x{ as a measurable 
signal, and not actually estimate i t at all). 

In designing a Kalman filter for this system, we have the advantage that we have 
specified the noise signals, and can therefore tell the K F the variances wi th some accuracy. 
This is not the usual state of affairs, and we shall point out the l ikely consequences. We 
also have a perfect plant model, so the K F knows this too. Again, in practice, the model 
used to design the K F w i l l only be approximately that o f the plant, so mismatch w i l l occur 
here, too. The reader w i l l find i t instructive to run a simulation of a system such as this, 
including the KF, and experiment wi th different levels of error in the plant model, and the 
noise descriptions in Q and R (actually, q and r w i l l both be scalars in this example, as 
there is only one noise source affecting the plant, and only one affecting the output 
measurements). Space does not permit such an investigation to be presented here, but it is 
easy to do, given the ini t ia l simulation program which is in the m-file fig9_22.m on the 
accompanying disk ( M A T L A B (Appendix 3) and its Control Systems Toolbox w i l l be 
needed to run the file). 

The K F is to be implemented by Equations (9.36) to (9.39), so we need to specify a 
discrete-time state-space model for the plant. A suitable noise-free continuous-time model is: 

A= °Q _ j , *= J , c=[\ 0] , d = 0 

and the M A T L A B control toolbox command c2d, wi th a sampling period o f 50 ms, gives: 

0 
We also need to specify 7", r , Q and an init ial value for P, before we can begin. Consider 
the noise-coupling matrix r. This couples one noise signal into two states, so it w i l l be 
2 x 1 . There is no noise to be added to xx (we are considering the 1.414 V r.m.s. signal to 
be purely output measurement noise), and the 0.1 V r.m.s. noise signal feeds directly onto 
x2 (the reader should draw the simulation diagram of the continuous-time state-space 
model i f i t is difficult to visualize this fact). This implies that 

Ì 0.0488" "0.0012" 

0 0.9512 0.0488 

Remember, however, that this r is for the continuous-time version of Equation (9.30), 
because it feeds onto x2(t). We need a version of r to use wi th the discrete-time model, as 
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0.1 V r.m.s. 1.414V r.m.s. 

1V step 

"MS 1 + s 
y 

Figure 9.22 (a) A simple 
second-order system, (b) 
Kalman filter performance 
in estimating xx. (c) Kalman 
filter performance in 
estimating x2. 
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given in Equation (9.30). Using the M A T L A B c2d command wi th A and r, rather than A 
and b, results in 0 as given above (which w i l l always be the case, because 0 depends 
only upon the A matrix and the sampling period), and 

_ ro.ooi2 
0.0488 
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which is the discrete-time version for use in our Kalman filter equations (and happens to 
be the same as A, because the continuous-time version o f JH happened to be the same as b 
- this would not usually be the case). 

The measurement noise is a scalar quantity in this case (only one output), so the 
covariance matrix R becomes the scalar variance r. Since the r.m.s. value of the noise is 
1.414 V, and the variance is the m.s. value, we can say that r = 2. 

The model noise only feeds state x2. Q is usually a diagonal matrix wi th the variance 
of each noise signal in the appropriate diagonal position. In our case, the variance o f a 
0.1 V r.m.s. signal is 0.01 V 2 , so we have only q22 — 0.01. (We call i t q22 to show where it 
would be, i f we had a ful l 2 x 2 Q matrix. In fact, the mathematics w i l l give an identical 
result i f we use 

0 0.0012 

0 0.0488 
and Q = 

0 0 

0 0.01 

but there is li t t le point in such added complication.) 
The ini t ial value of P should be chosen to show that we have no confidence in the 

ini t ia l state estimates (that is, the K F must have to do some converging onto the correct 
values). We therefore specify large init ial error covariances: 

10000 0 

0 10000 

( 2 x 2 for two states). 
We now know everything we need to perform the iteration of Equations (9.36) to 

(9.39). These w i l l provide the Kalman gain matrix Kk+X at each time step, together wi th 
the best state estimate Xk+i\k+\ and the estimate error covariance matrix P, whose elements 
should get smaller as time progresses. 

The system was simulated in M A T L A B , by executing the discrete-time plant model 
(from zero ini t ial conditions) and the K F of Equations (9.36) to (9.39) (using the plant 
model output as z at each time step) using the m-file fig9_22.m. A t each time step, the 
appropriate values of suitable noise signals were added to the input and output as 
shown in Figure 9.22(a). A l l the signals were stored for plotting, and the results are as 
follows. 

Figure 9.22(b) shows the noisy plant output y, the actual behaviour of state xx 

(according to the plant simulation) and the Kalman filter estimate denoted simply as xx. I t 
can be seen that xx has been extracted from the noisy output, so that it follows the actual 
value of xx reasonably closely. The Kalman gain begins at zero (no correction to the 
estimate) and then homes in on its final value as time progresses (more on this below). 
This is why the estimate of xx faithfully follows the measured output for the first few 
samples, before beginning to settle nearer to the correct value. The precise forms of y and 
x w i l l vary according to the actual noise signal used in the simulation - i f it is a random 
signal generated by the computer (using the M A T L A B rand command, for example), they 
w i l l also vary from one run to the next on the same machine, so the reader should not 
expect to duplicate Figure 9.22 precisely! 

Figure 9.22(c) similarly shows the noisy state x2, wi th the estimate x2 from the KF. 
Note that x2 is not particularly noisy, because the level of the input noise is relatively 
low, and i t is also filtered somewhat by the first block in the system. Again the agreement 
is good after a transient settling period. It takes longer for this estimate to home 
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in on the correct value, because the K F has no measurement (not even a noisy one) o f this 
signal. 

After 200 iterations o f the simulation, the Kalman gain matrix had not finished 
converging, but the values were 

K r o.oo7" 
~ jo.oooi 

These small values show that the filter considers the magnitude o f the measurement noise 
to be so bad, relative to the system noise, that i t should make only very small corrections 
to the states estimated by the 'predictor'. The final error covariance matrix is 

"0.0135 0.0002 

0.0002 0.0003 

the small values suggesting that the K F has high confidence in the estimates. 
As we suggested earlier, the reason this K F works so wel l is that we were able to 

feed it w i th an ideal plant model and accurate details o f the noise signals. I f you perform 
the simulation and try changing a few things, you should discover the fo l lowing . 

• I f r is increased, or q22 is reduced, then the Kalman gains decrease, as the filter thinks 
that either the output noise is even worse, or there is less noise on JC2, as the case may 
be. O f course, this is not true in this example, because we have not changed the noise at 
all ; but the incorrect value of r or <722 makes it appear so, and the K F reacts accordingly 
as i t knows no better. In fact, this gives a better result in this case, because the K F is 
using a perfect plant model - therefore, the predictions w i l l be excellent, and the less 
correction i t makes to them, the better! The values in P therefore reduce in this case, 
although in practical examples they might be expected to increase, reflecting the 
l ikel ihood o f poorer estimates from a noisier environment. 

• I f r is reduced (or <722 increased), the filter expects less output noise (or more state 
noise). I t therefore places more trust in the output measurement relative to the states, 
and the Kalman gains increase, so that more correction is applied to the estimates from 
the measurements. Again, this is not the right thing to do in this example, because the 
model is already perfect and these 'corrections' actually make the estimates worse. I f 
we move too far in this direction, the estimates w i l l actually fo l low the noise signals. 
Once again, the point is made that the noise is sti l l the same, and i t is our poor 
representation o f i t that has caused poor filter performance. The conclusion is that Q 
(q22 in this case) and r need to be as accurate as possible. Many other trials can be 
made, such as using incorrect values in the plant model, but space does not permit us to 
report the results here. 

As a final point, note that the M A T L A B control toolbox command [k,p,e] = 
dlqe( phi,gamma,c,q,r); w i l l return the stationary discrete-time Kalman gain matrix in k. 
This can then be used in a non-recursive scheme, saving a lot o f computation. The 
resulting state error covariance matrix is returned in p and, in this case, both are in 
reasonable agreement wi th the values quoted from the recursive simulation above. 
However, i t takes about 50 seconds for the time-varying gains to achieve very good 
agreement w i t h the stationary gains. 

In general, the stationary Kalman gain computed by M A T L A B should always agree 
wi th the value obtained from the time-varying filter (Equations (9.36) to (9.39)) after i t has 
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converged (that is, the steady-state value), but the estimation error covariance matrices w i l l 
not generally agree. This is because of the large initial differences which might exist in 
Kalman gain between the stationary and time-varying approaches, leading to different 
convergence behaviour. The agreement of the error covariance matrices in the present 
example arises because the Kalman gains were always small. 

Example 9.8 Design of a Kalman filter for the 
antenna-positioning system with feedback loops 
and a tracking integrator 
This is a much more complex system, for which it is not so easy to interpret the results as 
i t was for the simple example above. I t is shown in Figure 9.23, and takes the basic form 
of Figure 9.17, but wi th the discrete-time plant model and Kalman filter of Figure 9.21 
replacing the plant and reduced-order observer. The plant states and output are corrupted 
by noise. The filter outputs are then fed back to the plant input via the previously 
derived SVF gains [160 68.8 7.2] (see Example 5.5 in Section 5.4.4), and the tracking 
integrator wi th a gain of 300 is used, as before. This time, it is represented by a discrete-
time model (see below). 
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As in Example 9.7, this simulation has the advantage that we shall specify our own 
noise, so the variances w i l l be accurately known to the KF, and the plant model used to 
derive the filter gains w i l l be perfect. A l l the comments made in Example 9.7 on these 
matters therefore also apply here. 

As to the noise, we shall assume that the output y is corrupted by noise o f 0.05 rad 
r.m.s., the drive system output x3 is corrupted by noise o f 0.1 N m r.m.s. and the load 
velocity x2 by noise o f 0.1 rad s"1 r.m.s. We assume no noise on xx other than the 
measurement noise. 

These specifications suggest 

"0 0 0" "0 0 0 

r = 0 1 0 Q = 0 0.01 0 and r = 0.0025 

0 0 1 0 0 0.01 

' 1 0.01 0 0 

0 0.99 0.0097 , AP = 0.0002 

0 0 0.9512_ _ 0.0488 _ 

In this example, we continue wi th these as given, in order to avoid potential confusion 
over the elements of r and Q. However, i t would be equally permissible to restrict them 
to the non-zero parts o f Q (as in the previous example) by omit t ing the first column of / \ 
and the first row and column of Q (note that care must be taken when deciding on such 
simplifications, to ensure that the term rQT1 remains conformable for mult ipl icat ion and 
also gives a result matching the dimensions of the rest of Equation (9.36)). 

The discrete-time models o f the plant and tracking integrator were obtained for a 
sampling interval o f 10 ms. For reference, they are: 

# / = l , 4 = 0.01 

Recall that, i n the previous example, the continuous-time version o f r also had to be 
converted to a discrete-time model. In the present example, the noise signals have been 
specified as feeding directly onto the states, not onto the state derivatives. This means that 
r is correct for the discrete-time model as i t stands. 

The estimate error covariance matrix was initialized to 

10000 0 0 

0 10000 0 

0 0 10000 

Running the simulation in the M A T L A B m-file fig9_24.m on the accompanying disk gave 
the results in Figure 9.24. The Kalman gain matrix again converged onto its final values 
after about 100 iterations (that is, after 1 second of the simulation). The final gain vector 
and estimation error covariance matrix were: 

' 0.174 ' "0.0004 0.0041 0.0003 
K = 1.658 , P = 0.0041 0.0924 0.0071 

0.1106 0.0003 0.0071 0.1047 

K is found to be in good agreement wi th the M A T L A B control systems toolbox command 
[k, p, e] = dlqe(phi, gamma, c, q, r ) , but P differs a l i t t le , as we might expect, due to the 
fact that our simulation uses a time-varying filter, while the M A T L A B result is for 
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Amplitude of state 1 and its estimate Amplitude of state 2 and its estimate 

Amplitude of state 3 and its estimate 

M i l ! 
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Time (s) 
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Figure 9.24 (a) Kalman filter performance in estimating xx for Figure 9.23. (b) Kalman filter performance in estimating x2 

for Figure 9.23. (c) Kalman filter performance in estimating x3 for Figure 9.23. 

a stationary one; the init ial differences in Kalman gain lead to different convergence 
behaviour. 

I t can be seen from the Kalman gain vector that the gains for states 1 and 3 are much 
lower than that for state 2. As we discussed in Example 9.7, for this ideal system it would 
actually be better i f all the gains were zero, as the perfect plant model used for the K F 
design ought to give perfect estimates from the 'predictor' part of the KF, therefore 
requiring no correction. However, the K F cannot know this, and works only on the 
information we feed i t , namely the noise covariances. Nevertheless, the performance can 
be seen to be good. Figures 9.24(a) and (c) show that the estimates of xx and x3 fo l low the 
correct values rather closely. Indeed, it looks as though x3 is estimated precisely, but this is 
a function of the vertical scaling of the plots. In fact, the errors between x3 and its 
estimate are of the same order of magnitude as those between xx and its estimate. 
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Looking at Figure 9.24(b), particularly wi th reference to the vertical scaling, shows 
that x2 is not estimated as well as the other two states, the errors being an order o f 
magnitude larger (although it is still subjectively 'good') . This is because the filter is 
working harder to try to correct this estimate, due to the higher gain in k2X. I t therefore 
picks up more of the output noise (readers wi th access to M A T L A B or a similar package 
can easily prove this, by looking at the cross-correlation between y and x2). O f course, the 
picture is made much more complicated by the presence o f the various feedback loops. 

The reader might also have noted that the behaviour o f the states does not fol low the 
expected trajectories in the early parts of the responses, some non-minimum-phase type 
behaviour being apparent (compared wi th Figure 9.19, for example). This behaviour is 
very variable from one simulation run to the next, as i t depends heavily upon the first 
few values o f the (random) noise sequences. In fact, the responses o f Figure 9.24 
represent a rather bad case. In any event, the ini t ia l transient performance is not o f great 
concern, as we would give the estimates time to settle in practice, before trying to use 
them. 

Variation o f the filter parameters has the same qualitative effects as we found in 
Example 9.7, and the same comments apply. The effects are quite general for Kalman 
filters: 

• I f r is increased, or the magnitudes of the elements of Q are reduced, then the Kalman 
gains decrease, as the filter thinks that either the output noise is even worse, or there is 
less noise on x2 and/or x3 as the case may be. The effect is that less correction from the 
output measurement is applied to the state estimates from the 'predictor' . 

• I f r is reduced (or the elements of Q are increased), then the filter expects less output 
noise (or more state noise). It therefore places more weight on the output measurement 
relative to the states, and the Kalman gains increase, so that more correction from the 
measurements is applied to the estimates. 

I f the K F is replaced by a full-order observer in this system, wi th the specified noise 
signals, we discover just how good the K F is in comparison, especially in the estimates of 
x2 and x3. The only advantage of the full-order observer is that i t is less susceptible to 
large ini t ia l transient errors than the K F (but, as mentioned previously, we would not put 
any trust in the estimates of any kind of observer unti l it had had time to settle, so this 
advantage is not o f any practical significance). I f the system model parameters used to 
generate the K F (or observer) are in error compared wi th the actual plant, then the relative 
performance o f the K F becomes even better. 

9.9 Conclusions 
In this chapter, we investigated various ways o f estimating the values of system 
state variables which are not directly measurable. We also investigated, i n theory 
and by simulation examples, the inclusion o f the various kinds of estimator into 
feedback control schemes, for both regulating and tracking systems. We 
discovered that the estimator and the feedback loops can be designed in isolation 
from each other, making for an easier design procedure. 

I n the case of the full-order observer, the design procedure is easy, but all the 
system states are estimated, leading, in general, to inefficient and potentially 
inaccurate implementation. The only occasions on which such a scheme would 
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normally be used are when the measurable signals are relatively noisy, and we 
might prefer slightly filtered estimates to the real thing. Even in such systems, i t is 
just as easy to design a Kalman filter using tools such as M A T L A B . 

The reduced-order observer has a more complex design procedure, but leads 
to implementations that use as many measurable states as possible, and estimate 
only the unmeasurable ones. The resulting schemes are therefore o f lower order 
than full-order schemes, and are l ikely to give more accurate results. Such a 
scheme w i l l almost always be preferred over a full-order design. 

The Kalman filter is used in place of either of the previous observers in 
situations where the measurable signals and the plant states are corrupted by noise 
to the extent that the other types of observer w i l l not work satisfactorily. The fu l l 
t ime-varying K F is algorithmic, operating as a recursive function of the system 
model and the statistical properties of the noise signals. Normally, for linear, 
stationary systems, a stationary K F can be computed offline and then applied just 
like an observer, resulting in slightly poorer dynamic behaviour, but much reduced 
computational effort compared wi th the ful l t ime-varying KF. The M A T L A B 
control toolbox contains tools for designing such Kalman filters in continuous or 
discrete time, and for various cases we have not considered, such as the case in 
which the D matrix is present. The K F can work very wel l , but i t can be difficult to 
specify correctly the required information about the noise signals affecting the 
system, especially for complex high-order plants. 

9.10 Problems 
9.1 Show that Figure 9.6(b) is an alternative 

representation of Figure 9.6(a) (this occurs towards 
the end of Example 9.1). 

9.2 (a) Test the observability of the system: 

9.3 

A = 

0 1 0 

2 3 1 

0 0 2 

B = anything, 

c = [1 0 0] 

(b) Consider the output of the system, calculated 
from y — ex. How do you reconcile the result of 
part (a), together with the definition of 
observability (Section 5.3.2), with this result? 

Consider the system: 

c=[\ 0 0] 

(a) Design (if possible) a full-order observer for the 
system, placing the observer poles at s = - 4 and 
s = - 4 ± 4/'. 

"0 1 0" "0" 
A = 0 0 1 . b = 0 

0 0 0 1 

(b) Draw a block diagram of the resulting system, 
without using vectors or matrices. 

(c) If you have access to MATLAB and the control 
systems toolbox (or a similar package), repeat 
part (a) with computer assistance. Verify that the 
resulting observer F matrix gives the desired pole 
locations. Hint: Use the dual of the place command 
to calculate g - see towards the end of Example 9.3. 

9.4 (a) For the system of Problem 9.3, design a reduced-
order observer having eigenvalues with real parts 
at X = —5, and a damping ratio of 0.707. 

(b) Now add a feedback system to place the closed-
loop poles of the overall scheme (excluding the 
observer poles) at X = -1 ± 2j and X = -2. 

(c) Draw a diagram of the overall scheme, with no 
vectors or matrices. 

(d) What would you expect the steady-state 
performance of the final system to be to a step 
input? Convert the scheme to a tracking system. 

Note: The results of Problems 9.5 to 9.9 may also be 
converted to tracking systems if you need the 
practice, but this is not strictly anything to do with 
observers as such. 
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9.5 In the system of Figure P9.5, only the lines shown 
carry measurable signals. 
(a) Obtain a state-space model for the plant. 
(b) Design a feedback regulator for the plant of part 

(a), such that the closed-loop poles are positioned 
at s = — 1 and s = — 1 ± j . Use a full-order 
observer, but note that xY and x2 are both 
measurable and can, if you choose, be regarded 
as outputs of completely separate subsystems. 

(c) If you have MATLAB and the control systems 
toolbox, repeat the exercise and see how much 
easier it is! 

i 

2 

i 

s(s + 1) 

Figure P9.5 System for Problems 9.5 and 9.6. 

9.6 For the plant of Figure P9.5, and the state-space 
model obtained in part (a) of Problem 9.5, repeat 
part (b) of Problem 9.5 using a reduced-order 
observer, and compare the resulting systems. If you 
have used xx and x2 as defined in Figure P9.5, you 
may find it useful to define x{ and x2 as outputs of 
separate subsystems, since both are measurable. 

9.7 A system has the LTF model 

U (s) 
2 5 + 1 4 

s3 + 10s2 + 295 + 20 

Making connections to u and y only, design a state 
variable feedback regulator to place the closed-loop 
poles in a Butterworth configuration (see Equation 
(5.14) with an associated frequency of 6 rads - 1 . 
Note that one of the open-loop poles is at s = - 5 . 

9.8 (a) Consider the system shown in Figure P9.8. 
Making connections only to the signal paths 
shown in the figure, design a regulator to move 
the unstable open-loop poles to s = — 1 ± 2j\ 
without affecting the third pole location. 

(b) Draw a diagram of your solution which contains 
no vectors or matrices. 

(c) By block diagram reduction, or by using 
MATLAB or a similar package, show that the 
diagram of part (b) has the required closed-loop 
poles (if you use block diagram reduction 
methods, be careful not to cancel any poles and 
zeros, otherwise you will not see the observer 
pole - why is this?). 

u 1 6 J 
s + 1 s 2 - 4s + 3 

Figure P9.8 System for Problem 9.8. 

9.9 Figure P9.9 shows a position controller which 
contains a variable rate feedback constant K. Design 
a closed-loop regulator for the plant, such that the 
closed-loop performance is characterized by poles 
placed at s = —2 and s = — 1 ± j . You may assign 
any value you choose to the constant AT, but you may 
not make any connections to signals inside the 
indicated subsystem. 

No connections allowed in here 

1 — 1 A 

Figure P9.9 Position control system for Problem 9.9. 

9.10 In any application of a Kalman filtering scheme, 
computer assistance and implementation would 
always be used. However, a useful insight into the 
operation of such filters can be gained by carrying 
out by hand the first few iterations of a relatively 
simple problem, such as that solved in Example 
9.7. Even so, it will be necessary (unless great 
tedium is to be endured) to use the assistance of a 
computer program, or a programmable calculator, 
to generate the random noise signals and to carry 
out the recursive calculations. In addition, to really 
get a feel for what is happening, it will be 
necessary to rerun the calculations with different 
choices for Q and /?, so it is definitely a hard job 
by hand. If MATLAB and its control systems 
toolbox are available, things are greatly eased, and 
the file fig9_22.m on the accompanying disk can 
be used as a template and suitably modified in 
several areas (do not alter the original file - use a 
copy). 

A system has a transfer function 

G(s) s2 + 2.2s + 3 
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This can be converted by direct programming to the 
state-space model 

0 1 "0" 
, b = 

"0" 
- 3 -2.2 1 

With this state-space model, the arrangement of the 
plant is such that states xx and x2 are corrupted 
with uncorrected additive white noise of ampli
tudes 0.2 V r.m.s. and 0.1 V r.m.s. respectively. 
State x2, in addition, is subject to the same noise 
signal as xx, but attenuated by a factor of 10. 

The output of the system is provided by a 
measuring sensor, which also causes additive white 
noise, of amplitude 0.1 V r.m.s., at the output. 

Investigate the behaviour of a suitable Kalman 
filter in estimating the states of the system. 

Points to note: 

• You will need to convert the state-space model to 
discrete time, using a suitable sampling interval 
(see Section 3.6.2, or use the MATLAB Control 
system toolbox c2d command). 

• From the problem statement, you can work out 
the matrix r which couples the noise into the 
states as in Equation (9.30). The information 
given applies to the continuous-time system but, 
since the noise feeds the states directly {not the 
state derivatives), you will not need to convert 
the system (A,T) to discrete time in this case. 

• It will be necessary to evaluate sufficient samples 
to cover at least 2-3 s, in order to see the 
behaviour of the system. 
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10.1 Preview 
Readers who have studied Chapters 1 to 4 should 
understand this chapter. 

The early chapters introduced various means of 
modelling, analysing and designing controllers for 
engineering systems. One of the major approaches 
involved the use of Laplace transfer functions (LTFs), 
and a big disadvantage was that it is not clear how to 
handle multi-input-multi-output (or 'MIMO', or 
'multivariable') systems by these methods. The state-
space methods could be used, but they also suffered 
from certain drawbacks. This chapter addresses the 
use of frequency-domain techniques, based on LTFs, 
for analysing multivariable systems. 

No other part of the book relies on this material, 
so it can be omitted if desired. For readers who wish 
to study only one technique from this chapter, the 
characteristic locus method may be easier for 
newcomers to apply, since it requires less experience 
on the part of the designer than does the inverse 
Nyquist array, in order to obtain reasonable results. 

In this chapter the reader will learn: 
• that multivariable systems (that is, systems with 

more than one input and/or more than one output) 
can be handled using Laplace transfer functions 
combined with matrix methods, and not only by 
using the state-space approach 

• that there is more than one frequency domain 
approach to MIMO analysis and design 

• how to apply two or three methods in practice, 
using computer-aided control system design 
(CACSD) techniques. 

NEW MATHEMATICS FOR 
THIS CHAPTER 

In Equation (2.96) (Section 
2.7), the concept of a 
transfer function matrix 
(TFM) was briefly 

introduced. In this chapter, we reinforce this concept, and 
then use TFMs widely. This is because the multivariable 
frequency-domain methods combine the benefits of 
Laplace transfer functions with the natural ability of 
matrix methods to handle MIMO systems. For readers 
who have not studied Chapters 5 and 9 and require a 
refresher on matrix methods, Appendix 1 contains all the 
necessary material, and now would be a good time to read 
it. Some more advanced aspects of matrix algebra are also 
introduced for the first time, as they are needed. These 
include the notion of the McMillan form of a matrix, 
singular values, condition number and the Perron-
Frobenius eigenstructure of a system. 

Much of the mathematics of multivariable systems in 
the frequency domain is extremely difficult to apply 
without computer assistance, usually due to the huge 
volume of calculation required, rather than to any intrinsic 
difficulty of the mathematics itself. For real-world 
examples, these methods rely heavily upon computer-
assisted control system design (CACSD) environments. 
Here, we use MATLAB, its Control Systems Toolbox and 
its Multivariable Frequency Domain Toolbox (MVFDTB -
see Ford et al. (1990)). 
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10.2 introduction 
Multivariable systems (systems wi th multiple inputs, multiple outputs, or both) 
have always posed an interesting problem for the control engineer. In Chapter 2, we 
pointed out that one of the major advantages of the time-domain control techniques 
(using state-space methods) over the frequency-domain techniques (using Laplace 
transfer functions) was their ability to handle such systems. 

As the state-space methods were being developed in the 1960s, i t ini t ia l ly 
appeared that they would be able to do everything that the frequency-domain 
methods could do, and much more besides. However, as time passed, it became 
clear that the state-space methods gave rather fragile results in some cases. The 
most simplistic reasoning for this is that the frequency-domain methods are 
graphical in nature, and rely only on input-output models o f the system. The design 
process is iterative, the control engineer typically inspecting a suitable frequency 
response or root locus plot, designing a controller graphically, investigating the 
effect on the response plot and iterating around such a procedure until satisfied. The 
results are clearly approximate, are inherently treated as such and tend to be 
reasonably robust in the face of modelling errors and certain unmodelled plant 
disturbance signals. 

State-space methods, on the other hand, use internal models of systems and 
synthesize controllers using mathematical algorithms based upon the models. I f the 
models turn out to be poor, then so is the control l ikely to be. 

For multivariable systems, however, the state-space methods seemed the ideal 
way out, since the number of inputs and/or outputs makes no difference to the 
design methods; it just alters the size o f the matrices. In applying the state-space 
methods to aircraft and space vehicle control, some notable successes were 
achieved. This is still one of the major areas o f application o f state-space methods, 
because system models in aerospace tend to be relatively accurate, so the 
synthesized controllers can work quite wel l . 

Unfortunately, unlike the aerospace applications, many industrial processes 
defy cost-limited attempts to obtain very accurate models (especially accurate 
linear models). So, when state-space methods are applied to industrial problems, 
they meet wi th mixed fortunes - sometimes working wel l , and sometimes being 
outperformed by the standard PID controller. 

Furthermore, when time-domain (state-space) controllers do work wel l , they 
can prove rather fragile. For example, disturbance rejection can often be poor; and 
the failure of any of the feedback loops might be disastrous, leading to total 
instability. Since the mid-1980s, or thereabouts, a lot o f work has been done on 
improving the robustness of such controllers, but a detailed description is beyond 
the scope of this text (see Chapter 13 for an introduction to the area o f robust 
control, and further references). 

I n an effort to apply the elegant matrix methods o f time-domain control to 
multivariable systems, without incurring the apparent disadvantages, workers in the 
U K investigated the generalization of the standard frequency-domain techniques 
(Bode and Nyquist) to multivariable systems. The aim was to combine the matrix 
algebraic approach to multivariable system analysis (thus coping wi th M I M O 
systems), wi th the graphical design (as opposed to synthesis) approaches o f 
frequency-domain controller selection (thus removing some of the reliance on very 
accurate plant modelling). 
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The results included the Inverse Nyquist Array ( I N A ) (Rosenbrock, 1974) and 
the Characteristic Locus (CL) (MacFarlane and Kouvaritakis, 1977) techniques. 
These are each heavily dependent upon a CACSD environment for their use, as 
they are true design methods, in which the engineer tries a controller, assesses 
the results, improves the design and tries again unti l satisfied. The amount o f 
computation involved, and the amount of data a designer would have to handle, are 
significantly greater than for single-input-single-output (SISO) systems. Thus, it 
was not unt i l interactive computer-graphics terminals (and, later, powerful personal 
computers) became readily available, that the methods began to find wide 
acceptance. 

Other methods of analysing and designing multivariable systems also exist, 
but space limitations do not allow us to consider more than one additional technique 
here. The interested reader might investigate the sequential return difference 
method (Mayne, 1979), dyadic expansion methods (Owens, 1978) and principal 
gain and phase methods (Postlethwaite et al., 1981). In addition the specialized 
texts on multivariable systems by Maciejowski (1989), O 'Rei l ly (1987), Patel and 
Munro (1982) and Owens (1978) w i l l all prove excellent references. 

10.3 Frequency-domain description of multivariable systems 
Imagine an industrial process in which two streams of l iquid feedstock, one hot and 
the other cold, are poured into a vessel, where they are mixed. The mixture is 
continuously drawn off from the vessel (but at a variable flowrate) into the next part 
of the process. It is necessary to control both the temperature o f the mixture in the 
vessel, and its depth, so that the fo l lowing part o f the process is fed under constant 
head and constant temperature conditions. The available means o f control is by flow 
control valves on the two feedstock pipes. This system has two control inputs (the 
two incoming flowrate setpoints) and two outputs (the temperature and level in the 
vessel). 

I t does not require much imagination to see that this is actually a rather 
difficult control problem, due to the interaction present in the system. For example, 
say the vessel temperature is too high. The rate o f flow of the hot feedstock could be 
reduced, or that of the cold one increased, in order to correct the temperature error. 
However, either of these actions would cause an error in the level o f l iquid in the 
vessel. 

Similarly, i f the l iquid level falls, then i n order to increase it , one of the 
incoming flowrates might be increased. Whichever one we choose w i l l then cause a 
temperature error. 

I n both these cases, what is actually required is a suitably chosen change made 
to both the feedstock flowrates simultaneously. This chapter uses transfer function 
matrix models, containing the LTFs from each process input to each process output, 
in order to design such controllers. 

Another two-input-two-output system, which we shall use as a case study for 
this chapter, is shown in Figure 10.1. It is a pneumatic laboratory rig, buil t to 
simulate a particular industrial process, not dissimilar from the mix ing process 
described above. The rig comprises four pressure vessels o f differing dynamic 
response, which are fed in pairs from voltage inputs via force-balance E-to-P 
(voltage to pressure) converters. The rig has two outputs which are each functions 
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of the pressures in two of the pressure vessels, and are converted to voltage signals 
by pressure transducers. Since the outputs are the result of combining pressures 
from pairs of vessels which are not fed from the same input, there is bound to be 
significant interaction in the system. Driv ing the system from either input w i l l have 
a significant effect on both outputs simultaneously. The other system components 
are the volume boosters, which are simply power amplifiers to boost the very small 
flows from the E-to-P converters, so that they become capable of supplying the 
pressure vessels; and the computing relays, which are pneumatic components 
giving an output pressure which is twice the (gauge) pressure on one input minus 
the (gauge) pressure on the other. 

One way of obtaining a model of a system like this is to apply a voltage step to 
each system input in turn, record the output behaviour, and fit transfer function 
models to each of the resulting responses as described in Section 3.8. For more 
complex systems, or systems for which a step input is not allowable, other methods 
are available (see Chapter 8). 

Example 10.1 Obtaining a model of the pneumatic 
system 
Applying steps of 1 volt to each input in turn of the system of Figure 10.1 yielded the 
responses of Figure 10.2. In this figure we have four response curves. These represent the 
behaviour at each of the two outputs in response to unit step signals at each of the two 
inputs. The 'fuzziness' of the traces is due to noise. 
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The curves appear to represent first-order responses but, as noted in Section 3.8, this 
need not necessarily be the case. A rapid analysis o f the system suggests the fo l lowing: 

• The four pressure vessels are simple closed cylinders, fitted wi th flow restrictors in their 
inlets. They should therefore be adequately representable by simple (first-order) lags, 
based on a resistance-plus-capacitance type of lumped-parameter model. 

• E/P force-balance transducers tend to be adequately represented by very 'fast', 
underdamped, second- or third-order models. In this case, these dynamics should be 
completely 'swamped' by the relatively slow dynamics of the pressure vessels. 

• The volume boosters, computing relays and pressure transducers w i l l all have their own 
dynamics but, in every case, these should be very fast compared wi th the components 
discussed above. 

• There is nothing to suggest non-minimum-phase behaviour, or significant time 
delays. 
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These considerations suggest that first-order models for the four responses may, 
indeed, be adequate. We shall try fitting such models and, i f the fit is good, we shall 
proceed. Using the methods of Section 3.8 to fit four simple first-order transfer function 
models to these curves gives the fol lowing results: 

1.02 

1 1 . 7 6 5 + 1 

- 0 . 5 4 

£/, ^ 10.4i + 1 

= gn{s) (say) 

S21 (s) (say) 

y , - 0 -52 

Tr2{s) = WûTÎ = 8i2{s) (say) 
Y 2 f A 1-04 . w , — <^- g22(s) (say) 

2.6s + 1 
(10.1) 

Thus, in Equation (10.1), the transfer function g2i(s) represents the relationship between 
output 2 ( y 2 ) and input 1 (wj), and refers to the Tai l ing ' trace in the upper half o f Figure 
10.2. The other three transfer functions can similarly be related to the response curves, 
the ordering o f the subscripts of gjk(s) always specifying the transfer function between 
output j and input k (see also Section A 1.1.1). When these four transfer functions are 
arranged in a matrix, we obtain G(s), the transfer function matrix ( T F M ) of the system: 

£ n (s) gl2{s) 
G(s) 

1.02 -0.52 

1 1 . 7 6 5 + 1 1 0 . 1 5 + 1 

- 0 . 5 4 1.04 
(10.2) 

10.45 + 1 2.65 + 1 

Wi th additional definitions u(s) = [U{(s) U2(s)]T and y(s) = Y2(s)]T, we also have: 

y(s) = G(s)u(s) (10.3) 

Equation (10.3) is a general T F M description o f any linear multivariable system. 
y(s) w i l l have as many rows as the system has outputs, u(s) w i l l have as many 
rows as the system has inputs and the size of G(s) w i l l be (number o f 
outputs) x (number of inputs), in common wi th any other matrix in a block 
diagram (Appendix 1). Equation (10.3) suggests a general block diagram 
representation as shown in Figure 10.3(a), and for a two-input-two-output 
system such as ours, the expansion of Figure 10.3(a) yields Figure 10.3(b). The 
heavy lines in Figure 10.3(a) denote vector (multivariable) signal paths, as in our 
previous state-space work. Note again that the ordering o f an element's subscripts 
specifies the output then the input of G(s) which the element connects internally. 
A l l contributions to each output are simply summed. This can be seen to be true 
from Figure 10.3(b), and from a mathematical viewpoint too: Equation (10.3) for 
our system can be written: 

M*). 
Su M 
.SlM 

UM 

that is, 

YM = SiMUM + 8\2(s)U2(s) and 

Y2(s)=g2i(s)Ul(s)+g22(s)U2(s) (10.4) 
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which can be seen to be in agreement w i th Figure 10.3(b). Substituting the 
individual transfer function elements from Equation (10.2) into Figure 10.3(b) 
would give a block diagram model of the system o f Figure 10.1. 

Later, we shall see that the T F M model o f Equation (10.2) is a fairly accurate 
description of this system. However, in addition to the approximations made above, 
it is also worth mentioning the issue of linearity. I n order to minimize the effects o f 
the noise, we made relatively large changes to the system inputs w i th respect to 
normal operating changes (the total input range is 10 V, so our change is 10 per 
cent). A t the same time, we have been careful to keep the signals small enough to 
avoid any nonlinear effects such as saturation. We have then modelled the system 
from the resulting responses. This has given us a linear model o f the plant. 
However, this linear model is only val id for small changes around whatever 
operating point we used in our tests. From Figure 10.2 i t can be seen that we used 
two separate operating points: y{ — 0.2 V and y2 = 1.15 V for the elements in 
column 1 of the T F M (from the upper half o f Figure 10.2); and yx — 1.1 V and 
y 2 = 0.2 V for the elements in column 2 o f the T F M (from the lower half o f Figure 
10.2). In practice, i f we apply control methods which call for inputs much larger 
than the ones we used in the tests, the system w i l l become nonlinear (largely due to 
saturation of the E-to-P converters, which can only produce a certain maximum 
output pressure, no matter how hard we drive them). For methods o f handling 
nonlinear systems, see Chapter 14. 

Note that there are other possible model structures for our system. Figure 
10.3(b) has arisen naturally because of the way we tested the system and derived our 
model. I t is sometimes called a p-canonical form o f model. There is also, for 
example, the so-called v-canonical form, shown in Figure 10.4. Since the input and 
output signals in Figures 10.3(b) and 10.4 are identical ( i f they model the same 
plant), it is easy to write down the equations o f Figure 10.4, compare them wi th 
Equation (10.4), and solve for the unknown transfer function blocks in Figure 10.4 
in terms of the known ones o f Figure 10.3(b). In this way, the transformation from 
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one form to the other w i l l be found (see Problem 10.1). To avoid possible confusion, 
we shall never use this second form - we shall standardize on that of Figure 10.3(b). 

We shall also implic i t ly assume from now on that any system we consider is 
'square' in the sense that the number of outputs and the number of inputs are equal, 
thus giving a square T F M . This w i l l often be the case in practice. I f it is not, then 
(for cases having an excess of outputs) either some outputs must be left 
uncontrolled at this stage or extra inputs must be found which are independent of 
the existing ones (usually difficult); or (for systems wi th an excess o f inputs) some 
inputs may not be used or new independent outputs may be defined. In order to help 
decide which inputs or outputs to ignore, and also which input may best be paired 
with which output for control purposes, techniques such as the relative gain array 
may be helpful (due to Bristol - described in Maciejowski (1989)). 

10.3.1 Relationship with state-space models 
Any linear system which can be modelled as a T F M can also have an infinite 
number of state-space descriptions (see Section 2.5.1). Conversely, any mul t i -
variable state-space model can be converted to a T F M model. The conversion is 
easily accomplished via the Laplace transform. 

Consider the standard state-space model 

x(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t) 

Taking Laplace transforms in the state equation and setting ini t ia l conditions to 
zero (because TFMs, like all Laplace transfer functions, are only defined for zero 
init ial conditions) gives: 

sx(s) = Ax(s) + Bu(s) or [si - A]x(s) = Bu(s) 

or x(s) = [si - A]~lBu(s) 

Substituting this into the Laplace transformed version of the output equation, we 
obtain: 

y(s) = C[sl - A]~]Bu(s) + Du(s) 
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Also, we know that y(s) = G(s)u(s) where G(s) is the T F M , and is therefore 
related to the state-space description by 

G(s) = C[sI-A]lB + D 

10 A Feedback control of muinvariable systems - an intuitive 
approach 

The approach to be developed in this section works for our pneumatic system, but is 
not of much practical use in general - for reasons we shall discover. However, it 
does give a motivation for study of the better methods and introduces some of the 
basic ideas behind these. It is based upon our previous knowledge o f frequency-
domain control, which suggests that a suitable approach might be to place some 
kind o f compensator in front of the plant, and close unity negative feedback loops 
(UNF) around the forward path thus formed. The arrangement we are suggesting is 
shown in Figure 10.5. 

Figure 10.5 A multi-
variable compensator in a 
unity negative feedback 
arrangement. 
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In Figure 10.5, we assume that every signal path in the system carries n signals. 
The plant has n inputs and outputs, so G(s) is an n x n T F M , and the controller must 
therefore also be an n x n T F M . How do we design the controller T F M K(s)t 

The single problem that makes the design o f controllers for multivariable 
systems different from that for SISO controllers is that o f interaction. In general, 
applying a control signal to a single input in an effort to obtain certain output 
behaviour w i l l cause responses at more than one output, such as those we saw in 
Figure 10.2. This makes the controller design a very difficult proposition, as it is 
hard to predict what control action we would need to apply to several inputs 
simultaneously, in order to get just one output to behave as we wish. To get several 
outputs to behave as we wish is, of course, even more o f a problem. 

The general approach o f all multivariable design methods is therefore to 
remove (or at least greatly to reduce) the effects o f such interaction. Ideally, this 
w i l l leave us wi th a system in which any given output w i l l respond to only one 
input. I t w i l l then be possible to apply any desired SISO design technique to each o f 
the independent input-output pairs thus formed. For example, in Figure 10.3(b), i f 
we could somehow remove the effects o f g2l (s) and g{2(s), we would be left wi th 
only the two SISO paths via gn(s) and g22(s). We could then use Bode, Nyquist, 
Nichols or root locus analysis to design compensators for these two independent 
loops in the usual way, one at a time; or even just close U N F loops around the plant 
and apply PID control (Section 4.5.2) empirically, tuning for acceptable 
performance. 
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Another thing to note about this scenario is that wi th the effects o f g2l (s) and 
812 (s) g ° n e > t n e remaining system has a diagonal T F M (g2l (s) and gl2 (s) set to zero 
in Equation (10.2)). The converse is true - any system wi th a diagonal T F M w i l l 
suffer no interactions and is, effectively, a set o f independent SISO paths. We 
therefore ini t ial ly seek to make the overall T F M of the system (including whatever 
compensation we add to it) diagonal. After that, we can, in principle, tune the 
performance wi th additional single-loop controllers as usual. 

I f the inverse o f the T F M G(s) were to exist, then setting the compensator K(s) 
in Figure 10.5 to be G(s)~l would give a forward path: 

y(s) = G(s)K(s)e(s) = G(s)G~l (s)e(s) = Ie(s) = e(s) (10.5) 

(see Section A 1.1.2 to confirm that the order o f multiplication of the terms in a 
series T F M is always against the signal flow). 

Equation (10.5) implies a system not only wi th no interaction, but also w i th no 
dynamics! This is strictly unachievable, but we shall proceed wi th the idea. Having 
a system which is now conceptually just a set o f direct connections from each input 
to the corresponding output, we could add another compensator and U N F loops to 
provide the required closed-loop dynamics. We have therefore effectively split K(s) 
of Figure 10.5 into two parts as shown in Figure 10.6. The first part, Kp(s), is the 
precompensator containing G~l(s); the second part, Kd(s), w i l l be chosen to 
provide the required dynamic performance. A n example w i l l clarify this. 

Compensator K(s) 
Provides Diagonal ising 1 

dynamics precompensator j Plant 

Figure 10.6 Structure of a 
controller including a 
diagonalizing 
precompensator. 

Example 10.2 The pneumatic system with a 
diagonalizing precompensator 
We consider the pneumatic system of Figure 10.1, whose model is given by Equation 
(10.2) and Figure 10.3(b), and we shall design for i t a control scheme of the form of 
Figure 10.6. In line wi th our idea of diagonalizing the compensated plant T F M , we firstly 
choose the precompensator Kp(s) = G~l(s). This is not a pleasant quantity to evaluate, 
even for a system as simple as ours. It also has other drawbacks, which we discuss after 
the example. Using the method of adjoint matrix divided by determinant to calculate the 
inverse (see Section A 1.1.3) generates a sixth-order common denominator polynomial , and 
seventh-order terms in the remaining numerator polynomial matrix. However, these are all 
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found to have four common roots which, when cancelled out, leave the second-order 
common denominator and third-order numerator terms as follows: 

KJs) = G-l(s) 

1.02 

11.765 + 1 

- 0 . 5 4  

L 10.45 + 1 

1 

- 0 . 5 2 

1 0 . 1 5 + 1 

1.04 

2.65 + 1 J 

102.845 2 + 17.715 + 0.78 k2i{s) 
*i2W 
k22(s)_ 

(10.6) 

wi th : 

*2lW 
h 22 (s) 

1284 .75 3 + 360 .05 2 + 33 .65 + 1.04 

165 .45 3 + 93 .Ö5 2 + 12.95 + 0.52 

166 .85 3 + 94 . 85 2 + 13.25 + 0.54 

278 .65 3 + 161.55 2 + 23 .65 + 1.02 

Since this precompensator should completely diagonalize the plant, such that G(s)Kp(s) 
= / , the system wi th Kp(s) in place now appears to have vanished, as shown in Figure 
10.7. Furthermore, since we now have two completely separate SISO loops, the remaining 
matrix Kd(s) must be diagonal. Elements kdi2(s) and kd (s) are therefore zero and do not 
appear in Figure 10.7. 

To calculate the contents of the remaining elements o f Kd(s), we need to specify the 
open-loop transfer functions which w i l l lead to the required closed-loop performance in 
each loop. The procedure for each element is identical. Considering kdn(s)9 we assume that 
the required transfer function w i l l be a rational polynomial in 5, that is, 

kn(s) 

kd{s) 

In closed-loop, we shall then obtain: 

to !+*,(*) kd(s)+kn(s) 

kn{s) 

This can be compared wi th the required closed-loop transfer function for loop 1, to fix the 
elements kn(s) and kd(s). 

Precompensated 
plant 

Figure 10.7 A 2 x 2 
system with diagonalizing 
precompensator in place. 



510 Multivariate systems in the frequency domain 

Let us arbitrarily choose to specify for each loop a closed-loop step response having 
second-order characteristics wi th con = 1 rad s _ 1 and £ = 0.5 (corresponding to about 1.6 s 
10-90 per cent rise time, and 15 per cent overshoot, from the standard curves in Figure 
3.19). The closed-loop transfer function for each loop must therefore be 

R v ' s2 + 2Co)ns + w2 

1 kn{s) 

s2 + s+l kd(s)+kn(s) 

from which we see that kn — 1 and kd(s) = s2 + s. The required Kd(s) is therefore 

Kd(s) 

1 

i ( 5 + l ) 

0 

0 

1 

s(s+ 1) 

and the overall compensator is: 

Kp(s)Kd(s) 
1 

102.8452 + 17.715 + 0.78 A : 2 1 ( 5 ) fc22(5). 

1 

5 ( 5 + 1 ) 

0 
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1 

1 

102.8454 + 120.5553 + 18.4952 + 0.785 k2i(s) k22(s\ 

5 ( 5 + 1)_ 

(10.7) 

where ku(s) and so on remain as given in Equation (10.6). 
Figure 10.8(a) shows the step responses of the open-loop plant, according to the 

model of Equation (10.2). The agreement wi th the plant traces of Figure 10.2 is seen to be 
good. Figure 10.8(b) shows the responses wi th the compensator of Equation (10.7) placed 
in front o f the plant model, and U N F loops closed around i t . The plant input signals ux 

and u2 are also shown. It can be seen that the desired output responses are achieved, 
apparently wi th no interaction. The input signal ux moves rather excessively in response to 
the input on rl9 but is wi th in the plant constraints. However, since the acceptable signal 
ranges are only 0-10 V, the plant input would saturate i f a much greater step were applied, 
or i f the 1 V step was applied to r{ wi th an existing input signal level greater than about 
2 V on ux. We are therefore quite close to the plant l imits for 1 V input steps (for smaller 
steps, or smoothly changing signals, the situation would be better). 

Note that Figure 10.8 was created by the M A T L A B m-file figl0_8.m on the 
accompanying disk. The actual plots are produced by a command mv2step. This is 
not a standard M A T L A B command, but is the custom-written m-file mv2step.m on 
the accompanying disk. This takes a state-space model of a two-input-two-output 
system in the variables a, b, c and d, together wi th a vector o f time values in i , and 
directly produces plots such as Figure 10.8(a). 

The application of our intuitive method in Example 10.2 was fairly successful. 
It also works reasonably well when applied to the real plant. However, it is not 
generally of much use for the fol lowing reasons: 

• I t relies upon the controller containing the inverse of the plant T F M , G~l(s). 
Firstly, this inverse may not exist. Secondly, i f it does exist, i t w i l l almost always 
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lead to a compensator which cannot be buil t . For example, Equation (10.6) 
represents four compensator elements each having numerator order 3 and 
denominator order 2, and hence being unrealizable (all real systems must have 
more poles than finite zeros, or at least an equal number to a first approximation). 
We unwit t ingly overcame this in Example 10.2 by designing the other part o f the 
compensator so that it had a sufficient excess o f poles over zeros to correct this 
deficiency by the time we reached Equation (10.7). For high-order plants, this 
would be undesirable. 
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• The order of compensators designed by this method w i l l always be high. This is 
because the compensator must firstly contain the inverse o f all the open-loop 
plant dynamics, and secondly add all the required closed-loop dynamics. High-
order compensators are harder to implement, and less l ikely to be robust than 
lower-order ones. 

• Even i f cancellation of the plant dynamics is apparently perfect (as in Example 
10.2), plant performance w i l l not be as expected since G(s) w i l l only be an 
approximate model of the plant, and 'cancellation' o f the real plant's dynamics 
w i l l therefore only be approximate. The uncancelled parts o f the plant's 
dynamics w i l l cause some interaction to return. 

• We have made no assessment of the stability o f such a control scheme. As we 
shall now discover, this is an area where we must tread rather carefully, and 
intuition is of little help. 

10.5 Stability of muinvariable feedback systems 
The purpose of this section is not to give a rigorous treatment o f this subject, which 
is actually rather difficult. Here we seek to illustrate that stability problems which 
we would be unlikely to predict from our knowledge of SISO system behaviour can 
easily arise in multivariable systems. The message is always to expect trouble! 

10.5.1 Gain space analysis and the McMillan form of G(s) 
In this section, we make use of two examples from Patel and Munro (1982), which 
also appear in O'Reil ly (1987). However, in the present section the descriptive text 
has been rewritten and expanded. 

Consider an open-loop T F M given by 

G(s) 

1 

5 + 1 
1 

5 + 3 
1 

. 5 + 1 5 + l _ 

(10.8) 

and let us arrange this in a very simple system, comprising a set of closed loops 
wi th an adjustable negative feedback gain in each loop. This is shown in Figure 
10.9, where F is a diagonal matrix of constant feedback gains; that is, F = 
d i a g { / n , fn) in this case, or F = d i a g { / „ , / 2 2 , . . . , / „ „} in the general case. 

By choice of F, we can obtain any desired loop gains and any combinations of 
open or closed loops (simply setting fu = 0 makes the zth loop open). 

Plant 

Figure 10.9 Simple 
constant feedback 
multivariable controller. 
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I f we had a SISO system comprising a constant negative-feedback gain around 
a first-order lag, we could guarantee that the closed-loop system would always be 
asymptotically stable because the closed-loop transfer function would just be a 
different first-order lag. Our multivariable system is just two such loops, w i th first-
order cross-coupling. We would probably not intui t ively expect any problems. 

We can define the closed-loop T F M for the system of Figure 10.9 as H(s), such 
that 

y(s) = H(s)r(s) 

B y analogy wi th the equivalent SISO system (but taking care over the order o f the 
matrix multiplications), Problem 10.2 shows that 

H(s) = [I + G(s)F]-lG(s) (10.9) 

Returning to our example, i f we m a k e / n = 50 a n d / 2 2

 = 0> then H(s) has all its 
poles in the left-hand half of the s-plane and the system is asymptotically stable. 
However, i f we set fn = / 2 2 = 10, we find that the system is unstable in closed-
loop. It turns out that it is impossible to set up two high-gain loops around this 
seemingly simple system, without causing instability. This can be shown clearly in 
a graphical manner, by plotting the stable region i n the gain space. This is an n-
dimensional space containing points defined by the elements on the diagonal o f F. 
Thus, in our 2 x 2 case, the gain space is two-dimensional (that is, a plane), and is 
effectively just a plot o f / 2 2 v s . / n . The first quadrant o f the gain space, where all 
the (diagonal) elements of F are greater than zero, corresponds to negative 
feedback in all loops (from Figure 10.9). 

Figure 10.10 shows the gain space for the system of Equation (10.8) and 
Figure 10.9, wi th the approximate regions o f stability as the feedback gains vary. 
The figure suggests that, for stability, we can have a high gain in either loop, but not 

50 

Figure 10.10 Gain space 
for the system of Equation 
(10.8) and Figure 10.9. 
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in both loops simultaneously. However, the system has high integrity in the sense 
that i f one feedback loop is broken ( / n o r / 2 2 falls to zero), the system remains 
stable. 

What has happened to cause this unexpected behaviour is that, due to the 
interaction, the poles and zeros of the closed-loop system are not what they might 
be expected to be from an inspection of the open-loop T F M . In SISO systems, we 
expect the closed-loop zeros to be the same as the open-loop ones, and the closed-
loop poles to move. In M I M O systems, cancellations and appearances o f poles and 
zeros often occur due to the interactions. 

Unfortunately, even for a system as simple as this one, it is not easy to 
visualize, in physical terms, what is happening. I f the equations of the feedback 
system are written down (neglecting the s-dependencies for clarity) they are 

y = Hr, or y , = hurx + hl2r2 and y 2 = A 2 1 r , + h22r2 

where H = [/ + GF]~lG (Equation (10.9)). 
The presence o f the feedback loop has caused the appearance o f the 

[I + GF]~ term mult iplying G in Equation (10.9). Performing the algebra w i l l 
show that several zeros appear in the closed-loop T F M , H, whereas there were none 
in the open-loop T F M , G. Also, the poles o f H w i l l differ, at least in number and 
mult ipl ic i ty , from those of G. In this particular example, every element of H has a 
third-order denominator, h n has a second-order numerator, hl2 has a first-order 
numerator while h2X and h22 both have third-order numerators. 

In general, these extra zeros frequently arise in multivariable feedback 
systems, but although their behaviour is important, it is beyond the scope of this 
text. Patel and Munro (1982) devote an entire chapter to the poles and zeros of 
multivariable systems. 

By now, readers should be convinced at least that multivariable systems 
require a more thoughtful approach than might at first seem to be the case. In 
particular, the obvious poles and zeros of the open-loop T F M are usually not those 
which really determine the system's behaviour in closed-loop. 

In order to be able to predict something about closed-loop performance from 
the open-loop T F M (as is our wont in SISO analysis), we need to be able to see the 
effective 'poles' and 'zeros' of the open-loop T F M , wi th a view to multivariable 
feedback control, rather than the obvious poles and zeros o f its individual elements. 

Although it is not the recommended method from a numerical computational 
viewpoint, one method is to reduce G(s) to its so-called McMillan form. The 'poles' 
and 'zeros' of G(s) from a multivariable viewpoint are then all the obvious poles 
and zeros of the M c M i l l a n form. Obtaining the M c M i l l a n form is not difficult and a 
derivation o f the fol lowing result can be found in Section A 1.5. The M c M i l l a n form 
of G(s) as given in Equation (10.8) is (Section A 1.5): 

M(s) 

0 
( J + 1 ) ( J + 3 ) 

s - 1 
0 

s+l 

Thus, from a multivariable feedback viewpoint, G(s) effectively has two poles at 
s = - 1 , one pole at s = - 3 and one zero at s = + 1 . Note that the numerical 
values of the poles in a M c M i l l a n form are the same as those o f the corresponding 
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G(s), but that they differ in number and grouping. The zeros in a M c M i l l a n form 
are the transmission zeros o f G(s). It is this zero at s = + 1 that causes the trouble. 
In effect, since it is a right half-plane zero, cross-multiplications in the evaluation 
of H(s) can produce a right half-plane (that is, unstable) pole under the appropriate 
conditions. 

For systems in general, i f the M c M i l l a n form of G(s) contains any right half-
plane zeros, then it w i l l not be possible to use a fu l l set o f high-gain loops around the 
system. This would have allowed us to predict, at least qualitatively, the k ind of 
result found in Figure 10.10. 

As another example o f the strange things that can happen, consider the same 
arrangement (Figure 10.9), but this time wi th the open-loop T F M : 

G(s) 

5 - 1 55 + 1 

- 1 5 - 1 
(10.10) 

L (5+l) 2
 ( 5 + 1 ) 2 . 

The gain space for this system, together wi th an approximation to the regions 
of stability, is shown in Figure 10.11. 

This time, we note the fol lowing features: 

• For most values in F, increasing gain in one loop allows increasing gain in the 
other. 

• The system is of low integrity, since failure o f either feedback loop w i l l make the 
system unstable (assuming a reasonable level o f gain in the other loop). 

• The system can be stable wi th small amounts o f positive feedback. 

10 

Figure 10.11 Gain space 
for the system of Equation 
(10.10) and Figure 10.9. 
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The M c M i l l a n form of this G(s) is 

( S + 1 ) 2 

M(s) 

0 s-±l 

from which we see that, despite the non-minimum-phase terms in the open-loop 
T F M (Equation (10.10)), there w i l l be no non-minimum-phase behaviour w i th the 
feedback loops closed. Note also the counter-intuitive possibility o f stability wi th 
either positive or negative feedback. 

10.5.2 The basis of a Nyquist-type stability criterion for multivariable systems 
The familiar Nyquist stability criterion for SISO systems can be extended to the 
general (multivariable) case. The mathematics o f this extension become somewhat 
involved, so we shall not delve too deeply. This section simply introduces the 
background which allows this extension. Further details w i l l be found in the 
fol lowing section on the characteristic locus method, and in the multivariable 
system references such as Maciejowski (1989). 

We have already seen, in Figure 10.5, one possible arrangement o f a 
multivariable control scheme. Let us generalize this further by regarding the 
compensator matrix K(s) as representing the cascaded effects of several separate 
compensator matrices (there were two in Example 10.2, and there w i l l be several in 
later examples). The transfer function of the entire forward path (the original 
system plus all its compensators) is then given by G(s)K(s). Let this be represented 
by 

Q(s) = G{s)K{s) (10.11) 

giving the notation of Figure 10.12(a) i f unity negative feedback (UNF) is 
assumed. In the inverse Nyquist array technique (Section 10.7), the input-output 
behaviour o f the system represented by Q(s) is considered as it stands. In the 
characteristic locus method (Section 10.6), a more 'algebraic' approach is taken, 
which works wi th what are effectively the eigenvalues and eigenvectors o f Q(s) 
(which w i l l , o f course, be frequency-dependent quantities). To introduce the 
structures used in the C L method, and to provide the basis for the stability tests 
used in both methods, some further analysis of the system of Figure 10.12(a) is 
required. I t w i l l be necessary to use the similarity transform and spectral 
decomposition in this analysis, so Sections A 1.6 and A 1.7 should be read i f this is 
unfamiliar. 

The open-loop T F M Q(s) in Equation (10.11) ( in common wi th any other 
square matrix) can be regarded as the result of applying a similarity transform (see 
Section A 1.6) to a diagonal matrix containing its eigenvalues (an example is given 
in Section A1.7) . The eigenvalues of Q(s) w i l l be frequency-dependent, and are 
known as the characteristic values of Q(s). I f we let q\(s), q2(s), qn(s) 
represent these characteristic values of Q(s), then the appropriate diagonal 
eigenvalue matrix is 

&ag{qi(s),q2{s)i...,qn(s)} 



10.5 Stability of multivariate feedback systems 517 

Combined open-loop TMF 
of plant and all compensators 

e(s) 
Q(s) 

y(s) 

r 
Q(s) 

n UNF loops 
(a) 

Figure 10.12 (a) Multi-
variable controller in a unity 
negative feedback system, 
(b) Expanded forward path 
for Figure 10.12(a). (b) 

and the similarity transform is given by 

Q(s) = ^(s)diag{qi(s),q2(s),...,qn(s)}lV-l(s) (10.12) 

where W(s) is the appropriate eigenvector matrix (or modal matrix, that is, the 
matrix whose columns are the eigenvectors o f Q(s) corresponding to each 
characteristic value). Equation (10.12) now suggests a forward path for Figure 
10.12(a) as shown in Figure 10.12(b). 

This looks more complicated than it d id before, but the similarity transform 
has some useful properties. One is that the eigenvalues o f the forward paths of the 
systems of Figures 10.12(a) and (b) are identical. The modes o f response are 
therefore unchanged - it is a similar system in the mathematical sense. 

More importantly for our present interests, there is no interaction between the 
blocks <7i(s), q2(s), a n d s o o n m t n e forward path o f Figure 10.12(b); and it 
transpires that the dynamic behaviour of these blocks alone is sufficient to assess 
the stability of the entire system. So, by considering a set o f SISO Nyquist-type 
criteria for these independent blocks, we can, in principle, investigate the closed-
loop stability of the multivariable system. 
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10.6 The characteristic locus (CL) method 
10.6.1 A multivariable Nyquist criterion and non-interacting control 

As we saw in the previous section, the forward path eigenvalues o f the system of 
Figure 10.12(a) (qx(s), q2(s),... ,qn(s)) are called the system's characteristic 
values. The SISO Nyquist criterion is generalized to apply to these values as 
follows (but, in practice, CACSD packages such as M A T L A B do all the hard work) . 

As the usual Nyquist D-contour (Section 4.3.1) in the complex plane is 
traversed once in a clockwise direction, each characteristic value (being a function 
of s) w i l l trace out a Nyquist plot in the s-plane (which is called a characteristic 
locus). Furthermore, the forward path characteristic polynomial , given by 
d e t [ s . / - Q(s)], w i l l also trace out a locus in the s-plane. 

Subject to constraints in certain unusual cases, the net number o f clockwise 
encirclements of the critical ( - 1 , 0 ) point made by the locus of the open-loop 
characteristic polynomial, d e t [ s . / - Q(s)), is equal to the number of unstable open-
loop poles of the system. Let this number of encirclements be called n0. 

Also, i f the characteristic locus due to q^s) makes a net number n{ o f 
clockwise encirclements of the ( - 1 , 0 ) point, then the total number of such 
encirclements (nt) made by all the characteristic loci w i l l be given by 
nt = nx + n2 + ... + nn. 

The Nyquist criterion from the SISO case tells us that the net number o f 
clockwise encirclements of the ( - 1 , 0) point due to the closed-loop characteristic 
polynomial is equal to the number of poles of the closed-loop system in the right-
hand half of the s-plane. This must be zero for closed-loop stability, and is given by: 

[net number of closed- [total number [number of 
loop clockwise = of clockwise + unstable open-
encirclements] encirclements] loop poles] 

The generalization of this to the multivariable case, using the numbers o f 
encirclements defined previously, is (Owens, 1978): 0 = n0 + nt or —nt = n0. 

In words, Tor closed-loop stability, the total number of awf/clockwise 
encirclements of the ( - 1 , 0) point by all the characteristic loci must balance the 
number of unstable open-loop poles'. Note that the anticlockwise direction is 
implied by the negative sign of nt. 

Returning now to our init ial concern for non-interacting control, i f a U N F loop 
were to be placed just around the z'th characteristic value q{(s) in the forward path o f 
Figure 10.12(b), the resulting transfer function for the z'th path between the W~x (s) 
and W{s) matrices would be given by 

• * » - T T S 5 ( K U 3 ) 

After some mathematics, it can be shown (see, for example, Owens (1978)) that 
the closed-loop T F M for the entire system of Figure 10.12, H{s) say, can be 
written 

H(s) = W(s).dmg{hi(s),h2(s),....hn(s)}.W-l(s) (10.14) 
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Figure 10.13 Equivalent 
form (closed loop) for 

Figure 10.12. I 

which tells us that Figure 10.12(b) can therefore be simplified to appear as shown 
in Figure 10.13. Non-interacting control may be achieved in a number o f ways 
wi th reference to Figure 10.13. 

Firstly, the only interaction occurs in the matrix W(s) and its inverse. I f we 
could arrange for W(s) to be diagonal at all frequencies o f interest (W~ x (s) would 
then also be diagonal), there would be no interaction. Looking back at Figure 10.5, 
and remembering that W(s) contains the eigenvectors o f Q(s) which, in turn, is 
equal to G(s)K(s), it seems that K(s) ought to be able to be chosen such that W(s) is 
given the appropriate properties. In practice, unfortunately, this cannot usually be 
done for two reasons: 

• W{s) w i l l generally vary in a complicated way wi th frequency. 

• I t is not understood how the eigenvectors o f a matrix product vary wi th those of 
either component, so we do not know how to choose K{s) to get the desired 
result. 

We therefore use an approximation to this procedure - described in Section 10.6.2. 
Secondly, we might remove interaction by ensuring that all the characteristic 

loci have the same gain and phase behaviour over the frequency range o f interest. 
The reasoning for this is as follows. I f qx (s).q2(s), ...,qn(s) all have the same gain 
and phase behaviour, then it must be the case that qx (s) = q2(s) — q3(s) and so on. 
This then implies that hx(s) = h2(s) = h3(s) and so on (Equation (10.13)). Thus, 
diag{hx(s),h2(s)... .,h„(s)} = hx(s)I. Substituting into Equation (10.14) gives the 
closed-loop T F M H(s) = W(s)hx(s)IW~l (s) = Ihx(s), which is non-interacting. 
Again, in practice, it is unrealistic to seek to achieve this accurately for normal 
systems (for similar reasons to those above). However, approximations are again 
useful as discussed in Section 10.6.2 below. 

Thirdly, the use of high compensator gains in K(s) can help to achieve the 
same effect. The reason for this is as follows. H igh compensator gains mean large 
values in K(s), which imply large values in Q(s) = G(s)K(s) and therefore large 
characteristic values. I f the magnitude of qt(s) > 1, then the magnitude of hj(s) « 1 
(Equation (10.13)). I f this is true for all /', i t follows that the diagonal matrix 
diag{hx(s),h2(s),..., hn(s)} = I and so, from Equation (10.14), H(s) = / . This 
apparently has the added attractions that not only would there be no closed-loop 
interaction, but also an instantaneous response between each input and its output, 
and zero steady-state errors. In practice, o f course, this is unachievable, the 
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approach being of some use, but l imited by the onset o f instability, as we might 
expect. 

As a corollary of this third point, steady-state errors to step inputs w i l l be small 
only i f the magnitude of ^ (0) > 1, 1 < i < n (that is, the d.c. gain in each loop is 
high), so that H(0) = /. 

10.6.2 Design steps in the CL method 
In all the preceding discussion, we have talked of Q(s) and its characteristic values 
as i f we knew what they were - that is, we knew the contents o f the compensator 
K(s) which we have not yet designed. This is not a problem, because the design 
method is iterative. We try a compensator, see its effect, and then alter i t , or add 
further compensators until we are satisfied (in the accustomed frequency-domain 
control design manner). The effort involved in attempting to apply this procedure 
by hand is far too great. I t is essential to use a CACSD package to handle the maths 
and present the graphical results, leaving us to concentrate on the design decisions. 

A typical C L design sequence suitable for use wi th M A T L A B (plus its Control 
Systems and Multivariable Frequency Domain Toolboxes, CSTB and M V F D T B 
respectively) is given below. The design procedure is first presented in outline for 
clarity, then some explanation of the steps follows. Finally a case-study example is 
worked. I t should be noted that there is no need to stick to the design methodology 
presented here; the CACSD tools can be applied in any imaginative way we wish. 
However, the procedure outlined here has been found to work wel l . 

It transpires that the three suggestions made in Section 10.6.1 as to the removal 
of interaction map quite neatly onto high, intermediate and low frequency ranges 
(relative to the system dynamics). The frequency range of interest is therefore 
typically divided into these three ranges, and the fol lowing design steps are applied. 

• Step 1: A compensator is designed to make W(s) approximately diagonal at high 
frequencies. In fact, in the 'standard' procedure, an algorithm is used which 
selects W a s a constant matrix. Let us call this matrix Kh. The compensated 

forward path is then given by G(s)Kh. 

• Step 2: A second compensator is designed at an intermediate frequency. The aim 
of this step is to design a compensator which itself has the same structure as 
Figure 10.13 (but different matrix contents). In this compensator, the matrices 
W(s) and W~l(s) are chosen to be constant approximations to the eigenvector 
(modal) matrix (and its inverse) of the previously compensated plant G(s)Kh. 
They are usually called A and B respectively (but must not be confused wi th the 
similarly named matrices used in state-space descriptions). 

Figure 10.14 shows the resulting structure of the plant wi th high- and mid -
frequency compensators in place. The diagonal dynamic elements (let us call 
them kx (s), k2(s),..., kn(s)) are chosen by the usual frequency-domain methods 
(by performing n single-loop designs) to give the n resulting characteristic loci 
similar gain and phase behaviour over the intermediate frequency range, but 
without spoiling the previous high-frequency compensation. 

• Step 3: Low-frequency compensation is then added as required. This may just be 
a diagonal matrix of constant gains to balance the loci at steady state. More often, 
it w i l l be a diagonal set of proportional-plus-integral-type elements, designed to 
give unity steady-state gain to step inputs for example, but chosen so as not to 
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Figure 10.14 High and 
intermediate frequency 
compensators in place. n UNF loops 

spoil the previous compensation. In some cases, a second compensator (or even 
more) o f the form of step 2 (above) may also be employed. 

10.6.3 Notes on the 'steps' of the CL method 
In Step 1 above, we design a constant compensator. The reason for this is that the 
dynamic compensator required to diagonalize W(s) properly is usually much too 
complicated, and may not be able to be found at a l l . We therefore choose one 
frequency in the 'high-frequency' range and design a compensator there which 
approximately ( in some sense) diagonalizes W(s), but contains only constant 
elements. We hope that the beneficial effects obtained from this compensator w i l l 
spread over a useful range of frequencies to either side o f the design value, but this 
cannot be guaranteed. Use of CACSD allows rapid checks o f this, so that we can try 
a different design frequency i f we are not satisfied. 

In the M A T L A B M V F D T B (and some other packages) the method used is 
encapsulated in an algorithm called align (Edmunds and Kouvaritakis, 1979). I f all 
the qi(s) are of the same order (that is, the high-frequency phase shifts, neglecting 
transport lags, are identical), the align command in M A T L A B w i l l appear to align 
the C L wi th each other at high frequencies. However, this is not the reason for its 
name. Rather, i t seeks to align the eigenvectors o f the compensated plant wi th the 
basis vectors of the space in which they move. A simple example w i l l show why 
this is a good idea. 

Example 10.3 A brief example of the eigenvectors 
of general vs. diagonal matrices 
By way of a brief illustration, consider the constant matrix investigated in Section A 1.7, 
that is, 
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This matrix was found to have eigenvectors given by 

and 
-1.5 

Geometrically, we can depict these in a vector space as shown in Figure 10.15(a). The 
eigenvectors are not aligned wi th the basis vectors. 

On the other hand, the diagonal matrix used in Section A 1.7 was 

3 0^ 

0 2 

This matrix is easily shown to have eigenvectors given by 

and e2 

These are shown in Figure 10.15(b), and obviously are aligned wi th the basis vectors. 
This illustrates the general point, that i f a matrix's eigenvectors are aligned wi th the 

basis set, i t w i l l be a diagonal matrix. Hence using the align command to achieve this 
gives a non- interacting system at the design frequency. 

Figure 10.15 (a) Eigen
vectors of a non-diagonal 
matrix, (b) Eigenvectors 
of a diagonal matrix. 
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One more point of importance is that since the align command works wi th 
eigenvectors, it works only in terms of directions, and cannot provide scaling 
information. In M A T L A B , the consequence of this is that the compensator matrix 
designed by the algorithm has columns of arbitrary sign. The resulting 
compensated loci must therefore be inspected and, i f necessary, the signs must 
be altered to give stable behaviour relative to the ( - 1 , 0 ) point (that is, the correct 
number of encirclements). 

Further assistance is provided by M A T L A B in seeing how effective the 
compensation of the align algorithm has been. The M A T L A B M V F D T B command 
fmisalg allows the user to calculate and display ( in a 'Bode-type' plot) the 
misalignment angles between the system eigenvectors and the basis set. This 
display can be used to discover over what range of frequencies compensation has 
been effective (because the misalignment angles should be small). Unfortunately, 
though, the misalignment angles are not always a very good indicator of l ikely 
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performance. This is because small misalignment angles are a sufficient condition 
for low interaction, but not a necessary condition. 

In Step 2 in the previous section, a more complicated controller is designed at 
an intermediate frequency. Again, in the interests o f tractable calculations and 
simple, realizable compensators, a single frequency is chosen and the constant 
matrices A and B (Figure 10.14) are derived to approximate ( in some sense) W(s) 
and W~x (s) at this frequency. Again, we hope that any beneficial effects w i l l spread 
over a usefully wide frequency range. The M A T L A B M V F D T B contains an 
algorithm called/acc which generates the required A and B matrices at the specified 
frequency. The name of the algorithm derives from the phrase 'Approximate 
Commutative Controller'. 'Approximate ' is used because A and B are constant, but 
really should be functions of s. 'Commutative' is used because i f a compensator is 
designed in this way it w i l l commute ( in the matr ix-mult ipl icat ion sense) wi th the 
T F M of the high-frequency compensated plant. That is, i f a compensator o f the form 
of Figure 10.13 is added to the high-frequency compensated plant (as in Figure 
10.14), the result would be the same mathematically, i f the mid-frequency 
compensator were to be placed after the plant, rather than before i t . This would not 
be a good idea in practice, however (see Section 10.7.3). The result is easily proved 
by taking the eigenvalue decomposition o f Q(s) for the high-frequency 
compensated plant, and either pre-mult iplying or post-mult iplying by the 
approximate commutative controller: 

W ( i ) d i a g { * , ( s ) , . . . , k„(s)}W-l(s).W^diagfa, ( * ) , . . . , qn(s)}W~l (s) 

= W ( 5 )d i ag{<7 , ( j ) , . . . , qn{s)}W"1 (s) . W ( S ) d i a g { * , ( * ) , . . . , k „ ( s ) } W ~ l ( s ) 

We also note that in this result, the dynamic elements of the approximately 
commutative controller (k{(s), k2(s), and so on in Figure 10.14) combine wi th the 
characteristic values so that qx (s)kx (s), q2(s)k2(s), a n c * so on are non-interacting. It 
is up to us to design these dynamic elements by the normal frequency-domain 
techniques, on the basis that the matrices A and B have reduced the problem to a 
set of independent single-loop designs. One point that must be made is that the 
compensators chosen must not interfere wi th the high-frequency compensation 
already carried out in Step 1. Therefore, they must be such that their high-
frequency gains all tend to unity (for example, lead-lag type elements). The 
process is aided by CACSD functions (such as the M A T L A B M V F D T B phlag 
command) for the design of such compensators. 

Step 3 in the previous section is probably self-explanatory, but again care must 
be taken not to upset the compensator designed for intermediate frequencies. For 
example, i f integral action is to be used, the compensator cannot take the usual 
simple integral form of l/s. Rather, a proportional + integral form such as (s + l ) / s 
might be used instead since, at relatively high frequencies, this tends to 1. O f 
course, the numerator coefficients w i l l probably not al l be unity. I f it transpires that 
different P + 1 elements are needed in each loop then, strictly, another approximate 
commutative controller should be used, as in Step 2. This is to prevent any non
symmetrical cross-coupling effects reintroducing interaction. 
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10.6.4 Robustness of the controlled system 
Being based upon frequency-domain techniques, we might expect the C L method to 
give more robust results than state-space controllers. Nevertheless, the compensa
tors do involve a number of approximations, and also rely upon inverses and 
eigenvector calculations based on (possibly uncertain) plant models. We therefore 
need some means of assessing the l ikely robustness of the resulting controller in the 
face of modelling errors and so on. 

Since our calculations are mainly based upon matrices, and the 'worst ' things 
we do are to take inverses and find their eigenstructures, it might seem that so long 
as the matrices involved can be shown to be non-singular, then all w i l l be wel l ; and 
a few simulation studies (which any CACSD package can do) should confirm this. 

Unfortunately, neither the determinant of a matrix nor its eigenvalues (both of 
which we use) are particularly good indicators of how near to singularity it may be. 
In other words, perhaps just a very small error in the measured or calculated plant 
parameters could cause the matrix calculations to succeed when, in fact, they should 
fai l . We would then be applying a very delicate controller to our plant. 

A widely quoted example considers the fol lowing simple constant matrix, in 
which the quantity £ is arbitrarily small: 

This matrix has a determinant of 1 and two eigenvalues, each being - 1 . I t would 
therefore appear to be non-singular, and we might have no qualms about using it 
(and its inverse) in a control scheme. 

In fact, the matrix is ill-conditioned. I f a disturbance (or a computer rounding 
error) caused element (1,2) to assume the arbitrarily small value £, the matrix would 
immediately become singular. 

A better guide for use in multivariable system design is to study the singular 
values (or strictly, in the ^-domain, principal gains) o f the system's return-
difference matrix T(s) = ( / + open-loop T F M ) . 

Dropping the ^-dependency, the singular values o f T are given by the square 
roots o f the eigenvalues of T * r , where T * is the transpose o f the complex-
conjugate of T. ( I f T is real, then 7 * = TT.) 

For the example above, let 

- 1 0 

- - 1 
£ 

T = 
- 1 

1 
0 

- - 1 
£ 

Therefore 
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The characteristic equation (CE) o f this matrix is 

X2 + A -2 • r 2 ' + 1 = 0 

from which the eigenvalues X\ and X2 are found to be: 

, _ 2 e 2 + l ± ( 4 g 2 + l ) ' / 2 

The singular values are then ox = y/Yx and a2 = \ / ^ 2 -
I f we take the binomial expansion o f the term in parentheses and allow s to 

tend to zero, we obtain 

2e2 + 1 + 1 + 2s2

 J n 2s2 + 1 - 1 - 2s2 

AX ~ — and / 9 

2s2 1 2s2 

The two singular values therefore tend to infinity and zero respectively. The 
number of zero singular values tells us the rank deficiency o f the matrix (1 in this 
case - so we conclude that the matrix is singular). 

This also means that as £ tends to zero, ox and o~2 diverge. However, i f s tends 
to infinity, the CE becomes I2 — 2A + 1 = 0, so that both singular values tend to 1. 
The divergence is an indication that the matrix is i l l-conditioned (condition 
number = max(o-)/min(cr) and should be small for a well-conditioned matrix -
wi th a min imum value of unity). 

The M A T L A B CSTB command sigma allows us to plot the singular values o f 
a T F M (or, to be precise, its state-space equivalent) against frequency. We can 
investigate these for zero values and divergence, and thus get some idea o f how 
robust the design might be from a numerical viewpoint. See Section 10.8.2 for how 
the Perron-Frobenius approach can also assist in robustness analysis, and Chapter 
13 for more on robust control. 

10.6.5 Characteristic locus case study using MATLAB 
I n Example 10.1 (Section 10.3), we developed a T F M model o f a pneumatic 
laboratory r ig . In Example 10.2 (Section 10.4), we designed a diagonalizing 
controller for it . We now attack the same problem using the C L approach. Later, we 
shall also try the inverse Nyquist array approach (Section 10.7.5) and the Perron-
Frobenius approach (Section 10.8.3) and compare all the results. The M A T L A B 
commands for Example 10.4 are to be found in the m-files figl0_16.m to figl0_20.m 
on the accompanying disk, suitably commented. Here, we concentrate on the design 
procedure, wi th only the barest outline o f how M A T L A B achieves the results, as an 
indication of a typical CACSD methodology. 

Example 10.4 The pneumatic system with a 
controller designed by the CL method 
We already have a T F M model of the plant from Example 10.1. For numerical reasons, 
M A T L A B works wi th the equivalent state-space model, which it easily obtains by 
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effectively combining the state-space models of the individual T F M elements, obtained by 
direct programming. The M A T L A B multivariable frequency domain toolbox ( M V F D T B ) 
command mvtflss does this. 

Once we have the state-space model, M A T L A B can obtain for us what is known as 
the multivariable frequency response ( M V F R ) matrix via the mvlfr command. The M V F R 
matrix is a data structure containing the frequency response data for every element o f the 
original T F M , and is used as the basis for many of the M V F D T B commands. M A T L A B 
requires a set of frequency values to obtain this, so we use the command logspace to set 
up a vector o f 100 points, logarithmically spaced between 0.01 and 100 rad s" 1. 

From the M V F R matrix, we use M A T L A B to calculate the data for the C L plots 
using the feig command. These are typically plotted as either Nyquist or Bode plots. We 
shall use the Bode presentation for this design, and the C L plots of the uncompensated 
plant appear in this form in Figure 10.16. 

From Figure 10.16 we see that the system is very stable (infinite phase margins), but 
that there is l ikely to be interaction in closed-loop. This is indicated by the non-
coincidence of the two C L plots, indicating that q\(s) ^ qi{s) at any frequency, so the 
system is not l ikely to be diagonal at any frequency (see Section 10.6.1). In fact, we know 
that there is interaction from our earlier investigations (see, for example, Figure 10.2). We 
apply the C L method to try to remove the interaction. We shall not present plots o f the 
misalignment angles, because they do not appreciably improve during the design of this 
particular system. 
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High-frequency compensation 
First, we use the M A T L A B M V F D T B align command to try to improve things at high 
frequencies. Looking at the plots of Figure 10.16, it is clear that the order of the two C L 
plots is the same, so that the magnitude plots are parallel at high frequencies. This implies 
that i f we can line them up wi th one another at any frequency in this region, they should 
be lined up at all higher frequencies too, hopefully removing high frequency interaction. 
The expedient of applying a ruler to the plots suggests that a frequency o f 4 rad s - 1 is far 
enough into this region to have the desired effect. 

The align command requires us to provide the components o f the frequency response 
data (that is, the elements of the M V F R matrix) which exist at the design frequency. These 
can be found by using the M A T L A B command find to give the index into the frequency 
vector (and hence into the corresponding M V F R matrix) o f the first element greater than 
4 rad s - 1 . This turns out to be the 66th element, and corresponds to w « 0.423 rad s - 1 . 
The M V F D T B command fgetf is then used to extract the 66th set o f data from the M V F R 
matrix. The procedure is clear in the m-file figlOJJ.m on the accompanying disk. 

Using the align command wi th the 66th element o f the M V F R matrix returns a high-
frequency compensator matrix 

_ 152.74 6.828" 
h ~ [6.855 11.50 

This now needs fitting into the structure of Figure 10.14. However, since we have not yet 
designed the approximately commutative controller {A, B and the various k^s)), i t looks 
more like Figure 10.5 for the present. 

In order to combine the constant compensator matrix Kh w i th the plant T F M G(s), the 
M V F D T B command fmul is used to form the combined M V F R matrix. This then 
effectively becomes the M V F R matrix of Q(s) = G(s)Kh as in Figure 10.12(a). We can 
then inspect the compensated C L (that is, of Q(s)) to see what we have achieved. The C L 
plots appear in Figure 10.17, where we see that the C L plots do indeed now line up wi th 
one another at high frequencies. 

In order to see what the effect on the step responses has been, M A T L A B needs the 
state-space equivalent of Figure 10.12(a) to perform a simulation. This is easily done using 
the M V F D T B commands mvser (to form the state-space model of the series connection of 
Kh and the original state-space version of the plant T F M ) , and mvfb (to close the unity 
negative-feedback loops). The custom-written mv2step command on the accompanying 
disk displays the resulting responses, shown in Figure 10.18. 

These results look quite promising (especially the behaviour o f yx), but note that the rise 
times of the step responses are quite fast compared wi th Figure 10.8. This implies that we 
may be asking for an unrealistic performance improvement (requiring larger input signals 
than the plant could handle, for example). However, we shall not investigate this yet, because 
it would probably need some kind of dynamic compensation to correct for such a fault 
without spoiling our high frequency result. As an ini t ia l attempt, i t w i l l be easier to try 
applying such compensation after the design for non-interaction is complete. We shall 
therefore carry on wi th the design procedure, and then try to slow things down at the end i f 
necessary. 

Mid-frequency compensation 
We now need to design the approximate commutative controller (ACC) which appears in 
front o f the plant and the high-frequency compensator in the forward path of Figure 10.14. 
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Characteristic loci of uncompensated plant - phase shifts 

Figure 10.17 
Characteristic loci of the 
high-frequency 
compensated plant. 
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Figure 10.18 Step 
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frequency compensated 
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The M A T L A B face command w i l l provide for us the state-space model o f the entire ACC, 
but we need to provide this command wi th quite a lot o f detail. 

Firstly, the face command needs to know the M V F R matrix for the high-frequency 
compensated plant, and the vector of frequency points at which it was evaluated. We 
already have all these data from the previous steps. 

Secondly, the face command needs to know the particular value in the frequency vector 
at which we would l ike the ACC to be designed (remember, it is an approximation to be made 
at a single frequency and we hope its effects w i l l spread over a useful frequency range). 

Thirdly, it needs to know the dynamic compensators kx{s) and k2{s) which we want to 
include in the two loops between the constant matrices B and A (see Figure 10.14). These 
compensators need to be specified by us, but M A T L A B can help. 

Inspection o f the magnitude plots of Figure 10.17 shows that we need to try to line up 
the C L plots at frequencies below about 2 rad s _ 1 . I n the interests of high d.c. gains (which 
we shall need for good steady-state behaviour), a first attempt might be to try to leave the 
upper plot (the C L of qx(s)) unchanged, and bring the lower plot up to meet i t . Bearing in 
mind that the face command w i l l design the B and A matrices so as to remove ( in theory, 
at least) interaction from the plant, we only need concern ourselves w i th the single-loop 
designs for kx(s) and k2(s). We shall therefore specify a constant compensator kx = 1 to 
keep the C L for loop 1 unchanged, and a suitable dynamic compensator k2(s) for insertion 
into loop 2 so that the C L for that loop rises to meet that for loop 1 over as wide a 
frequency range as we can achieve. A t the same time, i t is vi ta l that k2(s) has unity gain 
above about 2 rad s"1, otherwise we shall spoil the high-frequency compensation we have 
already achieved. 

From Figure 10.17, we see that the compensator k2(s) therefore needs to provide a 
gain increase of about 15 dB at low frequencies, fall ing to zero dB by about 2 rad s"1. We 
could pick a number of frequency values in between these l imits , measure the required 
gain increase at each, and identify the required compensator transfer function from the 
resulting Bode plot. However, since the behaviour of the plots in Figure 10.17 is smooth 
and fairly gentle, i t looks as though a single lag-lead type compensator might be sufficient, 
and M A T L A B can easily design this for us. 

The M A T L A B M V F D T B contains a command phlag which w i l l design the lag-lead 
compensator. We need to specify the required d.c. gain increase (15 dB) , and the upper 
(that is, the lead) corner frequency of the compensator. From Figure 10.17, i t appears that 
this needs to be at about 0.35 rad s"1, since this is the frequency at which the gain o f loop 
2 is 3 dB below that of loop 1 (but note that i f the lower break frequency o f the 
compensator is close to this frequency, the inspection o f Figure 10.17 for the 3 dB 
frequency would then have to take into account the 'interference' remaining from the 
lower break point at any particular frequency - see Table 3.3). 

As to the frequency at which we wish the ACC to act, i f we are to use this simple 
lag-lead compensator, the most suitable frequency is l ikely to be that at which the 
maximum phase shift is required. The phase shifts of Figure 10.17 suggest that this is at a 
frequency o f around 0.15 rad s"1. I t is possible to get M A T L A B to calculate the d.c. gain 
required, and the frequency at which the phase difference between the C L plots is a 
maximum; but we shall content ourselves wi th our estimates from Figure 10.17. For use o f 
the face command, we use the find function, as before, to obtain the nearest element in the 
frequency vector to this value. I t turns out to be the 30th value in the frequency vector, at 
0.1485 rad s" 1. 
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Using the M A T L A B M V F D T B phlag command, as suggested above, gave a lag-lead 
compensator wi th the transfer function 

k2(s) 
5 + 0.35 

s + 0.0622 

We now have all the data required by the face command, and it can design the ACC 
for us as an overall state-space model including A, B,kx and k2(s) (the only extra comment 
for readers trying this in M A T L A B is that kx must be specified as s/s rather than 1, because the 
face command insists on dynamic compensators). 

The state-space compensator returned by the face command is converted to M V F R 
form using the mv2fr command, and cascaded wi th the high-frequency compensated plant 
using the fmulf command (note that we used fmul previously, as the high-frequency 
compensator was just a constant matrix). This then gives the M V F R matrix o f the overall 
forward path of Figure 10.14, which leads to the C L plots o f Figure 10.19(a). Using the 
mvser and mvfb commands to form the closed-loop state-space model, as before, then leads 
to the step responses of Figure 10.19(b). 

The C L plots are now well lined up at all frequencies, and the time responses show 
an almost complete lack of interaction (there is a very slight amount visible on a computer 
screen). We can therefore now treat the system fairly confidently as two independent SISO 
loops. The only remaining problems are the small steady-state errors, and the fact that we 
may be driving the plant too hard, as mentioned previously. 

In obtaining the ACC using M A T L A B , the A and B matrices for use in Figure 10.14 
are transparent to the user - we immediately obtain the state-space model o f the entire 
ACC as a single entity including A , B and the dynamic compensator designed by phlag 
above. I n order to see what the compensator looks l ike, i t is a simple matter to edit the 
M A T L A B face command to make it output these two matrices for inspection ( M A T L A B 
toolbox commands are simply A S C I I m-files fu l l o f other M A T L A B commands). The 
compensator matrices turned out to be: 

8.0627 

0.5666 

0.0919 

1.0127 
and B 

0.1247 -0 .0113 ' 

-0 .0698 0.9893 

The approximate nature of the compensation is illustrated by the fact that, even at a single 
frequency, these are not quite inverses of one another. For example, 

0.1248 -0.0113 

-0.0698 0.9938 

Steady-state compensation 
Here, we adopt the usual solution for the removal of steady-state errors, namely integral 
action. However, in general we ought not simply to apply integrators to each loop, as that 
may spoil the compensation already carried out at high- and mid-frequencies. Rather, we 
use proportional plus integral control, since a compensator of the form 

l + K 1 = s_ + K1 

S s 

w i l l have unity gain at high frequencies, thus leaving the existing compensation largely 
unaffected for a suitable choice of Kx. 
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Characteristic loci of high- and mid-frequency compensated plant - magnitudes 
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Figure 10.19 (a) Characteristic loci of the high- and mid-frequency compensated plant, (b) Step responses of the high-
and mid-frequency compensated plant. 
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From Figure 10.19(a), the C L plots have a break frequency at about 0.1 rad s - 1 . I f we 
give our P + 1 controllers (one in each loop) a zero at about 0.1 rad s - 1 , we should then 
get C L plots more or less linearly falling wi th frequency. To do this, we need a low-
frequency dynamic compensator, placed before the ACC in the forward path of Figure 
10.14, and having a T F M 

o i ± H 
L 5 - 1 

O f course, since our compensation thus far is not perfect in terms of the removal o f 
interaction, the addition of these single-loop compensators may lead to the return o f some 
interaction. 

The use o f M A T L A B to add this compensator follows exactly the same patterns as for 
the previous work, and the results appear in Figure 10.20. The C L magnitude plots show 
the predicted form, now having infinite d.c. gain. The phase plots are not shown, as they 
are almost constant at - 9 0 degrees, except around 0.1 rad s"1 where they vary by a few 
degrees. The step responses (Figure 10.20(b)) show an almost total lack o f interaction and 
no steady-state error. In addition, they are much faster than our original specification o f a 
1.6 s rise time (see Example 10.2). 

It is now necessary to check the demands we are placing on the plant inputs. The 
procedure for displaying the inputs in M A T L A B is explained in the comments in the m-file 
figl0_20.m on the accompanying disk, and in Section 3.9 of Appendix 3. Basically, it 
involves adding two rows of zeros to the original C matrix of the open-loop plant's state-
space model, and a 2 x 2 identity matrix underneath the original D matrix. This has the effect 
of generating two new outputs, which are equal to the inputs, and are then automatically 
displayed by the commands generating the step responses. 

When this is done it is found that plant input 1 is ini t ia l ly driven to about 53 V in 
response to the 1 V step on reference input 1, and plant input 2 to about 11.5 V in 
response to the 1 V step on reference input 2. This is fine in simulation, but the real plant 
input l imits are 0-10 V, so they would be saturated, and the behaviour would be nonlinear 
and not as predicted. I n order to overcome this, we need to lower the gains. This is done 
simply by adding a diagonal gain matrix in front o f the low frequency (P + 1 ) compensator. 

Strictly, since different gains are needed in the two loops, another ACC should be 
used to isolate their effects and avoid reintroducing interaction. However, in this simple 
case, a l i t t le experimentation showed that the gain matrix 

"0.18 0 " 

0 0.8 

would l imi t the plant inputs to the physically acceptable voltage range. However, the 
dynamic behaviour of loop 1 then became much too slow, having a rise time of around 3 s 
(loop 2 rise time remained below 1 s). 

Since we are allowed up to 15 per cent overshoot according to our specification, we 
can try changing the P + 1 compensators to allow some overshoot in the interests of 
obtaining a faster rise time. Changing the P + 1 compensator matrix to 

S 
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Figure 10.20 (a) Characteristic loci of the fully compensated plant - magnitudes, (b) Step responses of the fully 
compensated plant (CL method), (c) Step responses with modified compensation, showing the plant inputs. 

H while retaining the diagonal gain matrix above, just about meets the specifications. The 
? l responses are shown in Figure 10.20(c). In practice, we would try more sophisticated 

m dynamic compensation elements for this plant, in order to achieve the specification without 
p coming so near to the input l imits (using another ACC). A t present, note that although y{ 

x , does overshoot by only about 15 per cent, i t then takes longer than the six seconds shown 
' in Figure 10.20(c) to return to unity. Also, i f the 1 V step were to be applied to input 1 

when the plant input 1 was already much greater than zero, the 10 V plant input l i m i t 
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, would be reached (however, a 1 V step is not typical of normal operation - recall that a 
large test step was chosen to avoid confusion wi th noise). 

The overall result 
To find the overall compensator which we need to apply to the plant, we must combine all 
the separate parts. The order of multiplication of these (against the signal flow) w i l l be: 

KhAK(s)B[? + I] [d.c. gain], where : 

B 

'52.74 

6.855 

6.828' 

11.50 
A = 

8.0627 0.0919 

0.5666 1.0127 

0.1247 

-0.0698 

d.c. gain 
0.18 

0 

-0.0113 

0.9893 

0 

0.8 

P + I 

5 + 0.5 
0 

5 + 0.5 

0 

5 + 0.35 

5 + 0.0622 J 

Performing the multiplication leads to the overall compensator: 

1 '9.483752 + 5.28925 + 0.2737 5.42955 2 + 5.73155 + 1.5084' 

1.232652 + 0.64865 + 0.0161 9.15725 2 + 7.94445 + 1.6829 5 2 + 0.06225 

In Section 10.9, this result is compared wi th those obtained by the other methods. 

10.7 The inverse Nyquist array (INA) method 
The characteristic locus method of Section 10.6 is based upon an eigenvalue-type 
analysis o f the system. The I N A method, on the other hand, is representative of non-
eigenvalue methods, and works by consideration o f input-output relationships -
which is more in line wi th the philosophy of SISO frequency-domain control. 

10.7.1 Diagonal dominance 
The underlying philosophy of the I N A method is that i f Q(s) in Figure 10.12(a) 
can be kept 'approximately diagonal' (defined below) at all frequencies of interest, 
then SISO design procedures can be satisfactorily applied at all frequencies. 
Remembering that Q(s) = G{s)K(s) (Figure 10.5), this w i l l again be achieved by 
suitable choice of K{s). 

We saw earlier that a requirement to make Q(s) strictly diagonal leads, in 
general, to very complicated compensators, difficult mathematics and other 
undesirable effects (for example, unrealizable or unstable compensators). The I N A 
method replaces this requirement wi th the much less stringent requirement that 
Q(s) must be diagonally dominant at all frequencies of interest. So long as this can 
be achieved, SISO compensators (designed on the basis o f one-per-loop) are l ikely 
to work satisfactorily. 
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The definition of diagonal dominance can be stated mathematically as follows 
( i f this looks formidable, the reader can ignore i t , and read the definitions given in 
English afterwards). A n n x n matrix Q(s) is diagonally dominant i f 

k/z tol > ri(s) f ° r \ <i < n and for all values of s (10.15) 

where 

n 
ri(s) = \Qij(s)\ for row dominance 

or 

n 

r^s) — ^ Ify tol for column dominance 

I n words, 'a matrix is row (or column) diagonally dominant i f the magnitude o f 
each element on the leading diagonal is greater than the sum of the magnitudes o f 
al l the other elements in the same row (or column) ' . In the case o f a frequency-
dependent matrix (letting s — jo), this must be tested at every frequency. The row 
dominance test is used predominantly wi th the direct Nyquist array (not studied 
here), and the column dominance test wi th the inverse Nyquist array. The reason 
for this w i l l emerge later. 

The structure of controller considered in the I N A method is similar to that o f 
Figure 10.12(a), the only difference being that we now also consider a diagonal 
matrix of feedback gains F= d i a g i / , . / ^ / ^ • • • r a t h e r than simple unity 
negative feedback loops. As before, Q(s) = G(s)K(s), so we now have the 
arrangement o f Figure 10.21. 

Plant + Compensators 

Figure 10.21 Multivariate 
controller for a system using 
individual feedback gains. 

The closed-loop transfer function matrix ( C L T F M ) for this system is given by 
H(s) = [/ + Q(s)F]~xQ(s) (cf. Equation (10.9)), so the relationship between the 
open- and closed-loop TFMs (Q(s) and H(s) respectively) is not particularly 
straightforward. However, by a suitable choice o f K(s), we can ensure that Q(s)~l 

exists. In this case, we can invert the previous relationship, to give: 

H-](s) = Q(s)-'[I+Q(s)F] = Qisy'+F (10.16) 

which is a much more tractable result. We therefore choose to work wi th the 
inverse matrices in the remainder of this section. 

I f H(s) was purely diagonal, then H~l(s) would also be diagonal, w i th each 
element being simply the reciprocal o f the corresponding element of H(s). 
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However, since H(s) is to be made only diagonally dominant, non-zero (but 
relatively small) off-diagonal elements are permitted to remain in H(s). Therefore a 
diagonal element of H~l(s) w i l l not usually be simply the reciprocal of the 
corresponding element of H(s). We therefore need a different notation for an 
inverse matrix, which w i l l allow us to distinguish between hal(s) as element (/, /) o f 
H~l(s), and hjj1 (s) as the reciprocal of element (/, /) of H(s). I t is customary to use 
H(s) = for this purpose. The quantity hjjl(s) now unambiguously refers to 
the reciprocal of element (/, /) of the matrix H(s), while the quantity hH(s) refers to 
element (/, /) of the matrix H(s) = H~l(s). 

Now, as the Nyquist D-contour is traversed once in a clockwise direction, the 
element ( j , j) o f the inverse forward path T F M , that is, q^s), w i l l trace out a 
contour which is similar to an inverse Nyquist plot. I f such a plot is drawn for all 
elements of Q(s), we end up wi th the inverse Nyquist array ( I N A ) for the system. 

Note that although these plots w i l l look like inverse Nyquist plots, they do not 
correspond wi th anything physically measurable in the real world . Also, although 
the fu l l array of plots is considered for investigation of interaction, only the 
diagonal elements are considered for stability analysis, any off-diagonal terms 
being assumed to be negligibly small due to the requirement for diagonal 
dominance. Thus, we must apply compensators to achieve diagonal dominance 
first, and consider stability afterwards. 

Once diagonal dominance is achieved, stability information follows from an 
analysis of encirclements of critical points, as outlined in Section 10.6.1. However, 
in the I N A approach, the critical point for the ith diagonal element o f the I N A is the 
point (—fh 0), where fx is the feedback gain in the / th loop (directly analogous to the 
interpretation of inverse Nyquist plots for SISO systems - see Section 3.5.2). 

10.7.2 Gershgorin's theorem 
In order to assess the progress being made in trying to remove the interaction from 
the system in the I N A approach, we need a simple technique for investigating the 
diagonal-dominance properties of the system. Such a technique is provided by 
Gershgorin's theorem. 

Clearly, the condition for which we must design is when all the feedback loops 
are closed. In SISO frequency-domain methods, we analyse and design the 
behaviour of the closed-loop system by interpreting the open-loop plot. Extending 
this idea to the case of the I N A means that the closed-loop behaviour o f the ith loop 
(1 < i < n), should be inferred from the open-loop plot for the ith loop, wi th all the 
other loops closed. However, the inverse Nyquist-like plots of the I N A are all 
drawn for the open-loop elements of Q(s) (the inverse T F M ) . 

I f the T F M was purely diagonal, there would be no interaction, and 
interpreting the I N A plots individually would be correct. However, due to the 
interaction which w i l l remain (at whatever stage of the design we have reached), the 
precise form of each plot when all the other loops are closed is unknown - it w i l l 
differ from that shown in the ENA wi th all loops open. 

Gershgorin's theorem states that the inverse Nyquist-like plot for the i th loop 
open and all other loops closed w i l l always lie in the band formed by the union of a 
number of circles superimposed on the inverse Nyquist-type plot already obtained 
for the ith diagonal element of Q(s) (that is, the plot for qu(s)). Although we cannot 
be certain exactly where the plot is, we can therefore narrow down its location to a 
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known band. This remains true, whatever values o f feedback gains are used in the 
other loops. 

To obtain this Gershgorin band, at a selection of points (frequencies) along the 
inverse Nyquist-like plot for qu(s), we draw circles centred on the plot, and o f radii 
rj(s) as given by Equation (10.15), but using elements q^s) rather than q^s). The 
radii o f the circles w i l l generally vary from point to point along the plot for qH(s) as 
s varies. Figure 10.22 shows an example o f a single diagonal element of an EN A 
plot, wi th Gershgorin circles superimposed. The radii o f these circles are calculated 
from the other elements of the I N A (the other plots, not shown in Figure 10.22) in 
the same row or column, at each frequency point where a circle is centred. The 
calculated (open-loop) plot is the line indicated by qu(s), but the actual plot wi th all 
loops closed except loop / could theoretically lie anywhere inside the Gershgorin 
band formed by the union of the circles. Packages such as M A T L A B can draw any 
required number of Gershgorin circles on the I N A so that the Gershgorin bands can 
be inspected. 

The interpretation of the Gershgorin bands is as follows. We ini t ia l ly seek to 
achieve open-loop (diagonal) dominance, by methods to be suggested below. This 
has been achieved when the Gershgorin bands for none of the diagonal elements of 
the I N A enclose the origin of the complex plane. The loop shown in Figure 10.22 
would pass this test, as none of the circles encloses the or igin. However, all other 
diagonal elements of the I N A (similar plots to Figure 10.22, but omitted from the 
figure) must also pass the test before the system as a whole can be declared 
diagonally dominant. 

After diagonal dominance has been achieved, we can select appropriate values 
for the feedback gains (fh 1 < i < n) to achieve closed-loop stability. For this to be 
achieved, the Gershgorin bands must not touch the negative real axis between the 
origin and the point (—fh 0) . This follows reasonably intui t ively from Equation 
(10.16) because, for an approximately diagonal system, it is approximately true that 
hu(s) = qH(s) + fh so a simple shift of /• relates the open- and closed-loop plots. 
The critical point therefore moves from the or igin to (-fh 0 ) . Note, again, the 
uncertainty due to interaction, which is why we must consider the boundary o f the 
Gershgorin band, rather than the drawn plot o f qa{s), i n order to cover the worst 
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possible scenario. Figure 10.22 suggests that loop / o f the system for which the 
figure was drawn would be stable for a feedback gain of up to about 0.3, so long as 
the other loops are already diagonally dominant, too. In practice, since the band 
only just cuts the negative real axis, the position o f the plot would have to be right at 
one extreme of its possible range for instability to occur. I t is therefore very l ikely 
that a higher feedback gain could be used (probably any positive gain we wish, for 
this system), but a ceiling of 0.3 is all we can guarantee to cover the worst case. 

10.7.3 Achieving diagonal dominance 
We are trying to find a compensator K(s) so that the inverse forward path T F M 
Q(s) = [G(s)K(s)]~l = K(s)G(s) is diagonally dominant. Usually a cascaded 
series of precompensators w i l l result, as in the case of the C L method. Once 
diagonal dominance has been achieved, single-loop compensators can be added in 
the normal way. Post-compensators (that is, compensators placed after the plant in 
the forward path) can also be used in theory. This is not useful in practice, because a 
compensator placed after the plant 'scrambles' the system outputs, so that only 
some linear combinations of the outputs are controlled as required, rather than the 
plant outputs themselves. Therefore only precompensators are used in a practical 
I N A design. 

In an effort to achieve diagonal dominance, the fo l lowing methods may prove 
useful. However, it must be said that experience also assists greatly in the use o f this 
method, which relies more on the decisions of the designer than does the C L 
method. Note that the Perron-Frobenius approach o f Section 10.8 reduces to some 
extent this need for experience. 

Initial inspection 
When the I N A is viewed, it appears as a matrix (that is, array) o f inverse Nyquist-
like plots, one per T F M element. A t the outset, i t is sometimes obvious whether or 
not i t is l ikely to be diagonally dominant. For example, a comparison o f the 
magnitudes of the extremes of the off-diagonal plots wi th those o f the diagonal term 
in the same row (or column) w i l l often show that the diagonal term cannot possibly 
be larger than the sum of the off-diagonal ones, so the system cannot then be 
diagonally dominant, and some compensation w i l l be needed. However, it is only 
possible to study the endpoints of the plots in this non-rigorous way. Even simple 
two-input-two-output systems wi th low-order dynamics are quite capable of 
showing non-dominant behaviour at mid-frequencies, even though both the highl
and low-frequency endpoints of the plots may be satisfactory. I t is always worth 
drawing Gershgorin bands as a check, even i f the system superficially appears to be 
satisfactory. 

Elementary row operations 
Assuming the system is not dominant at this stage, one can often envisage a set of 
elementary row operations which w i l l help to make it so; for example, 
interchanging a pair of rows to bring one element of large magnitude onto the 
diagonal of the I N A while moving a smaller component into the off-diagonal 
region. Swapping rows in this way is easily accomplished by using a compensator 
matrix having a single entry of 1 in each row and column (known as a permutation 
matrix). A simple numerical example follows showing the effects of row 
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interchange (using a pre-multiplying matrix) and column interchange (using a post-
mul t ip ly ing matrix): 

' 0 1 0" *1 9 3" "7 2 6" 

1 0 0 7 2 6 = 1 9 3 

0 0 1 5 4 8_ 5 4 8_ 

interchanges rows 1 and 2 

' 1 9 3 ' ' 0 1 0" ' 9 1 3~ 

7 2 6 1 0 0 = 2 7 6 

_5 4 8_ 0 0 1_ 4 5 8_ 

interchanges columns 1 and 2 

Another common type of constant compensator is a unit matrix wi th some non
zero off-diagonal terms added. This has the effect o f adding multiples of rows (or 
columns) to other rows (or columns). For example: 

"1 2 0" "1 9 3" "15 13 15 

0 1 0 7 2 6 = 7 2 6 

0 0 1 5 4 8_ 5 4 8 

adds twice row 2 to row 1 

' 1 9 3" *1 2 0" ' 1 11 3" 

7 2 6 0 1 0 = 7 16 6 

_5 4 8_ 0 0 1 5 14 8_ 

adds twice column 1 to column 2 

Several such simple compensators and permutation matrices can be cascaded to 
achieve the desired result. The CACSD package can then be asked to combine 
them all into one and invert the result for real-world application as discussed next. 

A note on precompensators, row operations, column dominance and 
the INA 
A point which is worth stressing is that restricting ourselves to the use of 
precompensators in the I N A approach means that we can only carry out 
row operations on the I N A . A t first sight, this might seem to fo l low directly 
from the example above, but a li t t le more thought perhaps makes it seem incorrect, 
and it is important to try to remove the confusion. 

In the real world, i f we add a precompensator matrix A' to a plant matrix 
G (dropping any ^-dependency for clari ty), then we have the forward path 
arrangement shown in Figure 10.5. The overall forward path transfer function is 
then given by Q — GK (working against the signal flow, as usual). I t therefore 
seems that placing a precompensator K in front o f the plant ought to lead to post¬
multipl icat ion by the compensator matrix, thus performing column operations as in 
the example above. 
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Whi le this argument is correct when working in the real world, we are to 
perform our design in the inverse Nyquist domain. Since we are to work wi th the 
inverse plant and compensator matrices we actually have 

Q = (GK)~l = KG (10.17) 

Viewed in this light Equation (10.17) shows that when we add a precompensator K 
to the real-world plant, i t is the same as pre-mult iplying the inverse Nyquist array 
by A, thus performing row operations on i t . Conversely, i f we decide that a certain 
row operation w i l l improve the I N A , and pre-multiply the I N A by an appropriate 
matrix to achieve this aim, then this matrix is K and must be inverted before 
application as the precompensator K in the real world . 

As a consequence, when plotting Gershgorin circles on the I N A , we normally 
choose to plot column dominance circles. The reason for this is that, although 
precompensators which perform elementary row operations (including row 
interchange) can affect either row or column dominance (or both), we shall also 
want to use diagonal precompensators sometimes. These cannot affect row 
dominance (because they have the same effect on every element in a given row), so 
we shall have to view column dominance in such cases to see any change. 

D.C. diagonalization 
I f G(s) exists, i t may be worth trying a precompensator which w i l l diagonalize G(s) 
at d .c , namely K = G(0). Again note the possible confusion due to our working 
wi th the inverse Nyquist array. We apply the precompensator (7(0) to the inverse 
Nyquist array, but i t therefore becomes C(0) , as required, for application to the real-
wor ld plant. 

Other approaches 
Other methods tend to be more complicated. For example, K may be chosen as a 
constant precompensator which best ( in a least-squares sense) diagonalizes G(s) at 
some frequency of interest. See Owens (1978) for some more suggestions. There is 
also the Perron-Frobenius approach, which we discuss in Section 10.8. 

Dynamic compensation 
As mentioned above, once dominance is achieved as indicated by the failure o f any 
of the Gershgorin bands to enclose the origins, a set o f SISO compensators can be 
designed (individually) to give the required dynamic performance in each loop. 
Simulation runs using the CACSD package w i l l help to confirm the suitability o f the 
resulting controller. Note that, i f different compensators are used in different loops, 
then diagonal dominance may be lost because o f the imperfect removal of 
interaction before such compensators were applied. 

10.7A Stability considerations revisited - Ostrowski bands 
Once diagonal dominance has been achieved by the methods of Section 10.7.3, a 
further inspection of the Gershgorin bands allows appropriate feedback gains to be 
chosen for adequate stability. As discussed in Section 10.7.2, for the system to be 
closed-loop stable, the Gershgorin band for the / th diagonal element of the I N A 
(1 < i < n) must not touch the segment of the negative real axis between the origin 
and the point (-f h 0). 
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Once such stability has been achieved, more accurate information can be 
found as to the actual location of the inverse Nyquist-type plot for qu(s). This is 
achieved by applying a theorem of Ostrowski which states that, so long as diagonal 
dominance and stability have already been confirmed by the Gershgorin bands, a 
'shrinking factor' can be applied to focus the bands, g iv ing the Ostrowski bands. 
The calculation of the shrinking factor can be found in Maciejowski (1989). The 
Ostrowski bands are often sufficiently narrow to get a good idea of the gain and 
phase margins o f the closed-loop system in the usual (SISO) way (see Section 
3.5.2). M A T L A B can plot the Ostrowski bands. 

10.7.5 Inverse Nyquist array case study using MATLAB 
I n Example 10.4 (Section 10.6.5), we developed a controller for a pneumatic 
laboratory rig using the C L approach. We now apply the I N A method to the same 
problem so that we can compare the results. The M A T L A B commands for Example 
10.5 are to be found in the m-files figl0_23.m to fig]0_27.m on the accompanying 
disk, suitably commented. Here, we concentrate on the design procedure, w i th only 
the barest outline o f how M A T L A B achieves the results, as an indication of a 
typical CACSD methodology. For more details o f the M A T L A B commands, inspect 
the above files. 

Example 10.5 The pneumatic system with a 
controller designed by the INA method 

| The acquisition of the plant T F M model, its conversion to a state-space model, the setting 
f up of a suitable vector of frequency values and the calculation o f the corresponding 
( frequency response data as the multivariable frequency response ( M V F R ) matrix were all 
I carried out in Example 10.4. I t must be said that the I N A plots for this particular plant are 

all of the same rather unexciting shape, thus making application o f the method somewhat 
easier than it normally is. Nevertheless, the principles o f application o f the I N A method 
are all demonstrated and the result gives a useful point o f comparison wi th the other 
methods we apply to the same plant. 

M A T L A B plots the I N A from the inverse of the M V F R data, and there is a M A T L A B 
M V F D T B command finv to calculate this. The M A T L A B M V F D T B has a command fget 
which extracts the information for one element of the I N A from this inverse M V F R data 
(that is, the inverse frequency response information for one T F M element), a command 
plotnyq which produces the I N A plot for this element, and a command fcgersh which plots 

- the Gershgorin circles for (column) dominance when invoked for the diagonal elements o f 
. the I N A . 

m Since the design process is iterative, we need to display the I N A a large number o f 
*' times. I t therefore makes sense to write a M A T L A B m-file to construct the entire 2 x 2 

I N A in one go, and add Gershgorin circles as required. This custom-written command is 
*- referred to as inap4 in this example, and appears as the m-file inap4.m on the 

accompanying disk. 
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$ Initial investigation 
Using the custom inap4 command with the inverse M V F R data for the uncompensated 
pneumatic plant produces the I N A of Figure 10.23. Figure 10.23(a) shows the whole of the 
chosen frequency range, with Gershgorin circles plotted at every 4th frequency value, and 
Figure 10.23(b) shows an expanded version of the low-frequency end of the plots, wi th 
Gershgorin circles every 7th frequency point. 
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Without looking at the Gershgorin bands, the system appears already as though i t 
might be diagonally dominant since, at both the high- and low-frequency extremities o f the 
plots (Figures 10.23(a) and (b) respectively), the diagonal elements are clearly larger than 
the off-diagonal ones. The Gershgorin bands confirm that this is so at al l the frequencies 
for which they are plotted, as they do not enclose the origins o f the plots. Furthermore, the 
Gershgorin bands do not touch the negative real axes at any frequency, so the system 
would remain stable for any feedback gains. 

The I N A theory suggests that we could immediately accept that the plant is 
diagonally dominant, and begin to design single-loop compensators for i t . However, we 
can tell from the size o f the Gershgorin bands that there could be a lot o f interaction in the 
system (especially at higher frequencies, where the circles are larger, but also at d . c ) , and 
we know this to be true from Figure 10.2. We would therefore be wise to try to reduce this 
interaction first - in other words, the system is already diagonally dominant, but the 
dominance properties can probably be improved. 

Row operations to improve dominance 
From the I N A of Figure 10.23(a), it is apparent that all four plots are predominantly the 
same shape (there is more comment on this point shortly). Therefore, i t should be possible 
to make the off-diagonal elements almost vanish at high frequencies, by (for example) 
subtracting a proportion of row 1 from row 2 which w i l l reduce element (2,1) to zero, and 
then subtracting a portion of row 2 from row 1 which w i l l make element (1,2) reduce to 
zero. 

Beginning wi th the intention of reducing element (2,1) to zero at high frequencies, we 
could get M A T L A B to tell us the magnitudes o f the plots for elements (1,1) and (2,2) at 
the high-frequency endpoints, and calculate the appropriate factor (and this is done in the 
m-file figl0_24.m on the accompanying disk). However, the simple expedient o f measuring 
the plots o f Figure 10.23(a) suggests that i f we subtract 0.12 x (row 1) from row 2, then 
element (2,1) ought to vanish at high frequency. 

We also need to consider the effect of this proposed compensation on element (2,2), 
which w i l l be affected in precisely the same way as (2,1), and we must also consider the 
effects at the d.c. ends of the plots in row 2. Subtracting 0.12 x (element (1,2)) from 
element (2,2) at the high-frequency end (Figure 10.23(a)) w i l l only reduce element (2,2) 
by about 6 per cent. Since we predicted that element (2,1) w i l l vanish at high frequencies, 
the row dominance o f row 2 should therefore be significantly improved overall at high 
frequencies. We, however, are plotting column dominance circles, so it is element (1,1) 
which w i l l show the improvement, while element (2,2) w i l l actually become worse as we 
have reduced its size relative to element (1,2) (but the second compensator w i l l correct 
this). From Figure 10.23(b), the effects at the low-frequency end should be to reduce the 
d.c. value of element (2,1) by about 25 per cent, and that o f element (2,2) by about 5 per 
cent, so dominance should be affected in the same way (qualitatively) as at high 
frequencies. 

On paper, our predicted results seem promising, so we apply the required 
precompensator to the I N A to subtract 0.12 x (row 1) from row 2, namely 
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I n M A T L A B , i t is simply a matter of using the M V F D T B command fmul to pre-multiply 
the existing inverse M V F R matrix by Kx, and then using the custom inap4 command to 
repeat the plotting. 

The result appears in Figure 10.24, where element (2,1) has almost disappeared, as 
predicted. Since the Gershgorin circles shown are for column dominance (for reasons 
discussed previously), we see larger circles on element (2,2) because i t is smaller than 
before, but the circles on element (1,1) have almost vanished (note the change in real axis 
scaling compared wi th Figure 10.23(a)). 

We hope that the reduction in the width of the Gershgorin bands indicates a reduction 
of interaction in the time responses. However, this does not necessarily fol low. For 
example, i f the I N A plots were actually in the positions shown in Figure 10.23(a), rather 
than somewhere else in the Gershgorin bands, the improvement would not necessarily be 
great. 

A t this point, i t is worth stressing two aspects of the procedure we are fo l lowing. 
Firstly, i t is only easy to predict the effects of row operations in this way when all the 
elements of the I N A are predominantly the same shape (as they are in this example, apart 
from a slight curve at the extreme low-frequency end o f element (2,2)). I f the plots are 
different in shape and/or direction, i t becomes necessary to think about both the real and 
imaginary components at the ends of the plots, and to work wi th vector measurements 
from the origin o f the s-plane (we have only considered the imaginary parts at high 
frequencies, as the real parts look negligible in comparison, for this particular system). 

Secondly, without the use of M A T L A B (or another CACSD package) i t is only 
possible to consider the endpoints. There is no guarantee that the distribution o f frequency 
points w i l l be the same along the different elements of the I N A , so it is impossible even 
to estimate the effects on dominance at intermediate points, unless the position of each 
frequency value on each plot is known. The I N A plots for many systems w i l l exhibit 
extremely strange behaviour at intermediate frequencies when applying row operation 
precompensators, even i f the endpoint frequencies behave as predicted. 

Figure 10.24 Inverse 
Nyquist array of the 
pneumatic plant with the 
first precompensator. 
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We shall not plot the time responses yet, but continue wi th the second stage of 
precompensation; namely, subtracting a suitable proportion o f row 2 from row 1, so as to 
cause element (1,2) to vanish, in the same way as we did for element (2,1). I f we achieve 
this, the system should be much improved, and the circles should vanish on element (2,2) 
also. By measurements made on Figure 10.24, subtracting 0.64 x (row 2) from row 1 is 
approximately correct. This should reduce element (1,2) more or less to zero at high 
frequency, but have a negligible effect on element (1,1) due to the small size o f element 
(2,1). Inspecting the d.c. ends of the plots in Figure 10.24, although rather inaccurate on 
the scale given, indicates that subtracting 0.64 x (row 2) from row 1 w i l l not spoil the 
dominance properties at d.c. Apply ing a second precompensator 

to the I N A results in Figure 10.25 (showing the origin areas only on this occasion). 
From Figure 10.25, we see that element (1,2) has been greatly reduced in size (but 

not quite as successfully as was element (2,1)), and that the circles are now much reduced 
as a result. On the higher-frequency parts of the plots, which do not appear in Figure 
10.25, the circles on plot (1,1) remain at the diameter shown, at all frequencies (because 
the magnitude of element (2,1) is more or less constant w i th frequency), but those on 
element (2,2) increase wi th frequency, eventually reaching about the same diameter as the 
circles on element (1,1). 

Using the approach we have taken, this is really as far as we can go wi th row 
operations. In efforts to improve dominance further, there would be li t t le point in 
subtracting any proportion of row 2 from row 1, or o f row 1 from row 2, because the 
off-diagonal terms are already so small that no real improvement would result. Indeed, 
noting that element (2,1) has a magnitude of about 0.45 at all frequencies, we could easily 
spoil the dominance altogether i f we did anything to increase this. Simply mul t ip ly ing row 
2 by some factor greater than unity to make element (2,2) larger w i th respect to element 

Figure 10.25 Inverse 
Nyquist array of the 
pneumatic plant with two 
precompensators. Real Real 
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(1,2) is therefore not an option. We could mult iply row 1 by such a factor, to improve the 
dominance of element (1,1) further, but the resultant increase in the size o f element (1,2) 
would have some detrimental effect on element (2,2). 

Time responses after the row operations 
Let us now see how the plant w i l l behave with the two compensators we have designed so 
far. Recall that we have been adding precompensators to the I N A so, in the inverse 
Nyquist domain, we have formed a forward path given by K2KXG. For use in the real 
wor ld , this needs inverting, when it becomes G[K2KX]_1 = GKXK2. To see the effect i n 
M A T L A B , we therefore form the constant precompensator KXK2, and then use the mvser 
and mvfb functions, as in Example 10.4, to build the forward path state-space model o f the 
compensated plant, and apply unity negative-feedback loops to i t . The custom-written 
mvlstep command on the accompanying disk then generates Figure 10.26. 

Comparing Figure 10.26 wi th Figure 10.2, we see that the responses are now 
significantly faster, and that interaction has been much reduced. However, there is st i l l 
some interaction, and there are large steady-state errors to be corrected. 

Dynamic single loop compensation 
Having progressed as far as we are able in improving the diagonal dominance, we now 
treat the system as two independent single loops and design a dynamic compensator for 
each loop in an effort to improve the performance. The addition of integral control to each 
loop should allow removal of the steady-state errors, and the use o f proportional plus 
integral control w i l l additionally allow more control over the amount o f overshoot and the 
other time-domain measures in which we shall be interested. 
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Figure 10.26 Step 
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Ini t ial ly, we try a 4default' unity-gain P + 1 compensator applied in the same way as 
in the 'Steady-state compensation' section of Example 10.4, and having a T F M given by 

K3(s) = 

's+1 

0 

0 

J - h i 

Figure 10.27(a) shows the responses. The steady-state errors have al l been removed, but 
the response of loop 1 is very sluggish, and the response o f neither loop is fast enough to 
meet the original specification of a 1.6 s 10-90 per cent rise time. 

In an effort to speed up the response, the gains need to be raised in each loop. 
Viewing the behaviour of the plant inputs (as discussed in Example 10.4) shows that a 
gain of about 8 units can be inserted in each loop i f the inputs are to be allowed to move 
as far as they did in Example 10.4 (Figure 10.20(c) shows the plant inputs generated 
previously by the C L controller). Inserting gains o f 8 units allows the response in each 
loop to meet the rise time criterion, but sti l l results in too much overshoot in loop 1 (the 
specification called for 15 per cent). Keeping the proportional gain in loop 1 (and the 
overall gain in loop 2) at 8 units, but halving the integral gain in loop 1, gives the P + I 
compensator T F M 

K3(s) 

8s+ 4 

s 

0 

0 

85 + 8 
s J 

The resulting step responses are shown in Figure 10.27(b). Figure 10.27(c) shows the same 
responses, but wi th the plant input demands also displayed. 

The performance specification is easily achieved in loop 2, but we have a 10-90 per 
cent rise time of about 1.7 s in loop 1 (as opposed to 1.6) and an overshoot o f about 19 
per cent (as opposed to 15). More careful tuning, or a more complicated compensator in 
loop 1, would achieve the specification, but the existing performance is broadly 
comparable wi th that of the C L approach, and we have done sufficient to illustrate the 
method. Figure 10.27(c) shows that, as for the previous C L result, we require large input 
signals, and again we rely on the 1 V step test being unrepresentative o f normal operation. 

Incidentally, reviewing the I N A of this compensated system shows that the dominance 
properties have been spoiled by the addition o f the P + 1 elements. This is not unusual, 
especially i f different compensation is applied in each loop, as we have done. However, 
the resulting compensator is much simpler than that o f the C L controller (see Section 
10.9), so there is st i l l scope for rediagonalization and further ' loop-shaping' i f desired. 

The overall result 
In order to find the overall compensator that we need to apply to the plant, we must 
remember that we have been working in the inverse domain. As far as the I N A is 
concerned, i t has precompensators Kx and K2 ( t n e P + 1 compensator K3(s) being applied 
only in the real wor ld , after diagonal dominance had been achieved). In the inverse 
Nyquist domain, the overall constant compensator is therefore K2KX (remember, we 
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applied first Kx and then K2 as compensators / ^ - m u l t i p l y i n g the I N A ) . I n the real wor ld , 
this needs inverting, so the required overall compensator is: 

8 s + 4 

s 

0 

0 

8 s + 8 

s J 

Performing the algebra gives the overall result: 

1 I" 8 s + 4 5 .12s+ 5.12 

s [o.96s + 0.48 8.6144s + 8.6144 

This is compared wi th our other results in Section 10.9. 

In Example 10.5, from the outset, we adopted the approach o f using row operations 
on the I N A to achieve diagonal dominance. It w i l l sometimes be better to try an 
ini t ia l compensator which diagonalizes the plant T F M at d.c. (that is, G(0) applied 
to the I N A , or G ( 0 ) _ 1 applied in the real wor ld - see Problem 10.4), or to try some 
other method (see Section 10.7.3). The method of performing row operations on 
the I N A and then adding any required dynamic compensation can work wel l but, 
as we have seen, needs some experience to be able to apply it really effectively 
(especially on systems larger than 2 x 2 and systems whose I N A elements are o f 
strange or differing shapes). Another problem is that scaling inputs and changing 
their order of connection (which is effectively what many row operations do) can 
have a rather unpredictable effect on the dominance properties o f some systems. A 
third approach to multivariable system design, allied to the I N A , is now presented. 

10.8 The Perron-Frobenius (P-F) method 
10.8.1 Introduction 

This method involves the use of the Perron-Frobenius eigenvalue and eigen
vectors of the system. In our context, the P-F eigenvalue is effectively the largest 
positive eigenvalue of a certain special diagonalization of the inverse T F M of 
the system. I t is therefore frequency-dependent, and can be plotted as (for 
example) a Bode plot. We use the inverse T F M so that we can apply the resulting 
precompensator to the inverse Nyquist array o f Section 10.7. I n M A T L A B , the 
inverse of the M V F R matrix (see Example 10.4 in Section 10.6.5) is used. 

The approach is useful, in that a simple inspection of the P-F eigenvalue tells 
us whether or not it is possible to make a system diagonally dominant at any 
particular frequency, using a purely diagonal compensator. I f so, inspection o f an 
associated P-F eigenvector then helps to design the required diagonal compensator. 
We give some practical details here, but for more details o f the theoretical 
background see Maciejowski (1989) or Munro ( in O 'Rei l ly (1987), Chapter 13). For 
the M A T L A B implementation, see the entry for fperron in the M V F D T B manual 
(Ford et al.y 1990). 
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10.8.2 P-F eigenvalue plots 
As mentioned above, the P-F eigenvalue can be plotted against frequency as a Bode 
diagram. In M A T L A B , the inverse of the plant M V F R matrix (including any 
compensators already applied) and the associated vector of frequency points are 
required in creating the special diagonalized inverse M V F R matrix needed by the 
fperron command. When the P-F eigenvalue is calculated for the original plant o f 
Example 10.5, the result appears as shown in Figure 10.28 (this was plotted by the 
M A T L A B m-file figl0_28.m on the accompanying disk, which contains sufficient 
comments to show how it was done). 

The significance of Figure 10.28 is as follows. For any system, over any 
frequency range where the P-F eigenvalue plot is below 2 (that is, below 6 dB), 
there exists a purely diagonal precompensator which, when applied to the system, 
w i l l make i t diagonally column dominant (on the I N A ) . I n general, the further the 
P-F eigenvalue is below the value o f 2 (6 dB) at any particular frequency, the 
better should be the resulting dominance properties at that frequency. Conversely, 
the nearer to 2 the P-F eigenvalue gets, the harder i t w i l l be to achieve dominance. 
I f the P-F eigenvalue plot rises above 2 at any frequency, then a more general 
compensator (that is, not purely diagonal) w i l l be needed, i f dominance can be 
achieved at al l . In such cases, i t may be worth adding a d.c.-diagonalizing 
compensator (that is, G ( 0 ) _ 1 ) to the plant, and then trying the P-F method again. 

In Figure 10.28, the P-F eigenvalue plot is less than 2 (6 dB) at all frequencies 
of interest. This means that the system can be made diagonally dominant at all 
frequencies of interest, using a purely diagonal compensator. This is no surprise, as 
Example 10.5 has shown it to be diagonally dominant in any case, even before the 
application of any compensation. We shall use the P-F approach to design the 
appropriate compensator to improve the dominance. 

Figure 10.28 Perron-
Frobenius eigenvalue plot 
for the pneumatic plant. 

1.0 
Frequency (rad s~1) 

10 100 

10.8.3 Use of the P-F eigenvectors in compensator design 
To pursue the design, it is necessary to obtain not only the P-F eigenvalue, but also 
the corresponding left- and right-hand eigenvectors (readers unfamiliar wi th the 
concept of left-hand eigenvectors should consult Section A l . 2 . 1 ) . These P-F 
eigenvectors w i l l also be functions of frequency. We shall therefore have 
eigenvectors each of which has a number of elements equal to the dimension o f 
the system (that is, the number o f inputs and outputs), and these elements w i l l each 
have one value per frequency point. In the case of our 2 x 2 pneumatic plant 



10.8 The Perron-Frobenius (P-F) method 551 

example, we shall have left- and right-hand eigenvectors, each having two such 
frequency-varying elements. 

I t has been shown (see, for example, Maciejowski (1989)) that the behaviour 
of the elements of the required compensator to make the I N A of the system 
diagonally dominant is the same as the behaviour o f the corresponding elements o f 
the left-hand P-F eigenvector against frequency. Therefore, we can plot the Bode 
diagrams (for example) of the elements o f the left-hand P-F eigenvector, and design 
dynamic (Laplace transfer function) precompensators which approximate to the 
same Bode diagrams (the right-hand P-F eigenvector would be used to design a 
post-compensator for the I N A , i f we were to allow such a thing in practice; or a 
precompensator for a direct Nyquist array). 

Since an eigenvector is correct for any scaling (it only specifies a 'direct ion' in 
space), we may as well fix one element of it to be a constant over frequency, thus 
reducing by one the number of dynamic compensators to be implemented. We 
might choose to normalize the left-hand P-F eigenvector so that element 1 is always 
unity. This is done by dividing every element o f the left-hand P-F eigenvector at 
each frequency value, by the value o f element 1 at that frequency. I f we use 
M A T L A B , the M V F D T B fperron command w i l l give us the P-F eigenvector data 
as wel l as the P-F eigenvalue data. 

Example 10.6 The pneumatic system with a 
controller designed by the P-F approach 
Figure 10.28 was discussed in Section 10.8.2, and shows the P-F eigenvalue plot for the 
system of Example 10.1, whose I N A was investigated in Example 10.5. Figure 10.29 
shows a plot of the magnitude o f element 2 o f the left-hand P-F eigenvector against 
frequency. Note that this has been normalized to make element 1 unity (0 dB) at all 
frequencies as discussed above. 

According to the P-F method, the I N A w i l l become diagonally dominant at all the 
frequencies shown in Figure 10.29, i f we apply to loop 2 a precompensator whose 
frequency response is the same shape as that o f Figure 10.29 (that is, o f element 2 o f the 
left-hand P-F eigenvector, having already inspected Figure 10.28 to prove that this is 
possible to achieve). We note from the appearance o f Figure 10.29 that a first-order 
lag-lead compensator might approximate to this curve. As in the case o f the C L method 
(Example 10.4), the M A T L A B M V F D T B command phlag w i l l design such a lag-lead 
compensator. We only need to specify the required gain change, the upper break frequency 
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and the high-frequency gain required of the compensator (this time we do not want the 
default value of zero dB at high frequencies, which applied in Example 10.4). 

We see from Figure 10.29 that the plot for element 2 'begins' at about - 0 . 28 dB and 
then falls to about —6.68 dB. The upper break frequency appears to be at 0.2 rad s - 1 

(where the gain is 3 dB above the final value), but the lower break frequency is only 
slightly lower than this value, so the two w i l l interfere wi th one another. The actual upper 
break frequency is therefore probably nearer to 0.26 rad s"1. We therefore instruct the 
phlag command to design a lag-lead compensator, having a gain change o f - 6 . 4 dB, and 
settling at - 6 . 68 dB, wi th an upper corner frequency of 0.26 rad s - 1 . 

The resulting compensator for row 2 of the I N A is given by 

0 .4634s+ 0.1205 

s +0 .1243 

and its frequency response fits quite well over the plot o f Figure 10.29 ( in a more difficult 
case, we may have to try increasing the order of the compensator to match the P-F 
eigenvector better, for example by using a number of cascaded lead-lag and lag-lead type 
elements, perhaps coupled wi th least-squares fitting techniques, such as those used in 
Section 8.3). We next build up a diagonal precompensator matrix to apply to the I N A . In 
our case, this w i l l have element (1,1) set to unity, and element (2,2) w i l l contain the 
compensator just designed. In M A T L A B this can be done in the same way as for our 
previous additions o f compensators, giving the resulting I N A of Figure 10.30(a). In 
comparison wi th Figure 10.25 (the comparable point in the previous I N A design procedure 
using row operations) we see that the Gershgorin bands are now wider at low frequency, 
implying (perhaps) more interaction, but that they are much better balanced between loops 
1 and 2. The resulting step responses are rather similar to those of Figure 10.26, except 
that in response to the step on input 2, y 2 rises to about 0.58 unit and settles back to about 
0.48 unit, while the response of y{ looks like that o f y2 in the upper plot of Figure 10.26, 
but settles rather more quickly. 

As in Example 10.4, we now invert the compensator applied to the I N A , and then 
proceed to add single-loop compensators to speed up the responses and remove the steady-
state errors. After a little experimentation, the P + 1 compensators contained in the T F M 

r^±i o i 
s 

o 
S 

gave the step responses o f Figure 10.30(b). Figure 10.30(c) shows the same responses, but 
wi th the plant input demands also displayed. The responses can be compared wi th those o f 
Figure 10.27, and w i l l be found to be slightly better in some respects and slightly worse in 
others, but very similar overall. We could improve the responses by further tuning, but the 
main point about this design has been made: namely, that we did not need the experience 
required to perform row operations on the I N A . 

The overall result 
To obtain the overall compensator, we simply need to mul t ip ly the two precompensators. 
However, we must remember that the P-F precompensator was obtained for the inverse 
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Nyquist array, so we need its inverse in the real wor ld . The overall compensator is 
therefore given by 

"8s - f 4 
1 0 

0 .4634s+ 0.1205 
0 

s +0 .1243 

0 

4 s + 4 

s J 

Carrying out the algebra gives the result: 

1 r 8s 2 + 6.0803s + 1.0401 0 

0 8.6319s 2 + 9.7048s + 1.0729 s 2 + 0.26s 

which w i l l now be compared wi th the previous results 
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10.9 Points of comparison 
I n trying to summarize a few differences between the approaches considered, i t 
must be remembered that neither the C L method nor the I N A approach w i l l be 
'best' in all situations. Because the C L method concentrates entirely on 
eigenstructure and characteristic directions, while the I N A method concentrates 
on overall input-output relationships, the approaches are fundamentally different. 
Therefore, the most appropriate one w i l l be dependent upon the physical 
configuration of the system to be controlled. 

Also, since CACSD packages simply present us wi th all the tools to apply 
either method, without prescribing at all how they should be applied, we need not 
keep them separate. For example, i f we chose, we could design compensators using 
the I N A display, but use the characteristic loci or singular values, and so on to check 
on interaction and stability. 

Both the C L and the I N A techniques have been used successfully in many 
practical applications. They do possess certain drawbacks, though. Each of the 
methods is capable of producing controllers which are not particularly robust in the 
face o f disturbances. The fact that each method makes approximations does, 
however, have the advantage that the resulting compensators consist largely of 
constant matrices. They therefore give very much simpler results than the fu l l 
diagonalization approach proposed in Section 10.4. The I N A approach using row 
operations is l ikely to give the simplest compensator in this sense, but i f the P-F 
approach is used, dynamic elements w i l l be introduced leading to a similar level o f 
complexity (roughly speaking) as in the C L method. 

When using the I N A approach, it is sometimes found that changes in the 
ordering or scaling of input and output variables can drastically affect the 
dominance of the system in unexpected ways. Note that the use o f permutation 
matrices to interchange rows (or columns) of a T F M has the effect o f reordering the 
system outputs (or inputs). The comment is therefore of direct relevance to this 
approach. In addition, for systems larger than 2 x 2 , the achievement of diagonal 
dominance by row operations can prove a frustrating exercise unless one is both 
skilled and patient. Use of the P-F approach removes this uncertainty at the expense 
of more complicated controllers (that is, dynamic, rather than simply numeric). 
Finally, the achievement of diagonal dominance, although al lowing the design of 
single-loop compensators, does not necessarily imply low interaction. Interaction 
can often be further reduced by increasing the feedback gains (where possible), but 
watch out then for unacceptable steady-state behaviour! 

The C L approach also has some disadvantages. Firstly, the algorithm for 
alignment of the characteristic directions wi th the basis vectors at high frequency 
does not always have as great an effect as one might wish (always inspect the time 
responses afterwards). Secondly, the design of the approximate commutative 
controller is often very approximate. The C L method also requires the freedom to 
specify every individual element of the compensator K(s). Thus no constraints can 
be put on the form of K(s) ( in the I N A method, some constraints can often be placed 
on the form of K(s) i f desired). 
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Example 10.7 Comparison of the numerical 
results of the approaches in this chapter 
We have already discussed some general points of comparison between the methods we 
have studied. Finally, we compare the numerical results we have obtained in Examples 
10.2, 10.4, 10.5 and 10.6 for the application of the various approaches to the control of the 
pneumatic plant. As we have already said, the results o f such a comparison may be 
different for a different plant. We make no comment about the time responses obtained, 
because they were all broadly similar and, in any case, we did not tune them as finely as 
we could, so any conclusions might be misleading. 

I n Example 10.2, we attempted complete diagonalization o f the plant, and obtained a 
final compensator (made up of one constant and one dynamic precompensator): 

1 

102.84s 4 + 120.55s 3 + 18.49s 2 + 0.78s L*2l(*) 
12W 

£ 2 2 ( s ) 

w i t h : ku(s) = 1284.7s3 + 360.0s 2 + 33.6s + 1.04 

kl2(s) = 165.4s3 + 93.6s 2 + 12.9s + 0.52 

k2l(s) = 166.8s3 + 94.8s 2 + 13.2s + 0.54 

k22{s) = 278.6s 3 + 161.5s 2 + 23.6s + 1.02 

In Example 10.4, we used the characteristic locus approach, and the overall compensator 
we obtained (made up of four constant and two dynamic precompensators) was: 

1 |~9.4837s2 + 5.2892s + 0.2737 5.4295s 2 + 5.7315s + 1.5084 

s 2 + 0.0622s [ l .2326s 2 + 0.6486s + 0.0161 9.1572s 2 + 7.9444s + 1.6829 

The overall compensator resulting from application o f the inverse Nyquist array method in 
Example 10.5 (made up o f two constant and one dynamic precompensators) was found to 
be: 

8 s + 4 5 .12s+ 5.12 

0.96s + 0.48 8.6144s + 8.6144 

Finally, in Example 10.6, we applied the Perron-Frobenius method, and obtained an 
overall compensator (made up of two dynamic precompensators): 

T8s2 + 6.0803s + 1.0401 

0 

1 

s 2 + 0.26s 
0 

8.6319s 2 + 9.7048s + 1.0729 

The main differences between these results (setting aside possible performance differences 
for reasons already discussed) are in their complexity. 

The result from the diagonalization method is obviously the most complicated in 
form, having third-order numerator terms and a fourth-order common denominator. I t 
would therefore be the most difficult and the least robust to apply in practice. The I N A 
result is the simplest, being only first order throughout, although it does involve the 
construction of some cross-coupling (off-diagonal) terms. I t is also the simplest in 
structure, being largely made up of constant precompensators. The P-F result is second 
order throughout, but is easy to apply because i t is a diagonal compensator, requiring no 
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cross-coupling terms. The C L result is also second order, but does contain cross-coupling 
terms. I t is also by far the most complex in terms of structure, but this is of l i t t le 
consequence i f it is to be generated by a CACSD package. 

These points o f comparison w i l l be found to apply in general to problems to which 
all four methods can be applied. In summary, the direct diagonalization method is 
not recommended, and w i l l often not work at al l . The I N A method is l ikely to give 
a relatively simple compensator, but needs experience to apply. The P-F approach 
removes some of this requirement for design experience and gives compensators 
which, although probably of higher order than the I N A method using row 
operations, are simpler (that is, diagonal) in structure; however, i t can only be 
applied i f purely diagonal compensation is a possibility for the plant in question (a 
d.c.-diagonalizing compensator may make this possible, i f it was not originally so). 
The C L method gives results of greater complexity than the I N A approach, but the 
compensator can be easier for a non-specialist to design by fo l lowing a wel l -
defined set of guidelines. 

10.10 Conclusions 
In this chapter we have studied a number of methods which allow us to handle 
mu l t i va r i a t e systems from a frequency domain, rather than a state-space 
standpoint. 

The main methods we studied were the characteristic locus approach, which 
attempts to diagonalize the system by considering its eigenstructure, and the 
inverse Nyquist array approach, which aims at a more approximate form of 
diagonalization by achieving diagonal dominance. In each case, the aim was to 
remove the interaction from the plant so that, finally, a set o f independent 
compensators could be designed - one per loop - by normal SISO methods. 

We also looked at an intuitive approach based on the notion of exact 
diagonalization by cancellation of the plant dynamics, but noted that this would be 
impractical except in very simple cases. In addition, we investigated the Perron-
Frobenius methods, which allow the study o f frequency-dependent robustness of 
multivariable systems designed by any method. They also predict whether a 
system can be made diagonally dominant by purely diagonal compensation and, i f 
so, the form of compensator required to achieve this via the I N A approach. This 
removes one o f the difficulties of the latter approach, namely the design experience 
needed to perform row operations successfully. 

Throughout the chapter we used an example of a real pneumatic plant, 
applying each method to it in turn. Although this was too simple a system really to 
bring out the best or worst of any of the methods, i t d id give a useful vehicle for 
demonstrating the techniques and illustrating the pitfalls. We also found that the 
application o f any of these techniques cannot sensibly be achieved by hand, so we 
concentrated on a CACSD approach using M A T L A B . 
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10.11 Problems 
10.1 Figure 10.1 shows a two-input, two-output 

pneumatic system. One block diagram 
representation of it appears in Figure 10.3(b), and 
the corresponding transfer function matrix (TFM) is 
given in Equation (10.2). Obtain for this system the 
alternative v-canonical T F elements corresponding 
to the block diagram of Figure 10.4 (as suggested 
towards the end of Section 10.3). 

10.2 For the system shown in Figure 10.9, show that the 
closed-loop TFM H(s), as in y(s) = H(s)r(s), is 
given by H(s) = [I + G(s)F]~lG(s) (Equation 10.9). 

10.3 Show that the McMillan form of the TFM 

5 - 1 5s + 1 

G(s) 
( 5 + I ) 2 ( 5 + I ) 2 

-1 1 

(Equation (10.10)) is given by 
1 

M(s) 

0 

0 

5 + 2 
5 + 1 

10.4 The inverse Nyquist array for the system whose 
TFM is given in Equation (10.2) appears in Figure 
10.23. Rather than carrying out row operations on 
this INA, as we did in Example 10.5 (Section 
10.7), design a precompensator to diagonalize the 
system at d.c. (as suggested towards the end of 
Section 10.7.3). Evaluate the effect of this 
precompensator on the INA (the use of a CACSD 
package will make this easier but, if you do not 
have access to one, you should at least be able to 
discuss the effects of your compensator on the 
endpoints of the various plots). 

What further compensation do you consider 
to be needed after your d.c.-diagonalizing 
compensator has been added? 

10.5 It is an instructive exercise to carry out parts (a) 
and (b) of this problem with no computer 
assistance, as a successful series of compensators 
can be found by careful consideration of the 
endpoints of the plots provided in Figure PI0.5. 

A 9th-order, three-input-three-output system 
has a transfer function matrix defined by 

NUM(s) 
G(s) 

den(s) 

where den(s) is the common denominator 
polynomial: 

den(s) = 2 . 5 ( 5 + l)(s + 2) 4(s + 3) 4 

- 0 . 2 ( 5 + l ) ( 5 + 2)(5 + 3) ? 

- 0 . 2 ( 5 + l ) 6 ( 5 + 2) 3 

- 0 . 6 4 ( s + l ) 3 ( 5 + 2 ) 3 ( 5 + 3) 3 

+ 0 . 0 8(5+ l ) 6 ( 5 + 3) 3 

and NUM(s) is the numerator matrix: 

numn(s) = 50(5 + 2 ) 3 ( 5 + 3) 3 - 4(5 + 3) 6 

num2l(s) = - 1 0 ( 5 + 1) 3 (5 + 2) 3 + 4(5 + 1) 3 (5 + 3) 3 

num3X(s) = - 1 6 ( 5 + l ) 3 (s + 3) 3 

numl2(s) = - 2 0 ( 5 + 1) 3 (5 + 2) 3 + 16(5 + 2 ) 3 ( 5 + 3) 3 

num22(s) = 50(5 + \)(s + 2 ) 4 ( 5 + 3) - 16(5 + 1) 3 (5 + 2) 3 

num32(s) = - 2 0 ( 5 + 1)(5 + 2)(s + 3) 4 + 8(5 + l ) 6 

numl3(s) = 2(5 + 1) 3 (5 + 3) 3 - 20(5 + 2)3(s + 3) 3 

nwn23(s) = - 5 ( 5 + 1)(5 + 2)(s + 3) 4 + 4(5 + l)\s + 2) 3 

num33(s) = 25(5 + l)(s + 2)(s + 3) 4 - 2(5 + l ) 6 

Figure PI0.5(a) shows the inverse Nyquist array for 
the system, for a range of frequencies from 
0.001 rad s"1 to 10 rad s~l. Figure P10.5(b) shows 
an expanded version of the origin area, with 
Gershgorin column dominance circles 
superimposed. 

(a) Discuss the dominance properties of the system, 
and their likely effects upon step responses from 
each input. 

(b) Design a suitable constant precompensator (or a 
series of such compensators) which will improve 
the dominance properties as much as possible. 

To verify the results of (a) and (b), and to attempt 
parts (c) and (d), a package such as MATLAB and the 
MVFDTB is required (if using these, try the MATLAB 
help system to look at the files mv3step.m and inap9.m on 
the accompanying disk). It is interesting to note how 
small an improvement the use of such a package brings to 
part (b), compared with a careful pen-and-paper solution. 
Such manual solutions are generally not so successful. 
Why can they succeed for this system? 

(c) Compare the closed-loop behaviour of the 
system with your precompensator (or 
precompensators) in place, with the original 
performance. 

(d) Design a suitable set of dynamic SISO 
compensators to give as little transient 
interaction as possible and zero steady-state 
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Figure P10.5 Inverse Nyquist array for Problem 10.5. (a) Whole frequency range; (b) low frequency range. 
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error in each output, following step signals 
applied to each input. 

10.6 This problem requires a CACSD environment 
equivalent to MATLAB plus the MVFDTB. It 
exercises the application of the INA method to a 
more awkward system, in which the elements of 
the INA have different shapes and orders of 
magnitude. A two-input-two-output system has a 
TFM 

.s2 + 2s+\ s2 + 0.8s + 4. 

Use the inverse Nyquist array approach to design a 
non-interacting (as much as possible) controller for 
this plant, having zero steady-state errors following 
step inputs. Write down the TFM of the complete 
compensator which would need to be applied to the 
real-world (that is, not inverse) plant to implement 
your design. 

10.7 Repeat Problem 10.6 using the characteristic locus 
approach. Again, the CACSD environment will be 
found essential. Note that in this case, the align 
algorithm does not result in 'parallel' loci at high 
frequencies. Inspect the misalignment angles and 
singular values, and keep checking the step 
responses, in order to measure progress. Write 
down the TFM of the complete compensator which 
would need to be applied to the plant to implement 
your design. Compare your experiences with 
Problems 10.6 and 10.7, and also compare the 
results achieved. 

10.8 Reconsider the 9th-order, three-input, three-output 
system of Problem 10.5. Use the characteristic 
locus approach to design a non-interacting 
controller for this plant, having zero steady-state 
errors following step inputs. The CACSD 
environment mentioned in the preceding two 
problems is again essential. 

You may have found this problem rather 
challenging. Did you find the INA method easier 
for this particular problem? Compare your results 
with those of Problem 10.5. 

10.9 Repeat Problem 10.6 using the Perron-Frobenius 
approach. Again, the CACSD environment will be 
found essential. Note that in this case, the P -F 
eigenvalue plot for the original system shows that 
no simple diagonal compensator exists. It is 
therefore necessary to take some initial steps (for 
example, applying a precompensator to achieve d.c. 
diagonalization), before the method can be applied. 
Write down the TFM of the complete compensator 
which would need to be applied to the plant to 
implement your design. Compare this solution with 
those of Problems 10.6 and 10.7. 

10.10 Again consider the 9th-order, three-input, three-
output system of Problem 10.5. Use the Perron-
Frobenius approach to design a non-interacting 
controller for this plant, having zero steady-state 
errors following step inputs. A suitable CACSD 
environment is again essential. You may find this 
easier than either Problem 10.5 or Problem 10.8. 
How do the results compare? 
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11.1 Preview 
Readers should be able to understand this chapter if 
they have studied Chapters 1 to 4, Section 5.8 and 
Chapter 7. In addition, it would be useful to have 
covered Chapter 8. 

We have seen that the usual practice for 
designing a controller is to obtain a model of the plant, 
to design a controller on the basis of the plant model, 
to test it, possibly by simulation prior to 
implementation, and to tune it after installation. This 
approach usually works well provided that the 
parameters of the plant do not change with time or 
with plant load. Unfortunately, they often do, as the 
following examples indicate. 

The mass of the object being moved by a robot 
manipulator will have a considerable effect on the 
dynamics of the closed-loop system, and will 
mean that a controller which is well tuned for an 
intermediate value of the mass will be less well 
tuned if an extreme value is used, and may even 
result in an unstable system. 
Changes in the thermal capacity and emissivity of 
metal components being heated in a modern 

furnace with 'fast' linings can cause big changes 
in closed-loop performance. 
Variations in the width, thickness and hardness of 
steel strip processed in a rolling mill mean that the 
mill may have to be set up very differently from 
one customer order to the next, if good 
performance is to be obtained. Variations during 
rolling also mean that the setup has to be 
changed from one pass to the next in a multi-pass 
(reversing) mill. 
The action of the control column of an aircraft 
(one without automatic controls to maintain the 
'feel' of the column) varies considerably in its 
sensitivity as the speed and altitude of the aircraft 
vary. A skilled pilot becomes accustomed to the 
variation, and is nevertheless able to fly the plane 
successfully; but difficulties can arise in the design 
of autopilots, if the required controller parameters 
do vary considerably throughout the flight 
envelope. 

In th is chapter we shal l cons ider : 
the limitations of control using fixed-structure, 
fixed-parameter controllers 
the notion of adaptation 
adaptation by gain-scheduling (and by scheduling 
other parameters) 
online identification and self-tuning control 
other forms of adaptive control 
variable-structure control. 

NEW MATHEMATICS FOR 
THIS CHAPTER 

I f the reader has not 
studied Section 9.8 and 
Appendix 6 (on the 
Kalman filter), there wil l 

be some new statistical ideas concerning random signals. 
These are reviewed as they are needed. 
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11.2 The need for adaptation 
This has already been reviewed briefly in Section 11.1. There are a number o f 
solutions to the problem of keeping a controller 4 i n tune', as the parameters o f the 
system it is controlling vary. They range from 'common-sense' approaches to much 
more mathematical ones. The extra complexity o f the more mathematical 
approaches is often justified by lesser hardware requirements, and more reliable 
operation. Note, however, that i t is very difficult to prove the stability properties o f 
controllers whose parameters can vary as time passes, therefore only fairly 
restricted adaptation may be allowed in some applications. Before considering any 
of these matters further, a concrete example w i l l illustrate the degradation of 
performance which can easily occur due to plant parameter variation, and which 
gives rise to the need for adaptation in the controller. 

Example 11.1 Performance degradation of a 
positioning system with varying load 
A simple control system which positions a load o f mass m has an open-loop transfer 
function o f 

Y(s) 40 

U(s) ms2 + 10s + 20 

It is controlled in closed-loop wi th unity negative feedback by a PID controller having a 
gain Kc o f 1, a derivative action time Td o f 0.1 s and an integral action time 7} o f 0.5 s. 
The mass m can vary from 0.2 kg to 5 kg, wi th an average value o f 1 kg , and we shall 
investigate the effect o f this load variation using M A T L A B (Appendix 3). 

Figure 11.1 shows the arrangement. The investigation is performed using the 
M A T L A B mfile figll_2.m on the accompanying disk. The file inserts the chosen values o f 
m into the plant transfer function, one at a time, and in each case closes a unity negative 
feedback PID control loop around the plant, and generates the response using the 
M A T L A B step command. The PID controller transfer function is 

l + T*s + TTs 
1 + 0 . l 5 + J _ = - 2 + ^ + 20 

0.5s 10s 

Note that this idealized PID controller is strictly unrealizable because i t is ' improper ' (the 
numerator is o f higher order than the denominator). See Section 4.5.2, leading to Equation 
(4.23), for more comment on the ideal PID representation. However, when it is combined 

PID controller Plant 
R(s) E(s) Kcl^sTd+—] U(s) 40 Vis), 

ms2 + 10s + 20 

Figure 11.1 Arrangement 
of a closed-loop system. 
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w i t h the plant transfer function, the combination becomes 'strictly proper' (higher order 
denominator than numerator) and the M A T L A B step command w i l l then accept i t . 

Figure 11.2 shows the results, from which the fo l lowing points are noted: 

• The response when m — 1 kg is quite rapid and overshoot-free using these PID 
parameters. 

• A t the lower mass, m = 0.2 kg, the performance is degraded slightly, but not sufficiently 
to be a problem in practice. 

• When the mass increases to m = 5 kg, considerable performance deterioration occurs. 
The ini t ia l movement becomes noticeably slower and an overshoot o f approximately 30 
per cent occurs. 

In situations such as Example 11.1, we may be able to obtain better performance 
on average by setting the controller parameters to suit a load in the middle o f the 
performance envelope (perhaps tuning to suit a mass m = 2 kg in the example). 
However, an alternative approach is to cause the controller to set up its own 
parameters to suit the changing plant parameters. There are three main ways o f 
achieving this: 

(1) By 'gain scheduling'. This approach is applicable to situations where the plant 
parameters are caused to change by changing plant load, as in Example 11.1. 
Referring back to the illustrations in Section 11.1, i t is also widely used in flight 
control systems and roll ing mil ls . 

(2) By the method known as 'model-reference adaptive control ' , in which the 
controller adjusts its parameters in order to make the closed-loop plant 
performance resemble as closely as possible that of a closed-loop model which 
has the desired performance. 

Figure 11.2 The effect of 
changing the plant load 
without changing the 
controller. 

O 
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(3) B y 'self-tuning control ' . This type of control mimics, online, the procedure o f a 
human control engineer in identifying the plant, estimating its parameters, and 
determining those of the controller to suit. I t does this by monitoring the plant 
input and output in order to determine any parameter changes, and recalculating 
the controller parameters accordingly. 

11.3 Gain-scheduling 
The term 'gain-scheduling' means that the gain (and/or other parameters) o f the 
controller is adjusted to appropriate values calculated from a knowledge o f the plant 
load, or of other measurable changes in operating conditions, such as changes in 
incoming material. 

In the case of Example 11.1, the mass o f the load could perhaps be determined 
by some form of load-cell arrangement as i t entered the plant. The load-cell output 
would be conditioned so as to give a value o f the mass to the control computer, 
which would then calculate (or, perhaps, load from a look-up table) the appropriate 
values of the controller parameters. Alternatively, a value o f the mass determined at 
an earlier stage of the process could be used; i t could be entered manually by the 
human operator, or supplied when required by a supervisory computer system 
(which would be in communication wi th both the computer executing the gain-
scheduling controller, and the computer that 'knows ' the mass earlier in the 
process). Manual entry would be simplest, but the direct weighing approach, 
although more costly in terms of hardware, would be less susceptible to error. 

For the system of Example 11.1, the plant transfer function was 

Y(s) _ 40 

U(s) ~ ms2 + \0s + 20 

and the PID controller transfer function was 

U(s) _s2 + IPs + 20 

1{s) ~ 105 

Therefore, for a mass of m = 1 kg, the controller cancels the plant poles and gives 
an overall forward-path transfer function o f 4/s. I n this simple case, i t would be 
possible to achieve such pole cancellation for all values o f a mass, dangerous 
though it may be, by making the PID transfer function 

U(s) _ ms2 + 105 + 20 

~E(sj~ 10s 

A lit t le thought w i l l reveal that the value o f the derivative action time Td w i l l 
therefore need to be equal to 0.1m seconds, rather than just 0 .1 . Practical situations 
are rarely as simple to work out as this, but the principle is the same. 

In this instance, we are aiming to provide the same closed-loop dynamics, 
whatever the value o f the mass m. Such an approach may prove difficult in practice 
because of actuator saturation; i f the actuator is working at the l imi t of its 
performance to accelerate a 1 kg mass at a particular rate, i t w i l l not be able to 
accelerate a 5 kg mass at that rate. This point w i l l be more ful ly discussed in a later 
section. 
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11.4 Self-tuning control 
Self-tuning controllers have three main elements: a digital controller, a parameter 
estimator, and a controller synthesizer. A common configuration is shown in Figure 
11.3 and that configuration w i l l be assumed in this chapter, but arrangements which 
perform some or all of the compensation in the feedback loop are also used. The 
operation is as follows. 

Figure 11.3 A self-tuning 
controller arrangement. 

Controller Plant Controller Plant 

Controller 
parameters 

Controller 
synthesizer Plant 

parameters 

Parameter 
estimator 
(identifier) 

A t the design stage, the plant is modelled (either from first principles or by 
identification) in order to find a general form for its model - just as would be done i f 
the normal identification process were to be used. I t is particularly important, for 
example, to ascertain the order of the plant and the magnitude of its transport lag, i f 
any - self-tuners for plants having variable transport lags are possible, but are much 
more difficult to implement, and are outside the scope of this book. A n online 
identifier is then produced which automates the plant parameter estimation and 
allows it to be performed continuously during plant operation, or on demand. This 
section w i l l assume that the online identifier w i l l produce a linear, discrete-time 
model of the form given in Equation (11.1). 

p v 

yn = Yl ^n-r + brUn-r ( 1 L 1 ) 
r=\ r=\ 

This is known as an A R M A model (Auto-Regressive Mov ing Average) and is a 
type o f discrete-time model we have considered before (see, for example, Section 
2.8.1). a and b are column vectors of lengths p and q, containing the model 
parameters (coefficients). We shall assume that we are confident of the order o f 
this model (that is, that the numbers of parameters, p and q, are correct), but that 
the parameter values (the elements of a and b) may vary. In principle, the 
parameters can be determined during system operation, by examining the time 
history o f the plant input un and output yn. The parameter determination is done by 
the identifier block in Figure 11.3, usually by a method based on least-squares 
fitting. Such a method w i l l be described shortly. The mathematics performed by 
the identifier appears somewhat frightening at first sight, but i t is much easier than 
it looks actually to implement in software, especially i f a computer language wi th 
good matrix-handling ability (such as M A T L A B or, for real-time control, 
appropriate implementations of ' C , Fortran or some other suitable technical 
language) can be used. 
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The resulting plant model is used by the controller synthesizer to determine 
appropriate controller parameters for good closed-loop performance. A pole-
placement approach (see Chapters 5 and 7) w i l l be described in this section, but 
approaches based on optimal control methods have also been used (we describe 
optimal controllers in Chapter 12). Such approaches to self-tuning control are 
described in many references, including Astrom and Wittenmark (1995) and 
Wellstead and Zarrop (1991). 

The digital controller itself differs from those described in Chapters 5 and 7 
only in that its parameters are not constant, but are updated at regular intervals. A n 
important point to note in selecting and using a commercial self-tuning controller is 
that some tune continuously during the operation o f the plant, while others only 
tune when a ' tuning ' button is pressed; the latter normally apply a step input in 
order to ensure that the plant is responding sufficiently vigorously to obtain a 
reliable set of parameters. As w i l l emerge later, i t proves that the true online type of 
self-tuner is liable to produce erroneous values for the plant parameters (and hence 
the controller parameters), i f the plant input and output settle to a constant steady 
state. 

The basis of the least-squares fitting normally used by the parameter estimator 
(often called simply the identifier) is that i t adjusts the estimated plant parameter 
values, such that the mean value o f the square o f the difference between the actual 
plant output and the output predicted by the plant model is minimized. I f we use the 
subscript 'ATZ' to indicate the value predicted by the model, the aim is therefore to 
minimize: 

1 " 

mean square error = - T̂̂  [ y ( r ) — ym(r)]2 ( H - 2 ) 
n r = l 

where r is the number of the time step in the discrete-time process. 
From a practical viewpoint, working online, i t would be better i f we had to use 

only the latest values of y and ym to modify the existing estimates o f the parameters, 
rather than having to start from the beginning each time (as is impl ied by Equation 
(11.2)). Fortunately, a method known as Placketfs algorithm exists for performing 
the parameter estimation interval by interval. A derivation o f the algorithm is given 
in Appendix 7, and the original work is reported i n Plackett (1950) and Norton 
(1986). The resulting equations are: 

P Y I*T P 
r> _ n £ n-\A'n-lA'n-\M n-l /-,-, Q \ rn-rn-x - T - (11 .3) 

i - r xn_lrn_lxn_x 

n n Pn-\Xn-\{Xli-\^n-\ ~ 3^) n , A x 
0 n = On-l 1 • T p = U 1 ' 4 ) 

where: 

is the covariance matrix o f the estimation error. The concept of 
a covariance matrix is developed in Sections A6.1.2, A6.2.3 
and A6.2.4. It is used here as a measure o f how trustworthy the 
parameter estimates are. In i t ia l ly the terms of the covariance 
matrix are unknown. The usual practice is to start the algorithm 
wi th Pn having large numbers on its leading diagonal and zeros 
elsewhere. This ' tel ls ' the identifier that the estimates are l ike ly 
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to be considerably in error, and that i t must make strenuous 
efforts to correct them. 

0n is a vector containing the latest parameter estimates. I t is made 
up of the vectors a and b in Equation (11.1), stacked on top of 
each other (Section A 1.3 introduces this type of partitioned 
vector). 

xn is a vector containing present and past values o f the plant 
output y and input u stacked on top o f each other, such that the 
latest value of y is given by 

which is equivalent to Equation (11.1), as the vector 0 contains 
a and b, and x contains the corresponding values o f y and u. 

A t each sampling instant, we first update 0n by Equation (11.4), and then use 
Equation (11.3) to update Pn. 

The fol lowing pseudo-code explains how the equations would be used in 
practice. The quantities temp, tempi and so on are intermediate values in the 
computation (scalar or vector as appropriate). 

Start: 

Initialize Pn_x wi th large numbers on the leading diagonal and zeros 
elsewhere 

Initialize 6n_x wi th estimated coefficients 

Initialize xn_x wi th actual values or zeros 

Loop: 

Input the latest values of u and y (un and yn) 

Combine un and yn as xn (see above) 

Form temp — xJ

n_xPn_x 

Form tempi = 14- (temp x xn_x) 

Form tempi — x\_xQn_x - yn 

Form temp3 = Pn_xxn_x x tempi j tempi 

Form 0n — 0n_x - temp3 

Form temp4 = xn_xxT

n_x (note that this is the matrix product) 

Form temp5 = Pn_{ x temp4 

Form temp6 — (temp5 x Pn_x)/tempi 

Form Pn — Pn_ x — temp6 

S e t x „ _ ! =xn 

Wait for next sampling interval (or synthesize the controller first 
- see later) 

Goto Loop 
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I f storage were at a premium in a small system, reuse of some of the temporary 
quantities would be arranged - for example, tempi could be reused instead o f 
temp5. 

When Plackett first developed the algorithm in 1950, computers were in their 
infancy and it was not possible to use the algorithm in an online identification 
context. Even trying it out in practice wi th manual calculations must have been very 
laborious. Such experimentation can now readily be performed wi th a computer 
package such as M A T L A B (Appendix 3), which w i l l be used in this chapter to 
demonstrate the capabilities (and limitations) o f many of the methods which w i l l be 
described. 

The work on identification and self-tuning control w i l l be demonstrated in 
action using results from the M A T L A B m-file figlJ_4.m on the accompanying disk. 
I t simulates the action of a second-order plant controlled in the closed-loop by a 
self-tuning Dahlin controller, wi th its ringing pole removed (see Section 7.6). The 
method of calculating the controller coefficients is ful ly described in Section 11.5. 
A Dahl in controller was chosen for the demonstration as it is probably the easiest 
in respect o f online coefficient determination. We w i l l see later that producing 
an apparently more straightforward self-tuning PID controller is actually more 
difficult! 

Example 11.2 Using Plackett's algorithm to 
identify a second-order type 0 plant 
The plant transfer function in the m-file figll _4m is that from Example 11.1, namely: 

Y(s) 40 

U{s) ms2 + 105 + 20 

The value of m (the mass in the modelled process) is set to 1 kg ini t ia l ly , is changed to 
5 kg after 20 seconds and is changed to 0.2 kg after 40 seconds, in a total simulation time 
of 60 seconds. A sampling interval of 0.05 s was chosen and the m-file was run using a 
low-frequency square wave applied to the setpoint. No controller synthesizer is included in 
this m-file, so the controller is fixed during these runs - the only variation is in the value 
of mass. The run was subsequently repeated for a single ini t ia l step input and for a 
sinusoidal input (the m-file allows selection of these inputs from an on-screen menu). 

The structure of the z-transform of the plant plus zero-order hold can be deduced to 
be (see Section 5.8.2): 

Y(z) bxz-x+b2z-2 

U{z)~ l-axz~l -a2z~2 ( 1 L 5 ) 

The results are shown in Figure 11.4, and the calculated ( 'correct ') values o f the 
parameters are given in Table 11.1. 

It is noteworthy that the identified coefficients differ, depending upon the input signal 
used. The results for the square-wave input (Figure 11.4(a)) are in broad agreement wi th 
the expected results from Table 11.1 for the first two values o f mass (that is, at the ends o f 
the time periods 0 to 20 seconds, and 20 to 40 seconds), but not for the third (40 to 60 
seconds). This is largely because the parameters are slow to converge onto their final 
values - at 60 seconds, there is sti l l a lot o f change to come. 
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Figure 11.4 (a) Identified 
parameter values using a 
repeated step (square-wave) 
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parameter values using a 
single-step input, (c) 
Identified parameter values 
using a sinewave input. 
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In the case of the single step input (Figure 11.4(b)), the lack of excitation of the plant 
«. as the step settled resulted in the parameter values obtained for the original mass of 1 kg 

persisting even when the mass changed. 
Wi th the sinusoidal input (Figure 11.4(c)), the problem is that only one frequency is 

present. This violates the assumptions made in deriving Plackett's algorithm and 
» consequently causes biased parameter values. The identifier notes that a change in 

parameters has occurred, but merely produces a further set of incorrect values. 
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Figure 11.4 (Continued) 

Table 11.1 Calculated values for the coefficients of the model of 
Equation (11.5). 

Coefficient a2 b2 

True value for m 
True value for m 
True value for m 

= 1.0 kg 
= 5.0 kg 
= 0.2 kg 

1.567 
1.895 
0.992 

-0.607 
-0.905 
-0.082 

0.042 
0.0097 
0.124 

0.036 
0.0093 
0.056 

For such identifiers to operate correctly, the input must not settle and must contain a 
good range of frequencies (that is, it must be 'persistently exciting'). The single step 
eventually settled, whereas the sinewave, though i t d id not settle, only contained one 
frequency. The repeated step (square wave) input had a much higher harmonic content and 
so was able to produce a more accurate set of estimated coefficients. 

For comparison purposes, a system having the identified parameters (from the portion 
of each input test corresponding to a mass m = 1 kg) was simulated, and compared wi th 
the response o f a model wi th the 'correct' parameters from Table 11.1. The results appear 
in Figure 11.5, where we see that the step response of a system having the identified 
parameters from the square-wave input test is indistinguishable (on the scale o f this figure) 
from that of the actual plant. The parameters from the test using a sinewave input cause a 
response that is ini t ia l ly slightly in error. Those from the single-step test appear to be 
closer to the correct result, but Figure 11.4(b) shows that the identified values are nearest 
to those relating to the original situation wi th m having a value o f 1 kg , suggesting that the 
identifier made no further progress after the system settled down, so the results would be 
far worse for the other values of m. 
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11.4.1 The forgetting factor 
I t is possible to make the identifier converge faster, achieve better parameter 
estimates, and react faster to plant changes, by the use o f a 'forgetting factor'. This 
idea arises from the fact that the size of the elements in the covariance matrix P in 
Plackett's algorithm is a measure of how much in error the estimated coefficients in 
the vector 0 are (that is, aA, a2,bx and b2 in Example 11.2). The more they are in 
error as measured by the covariance matrix, the more the coefficients in the vector 0 
w i l l be changed at each iteration to correct their values. 

It is therefore possible to speed up the convergence by artificially increasing 
the magnitude of the elements of the covariance matrix. This can be achieved by 
dividing them all by a number less than 1 at each iteration. The divisor is called the 
'forgetting factor' and a value between 0.9 and 0.99 is usual. I f it is made much less 
than 0.9, instability of the identifier is l ikely to result i f the plant input settles. In 
physical terms, the forgetting factor has the effect of causing the identifier to 
'forget' the effects of old data, and concentrate more on present data. The result o f 
using a forgetting factor is demonstrated by the fo l lowing example. 

Example 11.3 Repeating Example 11.2, using a 
forgetting factor of 0.9 
The 'experiments' of Example 11.2 were repeated, except that a 'severe' forgetting factor 
of 0.9 was used. The m-file figll_6.m used for this example is identical to figll_4.m, apart 
from this. The results were as follows. 

For the single-step input, the results improve, but are still only good for the ini t ia l 
value o f mass. The sinewave input gives good results for the 5 kg mass, but not for the 
other two masses. The most worrying aspect of the response to this input is that at 40 
seconds, when the mass changes from 5 kg to 0.2 kg, the identifier tends to instability, 
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giving transients of plus and minus several hundred units in the parameter estimates. This 
behaviour can continue in such identifiers, leading to total instability (a phenomenon 
known as 'estimator blow-up'). 

In the case o f the square-wave input, the accuracy is very good. The identified 
parameter values are shown in Figure 11.6, and the final values in each 20 s time period 
are all in agreement wi th those o f Table 11.1 to three decimal places. The correct 
parameter values are also reached quickly (after about five seconds from the start, and 
after about one second after each mass change). 

The conclusion is that very successful parameter estimation can be performed wi th the 
aid o f a forgetting factor of less than unity, but only i f an appropriately changing input is 
present. A lesson to be learned is that a self-tuning controller must incorporate a check for 
unreasonable values o f the estimated parameters wi th in its software, so as to avoid 
blow-up. 

I t is instructive to examine the final contents of the covariance matrices in the 
square-wave input tests wi th both values of the forgetting factor. Wi th a forgetting factor 
of 1 (Example 11.2), the final covariance matrix was: 

' 0.7520 -0 .7163 0.0131 - 0 0698" 

-0 .7163 0.6844 -0 .0113 0 0648 
1.0 — 0.0131 -0 .0113 0.0119 - 0 0073 

. - 0 . 0 6 9 8 0.0648 -0 .0073 0 0190 . 

Wi th a forgetting factor of 0.9, the final covariance matrix was: 

" 9.3114 -8 .4904 -0 .1803 - 1 4618-

-8 .4904 7.7480 0.1584 1 3263 
0.9 — -0 .1803 0.1584 0.0469 - 0 0031 

. - 1 . 4 6 1 8 1.3263 -0 .0031 0 2740 . 

x 10 5 

Figure 11.6 Parameter 
variation with a square-
wave input to the closed-
loop system (forgetting 
factor = 0.9). 
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Since the covariance matrix is a measure of the accuracy o f our parameter estimates, and 
since large values in the matrix mean poor accuracy, it seems i l logical that the values for a 
forgetting factor of 0.9, which gives excellent parameter-estimate accuracy, are so much 
larger than those for the less effective forgetting factor o f 1.0 (which had not finished 
converging, and so would eventually be even smaller than the values above). The reason is 
simple; the forgetting factor of 0.9 increases the covariance matrix values by over 11 per 
cent at each iteration, which amounts to an overall factor of ( 1 / 0 . 9 ) 1 2 0 0 , or 8.11 x 1 0 5 4 , 
over the 1200 iterations made by figlljm and figll_6.m. The terms o f the covariance 
matrix become very small indeed i f we divide them by the latter figure. That figure also 
makes i t easy to see why forgetting factors introduce the risk o f causing the identifier to 
become unstable. 

11.4.2 Some other practical points 
Straightforward ordinary least-squares, the basis o f Plackett's algorithm, can have 
other limitations in practice. The fol lowing extensions and modifications can 
improve its operation considerably. 

• In practice, the magnitude of some members of the vector 0 is considerably 
smaller than others. A given actual error in those parameters w i l l therefore 
constitute a greater percentage error than for the larger terms. The percentage 
errors can be balanced in terms of their effect on the mean-square error by a 
weighting matrix W (Norton, 1986). 

• I f noise is present in the measurements of the output y, the algorithm may not 
work wel l . I f the noise is Gaussian, least-squares should average i t out, but true 
Gaussian noise does not exist! I t is possible by a method known as 'extended 
least-squares' to allow for the noise on the basis that i t is linearly filtered white 
noise. The method relies on the calculation of the output noise as the difference 
in the predicted and observed values of the output y (tempi in the pseudo-code 
algorithm given earlier in Section 11.4). The vector x is now extended to include 
previous values of the noise, and the vector 0 is likewise extended to contain 
coefficients giving a prediction of the contribution of those noise values to the 
predicted latest value of y. More complicated noise models are sometimes used 
(see Norton (1986), Warwick (1988) and Wellstead and Zarrop (1991)). 

• The numerical properties of Plackett's algorithm are such that rounding errors in 
the computation become a problem i f fixed-point arithmetic, or even short-
wordlength floating-point, are used. This is less of a problem now that 
appropriate fast and cheap processors are available - i t is often possible and 
economic simply to use a 40-bit floating-point wordlength, which is usually 
adequate. A n alternative approach is based on matrix factorization and square-
roots (typically using a ' U - D factorization'); the equations can be square-rooted, 
effectively much reducing the percentage errors (see Norton (1986) or Wellstead 
and Zarrop (1991)). 
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11.5 The controller synthesizer 
The easiest approach to controller synthesis is by the method of pole placement in 
the z-plane, as the plant is effectively identified in z-transform form. The method 
works by specifying the closed-loop pole positions required, and calculating the 
required controller poles. The Dahlin controller is one such controller type and it 
w i l l be used as an example to illustrate the principle; the synthesis calculation w i l l 
be modified as described in Section 7.6, to eliminate the ' r inging pole ' to which the 
Dahlin controller is inherently susceptible. 

We begin wi th Equation (11.1), and we assume that the identified parameter 
vector 0 has been split up to yield the vectors a and b containing the coefficients 
ax...ap and b x . . .bqoi that equation. Equation (11.1) effectively corresponds to a 
z-transform representation of the plant as in : 

E 
G ^ = w r ^ — ( 1 L 6 ) 

n=\ 

Also, in Section 7.6, when a Dahlin controller is causing the closed-loop unit step 
response to fol low an exponential (1 - e~^T), substituting Equation (7.10) into 
Equation (7.5) gives the z-transform of the required Dahl in controller as: 

1 - e-PT 

D(z) ( z - l ) G ( z ) 

Substituting Equation (11.6) into this result gives: 

D(z) = 
i - E 

n-\ 

( z - l ) 
n=\ 

Relating the above equation to the simple second-order example, we obtain: 

(1 -e-VT){\ -axz~l -a2z~2) 
D(z) 

(z-l)(bxz-x+b2z-2) 

and we notice that the denominator term containing bx and b2 has a pole at a 
negative value of z. In our case, the pole w i l l be at z = -b2/bx. This is the ' r inging 
pole ' in the controller, and we remove it (as in Section 7.6) by replacing it by an 
equivalent static gain of (bx + b2). We also note that a factor o f z~x must be 
extracted from this term to leave only the pole. The expression for D(z) therefore 
becomes: 

p ( : ) - ^ _ 0 - - - °2Z-2) 

E{z) ( z - 1 ) * - • ( & , + ¿ 2 ) 
where U(z) and E(z) are the z-transformed plant input (controller output) and error 
in the feedback loop (controller input) respectively (see Figure 11.1). 
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The discrete-time equation for the controller can therefore be found as: 

uw -z_1) = {(h~i~ll£(z)(1 -a^ ~ a*2) 
or 

1 _ e-pr i _ e-pr i _ e-fr 

u" = + e" ~ a i e - 1 " ° 2 + h e"-2 

These results can be used by the controller synthesizer and digital controller blocks 
in the self-tuner. 

Example 11A The use of self-tuning for the 
second-order plant used in the earlier examples 
The M A T L A B m-file figll j.m on the accompanying disk is used wi th the self-tuning 
disabled for the first run and enabled for the second. This is selected by an on-screen 
prompt when the file is run. For the first tests, the square-wave input which produced the 
best identification is used wi th a forgetting factor of 0.9 as in Example 11.3. Figure 11.7 
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Controller action 
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Figure 11.7 Plant output 
and controller action for the 
system of Example 11.4 
with the controller 
synthesizer disabled. T i m e & 
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:'s shows the response wi th the self-tuning disabled and Figure 11.8 that w i th the self-tuning 
~ enabled. The fol lowing conclusions can be drawn: 

; • The general form of the response is good when the controller is properly tuned, giving a 
reasonably rapid movement to the demand value without significant overshoot. 

; • There is considerable deterioration of the performance o f the system without the self-
: 4 tuning (Figure 11.7) in the middle period when the mass is 5 kg . This deterioration is 

largely eliminated when the self-tuning is enabled (Figure 11.8). 

• The only disadvantage of the self-tuning here is that a considerable overshoot occurs 
during the period when the mass is 5 kg (it actually extends beyond the plot o f Figure 
11.8 to ± 1 0 units). This overshoot can be prevented by more rigorous conditions in the 
'software jacketing' ; this term relates to the checks incorporated in practical self-tuners 
to detect unreasonable parameter values. The only check used in figll_7.m is for a 
steady-state plant gain between 0 and 10 (it is actually 2.0 for most o f the t ime, but 
does approach a magnitude o f 10 during the ini t ia l transient). I t is possible for the 

; steady-state gain to be reasonable despite a set o f parameters which lead to a poor 
controller; one o f the end-of-chapter problems asks the reader to modify figll_7.m to 
incorporate better checks for poor controller parameters. 

• Examination o f the controller action shows a considerable variation in its maximum 
«• value between the extreme values of the load mass; from less than 1 unit for a mass o f 

Reference input 

2 | ; ; 1 ; ; 

1 1 1 1 1 1 1 1 | r 

0 

-1 ^ 1 J ' J 1 J 1 J 

_2 I 1 i 1 ! ! 
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Controller action 

^ k / k 
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Figure 11.8 Plant output 
and controller action for the 
system of Example 11.4 
with the controller 
synthesizer enabled. Time (s) 
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0.2 kg to about 10 units (see above) for a mass of 5 kg (Figure 11.8). This variation is to 
be expected, because we are trying to achieve the same closed-loop dynamics for a wide 
range of mass - so Newton's second law suggests that a wide range of force w i l l be 
required. There are considerable operational advantages in having unvarying closed-loop 
dynamics but that does imply that the speed of response to any input is restricted to that 
achievable by the plant and actuator wi th the maximum load; so the response at lower 
loads is certain to be less rapid than it could have been. A possible compromise solution is 
discussed in respect o f self-tuning PID controllers in the next section. 

11.6 The controller synthesizer: self-tuning PID 
The apparently simpler PID controller is in fact more difficult to implement in self-
tuning mode than is the pole-placement type. The two usual Ziegler-Nichols 
approaches for determining the PID parameters are the process reaction curve 
method which works from the step-response, or the method of increasing the 
controller gain until oscillation occurs and calculating the required PID controller 
parameters (Kc,Td and Tf) from the resulting gain and frequency. I t would be 
possible to determine the open-loop step-response from the identified plant 
parameters and use it to determine the Ziegler-Nichols parameters R and L as used 
in Section 3.3.4 (it is quite easy to program their determination, though that 
operation is quite computer time-consuming). The method, however, assumes that 
the open-loop step response settles without overshoot. 

A M A T L A B m-file figspid.m has been included on the accompanying disk to 
demonstrate the operation of such a self-tuner; its identifier is identical to that of 
figll_7.m, but its controller synthesizer operates on the above principle, using the 
M A T L A B function max to determine the maximum slope of the response and the 
time at which it occurs. A simple geometrical calculation then determines Kc, Td 

and Tt. A problem encountered in running this file is that i t works much better at 
reasonably short sampling intervals than at longer ones, probably because the 
Ziegler-Nichols parameter L is determined more accurately i f the increments o f 
time are shorter. A practical version would benefit from a variable sampling interval 
determined by the software, perhaps as a fixed fraction o f L . 

It would likewise be possible to use Jury's test (Leigh, 1992), or an approach 
based on frequency response, to predict the gain required to cause closed-loop 
oscillation and the gain required to sustain that oscillation; but that approach would 
not work wi th a second-order plant as oscillation would only then occur as a result 
of the digitization, and at an unrealistically high gain and frequency. 

A n alternative approach is to proceed as a control engineer might in tuning the 
controller by hand; by observing the closed-loop step overshoot wi th no derivative 
or integral action in use (or a known, but not necessarily ideal, amount o f both), and 
the corresponding damped frequency, and using their values in conjunction wi th 
simple heuristic rules to determine suitable values for Kc, Td and T{. I t is 
semantically debatable whether the resulting system is self-tuning, rather than 
another form of adaptive control, as no plant transfer function or correspondingly 
precise representation is produced, but the closed-loop response could itself be 
argued to be a system model of sorts. 
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There is at least one commercial self-tuning controller which operates on a 
related 'pattern recognition' principle and is successful in many practical situations; 
it has the further advantage that i t waits for a naturally-occurring transient rather 
than needing to have a step specially applied (Kraus and M y r o n , 1984). Again a 
M A T L A B m-file ftgll_9.m has been provided on the accompanying disk to 
demonstrate the operation of this k ind o f approach in respect o f a 'press the button 
to tune' self-tuner. The file prompts for the value o f mass, and a controller test gain, 
and determines the closed-loop step response for the test gain value kr I t then 
determines the times to, and the value o f the response at, the first peak and the first 
trough. I t then proceeds as follows. 

(1) The peak times are used to determine the damped natural frequency fd. 

(2) The height of the first peak (measured from zero) and the height of the first 
trough above zero are used to calculate the ratio o f the former divided by the 
latter. This decay ratio is then subtracted from the empirically-selected value o f 
8 to give the quantity mmn in the m-file. The frequency at which oscillation 
would occur wi th increased gain, and the gain required, are then calculated 
from the fol lowing equations. 

and 

fn 

kosc — 

fd 

mmn 3.5-
1110 

1/3.5 

mmn" 
55 

(3) The numerical constants in these equations have been obtained by tr ial and 
error and appear to work wel l for a selection o f practical plant transfer 
functions. 

(4) The PID controller constants are based on the Ziegler-Nichols 'osci l lat ion' 
relations given in Section 3.3.4. However, the values have been adjusted for 
better responses here, and could be further adjusted in practice i f the 
considerable step overshoot given by the Ziegler-Nichols recommendations 
is too large. We have used Kc = 0.5 x kosc, Td = 0 .25 / / „ and Tt = l/fn. 

(5) A simulation using the calculated PID parameters is performed; in each case, 
the step input is rate-limited to a rate o f rise o f l / [ 5 ( 7 ^ — T)] units per second 
(T is the sampling period). Rate-limiting is a common technique in digital P ID 
controllers, whether self-tuning or not, in order to restrict overshoot and keep 
controller action to a reasonable level while a l lowing a large enough value o f Td 

to be used to provide reasonable damping, and enough gain to be used to 
counteract steady-state disturbances satisfactorily. The actual rate l i m i t is again 
chosen for experiential reasons. 

(6) I t is unlikely that precisely this method is used by any commercial self-tuning 
PID controllers, but i t is included as an example o f what can be achieved by a 
mathematically unsophisticated approach, i f i t is allowable that the self-tuning 
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facility should only operate ini t ial ly on a 'press the button to tune' basis. Its 
effectiveness in conjunction wi th the example system is shown by Figure 11.9. 
A sampling interval of 0.05 s was used for each value o f m, and i t is clear that 
good responses are obtained, except that the response for the mass o f 5 kg is 
somewhat slower than the others. I t would be possible to modify figll_9.m to 
overcome some of its remaining deficiencies - an opportunity to do so is given 
in the end-of chapter problems, where appropriate guidance is given. 

Figure 11.9 Responses of 
the closed-loop system 
using the controller 
parameters from the 
MATLAB m-file figli 9.m. Time (s) 

11.7 Model-reference adaptive control 
Model-reference adaptive control (MRAC) is an alternative to self-tuning control, 
in which the controller is updated without the intermediate identification operation. 
The principle is shown by Figure 11.10 which shows two possible configurations. 
The aim is to cause the closed-loop output to be the same as that o f a model G' fed 
wi th the same input as the actual closed-loop system, so that the desired closed-loop 
transfer function G'(z) (or G'(s)) is specified. 

Figure 11.10 (a) One 
arrangement of a model-
reference adaptive control 
scheme, (b) Another 
arrangement of a model-
reference adaptive control 
scheme. 

Reference 
input 

Model 
Y ( z ) error 

Model having the desired closed-loop response 
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Figure 11.10 (Continued) <b) 
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In Figure 11.10(a), the parameters o f the controller D(z) are adjusted to 
minimize the 'model error' Em(z). The arrangement is a simplified version o f that 
reported in Banks (1986) in which a feedback-path controller was also included. 
A matrix algebra-based approach was used to perform the controller parameter 
adjustment. Simple gradient optimization methods could also be used. 

Figure 11.10(b) shows a simple ( in principle) alternative possibility, i n which 
the feedback signal, rather than the controller parameters, is adjusted by the gain K 
(the adaptation gain) to produce the required closed-loop performance (Leigh, 
1992). The closed-loop transfer function in s can be shown (by block diagram 
algebra) to be 

Y(s) _G(s)[\+KGf(s)] 

R(s) ~ 1 4- KG(s) 

which reduces, i f K is large, to Gf(s). The closed-loop transfer function can 
therefore apparently be made equal to Gf(s) simply by making K large. The 
fo l lowing example shows how the method might work out in practice. 

Example 11.5 Application of a MR AC system 
Investigate the notion o f M R A C as described above, wi th reference to the system shown in 

4 Figure 11.10(b). 
In this instance, the arrangement was simulated using S I M U L I N K (Appendix 4) , 

using values o f K o f 1 (zero would correspond to open-loop conditions w i t h no 
adaptation), 5 and 100. The S I M U L I N K block diagram input is shown in Figure 11.11, 
and the plant outputs in response to a unit step input are shown in Figure 11.12. 

The response at a K value of 1 is biased towards that o f G(s) (it would settle at 
:f 2 for K = 0) , while that at a AT value o f 100 closely resembles the response o f G'(s) to 

i f e the same input; the response at a K value o f 5 is intermediate in nature. Both the latter 
t responses show a decaying oscillation at quite a high frequency, which is l ike ly to be a 
f problem in practice for two reasons: such frequencies may excite unmodelled plant 
* dynamics and w i l l in any case demand a very high sampling frequency to cope wi th the 

4i effects. 
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Figure 11.11 SIMULINK 
block diagram input for 
Example 11.5. 
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M R A C has encountered more stability problems in practice than has self-tuning 
control and, as a result, it is less widely used in real situations. 

11.8 Variable-structure control 
In our treatment of self-tuning control, 'online identification' applied only to the 
parameter-estimation operation; the general structure o f the plant model was 
predetermined and remained constant throughout. In practice, i t is often desirable to 
be able to change that structure, and the general strategy o f the control, to meet 
changing circumstances. For example, a hydraulic position-control system faced 
wi th the task of moving a mass from A to B w i l l probably operate best by 
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controlling for constant acceleration up to a maximum speed determined by pump 
limitations (and safety); then maintaining that maximum speed unti l the mass is 
near B; and only then going into closed-loop 'position mode' to accomplish the 
final approach. In this instance, the first and last periods w i l l require a plant model 
of the usual variety (probably the same model in each case), while the middle one 
w i l l need no model at all i f it does simply require the hydraulic valve to remain fully 
open. So both the controller and the identification arrangement w i l l change in 
nature wi th the circumstances. In this example, the changes could be arranged on a 
common-sense basis, wi th the identifier only operating in the ini t ial and final 
periods of the move and an appropriate controller synthesizer operating in each of 
those periods. 

Another manifestation of variable-structure control is 's l iding-mode' control, 
in which a controlled variable in a nonlinear system can be caused to 'sl ide ' along a 
desired phase-plane trajectory (see Section 14.5). A simple example is a thermostat-
equipped domestic immersion heater in which power is on unt i l the temperature 
rises to a temperature T1, and then switches o f f unt i l the temperature falls to a 
slightly lower temperature T2-The closer together these two temperatures, the faster 
is the switching frequency of the thermostat. I f the temperatures were equal, the 
tank would remain at precisely that temperature - at the cost o f considerable 
thermostat wear i f the thermostat were electromechanical. In some practical 
situations (but not the example just quoted), it is realistically possible to use the 
principle. Section 14.5.4 introduces the topic, and Slotine and L i (1991) discuss i t in 
more detail. 

11.9 Conclusions 
In this chapter we have reviewed the broad area o f adaptive controllers - control 
systems which adapt themselves to their changing surroundings. The specific areas 
we discussed included adaptation by gain scheduling (changing the controller 
parameters in a pre-programmed manner, dependent upon operating conditions), 
model reference adaptive control ( in which the closed-loop system is made to 
fol low the response of a prespecified model responding to the same input) and 
variable-structure control (in which not only the controller parameters, but also the 
structure or strategy of the controller are allowed to vary). 

The bulk of the chapter concentrated on self-tuning control, in which a 
controller structure is chosen (we used a Dahl in controller and a PID controller 
as examples), but its parameters are tuned during use, to reflect changing 
performance requirements as the plant parameters change. The tuning may be 
accomplished by using a parameter identifier to estimate the values of the 
changing plant parameters (we used Plackett's algorithm, based on a least-squares 
approach), and a controller synthesizer to tune the controller based upon the 
identified plant model. 

We presented a number of examples wi th simulation results, from which we 
drew conclusions about the performance of the various controllers. 
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11.10 Problems 
With this subject, it is difficult to include numerical 
examples for manual calculation. For that reason, some 
suggested experiments with the MATLAB m-files 
mentioned and used in the chapter are given. The reader 
is reminded to copy the files first, as the examples suggest 
modifying them in various ways. 
11.1 Using the m-file figll_2.ni, choose suitable 

parameters for the PID controller which will 
minimize the spread of the closed-loop system 
performance as the mass m varies without re-tuning 
the controller. What is the resulting maximum 
overshoot? 

11.2 Using the m-file figll_7.m, carry out the following 
experiments: 
(a) With the forgetting factor set to 1.0 and the 

self-tuning disabled (that is, unchanged 
controller parameters), investigate the effect of 
using sampling intervals of 0.01 s and 0.2 s 
rather than the default 0.05 s. Repeat the test 
with a forgetting factor of 0.9. Was there any 
difference in estimation accuracy or stability? 
Remember that the plant parameters are 
dependent on sampling interval - the MATLAB 
function c2dm will do the z-conversion for you. 

(b) Try (a) again with the self-tuning enabled. 
(c) Now try (a) and (b) with a small quantity of 

noise (Gaussian, generated by the MATLAB 
random-number generator - try help rand) 

injected. How much noise is tolerable 
before significant performance degradation 
occurs? 

11.3 Norton (1986) and other authors state that, for full 
identification of a system with a sinusoidal input, at 
least two frequencies must be used. 

Modify figll_4.m such that, when a sine wave 
input is selected, it contains two frequencies - and 
see whether it works better with such an input. 

11.4 Examine the 'controller synthesizer' part of 
figllj.m and find the 'software jacketing' 
instructions. Replace or supplement them with 
instructions which allow new controller 
parameters to be calculated only when no plant 
parameter has changed by more than 1 per cent in 
the previous interval. Try the resulting file (for 
example, for a square-wave input and a forgetting 
factor of 0.9). Are stability and control improved 
significantly? 

11.5 Run figspid.m trying a sampling interval of 0.05 s 
initially. Is stability improved by de-tuning the 
controller parameters from the Ziegler-Nichols 
values (for example, making the controller gain Kc 

equal to 0.8/(#L) instead of 1.2/(/?L))? Again, see if 
improving the * software jacketing' is beneficial. 

11.6 Try out figll_9.m investigating in particular the 
effect of the sampling interval and of using a 
higher-order plant. Can it readily be modified to 
select its sampling interval automatically? 

http://figll_2.ni
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12.1 Preview 
This chapter can be understood following a study of 
Chapters 1 to 4, and Sections 1 to 7 of Chapter 5. No 
other chapter in the book depends upon a knowledge 
of the contents of this chapter, so it can be omitted if 
desired. 

The only topic in this chapter is an introduction to 
the design of optimal controllers. In fact, the optimal 
design process presented here will be found to be one 
more technique for designing state variable feedback 
controllers - but from a different viewpoint from that 
adopted previously. In principle, the design seeks to 
minimize some specified performance index, so as to 
obtain minimum rise time, minimum settling time, 
minimum control energy expenditure, maximum 
product yield, or some similar criterion. It will be 
discovered that this is often difficult to achieve in 
precisely that form in practice, but that the design 
methodology is, nevertheless, extremely useful, and 
can be used to obtain such desired results if used 
pragmatically. 

In th is chapter, the reader wi l l learn: 
• what 'optimal' means in this context, with practical 

examples 
that an optimal controller is another form of state 
variable feedback 

• the use of performance indices 
one method of deriving the optimal controller 
that optimal control in its ideal theoretical form is 
rarely of practical use, but that the underlying 
ideas can be routinely applied in a useful practical 
design approach 

• that optimal control can be successfully applied 
using computer packages, without necessarily 
understanding every line of the derivation of the 
methodology. 

NEW MATHEMATICS FOR 
THIS CHAPTER 

Mostly, the mathematics in 
this chapter involves matrix 
algebra, of the kind already 
encountered in Chapter 5. 

For readers in need of some revision of those techniques, 
the first few sections of Appendix 1 contain all that is 
required. Vector-matrix quadratic forms are new in this 
chapter, and are introduced as they are needed. 



584 Optimal control 

12.2 Introduction 
In theory, optimal control differs from all the other techniques in this book, in that i t 
seeks to control the plant so as to get the best possible (that is, optimal) performanpe 
from the plant. In order to achieve this remarkable aim, those aspects o f the plant's 
behaviour which it is desired to control (optimize) are incorporated into a 
mathematical expression (a performance index), and the controller design process 
synthesizes a controller which w i l l minimize that expression. For example, for a 
very rapid response, the rise time and settling time of the system could be 
incorporated in a performance index, and the controller would drive the plant in 
such a way as to minimize these. 

In practice, things do not work out quite so neatly, as w i l l be revealed later (for 
example, the minimization of rise time and settling time would probably maximize 
control energy usage and hence operating costs; also, unless the plant model is very 
accurate, the performance w i l l not be as 'opt imal ' as the design predicts). However, 
the ideas underlying optimal control are good, and the resulting design methods can 
be used for the rapid development of controllers wi th useful properties. Many such 
controllers are operating successfully around the world . 

Optimal control, as studied in this chapter, is based on state variable models o f 
systems. In Section 5.4, the design of state variable feedback (SVF) systems by 
pole-placement was presented, and some ways of choosing where the closed-loop 
poles should be placed were mentioned. Optimal control methods provide another 
way of placing the closed-loop poles of a system, in order to achieve the desired 
behaviour. In this case, the designer does not know the closed-loop pole locations 
that w i l l result in the optimal control of the plant. Instead, the poles are placed by 
the optimal control design procedure, in locations which seek to make the resulting 
closed-loop behaviour the best possible (hence optimal), i n whatever sense has been 
specified in advance. 

I t w i l l be shown that the optimal controller, in the cases considered here, turns 
out also to be SVF. Thus, these optimal control methods are one more way of 
choosing the contents of the feedback matrix K in an SVF scheme. 

In the design of single-input-single-output (SISO) SVF schemes, Chapter 5 
showed that there was a unique feedback vector (k) which would place the closed-
loop poles as required. In the multivariable ( M I M O ) case, Chapter 5 showed that 
there could be a large number of degrees o f freedom in choosing the feedback gains. 
For example, in a system having ns states and m inputs, the dimensions o f the 
feedback matrix K are m x ns, so that i t contains (m x ns) feedback gains. However, 
only ns o f these are needed to position the closed-loop poles (which are ns in 
number). Optimal control is one way of constructively using up the extra degrees o f 
freedom in satisfying more complicated control objectives. 

Also in Chapter 5, i t was noted that even for SISO systems, spare degrees o f 
freedom associated wi th uncontrollable modes would also lead to an infinite 
number of sets of possible feedback gains. I f optimal control methods are applied to 
systems that are not completely controllable, then the uncontrollable poles cannot, 
by definition, be moved by the controller. However, so long as the system is 
stabilizable (see Section 5.3.3), an optimal controller may be able to make 
constructive use of these spare degrees of freedom in seeking to obtain the best 
possible control using the subset of poles which are controllable. Later, M A T L A B 
(Appendix 3) w i l l be used to design optimal controllers, and the commands which 
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perform the optimal design w i l l cope wi th systems that are not completely 
controllable. 

12.3 What does 'optimal' mean? 
What is 'op t imal ' (that is, the best possible) is defined by specifying a performance 
index (PI), which the controller must seek to minimize. The PI is sometimes called a 
'performance criterion' , 'objective function' or 'cost function' . In principle, there is 
nothing particularly special about the contents o f any given PI , and many different 
ones could be chosen for the same system to give different results. I t would 
therefore be expected that Pis would look very different for different control 
schemes. However, in practice, many Pis tend to look very similar, for reasons 
which w i l l become apparent shortly. A controller design can be attempted which 
w i l l minimize any desired PI , so long as: 

• the PI can be written as a mathematical expression which is capable of 
minimization; 

• the PI is measurable (otherwise there w i l l be no indication of success); 

• the PI is as simple as i t can be made (otherwise the mathematics is too difficult) . 

The quantities that it would be desirable to use in a PI to be minimized might 
include: 

• time to move from one operating condition to another; 

• amount of control effort required (the amplitude or energy content of the control 
signals); 

• steady-state errors; 

• transient errors; 

• cost o f operation; 

• product yield (in this case, the desire would presumably be to maximize yield, so 
a suitable function of (—yield) could be included in the index to be minimized) . 

Unfortunately, the necessity to use simple and mathematically expressible Pis 
really rules out anything but the simplest combinations o f some of these terms. 

What goes into a real PI? 
The most common terms to be found in real Pis are functions o f the squares o f the 
errors in the system and of the squares o f the control inputs. The most common 
function used in Pis is the integral over time (which w i l l penalize steady-state 
errors, as discussed in Section 4.5.2). 

Squares are used partly to ensure that the resulting expressions are never 
negative (so that finding minima over time is not complicated by sign changes); and 
partly because the square of a signal variable is often an indication o f some kind o f 
energy transfer. Thus, minimizing the square minimizes energy expenditure - and 
hence cost. For example, i f a system has a voltage input signal v(r) feeding into a 
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constant resistance R, then the energy expended during control is given by (power 
dissipated) x (time), namely 

AH 
R 

(having units of V 2 s Q~l). I f v2(t) is integrated wi th respect to time, a result having 
units of V 2 s is obtained (that is, the area under the v 2 ( r ) vs. time graph). 
Min imiz ing such an integral, so long as R is constant, w i l l therefore minimize 
energy expenditure. 

Similarly, in a mechanical system, i f x3(t) represents a velocity, then its 
inclusion as x\(i) in an integral PI w i l l seek to minimize instantaneous kinetic 
energy, so long as the mass of the moving object is constant. 

For a general control signal u{t) as shown in Figure 12.1(a), a suitable term for 
use as a PI (which is usually called / ) might therefore be 

/ = [' u2(t).dt 

where the integral is taken over some time interval o f interest (often t0 is some 
given starting time and tf = oo - see Section 12.4.7 for details of how the infinity 
is handled), and the value of J w i l l therefore be the area under the graph in Figure 
12.1(b). As before, i f u(t) represents (for example) a voltage or current signal, then 
minimiz ing / w i l l minimize energy expenditure. 

Three examples w i l l now be used, which w i l l indicate practical items to 
include in Pis, and also some of the problems in formulating them. 

Example 12.1 A journey by road 
Say that i t is desired to drive 200 k m from town A to town Y, arriving in the min imum 
possible time. The very simplest approximation to such a problem follows from the 
assumptions listed below (a rather more realistic treatment follows later, but the principle 
to be described here is directly applicable to some engineering systems, such as overhead 
crane control): 

• The road is straight and level. 
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• There are no junctions. 

* • The vehicle has a given maximum acceleration rate. 

• The vehicle has a maximum deceleration rate, equal and opposite to its acceleration 
rate. 

Intuit ively, the minimum-time (that is, optimal) strategy is to accelerate as rapidly as 
possible to the halfway point, and then brake as heavily as possible for the remaining 

* distance. 
Assuming that the route has town V at its midpoint, the result would be as shown in 

Figure 12.2. There are some rather obvious problems wi th the control policy o f Figure 12.2. 

• Although it minimizes time, it w i l l maximize cost and exhaust emissions. 

• I t assumes unlimited velocity. For a fairly high-performance saloon, a realistic 
acceleration capability would be 0 to 30 m s _ 1 (108 k m h o u r - 1 ) i n 10 s. I f this is 
assumed to be a constant, sustained acceleration o f 3 m s - 2 and applied to the journey 

' of Figure 12.2, the velocity at town V would be about 774 m s"1 (2786 k m h o u r - 1 ) . The 
entire journey would take about 516 s (less than nine minutes)! 

• Obviously some constraint on the maximum velocity is required, as shown in Figure 12.3. 

4 The journey time is related to the reciprocal of the area under the velocity-distance graphs, 
so it now takes much longer (a more realistic 2 hours and 13 minutes, in fact). Fuel 
consumption and emissions would also be far more acceptable in this veloci ty- l imited 
journey. 

Several hundred 
m e -1 

Figure 12.2 The simplest 
minimum-time solution to 
the travel problem. 

Town A Town V 
(100 km) 

Distance 

Town Y 
(200 km) 

25 ms 

Figure 12.3 A velocity-
limited solution to the travel 
problem. 

Town A Town Y 
(200 km) 

Distance 
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The conflict between time and fuel consumption in Example 12.1 is representative 
of a common state of affairs in control system design. I t almost always happens 
that one aspect of system performance can be improved only at the expense o f 
another. For example, to minimize fuel consumption the journey would not be 
made at a l l , so the arrival time would be infinite. In practice, l imits would be 
placed on the acceleration and braking rates to conserve fuel, in addition to the 
l imi t already imposed on maximum velocity. 

To design a better controller, both travel time and fuel consumption should be 
included in a PI, wi th suitable weightings attached to each. This problem in 
revisited in Section 12.4.1. 

Example 12.2 A contrived state-space example to 
introduce the standard PI 
To see how a very common type of PI could arise mathematically, suppose that a system 
is expressed in the usual state-space form 

x = Ax + Bu 

y = Cx 

and that this system has five states and two inputs. 
Say that i t is desirable in this system for x5 to track xx and for x3 to track x4. Also, i t 

is three times more sensible (perhaps for reasons of cost) to use input u2 for control than 
ux. A PI might therefore be set up as follows (to be minimized by the controller): 

J — [ [(tracking errors 2) + (weighted inputs 2 )] dt 

= [ r / [ ( ^ - x 5 ) 2 + ( x 4 - x 3 ) 2 + W

2 + 3 W

2 ] ^ (12.1) 

Note that the factor o f three appears in front of ux in order to penalize ux three times as 
heavily as u2 (because the 'area' contributed by ux to the PI w i l l then be relatively three 
times as great as that due to u2). In addition, the effort the controller w i l l put into 
minimiz ing each of the state errors is identical, and is the same as that i t w i l l apply to 
constraining u2. I f that were the wrong thing to do, the weightings on the state errors 
(xx - x5) and (x4 — x3) would be changed from unity to some more appropriate values. 

The PI of Equation (12.1) can be made much neater using vector-matrix notation. 
The term to be integrated, when multiplied out, is: 

x\ - 2xxx5 + x\ 4- x\ - 2 *3 *4 + x\ + u\ + 3u] 

Although it is only obvious to a matrix algebra expert, this can be rewritten in a very neat 
form by taking the vector xT = [xx x2 x3 x4 x5] as a factor out of the left-hand side 
of all the terms containing the state variables, and the vector uT — [ux u2] as a factor out 
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of the left-hand side of all the terms containing the inputs, as follows (mul t ip ly ing i t al l 
out w i l l confirm that i t is correct): 

1 0 0 0 - 1 " " V 
0 0 0 0 0 x2 

0 0 1 - 1 0 x3 + [u 

0 0 - 1 1 0 X4 

1 0 0 0 1_ _*5_ 

[xl x2 x3 x4 *5] 

Calling the 5 x 5 matrix Q and the 2 x 2 matrix R then gives: 

xTQx + uTRu 

which, when substituted into Equation (12.1), gives: 

xTQx + uTRu] dt 

3 0 

0 1 u2\ 

(12.2) 

The terms in the brackets in Equation (12.2) are called quadratic forms and are 
quite common in matrix algebra. Note that Q and R are matrices chosen to apply 
the desired weights to the various states and inputs. Q and R w i l l always be square, 
symmetric matrices (see Problem 12.1). Note also that / w i l l always be a scalar 
quantity, whatever the sizes of Q and R. 

In the analysis leading to Equation (12.2), the Q matrix had some off-diagonal 
terms because the differences between states, that is (x{ — x5) and (x4 - JC3), were to 
be minimized. This is a fairly unusual situation, and normally each state or input is 
simply weighted relative to the others. In that case, the Q and R matrices w i l l be 
diagonal (as was the R matrix in Example 12.2). More w i l l be said in Section 12.4.3 
about specifying Q and R. 

Example 12.3 A machine tool drive 
Imagine a numerically controlled machine tool which is required to track a varying 
reference signal as some shape is machined out o f a block o f metal. The parameters to be 
minimized in the control of the tool's position response would include ( in order of 
importance): 

• overshoot (there must be none) 

• steady-state errors 

• time to settle at a new position in response to a setpoint change. 

Assuming a simple SISO setup, a PID controller could be applied and tuned for a good 
response (Section 4.5.2). Alternatively, the system could be modelled in state-space form. 
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Assuming a second-order model for simplicity, tool position and velocity (for example) 
could be used as the state variables. These could be fed back in an SVF system to position 
the closed-loop eigenvalues (poles) at locations which should give a suitable response 
(Section 5.4). 

A third approach would be to include the two states and the system input in a PI , 
such as the one in Equation (12.2). The Q and R matrices could then be selected for 
suitable closed-loop behaviour, and an optimal control design procedure applied. I t w i l l 
emerge later that this would also result in an SVF scheme, but the feedback gains would 
be chosen (by the design algorithm, not by the human designer) to place the closed-loop 
eigenvalues at locations giving a closed-loop performance which would minimize the given 
PI . The designs for this example (both PID and optimal) are carried out in Section 12.6.1, 
and compared. Links wi th pole-placement SVF controllers are also mentioned in Section 
12.4.3. 

For now, note that i f Q is diagonal (as mentioned after Example 12.2), and i f i t is 
specified as (say) 

"4 0" 

then the controller is basically being asked to exert four times as much effort to minimize 
errors in xx (tool position, say) as in x2 (tool velocity). 

12.3.1 The linear quadratic regulator 
When SVF systems were designed previously ( in Section 5.4), the resulting designs 
were ini t ia l ly regulators; that is, controllers which try to return their state vector 
(and hence outputs) to zero in the face of disturbances. Since the optimal controllers 
to be designed in this chapter are also SVF systems, they w i l l be optimal regulators. 

This is precisely what is needed, once a system is at some steady operating 
condition. I f the deviations from this operating condition are taken as the outputs 
and states, then they should indeed be maintained at zero in the face o f disturbances. 
However, in systems such as that of Example 12.3, the output position must fol low 
a varying reference signal - so a tracking system is required; and the regulator must 
be modified to achieve this (there is a discussion of regulators and trackers in 
Sections 5.4.2 and 5.4.3). 

Another general point is that the earlier list o f ideal items which might be 
included in a PI , even i f applied only to linear systems, usually leads to optimal 
control problems wi th no analytical solution. Such problems can only be solved 
numerically and are computationally intensive and thus unsuitable for online 
control. However, i f attention is restricted to linear systems ( in state-space form, for 
example) and i f only simple quadratic Pis (such as the one in Equation (12.2)) are 
used, then the resulting linear-quadratic regulator (LQR) problem does have 
known solutions. One such solution w i l l be developed later. 

An LQR design philosophy 
The decision to choose simple quadratic Pis means that the Pis which can be used in 
practice are seldom a good representation of what we would really l ike to minimize. 
This is fundamentally important in the interpretation of what an 'opt imal ' controller 
actually does. A t best, there must be a compromise between the ideal requirements 
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and a soluble problem. Therefore, in practical application, interest is directed not 
primari ly towards the minimization of the given PI as such, but rather to obtaining 
the required closed-loop performance by ' tuning ' Q and R unt i l the minimizat ion o f 
the resulting PI leads to a suitable result on the plant (see Section 12.4.3). Wi th 
modern computer-assisted control system design (CACSD) environments, i t is quite 
easy to go through an iterative cycle o f design, simulation, and re-design unt i l a 
satisfactory result is obtained. The M A T L A B (Appendix 3) Control Systems 
Toolbox for example, has a single command Iqr for designing an optimal regulator, 
given only the matrices Q and /?, and the state-space model o f the plant. 

The L Q R methods can also be extended to the so-called L Q G case, in which 
the presence of noise (which is assumed to be Gaussian-distributed) is taken to be 
corrupting the process. Such systems normally involve the use of a Kalman filter 
(Section 9.8) as a state estimator, combined wi th an optimal controller. 

12.4 Dynamic programming 
How is the minimization of the chosen PI to be achieved by the controller? It has 
already been hinted that CACSD systems w i l l be the normal route in practice. 
However, to understand better some of the issues involved, the derivation o f an 
optimal control design method w i l l be presented, before simply applying the 
computer results. I t is possible to apply the method successfully without a ful l 
understanding of the underlying mathematics, but i t is not possible without a good 
understanding of the part played by the Q and R matrices in the PI , by the feedback 
matrix in the resulting SVF scheme and of why the particular PI o f Equation (12.2) 
is normally used. These points, and the basic principles o f optimization itself, 
become clearer as one of the methods is derived. 

One possible approach to the optimal control problem is dynamic 
programming. This is not the most elegant approach, but i t is probably the easiest 
for the newcomer to fol low wi th fu l l understanding (some alternative methods are 
mentioned in Section 12.5). 

12.4.1 Optimization - the basic ideas 
To introduce some of the required ideas, think again about the problem o f dr iving 
from Town A to Town Y (Example 12.1). A glance at a road map may show a very 
large choice o f possible routes. Which is best (that is, 'optimal ' )? 

The first requirement is for a definition o f 'best' - that is, the specification o f 
the performance index. Let us ini t ia l ly choose to minimize distance travelled. 
Comments about minimizing time, as Example 12.1 sought to do, fo l low later. 

Picking a few of the possible routes from the map, w i th intermediate towns B 
to X , and measuring the various distances in kilometres, may give the simplified 
map of Figure 12.4. 

The obvious way to find the shortest distance between Town A and Town Y is 
to add up the distances on each o f the possible routes, and select the smallest. 
Unfortunately, there are 70 possible routes having seven additions per route, so it 
would be necessary to do 490 additions and make 69 comparisons to find the 
opt imum. I f 15 possible sets of intermediate destinations had been chosen, rather 
than seven, the requirements increase to 193 000 additions and almost 13 000 
comparisons. There must be a better way than this! 
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K 

Figure 12.4 Distances 
(km) between the centres of 
towns A to Y. 

Dynamic programming is a good way of solving this k ind of problem. I t is 
based upon ideas introduced by R. Bellman in the 1950s. Fundamental to the 
method is the principle of optimality. One statement o f this principle is that i f a path 
from A to Y is the optimal path which minimizes some particular PI , and i f G is an 
intermediate point along the path, then the path from G to Y also minimizes the 
same PI . 

For example, in Figure 12.5, i f the optimal way to get from state x0 to state xf is 
as shown, and this minimizes some PI 

'o 

then the path from x{ to xf minimizes 

.dt = f / M -

Thus, the last part of an optimal path is itself optimal. Note that this does not 
necessarily apply to the first part. For example, the optimal path from JC0 to x{ may 
be different from the path in Figure 12.5 i f the state trajectory is no longer 
constrained to continue to xf after reaching xx. Similarly, the optimal path in Figure 
12.4 may no longer pass through Town G i f i t is no longer constrained to proceed 
to Town Y afterwards, but has some other final destination. 

Figure 12.5 An optimal 
state trajectory. 
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This principle allows us to solve the travel problem (Figure 12.4) rather more 
elegantly by working backwards from the end. I t is worth noting here that travel is 
only allowed from Town A to Town Y in a left-to-right direction in Figure 12.4. In 
addition, this map has been arranged so that there is a maximum of only two choices 
at each node (town), namely the town can be left either 'upwards' or 'downwards' . 
I f there were many more choices at each node, i t would not alter the procedure at all 
- i t would just make the job more complicated. Eventually, it w i l l be shown how to 
apply this method to systems in state-space form. 

Returning to Figure 12.4, and remembering that i t has been decided to work 
backwards from the end, i f the route arrived at Town W there would then be no 
choice; travel must be downwards wi th an associated cost o f 24 k m . This operation 
is denoted D24 in Figure 12.6. Similarly, from Town X there is no choice; travel can 
only be upwards at a cost of 32 k m (written U32). 

On the other hand, arriving at Town U , there is a choice to be made. The 
journey can either proceed upwards to W, adding the new cost of 18 k m to the 
optimal cost already known for the second part o f the route after W (giving a new 
total o f 42 km); or we can go downwards via X , adding 14 k m to the cost already 
known for the route after X (giving 46 k m in total). The best (that is, shortest 
distance) of these two possibilities is via W, so at Town U the optimal decision is to 
turn upwards on the map wi th a cost of 42 k m (U42). 

This process is continued unti l Town A is reached. The optimal route is then 
given by the U and D pointers in the forward direction, as shown in Figure 12.6. The 
optimal path is apparently via Towns B , D , G, L , and so on and has an associated 
cost o f 187 km. 

There are some general points to be drawn from this example. 
The quantity minimized in this problem was the distance travelled. I t is 

unlikely that the route in Figure 12.6 w i l l also minimize the journey time. Perhaps it 
uses a lot of minor roads, whereas one o f the other possible routes might be via 
motorways. To cope wi th that problem, the 'costs' (distances in Figure 12.4) would 
be altered to include weightings penalizing the slower roads and areas o f known 
major roadworks, and then the dynamic programming would be repeated. 
Effectively, this changes the PI to include both distance and time. 

K 

Figure 12.6 The map of 
Figure 12.4 with optimal 
route marked. U134 
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Sensitivity to errors 
Optimal controllers can be very sensitive to small changes in the PI , or to modelling 
errors. Suppose that the optimal route leaves Town A on its north side, while the 
other possible route (via Town C) leaves from the south side. Suppose that we 
actually live on the south side of Town A , 9 k m from the centre. This means that, for 
us, the distance taken from the map between the centres of Towns A and B ought to 
be increased to 32 km, while that between Towns A and C should be decreased to 
31 km. I f the last step of the dynamic programming is redone, wi th this small 
modification, it w i l l be found that the optimal path changes drastically (the result 
should be a route via C, E, I , N , S and so on). 

However, even this route may not truly be the best. Perhaps Town I is very 
large, and it would be foolish to drive through the centre of i t . Perhaps a diversion in 
the direction of Towns F and J would be better. Again, the costs on the map could be 
altered to reflect this kind of knowledge. The point being made is that the optimal 
controller can only operate on the information it is given. Inaccurate or incomplete 
models lead to sub-optimal results, and practical models are always inaccurate and 
incomplete to some degree. This is another reason why the theoretical possibility o f 
setting out to minimize a single unique PI is usually unrealistic. 

Because of the way the travel problem has been formulated, several things 
which would be possible in real life are not possible in the solution obtained. For 
example, in the model it is not possible to drive from Town E to Town D . The model 
also fails to recognize the existence of any route except the ones chosen, so there is 
the possibility that there may be a better solution than the optimal solution o f the 
model of Figure 12.6. Again, the point is that optimal control only gives truly 
optimal results where the system modelling is very good. 

Extra endpoints and constraints 
There was one endpoint in the model of Figure 12.4 (Town Y ) . This is an 
unnecessary simplification and, in general, there can be as many as necessary. For 
example, say that it is only desired to visit the area in which Town Y lies, and the 
precise destination is not of importance (perhaps Town Y is in a large national 
park). Extra endpoints could be added to the map, each connected to suitable 
intermediate towns by appropriate distances, and then exactly the same methods as 
before could be applied. As an example of what would happen, there could be a 
choice of two final destinations from Town W (Town Y, plus one of the new towns). 
I f the optimal route led us to Town W, we should then end up in whichever o f the 
two was the nearer (not necessarily Town Y, as before). In more general terms, this 
might correspond to a system having a target state in some region o f the state-space, 
rather than one particular target state vector. 

Finally, constraints can be added to the problem such as, 'we must travel via 
Town M to pick up a friend'. The optimal route after Town M is already known 
from Figure 12.6 (as i t is for any town on the map), so the dynamic programming 
method is therefore applied working backwards from Town M to Town A , after 
deleting the (now unallowable) routes via G, L , J or N . Figure 12.7 shows the result. 
The penalty for adding the constraint is apparently an extra 3 k m . Adding 
constraints leads to poorer performance than the ideal (the ideal is the optimum, so a 
constraint cannot improve i t ) . However, as in this case, the addition of constraints 
can often simplify the problem by removing a number of decisions (or allowable 
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Figure 12.7 Constrained 
optimal solution of 
Figure 12.4. U152 U92 

system states, or allowable input or output signal ranges, for example) from the 
procedure. 

12.4.2 Application to dynamical systems (LQ control) 
The travel example is an interesting illustration, but how can it be applied to linear 
dynamical systems (state-space models, for example) w i th quadratic Pis? 

First, note that the problem can be approached in either continuous time or 
discrete time. In packages such as M A T L A B , either can be used wi th equal ease 
(specify the required Q and R matrices, wi th either the continuous- or discrete-time 
state-space model as desired, and use either the Iqr command or the dlqr command 
respectively). The discrete time derivation is perhaps the easier to fol low on paper, 
so that is the one adopted for analysis here. However, the final result w i l l be equally 
applicable either to continuous or discrete systems. 

Assume therefore, that a discrete-time state-space model o f the process to be 
controlled has been obtained, of the form: 

yn+l = Cxn+l 

where n represents the nth. time step through the discrete process. To convert to 
time values, simply mult iply the current value of n by the sampling interval (see 
Section 2.8.2 for an introduction to such a model). 

The PI to be minimized w i l l be assumed to be o f the same form as the 
continuous-time version (Equation (12.2)). In discrete time, a summation is 
substituted for the integral operator, wi th the sum taken over sufficient time steps to 
cover the time interval of interest. 

Note that the endpoint has to be handled carefully. Say that the control action is 
to take place over N time steps. This is realistic for several processes - for example, 
any system that must achieve its final value wi th in a certain time; or a digital missile 
guidance controller, which is expected to operate for a certain number of time steps 
and then cease to exist! (For the present, the case when tf = oc, imply ing that 
N = oc, w i l l be ignored. It is discussed in Section 12.4.7.) 

A t the endpoint (that is, at the Nth step) the end o f the experiment has arrived. 
There is no more opportunity to apply control inputs. I f the target state has not been 
reached, i t is too late. For this reason, there should be no value of uN in the PI , 
because it does not exist. However, i t will usually be important to include xN so as 
to penalize incorrect final states (that is, steady-state errors). Because i t has this 
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specific purpose, the value of Q at step N may be chosen to be different from that at 
the other time steps. 

These considerations lead to the discrete-time version of the quadratic PI , as 
given in Equation (12.3) below. Note that a factor of \ has also appeared. This is 
to make the mathematics easier later. I t obviously scales 7; but a simple scaling 
operation on / has no effect upon the value of u which w i l l produce the min imum 
value of / . 

N-l 
JN = L2Y, ^QXn + UlRun) + \XNQNXN (12.3) 

The optimal control problem can now be stated as, ' f ind the sequence of control 
input vectors w 0 , w l 5 u2,..., uN_x which w i l l drive the system so as to minimize 
the performance index / subject to the fol lowing constraints: 

* n + l = * * n + Aun 

x0 must be given 

(un may also be constrained)'. Note also that: 

• the analysis can cope wi th time-varying (that is, non-stationary) systems by 
replacing 0 and A wi th & n and An\ 

• i t is not very easy to include constraints on un. Instead, i t is more usual to perform 
a design wi th no constraints on u, and then to check (by simulation) whether the 
behaviour of u is satisfactory. I f not, changes can be made to the contents o f the R 
and/or Q matrices in the PI, and the design repeated (fol lowing the philosophy 
outlined in Section 12.3.1). Later examples illustrate this. 

Now the dynamic programming is carried out, working backwards from the 
endpoint because of the principle of optimality. A t each stage, the superscript 0 is 
used to indicate optimal values (as in u°n and J ° N ) . I f the reader is prepared to take 
on trust the resulting equations which define the controller (Equations (12.12) to 
(12.15) below), this derivation may be omitted. However, i t does give useful 
insights into why the method works. 

When n = N, the endpoint is being considered, and there is no longer the 
opportunity to exercise any control over what is happening (as discussed before). 
Therefore, the optimal (minimum) value o f the PI of Equation (12.3) is given by: 

J°N = _XNQNXN ( 1 2 - 4 ) 

Stepping backwards in time by one step, n = N - 1, implying that the instant 
being considered is now the beginning of the last time step. Now there is a decision 
to be made, because the control input, uN_x can be varied. I t is therefore necessary 
to minimize the PI wi th respect to uN_x so as to find the optimal control, u°N_x, 
necessary to take the process to the end of the last time step in an optimal manner. 
Wri t ing the PI for step N - 1 from Equation (12.3), and substituting from Equation 
(12.4) for the last term on the RHS, gives: 

JN-I — \ iXN-\QXN-i + U N - I R U N - \ ) + ^ i v (12.5) 
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To find the min imum value J°N_X and the corresponding optimal control u°N_x, i t is 
necessary to differentiate Equation (12.5) w i th respect to uN_x and equate it to 
zero. To tie this in somewhat wi th the previous example, i n the travel problem, 
arrival at Town W marked the beginning o f the last step. The quantity J°N_X 

corresponds wi th the 24 k m between Towns W and Y, and the optimal control u°N_x 
corresponds wi th the direction to take ( 'downwards ') . There is no direct analogy 
for J ° N in the travel problem, as the possibility o f terminal errors d id not arise. 

It is not easy to fol low the vector calculus in the minimizat ion of Equation 
(12.5), so the problem w i l l be solved by analogy wi th a similar scalar problem. In 
scalar terms, Equation (12.5) becomes 

JN-\ = \ (4xN-\ + R U N - \ ) + ^/v 

= \{qx2

N_x +ru2

N_x)+\qNx2

N 

However, there is also the constraint equation xN = (j)xN_x + SuN_x and 
substitution of this gives 

So 

N~l = ruN_x + qN(4>xN_x + SuN_x)d 
duN_ 

Equating this to zero gives the min imum, so the optimal control is given by: 

U°N-\ = ^N<^ C ? XN-\ = — ^ v - i % - i (12-7) 
r + qNS 

Realizing that the term mul t ip ly ing xN_x is a constant, and wr i t ing i t as kN_x, 
proves that the optimal control for this type o f PI is a state variable feedback 
regulator (because Equation (12.7) represents a numerical gain, k, feeding back the 
state, x, w i th no additional reference input). The differences between this and the 
previous SVF designs are: 

• The feedback gains are calculated according to a completely different set of 

conditions. 

• The feedback is time-varying (there w i l l be a different kn at each time step). 

Such an optimal regulator, which w i l l aim to return the system state (and hence 
output) to zero fol lowing a disturbance, is called a Linear Quadratic Regulator 
(LQR); the L Q R scheme is as shown in Figure 12.8. 

To proceed wi th the analysis, the result o f Equation (12.7) is now substituted 
back into Equation (12.6) to find the optimized PI at step N - 1 as: 

J°N_X= \ {qx^j_x + rk^_xxj/_x) + — SkN_xxN_x) 

= \ [<1 + r k l - \ + ~ SkN-\)2]4t-\ 

thus 

JN-\ =2PN-\XN-\ (12.8) 
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Figure 12.8 The linear 
quadratic regulator (LQR) 
- scalar case. 
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where 

(12.9) 

The thought of carrying on this procedure for however many steps there may 
be (AT) is not appealing. However, taking just one more backward step, a pattern w i l l 
emerge, which can be generalized to every step in the procedure. 

As an indication of the result to be obtained, note that pN w i l l need to be 
initialized. I f i t is chosen to be equal to qN then Equation (12.4) can be written 
J°N = \ PN*N m t n e scalar case, the similarity to Equation (12.8) being obvious. 

Taking the next backward step, n = N - 2. A t this instant, the optimal value o f 
/ (that is, J°N_2) w i l l be the minimized component due to xN_2 and uN_2 (to be found 
by differentiation, as above) plus the optimized value for the remaining time steps 
(n = N - 1 and n = N) which has already been calculated as J°N_X in Equation 
(12.8). Note that J°N_X already contains wi th in i t the value of J°N - see Equation 
(12.5). This is analogous to the way in which the optimal cost at each node of the 
travel problem automatically included the costs of all subsequent sections of the 
optimal path. 

Continuing wi th the analysis then, at step n = N - 2 the optimal cost can be 
derived in the same way as Equation (12.6) was derived, and using Equation (12.8) 
to eliminate J°N_X: 

JN-2 — 5̂ 4-2+̂ 4-2)+̂ -! 
but 

so 

— \ (#4-2 + RUN-l) + \ PN-\XN-\ 

xN_x = (j)xN_2 + SuN_2 

JN-2 = \ (?4-2 + RUN-2) + 5 PN-\(</>%-2 + ÔUN_2)2 

(12.10) 

Again, it is necessary to minimize this by differentiating and equating to zero. 
However, since the form of Equation (12.10) is identical to that o f Equation (12.6), 
so w i l l the solution be. Equation (12.10) is merely written one time step earlier, 
and wi th pN_x instead of qN. By direct analogy wi th Equations (12.7), (12.8) and 
(12.9), the result is therefore: 

U°N-2 
PN-l<t>ô 

r+pN_xô' 
XN-2 — ~KN-2XN-2 
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and 

J N - 2 = \ AV-2-*A/-2 

where 

PN-2 = a + r k l - 2 +PN-\(<t> - ^KN-2)2 

Comparing these equations wi th the earlier ones, the emerging pattern can now be 
seen, and can be generalized for the nth step as follows: 

Ini t ial ly, pN is set equal to qN, and no value exists for u°N. 
The procedure is then stepped backwards in time, f rom n = N — 1 to w = 0. 
For step n, the result is: 

u° — -k x 

where 

**= L—#P«rx4>& (12.11) 

Also, 

Pn = a + r k l +Pn+\(</> - &knf 

and 

jo = 1 £ 

Equations (12.11), when applied from n = N — 1 to n = 0, y ield the sequence of 
optimal controls u°N_x,u°N_2,..., u°, m& t n e corresponding (minimum) values 
for the performance criterion J ° N _ X , J ° N _ 2 , • • • ̂ j V o - T n e C ( > n t r o l would then be 
applied by using the feedback gains k0, kx,k2,..., kN_{ i n the forward time 
direction, that is, at steps n = 0,n= I,... ,n = N - 1 respectively. 

It is finally necessary to remember that the solution to the optimal control 
problem given in Equations (12.11) is a scalar solution to an equivalent vector-
matrix problem. Equations (12.11) must now be generalized to the vector-matrix 
case. Strictly, i t needs to be verified that the analogy back to the vector-matrix case 
from the scalar solution can be made. However, this has been proved by others to be 
allowable in this case. 

As a reminder, for a general multivariable system having m inputs, p outputs 
and ns states, the sizes of the vectors and matrices involved are as follows (these 
fol low from the fact that a matrix in a block diagram is o f size (outputs) x (inputs) 
as discussed in Section A 1.1.1; and from the requirements for the various 
multiplications in the equations to be conformable): 

« i s m x 1, j c i s t t y X l , y i s p x l , P,Q,& are ns x ns, 

A is ns x m, R is m x m, K is m x ns and / is scalar 

Rewriting Equations (12.11) so that the dimensions o f the vectors and matrices are 
conformable for multiplication gives the general results for the nth step as follows: 

Ini t ia l ly , PN is set equal to QN, and no value exists for u°N. 
The procedure is then stepped backwards in time, f rom n = N — 1 to/2 = 0. 
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For step n, the result is: 

< = ~Knxn (12.12) 

where 

Also, 

and 

K„ = [R + J ^ . J ] - 1 J T P B + I * (12.13) 

Pn = Q + KT

nRKn + [* - JKn]TPn+l [0 - AKn\ (12.14) 

J°n=\xlPnxn (12.15) 

The control would then be applied by using the matrices of feedback gains 
K0,Ki,K2,. •. ,KN_X in the forward time direction, that is, at steps n — 0, 
n = I , ... ,n = N — 1 respectively, as for the scalar case. 

Equations (12.12) to (12.15) can easily be verified to be at least dimensionally 
correct by substituting the dimensions of the various vectors and matrices into the 
products, and ascertaining that the results are consistent. 

Equation (12.14) is called a Discrete Matrix Riccati Equation ( D M R E ) . 
Equations (12.12) to (12.15) are in a reasonable form to be applied recursively 

to generate the control sequence in a digital computer control scheme. However, 
many sources use a version of the D M R E which does not include the value o f Kn. 
As a bit of gentle matrix-algebra practice, the conversion to such a form is 
considered in Problem 12.2. 

Continuous-time result 
A l l the analysis of this section has been carried out in discrete time. To give a more 
complete picture, the result for the continuous-time case is given here without 
proof. See Anderson and Moore (1989) for the derivation (but note that potentially 
confusing differences in notation w i l l be found). 

u° = -Kx 

where 

K = RlBTP 

and P is the positive-definite solution of the algebraic M R E : 

PA + ATP + Q - PBR lBTP = 0 

Both the D M R E , and the A M R E in this continuous-time result, are normally 
insoluble by analysis and must be solved numerically using a computer. There is 
the possibility of hand solution only for very simple problems, examples of which 
appear at the end of the chapter. 

12.4.3 Choice of Q and R matrices 
The preceding derivation assumed the use o f a quadratic PI of the form of Equation 
(12.2). The same method could be applied to other forms of index, but all the 
mathematics would have to be repeated for the new form (which may not 
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necessarily be possible). In addition, care must be taken that the chosen PI is 
reliably minimizable (for example, i t must not have local minima which could lead 
to a false 'op t imum') . Also, the stability properties o f an optimal controller using a 
different form of PI would need to be examined. 

Stability 
The form of PI used above w i l l always yield a stable controller, even i f it is sub-
optimal (due to modelling errors, for example). I t has been shown (see, for example, 
Brogan (1991)) that, so long as R is diagonal, the closed-loop system w i l l remain 
stable for any values of feedback gains from about half of the designed values up to 
arbitrarily large values. Another way of expressing this good robustness property is 
given by Anderson and Moore (1989), who show that the Nyquist plot of an optimal 
controller of this k ind avoids a circle of radius 1 centred on the (—1,0) point. These 
stability margins are very conservative in frequency-domain control terms, and 
there is a price to be paid for this. I t can be shown that the high-frequency response 
of L Q R controllers rolls off at only 20 dB per decade, so the noise rejection 
properties are not particularly good. 

Structure of Q and R 
Returning to the quadratic index of Equation (12.2), whatever the choice o f 
elements in Q and R, they require the fo l lowing mathematical properties so that the 
PI w i l l have a guaranteed and well-defined min imum, and so that the D M R E w i l l 
have a solution. Both must be symmetric, Q must be positive semidefinite and R 
must be positive definite (see Section A 1.4 for clarification o f this terminology). 

Q and R are usually chosen to be purely diagonal matrices for two reasons. 
Firstly, i t becomes easy to ensure the correct 'definiteness' properties (the numbers 
on the leading diagonal o f Q must then simply be non-negative, and those of R must 
be positive). Secondly, the diagonal elements penalize individual states or inputs. 
This makes the choice of elements easier because the physical significance o f the 
elements is clear for the inputs, and also for the states i f the states have been chosen 
as physically meaningful variables. 

It should also be noted that the choice o f Q is not unique. Several different Q 
matrices w i l l yield the same controller, and there is an equivalent diagonal version 
of Q in every case, so nothing is sacrificed in general by making Q diagonal. In 
addition, one should always be on the lookout for other helpful features in the 
structure of the system model. For example, i f certain states in the system are fairly 
closely related dynamically (perhaps just separated by a relatively fast time 
constant), there may be little to be gained by applying weightings to more than one 
of these states in a PI. We could perhaps just set one of the corresponding diagonal 
elements o f Q to a positive quantity, and the other to zero. The significance of the 
states would need to be assessed to ensure that this approach was acceptable in such 
a case, and to choose which state to weight. 

The relative weightings chosen for Q and R determine the relative emphasis 
placed upon reducing errors and saving control energy. I f i t were important to 
minimize control effort at all costs, then the numbers in R would be made much 
greater than those in Q, for example. This would usually give slow performance, but 
the exact effect is hard to predict, and an iterative design process would be used as 
outlined in the next paragraph. 
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In many cases, as was mentioned in Section 12.3.1, the P I which is minimized 
is really artificial. The minimization of i t is just the means to the end of achieving 
acceptable control of the plant. This being the case, i t is normal practice to select 
ini t ial values for Q and R from considerations such as those above, carry out the 
design of the feedback matrix, and then simulate the resulting system and view the 
responses of the states, inputs and outputs. Values in Q and/or R are then changed as 
required, and the procedure repeated. Using modern CACSD environments (such as 
M A T L A B ) it is very easy to investigate quite a range of values for Q and R, and to 
select those that give the best response. The design thus becomes an iterative 
process. Section 12.6 contains two worked examples. 

Links with pole-placement: the optimal root locus 
I f the designer has some idea of the kind of closed-loop pole locations (eigenvalues) 
that w i l l give a suitable response, then use can be made of this knowledge. CACSD 
packages such as M A T L A B w i l l report the closed-loop eigenvalues which w i l l 
result from applying the optimal controller for any given choice o f Q and R. This 
can assist in the choices of these matrices as follows. The contents of R might be 
fixed (for example) and an init ial set of values chosen for Q. A scalar mult ipl ier can 
then be applied to Q which is swept through a range of values. For each value o f this 
multiplier the resulting closed-loop eigenvalues can be stored and then the entire set 
can be plotted as a root locus diagram (see Section 4.4). This diagram then shows 
the locus of the closed-loop poles of the system as Q is varied. From it , a suitable Q 
matrix may perhaps be chosen. This procedure is illustrated in the example of 
Section 12.6.2. O f course, the same procedure can be applied to or to any 
individual element of either Q or R. 

Other general points 
Two more general points which might assist in the choice o f Q and R are: 

• Assuming that Q and R are diagonal, then doubling (for example) every element 
in R w i l l have precisely the same effect on the closed-loop step response as 
halving every element in Q. 

• I f the system has only a single input, R w i l l reduce to a scalar (r). Therefore, 
fo l lowing from the last point, all possible effects can be obtained by ignoring r 
(setting it to unity, for example) and tuning only the elements of Q in the PI 

J t0 

There is further comment in the fol lowing sections relevant to the choice o f Q 
and R 
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12.4.4 Systems in which the output response is to be weighted 
In some systems, it may be more appropriate to include functions o f the output in 
the PI , rather than the system state. In principle, this is very straightforward and the 
appropriate PI is: 

A/-1 
JN = I ^ 2 iylQyn + uT

nRun) + \yT

NQNyN (12.16) 
/i=0 

Since y = CJC, the quadratic forms such as yT

nQyn may be writ ten as xJCTQCxn. 
Thus, the PI becomes 

N-l 
JN=lY, ^VXn + UlRun) + \xT

NVNXN 

n=0 
where V = CTQC and VN = CTQNC, and so all the previous methodology applies 
after choosing Q to give the required weightings to y, and then substituting V for Q 
during the analysis. 

One problem wi th this approach is that the number o f outputs is l ike ly to be 
less than the number of states, but the resulting controller w i l l s t i l l feed back the 
states. This means that the controller w i l l have fewer degrees o f freedom available 
to i t than in the regulator case because Q in Equation (12.16), whose elements are to 
be tuned, is o f lower order than the V matrix which generates the controller. The 
results may therefore be inferior. 

12.4.5 Regulator systems and tracking systems 
It has been pointed out that the design discussed thus far has been that o f a regulator 
system. The consequence of this is that in Figure 12.8 there is no reference input, 
and the desired steady state is x = 0. 

Proof of regulator action 
To see why this should be so, consider the direct multivariable equivalent o f Figure 
12.8. The discrete-time state equation would then be (from the figure) 
xN = <&xN_x 4- Au°N_x. Now, for any useful regulator, a steady state w i l l eventually 
be reached, in which xN_x = xN. Substituting this into the state equation gives 
[/ - 0]xN = Au°N. But, from Equation (12.12), u°N = -KNxN, therefore: 

[I-(0-JKN)]xN = O (12.17) 

The significance of Equation (12.17) is that the term in square brackets can be 
shown to be non-zero i f R is positive definite, which must always be the case (see 
Problem 12.3). Given the presence of the identity matrix, i t is also most unlikely 
that the term w i l l be singular, other than in exceptional cases. The conclusion from 
Equation (12.17) is therefore that xN, the state vector at steady state, must be zero. 
From Figure 12.8, i f xN_x = xN is zero, then so m u s t y N and u°N be. This confirms 
the action of a regulator. 

Tracking system design by alteration of the performance index 
To obtain an optimal tracking system, a PI similar in form to Equation (12.16) might 
be used, but employing terms which weight the deviation o f the output from the 
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reference signal (that is, the tracking error). This implies the use o f \yn - rn) in 
Equation (12.16) instead of yn, where rn is the applied reference input (setpoint) to 
the closed loop scheme as shown in Figure 12.9 (the matrix G is required primari ly 
to match the number of inputs and reference signals). 

Figure 12.9 A tracking 
arrangement. 

The analysis of this system from an optimal control viewpoint is possible, but 
is not easy (for more detail, see Anderson and Moore (1989)). This analysis w i l l not 
be repeated here, but i t can be seen that the type of performance criterion would be 

y V - l 

h=\Y,^n- rn]TQ\yn - rn] + UTnRuH) 
n=0 

and that y = Cx can be substituted, i f desired, to obtain 

JN 

N-\ 
\ Y, ({xT

nCT - rl\Q[Cxn - rn] + uTnRun) 

+ \[xT

NCT-rT

N]QN[CxN-rN) (12.18) 

When the brackets are multiplied out, i t is found that there are four extra terms in 
Equation (12.18), compared wi th the index for the L Q R case, hence the difficulty. 
In addition, the number of diagonal elements in Q is now equal to the number of 
outputs, which is normally lower than the number of states. This would therefore 
not give complete control over all the system dynamics. I f this were particularly 
important, any 'uncontrolled' states could be defined as outputs by adding the 
associated state variables (or combinations of them) to the output vector. They 
would then be controlled together wi th the original set of outputs. However, since 
the original outputs are also linear combinations of the state variables, great care 
would be necessary to make sure that any new outputs defined in this way were 
independent of the original ones, otherwise conflicting control objectives would 
result. 

Simple tracking system design for servo-like systems 
For systems whose models contain pure integrators, depending upon where these 
integrators are, there may be a simple way in which a tracking system can be 
obtained without having to alter the previous analysis in any way. This was 
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described in Section 5.4.6, and effectively involves moving the point o f application 
of the reference vector, so that i t occurs before the SVF gain matrix. The setpoints 
are then references for the states rather than the outputs, as shown in Figure 12.10. 
I t is important to remember that this w i l l only work for systems containing pure 
integrators in the forward path; and then only i f non-zero references are applied 
only to states which are the outputs of pure integrators whose inputs can become 
zero at steady state. 

I f such an approach is taken, a reference signal for the states must be provided, 
which is chosen to cause the outputs to behave as required. I f the model of the 
system is chosen so that the outputs correspond wi th state variables (typically, but 
not necessarily, wi th a C matrix of the form C = [I 0]), then this is 
straightforward. The states which coincide wi th outputs can be given the required 
reference signals (so long as they are fed via pure integrators), and the other 
elements o f the reference vector can be set to zero. For C matrices o f other forms, 
especially forms in which the outputs are combinations of more than one system 
state, this w i l l be harder to achieve. Special care must be taken to ensure that the C 
matrix is accurate i f this method is used, since the output is effectively open-loop 
via C, wi th no possibility of correction for modell ing errors. 

As a final point, note that the controller w i l l now be sub-optimal w i th respect 
to the ini t ia l PI , because the configuration is no longer the regulator for which the 
optimal design was carried out. However, given that the advocated philosophy is 
that of using the L Q R design machinery as a means to obtaining reasonable control, 
and not as a means of minimizing a specific PI , this is o f no consequence. The 
tracking system design would be simulated and Q and R tuned unti l satisfactory 
results are obtained. 

Figure 12.10 Optimal 
reference tracker for a 
restricted class of systems. 

A A 

12.4.6 Further consideration of steady-state errors 
I f unacceptable steady-state errors cannot be removed by the methods o f Section 
12.4.5, then some kind of integral action must be added, as was discussed for simple 
SVF schemes (see Section 5.4.4). 

There is more than one way of achieving such integral control. One method is 
to add extra states to the system model which are the time integrals o f the real states 
of the system. I f this extra state vector is called z (not to be confused wi th the z-
transform operator), then 

or 
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In discrete time, this translates to the usual type o f difference equation 

zn+l — Zn + Txn 

where T is the sampling interval. 
The system now has the new states z, as wel l as the old states x. For reasons 

arising from the mathematics (to do wi th singular matrices), it is often the case that 
z w i l l not be able to contain all the possible integral states. In other words, a subset 
of the integrals of x w i l l often have to be chosen to make up z. I f the integrals o f all 
the states are included in z, and i f the new and old state equations are combined, an 
overall state-space model is obtained as: 

X 0 0 X A 
= + 0 _z n+l IT / _z_ n 0 

which, in turn, can be written as follows, where the tildes represent the augmented 
vectors and matrices: 

Precisely the same analysis as before can then be applied, and Equations (12.12) to 
(12.15) w i l l give the results in terms of the augmented matrices and vectors. 
Before interpreting the results, it should be noted that some of the matrices have 
changed size. Also, the elements of Q which weight the new (integral) states are 
typically chosen to be an order of magnitude less than the weights on the original 
states, to ensure reasonable stability. The sizes of the various quantities in the 
augmented model are (assuming a complete set of integral states): 

but now 

w i s m x 1, y i s p x l , R is m x m and J scalar as before 

x is 2ns x 1, P, g , 0 are 2ns x2ns, A is 2ns x m and 

K is m x 2ns 

Therefore, K in Equations (12.12) and (12.13), which are repeated here for 
convenience, feeds back 2ns states to m inputs. 

Kn = [R + AiPn+xA\-xÀ1Pn+^ (12.13) 

and 

«Z = -*„*„ ( 1 2 - 1 2 ) 

I f K is now partitioned (see Section A l . 1 . 3 ) [Kp Kl

n] where Kp, Kl

n are of size 
m x ns, then Equation (12.12) becomes: 

\KP„ Ki] 

so that Kp

n contains the gains feeding back the states, while Krn contains the gains 
feeding back the integrals of the states. Figure 12.11 shows the resulting scheme. 
The position of the reference input is not shown, since i t depends upon the design, 
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Figure 12.11 An LQR 
system with integral action. 

as discussed in Section 12.4.5. Note also that strictly an integrator should not be 
shown on a discrete-time diagram. I t has been done to show the function o f the 
feedback. I t could be replaced by a discrete-time version using zn = zn_x + Txn_x, 
where xn_x would be generated from xn by a unit delay. 

12.4.7 The infinite horizon case 
Many discrete-time control systems do not only operate over the finite number of 
time steps /V considered previously. Therefore, for most systems, the upper l im i t on 
the integral of the PI should be infinity (since the operating time of the plant is very 
long compared wi th the sampling interval). This is allowable in the continuous-time 
case where the PI contains integrals, but infinite summations are not very helpful in 
the discrete-time case. I f there is an infinite ' t ime-to-go' (infinite control horizon), 
how can we progress backwards through the dynamic programming procedure from 
the end, so as to find the optimal SVF gains? 

Fortunately, there is a way out of this difficulty for stationary (non-time-
varying) plants, and the result is simpler to implement than before. Assuming that 
the controlled system is stable (which should always be the case), then eventually 
all the states w i l l be driven to steady values. Then, al l rates o f change w i l l be zero, 
imply ing that eventually xn+x = xn, u n + x = un and so on, working forwards in time. 
In addition, since nothing is changing any more, the solution to the matrix Riccati 
equation (P) and the feedback gains in K w i l l also converge to steady values. 

In the finite horizon regulator case wi th n = 0 , 1 , . . . , N — 1, the final values in 
K are zero. I t is also usually found that the values in K are more or less constant 
from the time of application of control (t0) unt i l a few plant t ime constants before 
the end o f the operating period ( / y ) , when the decay to zero begins. The controller 
therefore spends most of its time applying the same feedback gains to the plant. 

I n the infinite horizon case tf — oo, and so the decay of the feedback gains to 
zero never occurs (that is, a time corresponding to 'a few plant time constants 
before the end o f the operating period' is never reached). This means that the 
controller gains are fixed in the infinite horizon case, as K rather than Kn. This 
greatly simplifies the implementation, and is the type o f controller designed by 
M A T L A B , for example. 

There are various ways of finding K. One way is to set N to a large number and 
begin to apply Equations (12.13) and (12.14) backwards in time as before, unt i l Kn 



608 Optimal control 

converges to the constant matrix K. This would then be used in exactly the same 
way as a normal SVF gain matrix. 

Analytical solutions leading to K also exist. These usually involve looking 
at the D M R E given in Problem 12.2, and arguing that in the steady state 
pn = pn+l = p (say). Thus, the D M R E becomes 

p = Q + 0TP0 - 0TPA[R + ATPJ]~lATP<P 

This is called an Algebraic Matrix Riccati Equation ( A M R E ) , and can (wi th some 
difficulty) be solved analytically for P (the procedure is closely related to that used 
in deriving the Kalman filter gains from Equation (A6.4) in Appendix 6). Given 
the solution for P, Equation (12.13), wi th the n and n + 1 subscripts omitted, then 
gives K. 

The solution for P is not given here, nor is the result quoted, because it needs 
more mathematical background to be meaningful. For the interested reader, Phillips 
and Nagle (1990: Section 10.6) and Ogata (1987: Section 7.3) both begin wi th 
versions of the D M R E identical to that above (except for notation changes, and an 
error in the positioning of a bracket in Equation (10.46) o f Phillips), so the 
derivation can be followed in either text without undue difficulty (although it does 
involve some extra mathematics not covered in this text). 

12.5 Other approaches 
Although many of the comments made in this chapter (especially in Sections 12.4.3 
to 12.4.7) are applicable to optimal control schemes derived by many methods, the 
only method actually used in the derivation has been dynamic programming. Many 
other methods lead to the same result. Since this text is really interested in using the 
result, rather than deriving it for its own sake, these w i l l not be discussed here. The 
reader interested in other approaches should look through some of the texts in the 
bibliography for topics such as the fol lowing (some of which are interrelated). The 
texts by Anderson and Moore (1989), Brogan (1991) and Ogata (1987) contain 
relatively wide-ranging material. 

• Pontryagin's minimum principle (or just, 'the M i n i m u m Principle ') 

• The calculus of variations 

• Solution via the Hamiltonian matrix 

• Solution via Lyapunov (or Liapunov) methods 

• Minimizat ion via Lagrange multipliers 

12.6 Two design examples using MATLAB 
M A T L A B (Appendix 3) is used to illustrate the design procedure here, but 
M A T L A B is just the chosen tool to apply the design methodology. The same steps 
can be applied using any other suitably featured CACSD package. The Iqr command 
which designs L Q R controllers in M A T L A B uses a Hamiltonian method, wi th some 
numerical refinements. However, i t is not necessary to know that in order to be able 
to use it , as the examples below w i l l show. The knowledge that is necessary is the 
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roles of the Q and R matrices, and the philosophy of using the L Q R design method, 
which have been outlined in the earlier sections. Both these examples are SISO 
systems for simplicity, but the application to multivariable systems follows the 
same pattern. 

Note that continuous-time models are used in these examples, even though all 
the previous analysis was done in discrete time. This is o f no consequence, because 
there is a parallel continuous-time derivation o f the same SVF-type result to that 
derived in discrete time above. In these examples, CACSD system results w i l l be 
used, rather than results derived on paper, so it is simply a matter of selecting the 
CACSD tool that works in continuous time and gives a controller matrix for the 
continuous-time case (the Iqr command in the case o f M A T L A B ) . 

The practical points discussed previously apply equally to either the 
continuous- or discrete-time case. A n infinite control horizon w i l l also be assumed 
in these examples, as the controller can operate for very long periods compared wi th 
the system dynamics. Therefore the controller matrices w i l l be stationary, rather 
than time-varying. The M A T L A B Iqr command automatically designs this type of 
control. 

12.6.1 Case study - an electro-hydraulic machine tool drive 
Figure 12.12 shows a highly simplified model of an electro-hydraulic machine tool-
positioning system. The workpiece is assumed to be being rotated on the bed o f a vertical 
mi l l i ng machine. The system shown in the figure controls one axis o f the movement of the 
tool itself. 

I t is l ikely that a straightforward two- or three-term controller would be considered 
for such a system. This w i l l be designed first; then the problem w i l l be solved using an 
optimal controller for comparison purposes, and to provide almost the simplest possible 
design exercise. 

The requirements for the control of this system are simply stated. The tool position 
must have: 

• zero overshoot, 

• zero steady-state error, 

• the fastest possible rise time which does not violate the overshoot condition. 

In addition, there are some practical constraints on signal levels which must not be 
violated because saturation effects would come into action on the real plant, leading to 
nonlinear behaviour. The d.c. gain of the servovalve block can be seen to be 
0.05 m s " 1 ^ . In this system, the range of servovalve control voltage is ± 1 2 V, which 
therefore leads to maximum velocities o f ± 0 . 6 m s"1. In addition, the normally expected 
range of movement at the tool during operation is ± 15 m m , and the plant has been 
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Figure 12.12 An electro-
hydraulic tool-positioning 
system. 
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designed wi th the expectation that this w i l l correspond to the ± 1 2 V control range (a 
separate offset, not shown in the model, is used to move the tool tip to its starting point). 

Using M A T L A B for the design, i t is possible to arrange things so that the bui l t - in step 
command can be used, without modification, to generate the step responses (this approach 
is unnecessary, but does have certain attributes of convenience). The problem is that this 
command applies a unit step which, for the present system, w i l l be assumed to represent 
1 m of tool movement. O f course, this is totally impractical, but since the model o f the 
system is linear, the size of the input step is immaterial. However, to check that the 
real-world signals do not exceed the stated limits, the model responses w i l l need to be 
interpreted as follows: 

• The input to the solenoid valve must be in the range ± 8 0 0 V (12 V x 1 m step/15 mm). 

• The velocity must remain in the range ± 4 0 m s - 1 (800 V x d.c. gain of 0.05 m s _ 1 / V ) . 

• The output must reach 1 m as soon as possible, and wi th zero overshoot. 

The simplest investigation is to examine the feasibility of control by varying the amplifier 
gain, K. The closed-loop LTF is given by: 

This can be compared wi th the standard second-order form (see Equation (3.19) in Section 
3.2.2, for example). I t can be seen from the denominator term in s that 2£a>n = 10. For the 
fastest rise time wi th zero overshoot, £ = 1 so con must be 5 rad s"1. The numerator term 
then gives the gain K = 50. 

The resulting step response is the standard critically damped second-order one (see 
Figure 3.19 in Section 3.2.2). It has no overshoot, no steady-state error and a 10-90 per 
cent rise time of about 665 ms. 

Since the forward path gain of 50 w i l l apply 50 V to the solenoid valve when the unit 
step is applied (that is, before the feedback loop begins to react to reduce the ini t ia l error), 
and since the unit-step l imi t is 800 V, the performance should be fairly poor compared 
wi th the best possible (because only 6.25 per cent o f the control range is being used - but 
i f any more is used by increasing K, then overshoot w i l l occur). In addition, given that the 
model w i l l be inaccurate, perhaps even this gain w i l l give some overshoot. As we expect 
to reject this design, we shall not pursue it further. 

Next, a proportional plus derivative (PD) controller w i l l be tried (using the inherent 
integral action in the plant for the T term of the PID controller). The gain K in Figure 
12.12 would ideally be subsumed into a controller of the form (KP + sKD). This is, o f 
course, physically unrealizable without the addition o f some poles. In ideal analyses, these 
poles are usually assumed to be so 'fast' as to be negligible. Packages like M A T L A B are 
rather more realistic, and w i l l not allow the modelling o f a zero without at least one 
accompanying pole to counter the otherwise infinite high-frequency gain. For this 
investigation, a single additional controller pole w i l l be assumed (the min imum allowable) 
and i t w i l l be placed 100 times as 'fast' as the controller zero. The ' real ' PD controller 
transfer function w i l l therefore be 

0.5/T 

s2 + 10s + 0.5K 

1 + 5 
0.01*0 
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There is another practical problem. I f this is used in the forward path o f Figure 12.12 
as i t stands, then the derivative term (even wi th the pole which has been added) w i l l tend 
to call for very large control actions in response to the step input test. This would 
immediately saturate the plant actuator and give a nonlinear response which w i l l not be 
seen in the linear model. To avoid this problem, the commonly used solution w i l l be 
adopted of putting the derivative term in a feedback path. This works because the control 
signal is (ideally): 

(KP + sKD)(r - y) = KP[r - y) + KDsr - KDsy 

and, so long as the input ( r) is not in the act o f altering, the term KDsr can be ignored 
(since sr = dr/dt and is therefore zero i f r is not changing). The actual arrangement is 
therefore as shown in Figure 12.13. 

For this system, KP was chosen as 800, since this would cause the maximum 
permissible signal to appear transiently at the plant input for a unit step test signal. KD was 
then increased to a level which removed the overshoot due to the high value o f KP. The 
resulting value was KD = 60. With this controller, the 10-90 per cent rise time improved 
to about 170 ms. No separate plot of the resulting performance is given, because it was 
almost indistinguishable from that of Figure 12.14 which appears later. 

A l ikely drawback to the PD controller is its noise performance. A derivative gain of 
60 w i l l tend to amplify any noise appearing at the output. Further simulation studies would 
be necessary in practice. 

Although all the 'headroom' in the plant input has been used up, the velocity signal is 
sti l l a long way below the allowable maximum of 40 m s - 1 . A n optimal controller w i l l now 
be designed for comparison, and may be able to use some of this freedom (but since the 
velocity is ' t ied ' to the voltage input by a d.c. gain of 0.05 and a time constant of only 
100 ms, and all the voltage 'headroom' has been used, it is not l ikely that any great 
improvement w i l l be forthcoming from a linear controller). 

In principle, all the design constraints should be combined in a performance index, 
and then an optimal controller should be designed to minimize i t . In practice, the standard 
performance index of the form 

[xTQx + uTRu] dt 

is used. Since for a single-input system, R w i l l reduce to a scalar, i t can be fixed at unity 
as discussed in Section 12.4.3. Q w i l l be a 2 x 2 weighting matrix for the ( two) states. 

Figure 12.13 Tool-
positioning system with a 
practical PD controller. 
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A state-space model for the open-loop system between u and y (Figure 12.12) is 
therefore generated, having as its states the measurable quantities x{ (position) and x2 

(velocity). Such a model is given by: 

"0 1" ' 0 " 

0 - 1 0 0.5 

The M A T L A B Control Systems Toolbox Iqr command can then be used as: 

» [k ,p ,e ] = lqr(a,b,q,l) 

to design the controller. Note that this command performs a continuous-time design. The 
dlqr command would be used wi th discrete-time models. 

a,b are the state-space model of the plant (using the convention of all-lower-case characters in 
M A T L A B ) 

q is the 2 x 2 matrix of state weightings in the performance index (yet to be chosen) 

1 is the scalar input weighting (r, fixed at unity, as above) 

k w i l l return the designed optimal (stationary) state feedback matrix 

p w i l l return the steady-state solution of the Riccati equation 

e w i l l return the eigenvalues of the resulting closed-loop-plant wi th the designed optimal 
control in place 

The M A T L A B statements used in the design are to be found in the m-file figl2_14.m on 
the accompanying disk, the general approach being as follows (there are alternative 
possibilities): 

• Set up the state-space model. 

• Set r = 1, and initialize Q to a 2 x 2 unit matrix, thus giving equal weightings to 
everything init ial ly. 

• Rearrange the plant model so that the states are available as outputs for feeding back 
(the M A T L A B feedback command only works wi th outputs, not states). 

• Use the Iqr command to design the SVF feedback matrix (a vector in this SISO case). 

• Connect up the system as a simple tracking system, as discussed in Section 12.4.5. 

• Impose a state reference of a unit step on xx (position) and zero on x2 (velocity). 

• Display the step responses. 

• Tune Q and repeat the previous four steps until a satisfactory result is obtained. 

Note that this is just a way of choosing the feedback gains in a state variable 
feedback controller. Nothing meaningful is optimized in a mathematical sense, but our 
understanding of the optimal control methodology is used to design a suitable controller 
for the plant, given the init ial constraints. 

Table 12.1 contains the tuning sequence used in this design. Note that the steady-state 
error is zero in every case. 

Fixing r = 1 and trying Q = d i ag ( l , 1) as suggested, gave row 1 in Table 12.1. The 
performance is very poor, and the input signal is clearly being penalized far too much 
compared wi th the states. The states should therefore be penalized significantly more. This 
w i l l allow the input to rise to much higher levels in an effort to control the states more 
rapidly. 
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Table 12.1 Design iterations for the optimal tool-positioning controller. 

PI weightings Rise time Max. input (V) Max. vel. (ms ] ) 
Row #n #22 r (ms) u 

1 1 1 1 45 seconds 1 negligible 
2 1000 1000 1 2500 33 0.72 
3 20000 20000 1 2200 150 0.95 
4 60000 20000 1 1300 250 1.6 
5 60 20 0.001 1300 250 1.6 
6 600 20 0.001 405 780 4.4 
7 600 10 0.001 295 780 5.5 
8 600 1 0.001 135 780 8.0 
9 600 2 0.001 155 780 7.5 

Trying Q — diag(1000,1000) gave row 2 in the table. The input now rises to 33 V 
(remember that 800 V is allowed in the model for a unit step test). The rise time is st i l l 
too long. The same procedure is therefore repeated. 

Trying Q = diag(20000,20000) gave row 3. This did not give much improvement in 
rise time, but the input now reached 150 V. 

Since the step is applied in order to control xl9 it now seemed sensible to carry on 
increasing q u only, unti l the maximum allowable control input was reached, and then see 
i f any further improvement might be possible by tuning q12. Accordingly, t rying 
Q = diag(60000,20000) gave row 4 in the table. Also at this stage, to avoid the numbers 
being quite so large, i t was decided to make use of the fact that the location o f the 
min imum point of the PI is not altered by identical scaling operations upon Q and r . 
Therefore, all the numbers were divided by 1000, giving row 5 in the table. Progress is 
st i l l encouraging, so this step is repeated. 

Row 6 was achieved wi th Q = diag(600,20) (and r = 0.001 now). The maximum 
permissible input voltage has now been reached. The velocity signal st i l l peaks at quite a 
low value (remember that 40 m s - 1 is allowable in these tests). The velocity signal (JC2) 

> w i l l reach higher values i f i t is penalizing less w i th respect to everything else in the 
performance index. Thus, q22 should now be reduced. 

Trying Q = diag(600,10) gave row 7 in the table. The maximum velocity has been 
allowed to rise, and so the rise time is improved as a result. 

Trying to move further in this way and using Q = diag(600,1) gave row 8. There is 
st i l l a lot of headroom left in the velocity signal, and this is the best rise t ime yet seen, 

r Unfortunately, though, the output response exhibited a very slight overshoot under these 
conditions. This means that the relaxing of the constraints upon velocity has gone too far. 

Q = diag(600,2) wi th r = 0.001 gave row 9 in the table. Clearly this is the best that 
can be achieved. 

The resulting performance is shown in Figure 12.14, and is almost identical to that 
: achieved wi th the PD controller. Thinking about the structure o f the optimal controller, this 
, is not surprising. The optimal gain matrix giving rise to row 9 o f Table 12.1 was given by 

k = [775 54]. In terms of the block diagram of a tracking system, this implies the system 
. of Figure 12.15. 

Figure 12.15 can be compared directly wi th Figure 12.13, in which the forward path 
! gain (KP) was set at 800, very close to the value in Figure 12.15. Also in Figure 12.13, a 

realistic differentiator was used for the ' D ' term of the controller. I f an ideal differentiator 
had been used, that feedback block would simply have contained sKD. App ly ing sKD to xx 
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Figure 12.14 (a) State and output responses for the optimal tool-positioner, (b) Control signal for the optimal tool-positioner. 

Figure 12.15 Optimal 
tracking controller for the 
tool-positioning system. 
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(as in Figure 12.13) is identical to applying KD (without the s) to x2 (because x2 is the 
derivative of xx). This effectively gives a pure velocity feedback block wi th a gain (KD) 
which was chosen as 60 for the PD controller. This would then be identical in structure to 
Figure 12.15 and, again, the numerical value is very similar. Hence the similar 
performance. 

In the final analysis, for this system there is therefore nothing to choose between these 
- designs so long as the pure velocity feedback is used in the PD controller - otherwise, 

wi th the implementation of Figure 12.13, poor noise performance would be expected, and 
the optimal tracker would prove superior (and simpler to implement). Note that this 
similarity has only resulted because such a simple system was used. There were only as 
many degrees of freedom available to the optimal controller as to the PD controller. In 
higher-order designs and (especially) in multivariable designs, the greater number o f 
degrees of freedom available to the optimal design procedure are l ikely to allow better 
performance to be obtained in many cases. In addition, the optimal control is always easy 
to implement, having no dynamic elements (unless an observer is needed). 
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Manual solution 
This particular example is possible to solve by hand, being so simple. A n y real 
system of higher than second order, and most second-order systems too, are too 
complicated to solve without computer assistance. However, in this case, to lend 
credibili ty to the continuous-time solution of the L Q R problem (given at the very 
end of Section 12.4.2) and also to confirm the M A T L A B result just obtained, see 
Problem 12.4. 

12.6.2 Case study - the antenna-positioning system 
Finally, the antenna-positioning system used as an example in several chapters w i l l be 
reconsidered. Figure 12.16 repeats the open-loop system block diagram, for convenience. 

In section 5.4.4, the required performance was obtained by choosing the SVF gains to 
give specified closed-loop eigenvalues. Now the optimal controller w i l l select the feedback 
gains, based on the PI to be minimized. O f course, there must be some PI (that is some 
contents o f Q and R) which, when minimized, would lead to the same set of feedback 
gains which the previous pole-placement design method generated. However, t rying to find 
this PI w i l l be of no physical significance. 

Instead, the objective w i l l be to obtain the fastest possible rise time in response to a 
step input, w i th no steady-state error, and no more than 5 per cent overshoot. 

A state-space model for the system of Figure 12.16 has previously been obtained as: 

"0 1 0" ~0~ 

A = 0 - 1 1 0 

0 0 - 5 _ 5 

For this system, the steady-state gains of the drive system and the load dynamics are both 
unity. Therefore an input of 1 V at u w i l l produce (at steady-state) 1 N m of torque at x 3 

and 1 rad s _ 1 o f velocity at x2. The real-world control range at u is ± 1 5 V. So long as this 
is not exceeded, the torque and velocity w i l l therefore never exceed ± 1 5 N m and 
± 1 5 rad s _ 1 respectively. As modelled, these figures w i l l not even be exceeded transiently, 
because the dynamic blocks are only first order; so the relationships between control 
voltage, torque and velocity cannot be oscillatory. However, the relationship between the 
closed-loop reference signal and these quantities may be oscillatory, due to the feedback 
action. 

The l imi t ing figure for torque is acceptable, but the velocity value is too great for this 
plant. The maximum allowable is ± 5 5 deg s"1 (that is ± 0 . 9 6 rad s" 1 ) , and the intention of 
the plant designer was that the relatively slow dynamics o f the load would easily allow the 
velocity to be restricted to this value wi th feedback in place (clearly, the open-loop system 
could theoretically reach 15 rad s"1 after a few seconds o f acceleration at fu l l input 
voltage, but this is physically prevented by an arrangement incorporating a viscous 
coupling, in order to avoid damage). 
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system 
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Figure 12.16 Open-loop 
block diagram of the 
antenna-positioning system. 
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The range of output (position) motion allowed in this plant is approximately 
±7r/2 rad (that is ± 9 0 degrees). Therefore, i f a unit step response from the simulated 
model is to correspond to this l imi t , then the previously discussed signal l imits all need to 
be divided by n/2 to obtain the corresponding simulation-world l imits . 

To sum up, the requirements in simulation for a unit (full output) step test are: 

• zero steady-state error 

• overshoot not to exceed 5 per cent 

• voltage at u to be in the range ± 9 . 5 V (from 15 V x 2/n) 

• velocity at x2 to be in the range ± 0 . 6 rad s"1 (from 0.96 rad s - 1 x 2/n) 

• min imum rise time (10-90 per cent of the final value) commensurate wi th the above. 

The previous SVF design would fail to meet almost all these criteria, but no 
comparison can be made, as no such constraints were set at the time of that design. 
Bearing in mind that the dominant time constant of the open-loop plant is 1 second (due to 
its inertia, and some slippage in the viscous coupling), very fast performance is unlikely to 
be obtained wi th in these constraints. 

Using exactly the same philosophy as in the previous example, the design process 
begins wi th r set to 1 and Q set to d iag( l , 1, 0) in the performance criterion (r is st i l l 
scalar, because there is a single input, Q is now 3 x 3 because the plant model is third 
order). The reason that q33 is set to zero is that there is no point in constraining the torque 
(x3) in any way, since it can never exceed its l imi t of 15 N m i f u is restricted to 9.5 V, due 
to the d.c. gain o f 1 N m V " 1 in the intervening first-order element. 

The same sequence of M A T L A B commands is used to design and test the controller 
as was used in the previous section. Only the sizes of the matrices alter. The same general 
procedure is also followed for varying Q. The sequence o f design steps can be repeated by 
editing and running the m-file Jigl2_18.m on the accompanying disk. 

Row 1 of Table 12.2 might suggest that u is being penalized too much compared wi th 
the states (it reaches only 1.9 V, and the rise time is long), so the states are progressively 
penalized more unt i l , in row 3, the velocity (x2) has reached its allowed maximum. 

In this design there is an extra degree of freedom compared wi th the previous 
example, so it is possible to comply wi th the maximum velocity constraint simultaneously 
wi th the maximum control input constraint. To achieve this, the input must be allowed to 

Table 12.2 Design iterations for the optimal antenna positioner. 

Row # n 

PI weightings 
#22 #33 r 

Rise time 
(seconds) 

Max. input 
(V) 
u 

Max. torque 
(Nm) 
x3 

Max. V 
(rads - 1 ) 
*2 

1 1 1 0 1 3.3 1.9 0.7 0.36 
2 10 10 0 1 2.4 3.2 1.5 0.57 
3 20 20 0 1 2.3 4.5 1.9 0.60 
4 90 170 0 1 3.0 9.5 2.6 0.60 
5 10 7 0 1 2.1 3.2 1.6 0.60 
6 8 4.5 0 1 2.0 2.8 1.5 0.60 
7 5 0.6 0 1 1.8 2.2 1.3 0.60 
8 4.5 0 0 1 1.7 2.1 1.3 0.60 
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Position 
reference 

increase further (by penalizing the states more), but x2 must also be penalized more heavily 
relative to xx, so as to prevent the maximum velocity from exceeding its l im i t . Row 4 of 
Table 12.2 shows a set of weightings which achieve this, and the resulting system 
(according to a simulation) exhibits zero overshoot. However, note that the rise time is 
worse than it was in row 3. This means that, for this system, controll ing to the l imi t ing 
values given for the signals does not produce the best performance in terms o f min imum 
rise time. 

I n order to improve the rise time compared wi th row 3 o f Table 12.2, the weighting 
q n can be reduced, so as to allow xx to move more freely. Rows 5 to 8 of the table show 
this procedure. A t each stage, the weighting q22 was adjusted so that the maximum velocity 
was attained, and the overshoot was checked (by the simulation in the m-file) to be wi th in 5 
per cent. The final result (row 8) was achieved when i t was only just possible to reduce q22 

far enough to allow x2 to rise to its l imi t . Any further reduction of q u then leads to a 
system in which the maximum velocity is never reached, so the rise time is lengthened. 

The feedback gains for row 8 of the table are k = [2.12 1.42 0.25] (as reported by 
the m-file), resulting in the system of Figure 12.17. The references for torque and velocity 
are zero, and they are omitted from the figure. According to the M A T L A B Iqr command, 
the resulting closed-loop eigenvalues are positioned at approximately - 1 . 1 ± y 0 . 9 and - 5 , 
and Figure 12.18 shows the responses. In Figure 12.18(b) the position response is identical 
to that o f Figure 12.18(a), only the axis scaling having altered. A l l the other responses 
eventually settle at zero. 

Drive 
system 

Torque 

Load 
dynamics 

Velocity Position 

Figure 12.17 Optimal tracking controller for the antenna-positioning system. 
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Figure 12.18 (a) Output response for the optimal antenna positioner, (b) State and control signal responses for the optimal 
antenna positioner. 
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The optimal root locus 
Although the design of this section has been carried out by physical reasoning plus 
trial-and-error, the use of a root locus showing the variation o f the closed-loop 
eigenvalues wi th QorR (or individual elements of these) can sometimes be useful, 
especially i f the designer has some idea of the closed-loop pole locations that would 
give the k ind of performance required. To show how such a root locus can be 
obtained, the m-file figl2 19 .tn on the accompanying disk uses the M A T L A B code 
for the example of this section, and adds the appropriate commands. The result 
appears in Figure 12.19. 

Figure 12.19 shows the loci of the closed-loop eigenvalues of the optimally 
controlled scheme, wi th r fixed at 1, and Q beginning at diag(0.1, 0, 0) and being 
mult ipl ied by 1, 2, 3 , . . . , 90, to end at d iag(9 ,0 ,0) . Two of the three loci are clearly 
visible, but the locus on the negative real axis does not move far from the value - 5 
for this range of values in Q. The three loci pass through the solution previously 
obtained, which is shown in the figure. 

I f the root locus is drawn for a much greater range of values in Q, i t w i l l always 
be found that the branches become asymptotic to lines of constant damping ratio in 
the 5-plane (the radial lines in Figure 12.19). For the present system, and for very 

-6 -5 -4 -3 -2 -1 0 
Real part 

Figure 12.19 Optimal root locus for the optimal antenna positioner. 
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high values of q n , the complex conjugate loci are found to be asymptotic to a 
damping ratio of about 0.52. 

12.7 Summary 
In this chapter, the notion that there may be a 'best' way to control a plant has been 
investigated. What is 'best' has been represented by a performance index (PI), the 
minimization of which leads to the required controller. Unfortunately, it was also 
discovered that the mathematics necessary to solve the resulting optimization 
problem may not be possible. For this reason, i t is usual to employ a standard PI 
containing quadratic forms which apply weightings to the relative importance of 
restricting the excursions of the individual state variables and control inputs. 

Since the standard PI w i l l not usually be the thing which ideally we would 
like to minimize, its minimization was not regarded as an end in itself. Instead, the 
use o f the machinery of the linear quadratic regulator (LQR) design procedure 
was presented as one step in an iterative design process using CACSD tools. In this 
process, the elements in the PI were systematically tuned unt i l a satisfactory 
performance was achieved. 

I n addition, a number of ways were discussed by which the resulting 
regulator design could be made to behave as a tracking system. 

The method was applied to two simple case-study examples, using values of 
actual voltages, torques, and so on to guide progress. 

12.8 Problems 
12.1 In the text it was stated that the Q and R matrices 

in a performance index can always be symmetric 
matrices with no loss of generality. Prove that this 
is the case for a general matrix Q in a quadratic 
form xTQx. 
Hint: Any general matrix Q can be rewritten as 

e = fis. 2s, where: S s y m 1 v ^ s k e w 

Qsym is a symmetric matrix given by 

esym = i(e + eT) 
and gskew is a skew-symmetric matrix given by 

12.2 By substituting Kn from Equation (12.13) into 
Equation (12.14), show that Equation (12.14) may 
be rewritten as: 

P„ = Q + <PTPn+t<P 

-&Pl+lA[R + A'TPn+lA}-1ArPR+l^ 
(J° can still be obtained by Equation (12.15) as 
before). This equation for Pn is another DMRE and 
is used in some texts and papers. Some authors 
omit the transpose operator from Pn+l. This is quite 
in order, since P is symmetric. 

12.3 Equation (12.17) gave the steady-state equation of 
the closed-loop LQR system with feedback matrix 
K in place, as [ / - ( # - AKN)]xN = 0. It was 
subsequently argued that so long as the square 
bracket could be proved to be non-zero and full-
rank, then the correct regulatory action would occur 
(that is, xN = 0). Prove that the term in the square 
bracket must be non-zero. 
Hint: The only way the bracketed term could be 
zero is i f (0 - A K N ) = I . Try substituting this into 
Equation (12.14) in the steady-state case. By 
considering the definiteness properties of Q and R 
you should be able to show that the result is 
impossible (assume Q to be diagonal for 
simplicity). 

12.4 For the hydraulic machine tool example in Section 
12.6.1, take the continuous-time state-space model 
and the final values of 

Q 
600 0" 
0 2 

and r = 0.001, and use the continuous-time solution 
to the LQR problem (given at the very end of 
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Section 12.4.2) to derive the optimal feedback 
gains. 

Hint: Assume P to be symmetric (it always should 
be) and write out the full AMRE with the elements 
of P as unknowns. Equate elements on each side of 
the AMRE and solve for the elements of P. The 
values of K then follow directly and should agree 
with the MATLAB result obtained in Section 12.6.1 
(namely, k = [775 54]). 

12.5 Repeat Problem 12.4, if the system now has a 
second input. Assume that the A and Q matrices 
remain unchanged and the B matrix becomes 
"0.5 0 1 

0 0.5 
Assume that a suitable R matrix is 
"0.001 0 

0 0.001 
Go as far as possible by hand, and then use 
computer assistance to overcome any difficulties. 

12.6 Towns A to L are connected by a number of 
permitted routes having weightings as given in 
Table PI2.6. These weightings include distance, the 
class of road and the number of junctions and other 
hazards. They are calculated so that the route with 
the lowest score will give the best compromise 
between cost and travelling time. It is only 
permissible, for the purposes of this problem, to 
travel in the directions implied by the information 
in the table. 

(a) Find the best route from A to L . 
(b) Find the worst route from A to L . 
(c) Find the best route from A to L if the traveller 

is constrained to call at town H. 

Table P12.6 Weighted distances for Problem 12.6. 

Route Route 
between Weighted between Weighted 
towns distance towns distance 

A to B 3 E to I 3 
B to C 5 F to G 9 
B to D 5 G to J 3 
C to E 8 H to J 2 
C t o F 1 H to K 5 
D to E 9 H to L 10 
D t o l 10 I t o K 6 
E to G 2 J to L 9 
E to H 5 K to L 4 

12.7 A system has a discrete-time model 

*n+l = **n + J"n w i t h 0 = ^ m d 

ro.005 o.ooi" 
~ [ 0 0.004 

(a) Find the infinite-horizon solution to the linear 
quadratic regulator problem for this system, 
given that it is twice as costly to use ux for 
control as u2, it is five times more important to 
control x{ correctly than x2 and it is ten times 
more important to control xx correctly than it is 
to minimize energy expenditure at ux. You will 
find it necessary to use a programmable 
calculator or a computer, as the equations need 
to be iterated at least 250 times to reach a 
reasonably steady solution. 

(b) If you have access to MATLAB and the Control 
Systems Toolbox, or a similar package, use it to 
verify your design (for example, use the 
MATLAB dlqr command). 
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13.1 Preview 
This chapter can be understood if Chapters 1 to 5 
have been studied. Some mathematical ideas from 
Chapters 10 and 12 are used, but it is not necessary 
to read them first. 

Throughout this text, controllers have been 
designed based upon mathematical models of the 
plant to be controlled. It has often been stressed that 
these models are approximate. This chapter begins to 
address the question, 'how can the uncertainty in the 
model be included in the design procedure, and how 
does it affect the performance of the controlled 
system?'. 

There is more than one way of answering this 
question, depending upon the type of model being 
considered and the type of control scheme being 
designed. Therefore, this chapter does not seek to 
propose any particular robust design method. Rather, 
it presents a collection of tools and concepts, which 
can be applied to several of the techniques elsewhere 
in the book to give robust control systems. This 
chapter might therefore seem rather more theoretical 
than the others. This feeling is heightened by the lack 

of worked examples and end-of-chapter problems. 
This latter is partly to save space, and partly because 
the working of the problems would require the use of 
two more MATLAB toolboxes (which are referenced 
later, for the interested reader). This was not felt 
justified in this chapter. 

In th is chapter, the reader wi l l learn: 
that plant-model mismatch can often be handled 
in design procedures 

• that the effects of plant-model mismatch on 
performance can sometimes be evaluated 
that there are various ways of evaluating 
robustness, for both frequency-domain and time-
domain systems 

• that many of the methods of this chapter can be 
applied to multivariable systems. 

NEW MATHEMATICS FOR 
THIS CHAPTER 

Some parts of this chapter 
may appear rather 
mathematical, because they 
use notation that is not 

used elsewhere in the text. A l l this notation is explained 
as it is met, but it can still seem strange on a first reading. 
It is concerned with the norms of quantities, and their 
maximum, minimum and supremum values. Other than 
that, singular values are encountered (they have been used 
in Chapter 10), as are Lyapunov equations and Riccati 
equations, which are also briefly encountered elsewhere in 
the book. Parseval's theorem is necessary only to follow 
one of the derivations, and is stated in a section of its 
own. 
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13.2 Introduction 
In a general engineering context, the addition of controls must be justified in terms 
of profitability, or in terms of personnel or environmental safety. A control system 
should be effective and efficient, and remain so throughout the life o f the plant. 
Needless to say all equipment deteriorates wi th time and the idealized model (or 
nominal model) used to design the control system w i l l , at best, only indicate 
approximate plant behaviour. For the control system, this model-plant mismatch 
can result in significant changes in dynamics from those originally predicted. O f 
course model-plant mismatch can occur for many reasons other than plant 
deterioration; using a linear model to represent a nonlinear plant, making 
simplifying assumptions which effectively means neglecting fast dynamic 
phenomena, inaccuracies in estimating model parameters, and so on. A control 
system which can cater for such changes would be classified as being robust and a 
control system design procedure which allowed for such uncertainties as a robust 
design method. 

Robust design methods cover analysis and synthesis techniques. A typical 
robust analysis design method would use some standard control technique to find a 
controller that w i l l produce an acceptable closed-loop design based on the nominal 
plant model. Robust analysis would then establish whether the performance 
remained acceptable i f the plant (or, as discussed later, an input) differs from 
nominal. The alternative synthesis approach uses robust methods to find a plant 
controller that meets some predetermined specification for the nominal model and 
its anticipated uncertainty. 

Uncertainty in the nominal model is accounted for by considering a range (or 
family) of models which w i l l encompass all l ikely variations. I f i t can be shown that 
a particular control system w i l l stabilize all plants wi th in the family, then that 
controller has robust stability. However, for a control system to be o f practical use, 
stability guarantees alone are insufficient, since some stable realizations may give 
totally inadequate performance. For a controller to have robust performance the 
realization wi th the 'worst ' stability characteristics must meet the desired 
performance specifications. 

Apart from the uncertainty regarding the model's ability to represent the plant, 
it is necessary to consider the various inputs disturbing the plant. Indeed, impl ic i t 
in many performance specifications are assumptions relating to the type of 
disturbances. For example, a sudden, or step, change is often assumed. In practice 
the hardware that goes to make up engineering plant seldom, i f ever, experiences 
such a disturbance, although it might experience something approximating a step. I t 
is easily shown that a system designed to give a good response to a step change w i l l 
not necessarily have a good response to a gradually increasing (or decreasing) 
change, or ramp. I f the assumed disturbance is inappropriate, then it is l ikely that 
there w i l l be a deterioration in control system performance. Again, a robustness 
analysis can be used to indicate that a control system is tolerant to disturbance 
uncertainty by considering a family o f disturbances to which the nominal 
disturbance belongs. 
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13.3 The control system design model 
In this chapter the discussion, although often directly applicable to multivariable 
systems, w i l l concentrate on continuous single-input, single-output plant which 
may be analysed in the frequency domain. For this reason, the main emphasis is on 
transfer function models. Any differences w i l l be highlighted in the text. 

Figure 13.1 shows the standard feedback configuration. The plant is a physical 
piece of hardware wi th fixed dynamics and a finite input signal range, which w i l l 
impose l imits on the performance o f the closed-loop system. Its output y(s) is a 
function of the manipulable input u(s) and any external disturbance d(s). A perfect 
transducer (one having no dynamics) measures the output variable at y(s) and the 
resulting measurement, possibly contaminated wi th noise n(s), is fed back to the 
controller. Ignoring transducer dynamics is permissible i f the speed of response o f 
the transducer is significantly faster than that o f the plant; that is, the transducer 
dynamics are assumed to be included wi th those o f the plant. A t this point i t w i l l 
suffice to say that this is often the case. The controller consists o f a pre-filter P(s) 
which modifies the setpoint r(s) and a forward path compensator K(s) which 
generates the signal u(s). 

Figure 13.1 Standard SISO 
feedback configuration. 

What is not shown in Figure 13.1 is the nominal plant model Gm(s), used to 
design the controller elements P(s) and K(s). To demonstrate how the nominal 
plant model influences the controller design, assume that the compensator K(s) may 
be represented as shown in Figure 13.2, such that 

Figure 13.2 A 
representation of K(s) for 
Figure 13.1. 
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Using this assumed compensator and, after some algebraic manipulation, i t is 
possible to transform the standard feedback configuration into the two-degree-of-
freedom I M C (Internal Model Control) configuration o f Figure 13.3. C(s) is called 
the I M C compensator and, for comparison purposes, this element has been moved 
from the forward to the feedback and pre-filter paths as shown. The I M C pre-filter 
Pf(s) is identical to the quantity P(s)C(s). 

A t this stage it is important to realize that for analysis purposes Figures 13.1 
and 13.3 are identical provided K(s) and C(s) are related through Equation (13.1). 
However, the I M C structure clearly demonstrates the importance of a 'good' design 
model and additionally, the function of the compensator and pre-filter. 

The transfer function that shows the influence o f the disturbance, noise and any 
setpoint on the output for both the standard feedback and two-degree-of-freedom 
I M C configuration, is given by 

l-GmC J GP' G 
v = d A r n 
y l+C(G-Gm) ^l+C(G-Gm) \+C{G-Gm) 

(13.2) 

For clarity the Laplace operator 4s' is omitted in the above equation. 
The fol lowing observations relating to Figure 13.3 (and by inference to Figure 

13.1) may now be made: 
I f the plant and nominal plant model are identical (G(s) = Gm(s) in Equation 

(13.2)) and (to simplify the discussion at this stage) i t is assumed that n(s) = 0, then 

(1) The feedback loop compensates solely for plant disturbances. From 
Equation (13.2), perfect disturbance rejection would be obtained i f 
Gm(s)C(s) = G(s)C(s) = 1. 

(2) Setpoint tracking (the closeness wi th which y follows r) depends solely on the 
pre-filter P'(s). Again from Equation (13.2) perfect setpoint tracking would be 
obtained i f G(s)P'(s) = 1. Looking at Figure 13.3, i t is evident that when the 
model and plant dynamics are identical the system is open-loop; that is, 
feedback only occurs when d(s) is not equal to zero. Consequently, the only 
element affecting tracking is the pre-filter. 

There are various practical reasons that make perfect tracking and 
perfect disturbance rejection impossible. However, the above observations 

Figure 13.3 Two-degree-
of-freedom internal model 
control (IMC) 
configuration. 
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demonstrate the closed-loop system's disturbance rejection properties and 
indicate the need for a pre-filter. I n practice, a pre-filter would only be required 
i f the frequency components of r(s) and d(s) were we l l separated (see point 4 
below). 

(3) The plant dynamics dictate the compensator and pre-filter dynamics. That is, 
the ideal compensator and pre-filter are both explici t functions o f the plant 
dynamics: see the previous two points. 

(4) When the system does not require a pre-filter, the compensator C(s) is moved 
back into its forward path position to give the standard single-degree-of-
freedom I M C control structure shown in Figure 13.4. Simple block diagram 
manipulation shows that the disturbance d(s) may be combined wi th r(s) and, 
assuming their dynamics are similar, both can be treated in an identical manner. 

I f the plant and nominal plant model are not identical (G(s) / Gm(s)), then: 

(5) Both plant disturbance and modell ing errors are fed back and the compensator 
C(s) must be detuned to accommodate the additional modell ing errors. 

Before leaving this section note that i f G(s) is stable and Gm(s) = G(s), then the 
closed-loop system is stable i f and only i f C(s) is stable. Further, G(s) need not be 
linear since all the results are equally applicable to the nonlinear case. 

r(s) 

Figure 13.4 Single-degree-
of-freedom internal model 
control (IMC) 
configuration. 

C(s) u(s) w G(s) C(s) G(s) 

Gm(s) 

13.3.1 Sensitivity and Bode's sensitivity index 
Advanced section 
This section provides some background theory on control system sensitivity analysis. It is not essential to the main 
theme of the chapter and therefore, for an initial reading, the reader should turn directly to Section 13.4. 

I n a general context, sensitivity is the incremental change in the value o f some 
function due to an incremental change in some parameter on which the function is 
dependent. So, for example, a straight line could be considered to be some function 
y o f JC, or 

y(x) = mx -f c 
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and the sensitivity of y(x) to x is m, the slope o f the line. To generalize this concept 
consider a function q{a). A t the specific value a let 

q = q{a) 

Assume a small change in the parameter a to a + 5a, such that 

q + <5<? = q(a + <5tf) 

Using a Taylor series expansion around the nominal value a (as in Section 2.4.5), 
gives 

q(â + ôa)=q(â)+^ ôa + '--

Hence for small values 

bq, 

and the function 

dq 

da 
Sa 

dq 

da 

is called the sensitivity function (and is analogous to m, the slope o f the line in the 
graph y(jc) = mx + c). I f f(a) = 0, then the property q is insensitive at the nominal 
point. I f f(a) ^ 0, then q is sensitive. 

Now consider the sensitivity of a transfer function G(s,a). I f a logarithmic 
scale is used to describe G(s, a) (similar to that used to produce Bode plots) then 
the result is Bode's sensitivity index, which is defined as 

dG(s, a) 

f r a } _ d l n G(s,a) _~G{s~aJ 
d\na da 

a 

and gives a measure of the relative change of G(s, a) and a. To apply this index 
to the standard feedback configuration, Figure 13.1, is to compare the relative 
sensitivity of the closed-loop system's output relative to that o f the plant. I f d(s) 
and n(s) are both zero, then 

yM-r (*.?\ G(s,a)K(s)P(s) 
r(s)~ ^ ' ' l+G(s,a)K(s) 
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and Bode's sensitivity index for the system is 

dGyr{s,a) 

Gyr(s,a) dGyr{s,a) G(s,a) 

dG(s,a) dG(s,a) Gyr(s,a) 
G{s,a) 

_ (1 + G(s,a)K(s))K(s)P{s) - G(s,a)K(s)P(s)K(s) 

(\+G(s,a)K(s))2 

{l+G{s,a)K(s)) 1 
K(s)P(s) l+G(s,a)K(s) K ' ' 

This index is similar to the sensitivity function used throughout this chapter. 
However, sensitivity design objectives and robust design objectives are different. 
Sensitivity looks at the dependence of closed-loop performance on parameter 
variations relative to the nominal values. Robustness, however, requires that the 
closed-loop system performance is acceptable for a l l possible parameter values. 

13.4 The design problem 
Although all the relationships to be derived in this section could be obtained for the 
I M C structure (Morari and Zaflriou, 1989), the more familiar standard feedback 
configuration, Figure 13.1, w i l l be analysed. In most cases the I M C relationships 
may be obtained by comparing terms in the appropriate I M C and feedback 
equations. 

Rewriting Equation (13.2) specifically for the structure o f Figure 13.1 gives 

1 , GKP GK 
Y =

 T T G A T Y^rGK r ~ T+13K H ^ 

I f the sensitivity function S(s) (see Section 13.3.1) is defined as: 

S { s ) = l+G(s)K(s) <13-4) 

and the complementary sensitivity function T(s) as: 

G(s)K(s) 

T { s ) = l+G(s)K(s) ^ 

then Equation (13.3) becomes 

y(s) = S{s) d{s) + T(s)P(s)r{s) - T(s)n(s) (13.6) 

The fo l lowing design objectives are evident: 

(1) For disturbance rejection (irrespective o f the quality o f the plant model Gm(s)) 
the sensitivity function S(s) must be as small as possible. I f S(s) = 0, there is 
perfect disturbance rejection; that is, d(s) does not affect y(s) in Equation 
(13.6). 
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(2) For good setpoint tracking the complementary sensitivity function T(s) must be 
finite. 

(3) For noise rejection T(s) must be as small as possible. I f T(s) = 0 in Equation 
(13.6), then there would be perfect noise rejection. 

Items 2 and 3 are in conflict, and it would appear that some compromise is 
required. I t may be argued that for some systems the speed of response is so slow 
that noise (electrical noise) could be almost completely eliminated by filtering, 
thus eliminating the need to make T(s) very small. Unfortunately, though, the 
problem is more complicated than that indicated by Equation (13.6). 

First, note that 

S(s) + T(s) = 1 (13.7) 

and then find the equation describing how the control signal, u(s), is affected by 
the setpoint, noise and disturbance inputs. In practice u(s) is associated wi th power 
amplification (needed to drive the plant) and hence should be kept small i f the 
running costs are to be minimized. From Figure 13.1, and the complementary 
sensitivity equation, Equation (13.5), it is found that 

u(s) = K(s)e(s) = K(s) l + G ^ s ) K ^ s ) [ W W " "W " d(s)] 

= ^[P(s)r(s)-n(s)-d(s)} (13.8) 
G(s) 

Therefore i f u(s) is to be small then T(s) must be small. I n view of Equation 
(13.7), i t is impossible for both T(s) and S(s) to be small and so there w i l l be 
difficulties in meeting the stated design objectives. 

The control system design problem may now be defined as that o f finding the 
controller K(s) that gives the best compromise between the conflicting sensitivity 
and complementary sensitivity requirements. 

13.4.1 The design problem for muinvariable systems 
For m u l t i v a r i a t e systems the design problem is identical to that described earlier in 
Section 13.4, except that the sensitivity function, Equation (13.4), becomes: 

Sy(s) = [I + G(s)K(s)}-1 (13.9) 

and is called the output sensitivity function. From Figure 13.1 and Equation (13.3), 
i t can be seen that Equation (13.9) gives the sensitivity function seen at the output 

Similarly, the multivariable equivalent of Equation (13.8) is 

u(s) = [I + K(s)G(s)]-lK{s)[P(s)r(s) - n(s) - d(s)} (13.10) 

The first term on the right-hand side of Equation (13.10) is called the input 
sensitivity function, that is 

S„(s) = \ I + K(s)G(s)]-1 

and gives the sensitivity function seen at the input u(s). 
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For single-input-single-output systems Sy(s) = Su(s) + S(s) since the posi
tions of K(s) and G(s) are interchangeable in the sensitivity functions. However, 
wi th multivariable plant the relative positions of K(s) and G(s) become important 
(see Section A l . 1 . 2 ) . In particular, i f the number of plant inputs differs from the 
number of outputs then the dimensions o f Sy(s) w i l l not be the same as the 
dimensions of Su(s). 

13.5 The generally accepted frequency-domain solution 
W i t h single-input-single-output systems, for example, i t is normal practice to define 
a set of frequency-domain performance specifications which, i f satisfied, would 
ensure satisfactory closed-loop performance (see Chapter 3). I n particular, 
bandwidth is specified, since i t can be measured from a closed-loop Bode plot 
(note that the closed-loop Bode plot and a Bode plot o f T(jco), Equation (13.5), are 
identical) and would indicate the noise suppression characteristics o f the closed-
loop system. In essence, a bandwidth specification requires that for noise 
suppression T(jco) must be small at high frequencies. Intui t ively, a general 
solution to the control system design problem can be obtained in the frequency 
domain, by making S(jco) small at some frequencies and T(jco) small at others. 
Exactly which frequencies, as always, depends on the plant dynamics. 

A l l physical engineering plants w i l l be strictly proper, that is, having more 
poles than zeros, so that: 

l i m \G(s)\ = 0 (13.11) 
s—>00 

and at high frequencies (where noise predominates) the magnitude o f the plant's 
frequency response w i l l therefore be small. A t low frequencies (those frequencies 
at which the reference and disturbance signals are concentrated) the plant's 
magnitude w i l l be finite, except possibly at zero frequency (co = 0) where the 
magnitude would be infinite i f the system's type number was one or more. 

I n terms o f the design objectives of Section 13.4, S(jco) should be made small 
at low frequencies. This is achieved by ensuring that the controller gain \K(jco)\ is 
large at low frequencies or, to be pedantic, that \G(jco)K(jco) \ 5> 1, see Equation 
(13.4). 

To minimize high-frequency noise and controller effort, T(}co) should be 
small which, from Equation (13.5), indicates that \G(jco)(K(jco)\<£l. Since it is 
assumed that the system is strictly proper, then at very high frequencies \G(jco)\ 
w i l l be small and provided \K(jco)\ does not increase w i t h frequency T(jco) w i l l 
also be small. In practice, some additional controller gain reduction may be 
required. 

For multivariable plant the generalizations o f the Bode magnitude plot are 
the singular value plots (singular values are defined in Section 10.6.4). In terms 
of a system's sensitivity and complementary sensitivity functions the nominal 
performance specifications are: 

• For disturbance rejection and setpoint tracking, the maximum singular value 
of S(jco), a(S(jco)) <̂  1 at low frequencies 

• For noise suppression, <t(T(jo)))<£l at high frequencies. 
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13.6 Modelling model uncertainty 
The simplest models of uncertainty that can be defined wi th in a plant model are 
normally classified as being additive or multiplicative, see Figure 13.5. 

Addit ive uncertainty is defined as 

where 

G(jœ)=Gm(jœ)+la(jœ) 

\la(jœ)\<la(œ) 

(13.12) 

That is, the true plant model G( jcu) can be equated to the nominal plant Gm(jco), 
plus some uncertainty la(jco). Further, the gain o f the uncertainty at any frequency 
w i l l be less than or equal to the positive frequency dependent constant la(co). 

Multipl icat ive uncertainty is defined as 

G(jco) = Gm(jco)(l + lm(jco)) (13.13) 

where 

\LU<*)\ < U<o) 

and, for both descriptions to be equivalent, it is necessary that 

laU<0) 

or 

UIC») 
Gm(ju) 

\Gm(jco)\ 

Addit ive uncertainty is particularly useful in Nyquist, or polar plots, where the 
uncertainty can be represented by a series of discs o f radius la(co) centred on the 
Gm(jco) loci . Mult ipl icat ive uncertainty is useful in Bode diagrams, where the dB 
gains o f the nominal model and the uncertainty can be combined to give the worst 
case. 

Figure 13.5 Additive and 
multiplicative uncertainties. 

Us) 
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13.6.1 Modelling input uncertainty 

Figure 13.6 A general 
input uncertainty model. 

Figure 13.6 shows the general input uncertainty model in which v(s) is used to 
represent all external inputs (setpoint changes or disturbances) entering the feedback 
loop. The signal v(s) is generated by first passing v*(s), a mathematically bounded 
and normalized function, through the input weighting block, W(s). This model can 
represent both specific inputs (for example, impulses or steps), as wel l as families 
(or sets) o f bounded inputs. 

For an impulse (a specific input), v*(s) is set equal to one and the input 
weighting block is a pure unity gain. A step is generated by again setting v*(s) 
equal to one (thus ensuring the required mathematical bound), and W(s) to l/s. 
In both cases, 

v(s) = W(s) (13.14) 

Sets o f bounded inputs may also be represented by Figure 13.6. For example, i f 

v*(s) — 
5 + a 

and 

W(s) 

a > 0 

/ ? > 0 

then all the mathematical constraints w i l l be satisfied and the resulting input v(s) 
can be used to represent a step (a = /?), or a step modified by a lead (a > /?), or a 
step modified by a lag (a < /?). In this case, 

(13.15) v(s) = W(s)v*( 

W(s) W(s) 

13.7 Robustness - a worst-case analysis 
The simplest robustness technique available is that o f looking for the worst case. 

Example 13.1 A simple robustness analysis 
Consider the contrived example of a plant which can be fairly accurately modelled by the 
equation 

" That is, Gm(s) « G(s). I t is further assumed that the sensor measuring the output y(s) is 
known to be accurate to 10 per cent up to 1 rad s _ 1 , but then deteriorates linearly up to 

^ 20 rad s - 1 , beyond which point i t could have errors o f 100 per cent. Since the sensor is 
* part o f the feedback loop there is model uncertainty. The given uncertainty description is 
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multiplicative, although this w i l l be converted to additive form (so that a Nyquist analysis 
may be performed), using the relationship la(co) = lm(co)\Gm(jto)\, fo l lowing Equation 
(13.13) above. 

Figure 13.7 shows the polar plot for the nominal plant model and a compensator gain 
K(s) = 2. The plot was produced by the M A T L A B m-file figl3_7.m on the accompanying 
disk, and a few data points are shown in Table 13.1. I t can be seen that the closed-loop 
system based on the nominal plant model w i l l be stable, wi th a gain margin of 1.95 (at a 
phase crossover frequency of 3.8 rad s _ l ) and a phase margin of 70.38° (at a gain 
crossover frequency of 1.7 rad s - 1 ) . 

Table 13.1 also gives the additive uncertainty, and this is shown in Figure 13.7 in the 
form of a series of discs superimposed on the nominal system's polar plot. The true plant 
model G(s) w i l l produce a polar plot which w i l l be contained in the region denned by 

• these discs. Since this defined region has the (—1,0) point to its left, the system has robust 
stability. However, the gain margin for the worst case is reduced to 1.53, and a complete 
analysis, in each case looking at the worst case, would indicate similar deteriorations in all 

B the performance indicators. 

-0.5 

Figure 13.7 Polar plot with 
additive uncertainty. 

Table 13.1 Polar plot data for the robustness example. 

CO Phase Additive 
( rads - 1 ) Gain (deg) uncertainty 

0.01 1.99 -0.86 0.2 
0.81 1.55 -62.5 0.16 
1.22 1.27 -85.4 0.14 
1.81 0.97 -114.0 0.13 
2.7 0.69 -148.0 0.13 
4.0 0.48 -191.0 0.12 
6.0 0.33 -253.0 0.11 
9.0 0.22 -341.0 0.11 
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A worst-case analysis is by définition conservative. Improvements are possible 
i f more information regarding the uncertainty can be obtained; that is, i f structured 
model uncertainty rather than the assumed unstructured uncertainty is available. I f 
i t was known that the sensor, although inaccurate, could never give values less than 
the true values, then the uncertainty becomes structured and the uncertainty band, 
defined by the discs in Figure 13.7, could be reduced. I n general, to say that the 
uncertainty is unstructured indicates that several sources o f uncertainty have been 
described by a single perturbation (for multivariable plant the single perturbation 
w i l l be a fu l l matrix having the same dimensions as the plant). Further, the analysis 
does not explici t ly cater for particular inputs, or input uncertainty. The techniques 
described in the fol lowing sections are more flexible and can also be used to 
synthesize robust controllers. 

13.8 Defining the H2 and approach 
(These are pronounced 4 H two ' and ' H inf in i ty ' . ) Solving the block diagram of 
Figure 13.1 for the error signal gives the expression (easily visible from Equation 
(13.8)): 

e(s) = S(s)[P(s)r{s) - d(s) - n(s)} (13.16) 

which, as seen, is related to the sensitivity function S(s) and the external inputs, 
any one of which may be represented by v(s). Since v(s) is bounded, then provided 
the closed-loop system is stable, the error signal w i l l be bounded. 

A measure of the area bounded by the error signal in the time domain is the 
integral of the error squared (such measures were also discussed early in Section 
12.3), namely 

\\e(t)\\l=\ e2(t)dt (13.17) 
Jo 

The left-hand side of this equation is referred to as 4 the 2-norm o f the error 
squared'. One solution to the control problem is to find the controller, K(s), that 
w i l l minimize the 2-norm for one specific input, v(s). Using Parseval's theorem 
(which is introduced in Section 13.8.1, below) to transform Equation (13.17) into 
the frequency domain, and then replacing the error signal w i t h the product o f the 
sensitivity function and the specific input function (see Equations (13.16) and 
(13.14) respectively), gives 

m m | | * ( 0 | | 2 = ^ rain ^ J°°̂  \S(jœ)W(jœ)\2dœ (13.18) 

The LHS of this equation is read as 'the m i n i mum value o f the 2-norm of the error, 
over all possible values of K\ 

Equation (13.18) is known as the Linear Quadratic, or the H2-Optimal Control 
problem. The ' H ' comes from the term 'Hardy space', and is a mathematical 
description of the domain wi th in which the solution is sought. Simply, the H 2 -
optimal controller minimizes the average magnitude o f the weighted sensitivity 
function, and the robust H 2 -op t imal controller performs this minimizat ion for the 
'worst ' plant wi th in the family o f plants. As presented, the controller which satisfies 
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one specific input is unlikely to satisfy other practical design requirements. 
Typically, the response w i l l be too oscillatory and have a large overshoot. For these 
reasons some designers would use W(jco) as a ' tuning parameter' that would be 
adjusted unt i l satisfactory performance was achieved. Alternatively, and perhaps 
additionally, further terms may be included into the minimizat ion problem. For 
example, including the control signal (+u(ja>)2) penalizes excessive control effort 
in a similar way to that described in Section 12.3. 

What makes robust H 2 -opt imal control so attractive is the existence o f very 
effective computer-based solutions, and its abili ty to deal wi th mul t i - input-mul t i -
output systems. In terms of control system design, the technique is flawed in that 
minimizat ion o f the average error is not a particularly good design criterion. 
However, there is an alternative, the so-called H^-Optimal Control defined as 

min H^COIloo = ™™ S U P \S(jco)W(jaj)\ (13.19) 
A K CO 

The 'sup' in this equation (pronounced 'soup') is the supremum, and i t means that 
the overall result is the least upper bound. Hence, the H ^ - o p t i m a l controller 
minimizes the maximum magnitude of the weighted sensitivity function evaluated 
over the frequency range co; comparable, i n principle, to making a Bode magnitude 
plot have the lowest possible peak magnification. 

Equation (13.19) can be manipulated to provide both robust stability and 
performance. L ike the H 2 -opt imal control problem, W(jco) is thought of as a tuning 
parameter and computer-based solutions exist, as do extensions to the mult i- input-
multi-output case. For control system design the H ^ measure for single-input-
single-output systems is equivalent to the closed-loop system's peak magnification, 
M p e a k . Since and the frequency at which occurs are good indicators o f a 
system's response, the method is proving a useful design tool. 

13.8.1 Parseval's Theorem 

Advanced section 
This section can be omitted, i f Equation (13.18) is taken 'on trust'. 

Consider the problem of finding the value of the integral 

f O O 

/ = x{t)y{t) dt 
J — oo 

where both x{i) and y(t) are Laplace transformable. Using the inverse Laplace 
transform, y(t) may be written as 

1 ( j c o 

y(t)=— Y(sy<ds 
2*J J-J0) 
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On substitution into the expression for / , this gives 

poo woo 
1 poo woo 

/ = — x(t)Y(s)est ds dt 

2nj J-oo J-yoo 
1 woo 1*00 

= ^ Y ( S ) d t d s 

2nJ J-/00 J-oo 
Noting that the inner integral gives the Laplace transform X(—s), the original 
integral may be written as 

1 ( j o ° 
/ = ^ - X(-s)Y(s)ds 

2nJ J-yoo 
Parseval's theorem is obtained i f y(f) = J t ( f ) , to give the fo l lowing: 

f°° 9 1 [ j o c 

jc(r) 2 dt = — X(s)X(-s) ds 

J-oo 2 N J J-joc 

The steps required to obtain Equation (13.18), which were listed in the previous 
section, can then be followed. 

Parse val's theorem enables time-domain integrals o f stable systems to be 
evaluated in the Laplace or frequency domains. For example, when X(s) has all its 
poles in the finite left half portion of the s-plane, the method of residues indicates 
that the value of the integral is equal to the sum of the residues o f X(s)X(-s) 
evaluated at all of its poles in the left half o f the s-plane. Hence i f x(t) = 3e~2t, then 
X(s) = 3/(s + 2) and 

X(s)X(-s) 
s + 2 -s + 2 (s + 2)(s-2) 

From Parse val 's theorem 

-9 

s=-2 ^ 

and may be verified by integration o f 9e~4t. 

13.8.2 Calculating the H2 and norms 

Advanced section 
For completeness, this section will consider the H 2 and norms for constant vectors and matrices, in addition to time 
functions and systems. Some parts of this may seem rather abstract, as it is mainly a catalogue of results. After the first few, 
most are not required again, so the section can be omitted once the going gets hard, if desired. 

Norms are a mathematical measure which enable the comparison o f objects 
belonging to the same set. For illustrative purposes, consider the set o f all points 
in the normal Euclidean space. In this example the objects are points and the 
Euclidean norm provides a distance measure. That is, the distance o f a point P w i th 
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coordinates P(x, y, z) from the origin, coordinates P(0,0,0), could be defined by the 
Euclidean norm 

\\P(x,y,z)\\2= V*2+y2+z2 

Alternatively, the distance of the point P from the origin could be defined in terms 
of the maximum distance of P from the origin along any of its principal directions, 
that is 

| | / > ( W ) | | T O = m a x ( | * U y | , | z | ) (13.20) 

For example, the point 2, - 3 ) has a Euclidean norm (2-norm) o f i / ( 14 ) and 
an oo-norm, Equation (13.20) of 3. 

The 2-norm is a particular generalization o f the Euclidean norm for an n-
dimensional space and the oo-norm is the /z-dimensional space generalization o f 
Equation (13.20). Other generalizations o f the Euclidean norm are possible ( in 
particular the Frobenius norm). However, the 2-norm of the n x 1 vector JC is 

n 
2 i ,2 H*ll2 = £ 

i=l 

and the oo-norm of the vector is 

Hoc = m f X \xi\ 

The Euclidean norm (or Frobenius norm) of an n x n matrix A is defined by 

1/2 

Uh 
and the 2-norm (or spectral norm) by 

| | A | | 2 = m a x » 

x^0 \\X\\2 

or equivalently by 

Nl2 = 1 

Geometrically, | | x | | 2 = 1 is the set of all vectors o f unit length (the unit sphere) and 
| | A | | 2 (the induced 2-norm of the linear map A ) is the maximum magnification of 
the elements of this set by the operator A . It can be shown that the 2-norm of A is 
in fact the largest singular value of A , that is 

\\A\\2 = m 

(see Section 10.6.4 for a definition of the singular values). 
In contrast the oo-norm of the matrix A is defined as the largest row sum of the 

matrix, that is 

Ik*Hoc = max V |a i y | 
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For an n x 1 vector time function x(t) the square o f the 2-norm is defined as 

poo 
\\x(t)\\2

2=\ x(t)Tx(t)dt 
Jo 

and gives the energy of the time function (the integral o f the instantaneous power 
over time), as described early in Section 12.3. The concept o f xTx being a vector 
equivalent of the scalar x2 was also introduced in Chapter 12. 

The oo-norm of x(t) (assuming all the signals x t ( r ) are bounded) is 

IWO I l o o = S U P M A X I*/(01 
r>0 1 

and gives the peak value of the signal wi th the largest peak amplitude. 
When defining system norms i t w i l l be assumed that G represents the system 

transfer function (or T F M in the multivariable case) G( jco) or G(s) (which version 
is appropriate should be obvious from the context). I t w i l l be further assumed that G 
has the state-space realization (A,Z?,C, 0). The H 2 norm is defined as 

1 f°° 

l|G||^ = Ĵ \G(jco)\2dco 

and could be thought of as giving the system's RMS output value when the input is 
white noise. In general, its value can be calculated from 

\\G\\2

2 = trace(BTWQB) = trace(CWcCT) 

where the trace of a matrix is defined in Section A 1.2, and W0 and Wc are known 
as the observability and controllability Grammians respectively, and are found by 
solving the fo l lowing equations, known as Lyapunov equations: 

ATW0 + WJi + CTC = 0 

AWC + W r A T + BBT = 0 

(these can be seen to be duals of each other, as were the matrices used in 
controllabili ty and observability rank tests in Section 5.3). 

The norm is defined as 

urn <„n I | G j c | | 2 
HGlloo = S U P -iTu-*#0 ll^lb 

or equivalently, when the system is stable, by 

l l G H ^ s u p \G(jco)\ 

and is simply the maximum magnification (the value) o f the system's 
frequency response. As yet, there appears to be no method of calculating the 00-
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norm directly for multivariable systems. Rather, i t is numerically approximated 
from the fol lowing matrix (known as a Hamiltonian matrix): 

A ^ 
y 

- — — A T 

y 

Again, i t is assumed that the system is stable and G has the state-space realization 
(A, B, C, 0). I f and only i f Hy has no imaginary eigenvalues (complex eigenvalues 
wi th real parts = 0), then 

UGH* < v 

The above is solved by repeatedly selecting and adjusting y unt i l a min imum value 
is found for which the Hamiltonian has no imaginary eigenvalues. Using 
M A T L A B , the method can be easily tested for any asymptotically stable second-
order system. I t w i l l be found that the min imum value of y is the system's Mpeak 

value. 

Hy = 

13.9 Robust stability 
Assume that the combination of the controller and nominal plant model is closed-
loop stable, and consider a band of polar plots consisting o f Gm(s)K(s) surrounded 
by the family of al l possible plant realizations G(s)K(s). Nyquist 's stability 
criterion indicates that provided all the plants wi th in the family have the same 
number of right half plane poles and that the polar band does not include the point 
(—1,0), the system has robust stability. That is, stability is guaranteed provided the 
distance from the (—1,0) point in the G(s)K(s)-plane to any point on the GmK{jco) 
locus is larger than the uncertainty. Hence, from Figure 13.8, a system wi th 
multiplicative uncertainty lm(co) has robust stability i f 

|1 + GmK(jco)\ > \GmK(jco)\lm(co) for al l co (13.21) 

or 

\Tm(jco)\lm(co)<\ for all (13.22) 

Im [G(s)K(s)] 

Figure 13.8 Polar plot 
showing the parameters 
which determine robust 
stability. 
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where Tm(s) is the complementary sensitivity function for the nominal plant 
Gm(s)9 that is 

Tm(s)=Gm(s)K(s)(l+Gm(s)K(s))-1 

In terms o f the norm (see Equation (13.19) and the associated discussion), a 
system has robust stability i f 

that is, i f 

\\Tm{jœ)lm(œ)\\OQ<\ 

sup | rm(7Co)/m(o;)| < 1 (13.23) 

for unstructured multiplicative uncertainty (where the uncertainty can be 
represented by a series of discs on the plant's nominal open-loop polar plot) . 
Equation (13.23) is both necessary and sufficient for robust stability, provided the 
nominal model produces a stable closed-loop system. 

13.9.1 General robust stability for unstructured uncertainty 
Figure 13.9 shows a standard one-degree-of-freedom closed-loop control system 
containing the nominal plant model Gm(s). Assuming the closed-loop system is 
stable, the abili ty to determine the smallest uncertainty that would destabilize the 
system would be useful. In Figure 13.9 this uncertainty, A(s) w i th input b' and 
output a\ can be connected to the system at points a and b. As indicated, A(s) 
represents unstructured multiplicative uncertainty on the plant's input (comparable 
wi th lm(s) in Figure 13.5). Now by letting M(s) represent the closed-loop transfer 
function between input a and output b, that is 

M(s) = -K(s)G{s)[\ +K(s)G(s)]~l 

Figure 13.9 can be drawn in the M-A structure shown in Figure 13.10. Note that 
the M-A structure can be used to represent plant w i th various forms of additive 
and multiplicative unstructured uncertainty. Also, i n this instance, M(s) = —T(s) 
(for the multivariable case M(s) would equal TI(s), the input complementary 
sensitivity function). 

Figure 13.9 Standard 
closed-loop control 
arrangement, with 
removable uncertainty. 

A(S) 

• 
r(s) -HR)—»• K ( s ) 

I  
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A(s) 

Figure 13.10 The M - A 
structure. 

M(s) 

Perhaps the simplest way to determine the stability of Figure 13.10 is to use the 
small gain theorem. This states that i f M(s)A(s) is stable, the closed-loop system 
w i l l remain stable provided 

\M(s)A{s)\ < 1 

Essentially, the small gain theorem requires that the M(jco)A(ja)) locus remains 
wi th in the unit circle in the M(7'cu)A(yco)-plane. This is considerably more 
conservative than the Nyquist stability criterion which would require that the 
M(jco)A(j(o) locus does not enclose the —1 point. I t is useful, however, i n that i t 
provides bounds on A(s) which, i f satisfied, would guarantee closed-loop stability. 

Since |M(s)A(s) | = \M(s) \ \ A(s)\ closed-loop stability is again guaranteed i f 

\M(s)\\A(s)\ < 1 

or i f the uncertainty 

| A ( , ) | < l/\M(s)\ = \/\T(s)\ 

For multivariable plant it can be shown that the system of Figure 13.10 is stable 
for al l perturbations A(<r(A) < 1) i f and only i f 

\M\oo < 1 

Typically, for mul t iva r i a t e systems, A w i l l be a block diagonal matrix containing 
all the modelling uncertainties along its leading diagonal (as either elements or 
sub-matrices). Under these conditions, i t is always possible to ensure that 
<r(A) < 1 by scaling each of the uncertainties and then including the factors in 
M{s). 

13.9.2 Standard system representations for robustness studies 
Figure 13.11 shows the standard method of system representation for robustness 
studies. In this figure, i t is assumed that the plant, Pm(s), and controller, K(s), are 
known accurately and that all plant uncertainties are contained in A (s). I f the plant 
and controller are grouped together to form a transfer function (or transfer function 
matrix), then the M-A structure, shown in Figure 13.10, is obtained. Alternatively, 
the plant and its uncertainties could be grouped together to form the two-port 
representation shown in Figure 13.12, which is used, for example, in the M A T L A B 
/i-analysis and synthesis toolbox for studies (Balas et ai, 1991). 

The two-port representation, Figure 13.12, shows the plant PmA(s) and its 
controller K(s). Note that the plant has two inputs u and w, and two outputs z and y. 
O f the inputs, u represents the control inputs emanating from the controller and w 
represents the various exogenous inputs - inputs l ike noise and disturbance which 
are not manipulated by the controller. Similarly, on the output side z represents 

file:///M/oo
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Figure 13.11 Standard 
system representation for 
robustness studies. 

i 
K(s) K(s) 

A(S) A(S) 

Figure 13.12 Two-port 
system representation. 

K(s) 

those outputs which are to be controlled and y those outputs which are used for 
feedback purposes. Also shown in Figure 13.12 is a reference input r. For regulation 
problems r is set equal to zero, but for tracking problems r would be combined wi th 
w and become another exogenous input. Essentially, the two-port representation is 
multivariable even when the original system has only a single input and a single 
output. For example, the two-port representation o f Figure 13.1 is shown in Figure 
13.13. Solving the closed-loop relationship between the exogenous plant inputs 
w(s) and outputs z(s) gives the relationship 

S(s) 

Hs) 

-T(s) 

T(s) 

T(s)P(s) 

T(s)P(s) 

I G(s) G(s) G(s) 

- ~d(s)-

n(s) 

-

w(s) 

Figure 13.13 Two-port 
equivalent of Figure 13.1 

Z(S) 

y(s) 
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and provides a compact means of expressing Equations (13.6) and (13.8) which 
respectively give the output and control signal for Figure 13.1. 

Now the two-port representation can be manipulated directly to obtain closed-
loop relationships and used wi th either transfer function or state-space models. B y 
setting r equal to zero (or combining r wi th H>), the transfer function equations for 
Figure 13.12 are 

y{s) = Py*w{s) + P^uis) 

and 

u(s) = K(s)y(s) 

where the elements P{j are the transfer function between output / and input;' . Using 
the normal rules of algebra to eliminate u and y gives the relationship 

As) = Tzww{s) 

where the closed-loop transfer function 

T z w = / > z w + - V W P ^ y w 
and is called the linear fractional transformation (LFT) . 

I f the plant is represented in state space form then the governing equations are 

x = Ax + Bxw + B2u 

z = Clx + Dnw + Dl2u 

y = C2 + D2lw + D22u 

and the plant model would then be represented using the packed-matrix notation, 
to give 

P(s) 

A B , 

C , Dn 

C2 D 2 1 

B2 

Dl2 

D22 

13.10 Robust performance 
A system's performance, the way in which i t rejects introduced errors, may be 
measured in many ways but is invariably related to its external inputs and the 
sensitivity function. Following on from Section 13.8, robust performance measures 
w i l l be developed for the control problem. 

The oo-norm of the weighted sensitivity function is defined as 
\\SW == sup \SW\ (13.24) 

CO 

and the H^-op t ima l control problem is given by Equation (13.19). 
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If , for a particular W, the optimal value of Equation (13.24) is a, then Equation 
19) implies that \S\ < o\W\~l for all ft 

suggests a bound on the sensitivity function 
(13.19) implies that \S | < a\W\ 1 for all frequencies. For design purposes, this 

\S(jco)\ < \W(jco)\-' (13.25) 

which the H ^ - o p t i m a l controller aims to satisfy. I f a controller is found such that 

\\SW\\ao<l (13.26) 

then Equation (13.25) is satisfied. The above condition gives nominal 
performance. 

For robust performance, Equation (13.26) must be satisfied for the 'worst ' 
plant in the family, hence 

\\SW = sup \SW( jœ)\ < 1 for all possible plants (13.27) 
CO 

Again using geometric arguments based on the polar plot of Figure 13.8, note that 
at any given frequency the system's actual frequency response, GK{ jco), would be 
contained wi th in the disc representing the region of uncertainty, hence in general 

|1 + GK(s)\ > |1 + GmK(s)\ - \GmK{s)\lm for all possible G(s) 

(13.28) 

or 

IS I 
IS I 

< _ ' for all possible G(s) (13.29) 
L ml m 1 + GK(s) 

where Sm = (1 + GmK(S))~l is the sensitivity function for the nominal plant. 
Equation (13.27) now becomes 

\SJV\ 
< 1 for all co (13.30) 

or 

\TJm\ + \SmW\<\ for a l i o ; (13.31) 

which is the required measure for robust performance. 
Note that robust performance implies robust stability, Equation (13.23), and 

nominal performance, Equation (13.26). Also, due to the relationship between the 
sensitivity and complementary sensitivity functions, improving stability causes a 
deterioration in performance and vice versa. 

13.11 Concluding comments 
I t w i l l be seen from this chapter that robust control is not a particular design 
technique. Rather, it is an approach to the design o f control systems which 
recognizes the limitations of using a mathematical model, which w i l l inevitably 
contain uncertainties, to represent real plant. Therefore, this chapter has 
concentrated on providing design concepts which can be used wi th the various 
design techniques presented in this text. By choice, there has been an emphasis on 
frequency-domain rather than state-space methods. The reason for this is that the 
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M A T L A B toolboxes dealing wi th robust control use a predominantly frequency-
domain approach involving structured singular values and loop shaping. These are 
the 'Robust Control Toolbox' (Chiang and Safonov, 1988) and the '/^-Analysis and 
Synthesis Toolbox' (Balas et al, 1991). 

For further reading, these M A T L A B toolbox manuals contain much useful 
material, as do the texts by Garcia and Morari (1982), Lunze (1989), Maciejowski 
(1989) and Morar i and Zafiriou (1989). 
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14.1 Preview 
This chapter can be understood following a study of 
Chapters 1 to 5. Its purpose is to provide an 
introductory, but wide-ranging, study of nonlinear 
systems. In fact, some people have regarded this 
chapter as more of a 'nonlinear systems' course than 
a 'nonlinear control' course. The justification for this is 
as follows. 

The whole of the rest of this book (and of most 
other control engineering textbooks) concentrates on 
controller design using linear system models. The 
reason for this is very simple: all the techniques using 
Bode plots, Nyquist diagrams, Nichols charts, Laplace 
transfer function models, state-space models, optimal 
controllers, root locus plots, block diagram reduction 
and so on, only work with linear system models. 
Furthermore, if such techniques work for one linear 
system model, they will usually be applicable to 
similar models of any system which can be suitably 
approximated by a linear model, making them very 
widely useful. 

Unfortunately, all real plants are nonlinear to 
some extent, and sometimes a given plant's dynamic 
behaviour cannot be represented adequately by a 

linear model. In such cases, nonlinearities have to be 
introduced into the plant model to obtain suitably 
realistic results. All the previously mentioned 
techniques then cease to work. Even worse, there is 
no general analysis and design technique that can be 
applied to all nonlinear system models. 

It is therefore necessary to study a selection of 
nonlinear analysis methods, so that the most 
appropriate one can be chosen to suit any given 
nonlinear model. The first four sections of the chapter 
are introductory and should all be studied. The 
remaining sections describe various different 
techniques. 

In th is chapter, the reader wi l l d iscover : 
• the kinds of physical system components that give 

rise to nonlinear behaviour 
how the behaviour of nonlinear systems differs 
from linear behaviour 

• that the methods of other chapters cannot be 
directly applied to nonlinear systems 

• that there is no generally applicable technique for 
handling nonlinear systems 
how to obtain and use approximate linear models 
of nonlinear processes 
an introduction to some nonlinear analysis 
techniques. 

NEW MATHEMATICS FOR 
THIS CHAPTER 

The Fourier transform is 
used in the production of 
describing functions. 
Jacobian matrices and 

Lyapunov functions are introduced as they become 
necessary. 
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14.2 Introduction 
A l l dynamical systems are nonlinear to some extent. This means that i t cannot 
simply be assumed that they obey the principle o f superposition (see Section 2.3). 
For example, i f the separate application of input signals u{ and u2 to the input o f 
a single-input-single-output nonlinear system produces output signals yx and y 2 

respectively, then the application of a combined input {ux + u2) may not necessarily 
produce the output (yx +y2). 

As an ini t ial example, a universally encountered form of nonlinearity is the 
saturation effect, in which some system variable is prevented from exceeding some 
l imi t ing value, however large an input is applied. Every real system is capable o f 
exhibiting this behaviour, since all physical signals have an upper l im i t on their 
magnitude. Figure 14.1 illustrates the input-output characteristic o f such a system. 
Common occurrences of this behaviour are in mechanical systems in which end 
stops l imi t movement (such as hydraulic cylinders, or rotating components which 
are l imited to a certain maximum angle of rotation), and in electrical and electronic 
systems whose output voltage levels cannot exceed their supply voltage (such as 
amplifiers). 

Output 

Figure 14.1 Input-output 
characteristic of a system 
element with saturation. 

i 

/sat 

-"sat " 1 

i 

/sat 

-"sat " 1 X 
u2 "sat 

"/sat 

u2 "sat 

"/sat 

14.2.1 Superposition and linearization 
I n Figure 14.1, two input levels ux and u2 are shown, such that u u u2 and {ux + u2) 
are all wi th in the range [ - w s a t , w s a t ] . For these inputs, the system w i l l behave linearly 
(superposition w i l l apply). However, i f the magnitude o f any input signal to this 
system exceeds « s a t the output magnitude w i l l not be able to exceed y s a t , however 
large an input is applied. Superposition clearly does not apply in that case. 

This gives one indication of how nonlinear systems might be handled. So long 
as the signal levels are kept wi th in a certain range, the system of Figure 14.1 w i l l 
behave linearly. Very many systems have approximately linear behaviour for 
suitably restricted signal ranges. This is basically the approach taken in all linear 
control work - restrict the signal levels, and ignore the nonlinear effects. 
Fortunately this works very well in many cases. I t is fortunate, because most o f the 
previous techniques studied for the systematic analysis and design of control 
systems only work wi th linear system models. 
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I f a system contains significant nonlinear elements, a linear model w i l l not 
give a good representation of its behaviour. The model must then be modified by 
including nonlinear effects unti l the model gives a close enough approximation to 
the real world . Once the model has become nonlinear, all the linear control 
techniques begin to collapse. Previous approaches which can no longer be applied 
include the use of Laplace transfer functions; block diagram reduction techniques; 
Bode, Nyquist and Nichols frequency response plots; s-plane analysis such as root 
locus; z-transform models; the Routh and Nyquist criteria for stability analysis; 
state-space models of the form x = Ax + Bu; state variable feedback, state 
observers and optimal control based upon such models. 

Even more problematic is the fact that there is no analysis approach wi th 
which to replace all these things, which w i l l work wel l w i th all nonlinear systems. 
Therefore every nonlinear system has to be treated on its own merits. 

There are, however, two fundamentally different approaches which allow the 
use o f at least some of the previous techniques. 

The first approach is to ' ignore' the nonlinearity (as has already been 
suggested), but to ensure that this is done deliberately and wi th fu l l knowledge of 
the limitations of the modelling. This is the approach of ' l inearization' and i t works 
for many systems. I t is effectively what has been done in the rest o f the book. In this 
chapter we discover how to obtain linearized models o f systems which contain 
known nonlinearities. Once a linearized model exists, all the previous linear control 
techniques can be applied to i t . However, i t must always be borne in mind that there 
are differences between the linear model on which the analysis and design 
techniques are being carried out, and the nonlinear plant which the model is 
claimed to represent. 

The second approach is to try to include the effects o f the nonlinearity in the 
analysis as accurately as is feasible. Since every nonlinearity is different, this 
becomes an impossible task i f many types o f nonlinear system are to be considered. 
However, several analysis techniques have been developed which have their own 
advantages and disadvantages in different general classes o f situation. Most o f these 
bui ld upon previous linear control knowledge in some way, by modifying linear 
forms o f analysis to deal wi th nonlinear situations. Before discussing any o f these 
methods, a l i t t le more appreciation of nonlinear behaviour is necessary. 

14.2.2 Nonlinear system behaviour 
In addition to the fact that superposition does not apply, nonlinear systems may also 
exhibit a range of other effects which are not evident in linear systems. These 
effects include the fol lowing. 

Limit cycles and multiple equilibrium points 
In a l imi t cycle, the system exhibits a sustained, repetitive oscillation (not 
necessarily sinusoidal). A l l electronic oscillators are nonlinear systems, because 
oscillation cannot be sustained in a linear system unless i t is simply fo l lowing an 
oscillating input - except in the theoretical case o f a system model having a pair o f 
conjugate poles on the imaginary axis o f the s-plane (it is ' theoretical ' because, in 
the real world , such a pole pair w i l l always drift o f f the imaginary axis, g iving an 
asymptotically stable system wi th a very long settling time i f they drift to the left, or 
an unstable system i f they drift to the right). 



648 Nonlinear systems 

Another example of a l imit-cycl ing system is a space heating scheme in which 
on-off thermostats sense the temperature (and/or on-off relays control the heat 
source). A t steady state, such a system w i l l be 'hunting ' around the setpoint 
temperature - repeatedly switching on and off. I n this system the nonlinear 
behaviour has been deliberately introduced by the designer as a cheap and rugged 
means of control (thermostats and relays being much less costly than analog 
temperature sensors and continuously variable heat sources). 

L i m i t cycles can be stable or unstable. I f a stable l im i t cycle is disturbed, the 
system w i l l return to the same pattern of oscillation after the disturbance is 
removed. I f an unstable l imi t cycle is disturbed, the system w i l l leave the l i m i t 
cycle, and w i l l adopt some other kind of behaviour after the disturbance has passed. 
This also indicates that a nonlinear system can have more than one k ind o f steady-
state behaviour. A stable linear system wi th no input w i l l always settle to a steady 
state in which the output and state variables are zero (a pure integrator is considered 
unstable for this definition); but a nonlinear system may have several possible 
stable steady-state conditions for zero input (known as equilibrium points), the one 
adopted being dependent upon the ini t ia l conditions from which the system was 
released. 

For linear systems, various ways of determining system stability have been 
studied, which applied to all linear systems. Unfortunately, there is no general 
technique for determining the stability characteristics of nonlinear systems which, 
as has been indicated, can be quite complex. The most appropriate technique must 
be chosen for the particular system under investigation. 

Chaotic behaviour 
In some nonlinear systems (even some quite simple systems in the discrete-time 
case), another form of sustained oscillations can occur in which the oscillations do 
not seem to be repetitive, but are pseudo-random (even though the system model is 
deterministic). This behaviour is known as chaos. Another characteristic of such 
systems is that very small changes in ini t ial conditions (for example) which one 
might dismiss as negligible, can lead to drastically different system behaviour in the 
medium and long term. This is one of the reasons for the difficulty (maybe 
impossibility) of accurate long-term weather and economic forecasting. 

Input-dependent stability 
In a stable linear system, i f the input is l imited to some maximum magnitude, the 
output w i l l also remain wi thin some magnitude l imi t (this is called bounded-input-
bounded-output behaviour). Nonlinear systems may not behave like this. For 
example, a nonlinear system may settle to a steady output value fol lowing the 
application of a step input of 2 units, but may be unstable for input steps of 4 units 
and 0.5 unit. The same kind of thing can happen in response to parameter variations 
wi th in the system. 

Asynchronous quenching 
A good example of the kind of stability just discussed occurs in public address 
systems. The system may behave perfectly unti l the presenter suddenly speaks more 
loudly than usual, and may then break into uncontrollable sustained oscillation 
(caused by acoustic feedback from the loudspeakers to the microphone). Once 
established, the oscillation is normally removed by breaking the feedback loop; for 
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example, by switching off the microphone for a few seconds, or cutting the 
amplifier gain for a period, when the system w i l l return to normal operation. This is 
another example of a l imi t cycle (the sustained oscillation) and also an example of a 
system wi th more than one equil ibrium point (wi th no voice input the system can 
be either quiescent, or oscillating). 

Even more strangely, under certain circumstances the oscillation can be 
removed by the application of a different input (such as a loud hand-clap close to 
the microphone). This is known as asynchronous quenching, in which a l im i t cycle 
at some frequency can be removed by forcing the system w i t h a different frequency. 

Harmonic generation 
The output of a linear system w i l l always be o f the same frequency as the input, 
even though it w i l l differ in magnitude and phase. Nonlinear system outputs may 
contain harmonics and sub-harmonics of the input frequency (for example, an input 
signal at a frequency of 5 Hz may give rise to components o f 25 Hz and/or 1 Hz in 
the output signal). This is why the frequency response plots cannot be used wi th 
nonlinear systems - for such plots to be meaningful, the gain and phase shift must 
be plotted wi th both input and output at the same single frequency. 

Jump resonance 
I n a system that exhibits this effect, i f a sinusoidal input signal is swept through a 
range of increasing frequencies, there w i l l be a discontinuity in the frequency 
response of the system at some frequency. As the input frequency is decreased, 
there may be a discontinuity at some different frequency as indicated in Figure 14.2. 

Gain 

Figure 14.2 The jump 
resonance phenomenon. Frequency 

14.2.3 True nonlinear analysis and computer simulation 
I f the approach of linearization (Section 14.2.1) is adopted, then clearly any 
subsequent analysis using the linear model w i l l not be able to predict any o f the 
effects noted in Section 14.2.2. Any control system designed on the basis o f a linear 
model may therefore not function at all wel l i f effects such as these can occur during 
the operation of the real system. To some extent, this problem can be avoided by 
simulation studies, in which the linearly designed controller is applied to a ful l 
nonlinear computer simulation of the plant to be controlled, and tested over a wide 
range of ini t ia l conditions, input signals and disturbances. The major drawbacks are 
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that i t is difficult to decide when the nonlinear simulation is sufficiently accurate 
and to know when the simulation studies have covered every conceivable mode of 
plant behaviour (indeed there may be some inconceivable effects). 

I f the nonlinear effects of Section 14.2.2 are to be included in the analysis 
(because they are too significant to be ignored) then either computer simulation 
must be used, or techniques aimed specifically at the analysis of nonlinear systems 
must be applied (wi th computer simulation normally being used to test the results in 
any case). A selection of such nonlinear analysis techniques is introduced i n this 
chapter, covering both time-domain and frequency-domain approaches. Knowledge 
of the analytical techniques also aids in choosing suitable ranges o f ini t ia l 
conditions for computer simulation runs. 

In the mainframe era o f the 1960s and early 1970s, analog computers were 
cheaper than digital ones, and all dynamical simulation was originally carried out 
using such machines. There are sti l l some advantages to analog simulation, 
including the facts that i t works without signal sampling (that is, i t is continuous, 
l ike the real world) and it works in real time. These attributes are especially 
valuable for ' s t i f f systems (systems having a mixture of relatively fast and 
relatively slow dynamics, neither of which can be ignored for some reason) and also 
for 'hardware in the loop' simulations in which a controller, perhaps programmed 
into a microcomputer, is tried out on a continuous-time analog simulation o f the 
plant; which is usually a more realistic test than using the equivalent discrete-time 
digital simulation. There is also something valuable in the engineering ' feel ' for a 
system which is obtained by adjusting the coefficient potentiometers and seeing the 
immediate effects upon the system response, although modern interactive digital 
systems are approaching the same level o f convenience. 

Nevertheless, since the end of the 1970s digital computing power has become 
very cheap (although the software is not necessarily so), while reasonably-sized 
analog computers are now relatively expensive. The majority of dynamical 
simulation is therefore now carried out using digital simulation. The passage of 
time has made life easier here, too. Originally, one would have to convert the 
system model to difference equations and program numerical integration routines to 
solve these from scratch using languages such as Fortran. After a while, a number o f 
pre-written function libraries became available which could be l inked together to 
bui ld simulations. Next came specialized simulation languages such as ACSL 
(Mitchel l and Gauthier, 1987) and T S I M (Cambridge Control, 1988) which are in 
widespread use. Now we have computer-assisted control system design (CACSD) 
environments such as M A T L A B (Appendix 3) and S I M U L I N K (Appendix 4) 
which make the job easier sti l l . 

For these reasons, methods of analog computing w i l l not be presented, nor w i l l 
the setting up of digital simulations other than to run under CACSD environments. 
For more detail on simulation see Charles worth and Fletcher (1974) or Rieder and 
Busby (1986). 

14.3 Nonlinear system elements 
There are many causes of nonlinear behaviour in systems. In electrical systems we 
seldom hesitate to use the linear model / = V/R to represent a resistor (/ is the 
current in amperes, V the potential difference in volts and R the resistance in ohms -
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R is assumed constant for the model to be linear). However, as w i th all models, 
this one is approximate as Figure 14.3(a) shows. I f a high potential difference is 
applied across the resistor i t w i l l heat up sufficiently to cause the resistance to 
change somewhat (the precise form of the change depending upon the material o f 
the resistor and its mode of construction). Because the resistance alters, the 
original I = V/R model w i l l no longer predict the correct current - the system has 
become nonlinear. I f the potential difference increases too much, the resistor w i l l 
burn and become open-circuit. When working at very high frequencies, i t also 
becomes necessary to take account of the inductance and capacitance o f the 
resistor. 

Extension 

Figure 14.3 Nominally 
linear components subjected 
to large signals: (a) resistor, 
(b) spring. 

Simple mechanical elements also become nonlinear i f wide signal ranges are 
used. Consider a linear spring modelled by x=f/K {x is the extension or 
compression in metres, / the applied force i n newtons and K the spring constant in 
newtons per metre - K is assumed constant for a linear model. I f the spring is 
extended too far, the elastic l im i t of the material w i l l be exceeded, K w i l l effectively 
alter and the model w i l l no longer be correct (Figure 14.3(b)). I f i t is extended much 
too far, the spring w i l l break. I f the spring is compressed too far i t w i l l become coi l -
bound, leading to the saturation characteristic in the lower left o f Figure 14.3(b). I f 
the compressive force is increased further the spring w i l l eventually be crushed to a 
useless mass from which it w i l l not recover. 

These two simple examples serve to illustrate the point that all systems are 
nonlinear. However, they are both essentially linear over their designed working 
ranges (the central areas in Figure 14.3, w i th the or igin o f Figure 14.3(b) shifted to 
coincide wi th the free length of the spring). This chapter is more concerned wi th 
systems which are nonlinear in their working ranges, as these are the ones which 
w i l l cause the most problems. 

As mentioned before, some nonlinearities are deliberately introduced by the 
designer. On-off control was mentioned in Section 14.2.2, and adaptive controllers 
such as those discussed in Chapter 11 also result i n nonlinear systems. In what 
follows, the interest switches to the unintentional nonlinearities inherent in the plant 
itself, since it is these for which compensators must be designed. 
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14.3.1 Continuous nonlinearities 
These can be defined as nonlinear elements whose input-output characteristics can 
be described by analytic functions and are continuously differentiable (output w i th 
respect to input). Such elements are quite common and include the flow vs. opening 
characteristics of hydraulic valves, the resistance vs. temperature characteristics o f 
thermistors, the characteristics of rubber springs and the characteristics o f several 
types of measuring transducer (all assumed to be operating wi th in their designed 
working ranges). Figure 14.4 shows a nonlinear transducer characteristic as a 
representative continuous nonlinearity. 

Continuous nonlinear elements may also be deliberately introduced as 
' l inearizing feedback'. One example is the use o f thermistors (resistors designed 
to have a large and predictable change in resistance as temperature alters) as 
feedback elements to stabilize the output level of electronic oscillator circuits based 
upon operational amplifiers ( i f the output level increases, so does the self-heating o f 
the thermistor, thus lowering its resistance and lowering the amplifier gain so as to 
restore the output level). Problem 14.1 contains an example. 

The input-output characteristics of these cannot be modelled by analytic functions 
and the derivatives of output wi th respect to input contain singularities. 
Linearization in the sense in which we shall apply it later is therefore not 
straightforward, and i t is more usual to seek to simulate or analyse systems 
containing such nonlinearities (or to linearize using a computer package). In this 
section, several of the common types of discontinuous nonlinear element are 
defined, wi th indications as to where they might arise. 

First, there is the class of single valued nonlinearities. This means that for each 
value of input signal to the nonlinear element, there is only one possible output 
value (except at switching points). As one might imagine, this can simplify analysis 
of the effects. 

Saturation 
This has already been mentioned in Section 14.2 (Figure 14.1). I t is worth pointing 
out, however, that Figure 14.1 depicts hard saturation. There is also the possibility 
of soft saturation, as shown in Figure 14.5(a). Whereas hard saturation is 
characteristic of mechanical end stops and simple transistor amplifiers, soft 

Transducer output 

A 

Figure 14.4 A continuous 
nonlinearity. 

Plant signal 

14.3.2 Discontinuous nonlinearities 
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Figure 14.5 A selection of single-valued discontinuous nonlinearities. 
(f) 

saturation is associated wi th valve or magnetic amplifiers, and variable-rate springs. 
In the case of the valve amplifier, this soft saturation leads to the generation o f fewer 
harsh harmonics as the amplifier saturates on fast transients, and may be one reason 
why some audio enthusiasts and many stage musicians prefer the 'valve ' sound. 
Note also that the effect is often approximated by the dashed line i n Figure 14.5(a), 
which is why soft saturation has been included as a discontinuous nonlinearity. 

Deadzone (or deadspace) 
Figure 14.5(b) shows the I/O characteristic o f an element which cannot respond to 
small signals, but is otherwise considered to be linear. 

A classic example of this occurs in hydraulic servovalves and pneumatic pilot 
valves. In order to be able to shut off the flow o f fluid, the valve spool has to be 
slightly larger than the port over which i t slides, so as to leave no gap. Therefore, in 
order to open the valve and start the flow, the input signal must cause the spool to 
move a small distance before the edge of the port begins to be uncovered and the 
flow can begin. I f the input signal to the valve is less than this small amount, the port 
w i l l remain closed and no flow w i l l result. 

Electronic diodes also approximate this behaviour when forward biased, where 
a potential difference equal to the small forward voltage drop (typically 0.6 V ) must 
be applied before any appreciable current begins to pass. 

This k ind of behaviour can sometimes be overcome, but always at some 
expense (for example, by the use of dither signals applied to hydraulic valves, or by 
the use o f ideal diode circuits using operational amplifiers). 

Absolute value detector 
Figure 14.5(c) shows an element which fails to detect the polarity o f the input 
signal. Examples include electrical full-wave rectifiers (where this behaviour is a 
fundamental part o f the operation of the system), anemometers (which measure 



wind speed, but cannot determine the direction o f the wind) and some kinds o f a.c. 
transducer. 

Ideal relay 
Figure 14.5(d) shows the characteristic of an ideal relay. The output changes 
between two distinct states (on or off, open or closed, ± some voltage level, for 
example) at a particular value of input. A n electronic comparator can be made to 
approximate this behaviour. A real electromechanical relay may also approximate 
this behaviour under some conditions, but usually its behaviour is represented by 
more complex models. 

Relay with deadzone 
The first enhancement of the electromechanical relay model is to add some 
deadzone, as shown in Figure 14.5(e). Any real electrical relay w i l l need a certain 
amount of current to be flowing in its coi l before sufficient magnetizing force is 
developed to pul l the armature in . Therefore, input signals (voltages or currents) o f 
less than a certain critical value w i l l have no effect on the output. 

Quantization 
With digital controllers becoming ever more important, i t is common for system 
variables to be processed by analog-to-digital converters (ADCs) . The outputs o f 
ADCs have a min imum resolution of one bit of the digital wordlength, so that a 
continuously increasing analog input gives rise to the staircase form of output 
shown in Figure 14.5(f). In other words, the input can have any value on the 
continuous scale, but the output is restricted to the set o f discrete values shown. 

A rather more traditional element exhibiting this k ind o f behaviour is the wire 
wound potentiometer, in which continuous rotation o f the input shaft causes one 
turn at a time to be contacted by the wiper, and thus one discrete step at a time of 
resistance change. 

Hysteresis 
This is a double-valued nonlinearity in which, for some particular value o f input, 
there could be one of two possible output signals. 

Figure 14.6(a) shows a switching characteristic wi th hysteresis. This means 
that the switching point occurs at a different value o f input signal depending upon 
whether the input is increasing or decreasing. 

The usual origin of this type of behaviour (although there are others) is in 
magnetic materials, where the classic magnetization curve appears as shown in 
Figure 14.6(b), the input signal being the strength of the magnetizing field, and the 

(a) (b) 
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Figure 14.7 Input-output 
characteristic of an 
electromechanical relay. 

Figure 14.8 A backlash 

output the intensity of the resulting magnetization. The tendency of the material to 
remain magnetized when the magnetizing force is removed causes the shape of the 
curve. The sharpness of the 'corners' and the wid th of the central loop depends upon 
the material. 

Since electromechanical relays work on the principle o f magnetizing and 
demagnetizing metallic cores, they also exhibit this behaviour. A more realistic 
relay model includes both deadzone and hysteresis as shown in Figure 14.7. 
Hysteresis is often deliberately introduced into relay systems (comparators, 
thermostats, and so on) to avoid rapid hunting around the operating point. 

Backlash 
This is an important multi-valued nonlinearity, in which there could be many 
different values of output corresponding to any given input value. It is usually a 
very unpleasant element to have to analyse, and a good candidate for simulation 
studies. 

Figure 14.8 shows this effect. I t is essentially a moving deadzone such that, 
whenever the input signal changes direction, there is a deadzone during which the 
output signal remains constant, before i t reverses and begins to fo l low the input 
again. The position o f the horizontal lines on the characteristic (and hence the 
output value) therefore depends entirely upon the input signal level at which 
reversal occurs. 

The most common cause of this k ind of behaviour is clearance in mechanical 
linkages (due to wear, for example) and, particularly, i n geartrains. Figure 14.9 
shows part of a pair of meshing gearwheels. The upper wheel is connected to the 
input shaft, and is driving the lower wheel in a clockwise direction through the 
contact of the gear teeth at the face ' A ' . What happens when the input shaft reverses 
depends upon whether the behaviour is governed by the friction o f the load or its 
inertia. Let us first imagine that friction is the dominant factor. 

o 

characteristic. 
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Figure 14.9 Meshing gear 
teeth with backlash. 

When the input shaft stops, the output shaft w i l l also stop (due to the high 
assumed friction). Say this occurs at point 'R ' on Figure 14.8. However, when the 
input shaft begins to rotate in the opposite direction, the output shaft w i l l in i t ia l ly 
remain stationary, because the input shaft has to take up the 'play ' i n the gears as the 
teeth move from position ' B ' to position 4 C (shown on both Figures 14.8 and 14.9), 
before the teeth of the input gear again come into contact wi th the output gear at 
point ' C and movement of the output shaft in the reverse direction begins. 

I f the inertia of the output governs the behaviour, when the input shaft stops 
the output shaft w i l l continue to rotate until point ' C in Figure 14.9 contacts point 
' B ' , and w i l l then stop (it may even bounce). As soon as the input shaft begins to 
turn in the opposite direction, the output shaft w i l l now fol low it . The effect upon 
Figure 14.8 is to make the horizontal lines become vertical instead. 

Friction 
This is a universally encountered effect in any system wi th moving mechanical 
components, but is actually rather complex. Figure 14.10(a) shows idealized 
versions of three components of friction as follows, and Figure 14.10(b) is a more 
realistic representation of the combination of the effects. 

Static friction (commonly abbreviated to 'suction') is represented by the force 
required to get a component moving init ial ly. Once the component is in motion, its 
effect is gone. One example is the force required to break the seal between a 
hydraulic valve spool and the cylinder in which it moves (often overcome by using 
low amplitude dither signals to keep the spool moving, which also helps overcome 
the deadzone inherent in such valves). Another example is the force required to 
start a heavy object sliding across your desk. 

Viscous friction is often the dominant part o f the characteristic, and is the force 
which opposes motion proportionally to the velocity involved. Simple linear 
lumped-parameter models of mechanical components only include this term, for 
example f = B.v (where / is the factional force in N , B is the coefficient o f friction 
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in N/(ms ) and v is the velocity in m s _ 1 ) . This is approximately the force required 
to keep a moving object sliding across your desk at constant speed. 

Coulomb friction is the component of frictional force which is independent o f 
velocity. This is the component which allows a car w i th a manual gearbox to be held 
wi th the clutch, stationary on an uphil l slope, more or less independently o f engine 
speed. 

Some of the methods of handling nonlinear systems w i l l now be presented. For 
more detail on all of the techniques outlined here, consult specialized texts such as 
Slotine and L i (1991), Atherton (1982) or Kha l i l (1992). 

14.4 Linearization 
I f a linear model of a real plant can be obtained, which is acceptably accurate over a 
suitable range of operating conditions (even though the real plant w i l l be nonlinear), 
then all the previous linear control analysis and design techniques can be applied to 
the linear model. There is therefore a strong motivation for obtaining linear models. 
In all the rest of this book, and in all other linear control texts, this is the approach 
which has been adopted (explicit ly or impl ic i t ly ) in obtaining the transfer functions 
or state-space models used in analysis and design. These are all linear approxi
mations of systems which must become nonlinear i f driven hard enough. 

In using such models it must be ascertained that they remain val id over a 
suitable range of operation of the plant. I f they do not, then either more linear 
models are needed for different operating regions (so that the linear model to be 
used is selected depending upon the operating conditions), or some form of 
explici t ly nonlinear analysis or simulation must be used. I t can also be inferred from 
these comments that linearization w i l l often work better for regulator systems 
which, by definition, should have restricted operating ranges, than for tracking 
(servo) systems in which the operating range may be quite large. 

A reminder w i l l now be given of how approximating linear models can be 
obtained in the scalar case, and then the techniques w i l l be generalized to the 
multivariable case. 

14.4.1 Single-input-single-output (SISO) systems 
The linearization of such systems was introduced in Section 2.4.5. However, that 
section was denoted optional. I f it was omitted, i t should be studied now. In 
summary, the fol lowing is always the basic approach (even for multivariable 
systems): 

• Choose an operating point about which to linearize the system. 

• Expand the nonlinear system equations as a Taylor series about the selected 
operating point. 

• Recast the system model in terms o f deviations from the operating point. 

• Assume these deviations to be ' smal l ' , so that the Taylor series can be truncated 
after the first term, leaving a linear model. 

• A rather more physical view of the procedure is that an operating point is chosen 
on the nonlinear characteristic, the origin o f the characteristic's graph is moved 
to that operating point, and the characteristic is then approximated by the tangent 
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to the characteristic at the operating point (now the origin - so there is no offset 
term). 

In Section 2.4.5, Example 2.10 linearized a simple pendulum, Example 2.11 
linearized the flow of fluid through a valve and Example 2.12 linearized a product 
of two variables. 

14.4.2 Multivariable (state-space) linearization 
The state-space models considered so far have always been linear. However, there 
is no reason why a state-space description should not arise in nonlinear form. The 
problem wi th nonlinear state-space models is that some (or all) o f the A,B,C and D 
matrices w i l l no longer contain only pure numbers, but may also contain functions 
of states, time, outputs and/or inputs. This means that all the previous linear 
techniques for handling state-space models collapse, as they were based on the 
assumption of purely numerical system matrices. 

To see how such models can arise, consider the simple system shown in Figure 
14.11. This contains not only the usual integrators, summers and gains, but also 
some nonlinear damping involving a signal multiplier, and a measuring transducer 
wi th a cube law characteristic. This is a SISO system, but i t could just as wel l be 
multivariable (several inputs and/or outputs) - the arguments and techniques are 
identical. 

From Figure 14.11, the system equations are: 

x2 = —2JCJ - \.5xxx2 + u (14.1) 

Although these are state equations, they cannot be put into the usual state-space 
form giving constant matrices. I f they were to be forced into the usual form, there 
would be more than one possible result. As an example, one result would be 

0 1" "0" 
X = 

- 2 * ? - 1 . 5 * 2 0 
x + 

1 

which is in the usual form (that is, x = AJC + bu), but A does not contain only pure 
numbers (the other possibility would be a2X = — 2x\,a22 = - 1 . 5 * ! ) . I n fact, this 
form is not of much use, since none of the previous techniques can be applied to i t . 
Therefore, the model w i l l be generalized and then examined to see how i t might be 

Figure 14.11 A nonlinear 
system in state-space form. 

x3

i U r X 
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linearized, returning to the example later. In functional form, Equation (14.1) 
becomes: 

•*i = f\(*>u) 

x2 = f2{x, u) 

where fi(x,u)\i={2 are functions o f all the state and input variables in the 
system. Thus, for an rtth-order system having m inputs, the general state equation 
would be: 

(14.2) 

In addition, x and u w i l l be functions o f time, but the notation which would show 
this is omitted for clarity. Finally, i f the notation / is allowed to represent the 
vector o f functions fx. f2,..., fnJ then Equation (14.2) can be written in the 
general compact form: 

x = f(x, u) (14.3) 

The usual, linear, state-space model is a special case o f Equation (14.3). 
Methods exist for handling the nonlinear state equation (Equation (14.3)), but 

they are complicated and somewhat impractical. Therefore, a linearized version of 
Equation (14.3) in its general form w i l l be found, which can then be used to 
generate a model which looks like the usual state-space model. Once this has been 
achieved, all the previous state-space methods can be applied to such a model but, 
as in the scalar case, care must be taken over the range of operating conditions for 
which the linear model is assumed to be valid. 

Equation (2.29), in Section 2.4.5, was previously used to linearize a scalar 
model in a single variable. Precisely the same equation can be applied to a model 
containing more than one variable, as in Example 2.12. In this case, the partial 
derivatives of the function (which is the system model) are taken wi th respect to 
each of the variables in the model. As a reminder, consider the fo l lowing restricted 
case of Equation (14.3), comprising a single function / in two variables 
(xx and Wj): 

x = f(xXlux) 

This would be expanded about an operating point (XXQ, UXQ), using Equation (2.29), 
as: 

i =/(*,, ux) =f(xXo,u l o ) +̂ il!2 
(*1 - * 1 0 ) 

+ 

+ 

dx\ 

9f(xXlux) 

( ^ l - ^ l „ ) . + ^ l , " l ) 

L'o'"io 
2! dux + ... 

( " 1 «1 0)+ d u 2 
( " 1 " " l o ) 

2! 

(14.4) 
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Assuming that (for small deviations from the operating point) the second and 
higher derivatives are negligible, and dropping the dependency on xx and ux in the 
partial derivatives for clarity, so that df(xx,ux) is simply written as df, Equation 
(14.4) becomes: 

x = f(xx,ux) = / ( * i 0 , « i 0 ) + 
ÖX] 

C*i - * i 0 ) 

+ 
df_ 

( " l " " i n ) 

Writ ing f(xx , ux ) = x0 then leads directly to: 

x — x. 
_ df 

0 " dxt 
("l - «10) (14.5) 

It is now straightforward to apply this result to the m u l t i v a r i a t e case of Equation 
(14.3). The operating point becomes an operating point in the state space defined 
by a particular state vector x 0 and a particular input vector u0. Note that the 
operating point may be a single point in the state space - in which case u0 w i l l 
often be 0 ( in regulating systems), or i t can be a reference trajectory defined by 
some time-varying x0(t) and u0(t), which the system is expected to fol low (in 
tracking systems). 

For any one of the functions ft (that is, i , ) in Equation (14.3), the result w i l l 
look like Equation (14.5) and w i l l contain one first derivative term for each of the n 
state variables and each of the m input variables. In addition, there w i l l be one such 
complete equation for each of the functions fh i = 1 , . . . , n. The result for the entire 
general model of Equation (14.3) therefore appears as: 

x2 - x 2 0 

dxx (* i - * i 0 ) + ' 
+ 

*0>"0 

du A 

dfx 
("« - Um0) 

dxx 

+ 

*0>"0 

dux 

( x , - x , 0 ) + - + g 

*0,"0 

*o>Mo 

x0,>u0 

t \ i . d h 

( « i - « i 0 ) + - + a r 
(um - u ) 

x0,u0 

(14.6) 

X" Xn" dxx 

+ 
*o>"o 

du A 

{ x * - x ^ + - ' + d x : (xn 
x0,u0 

( \ , i ^ 
^ - U > o ) + - ' + du-

*o»"o 
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This result can now be made much neater by adopting some notational changes. 
First, the superscript * is used to denote deviations from the nominal (operating 
point) values (and is not to be confused wi th the notation for the complex 
conjugate transpose of a matrix, used elsewhere). Thus: 

U: = U{ ~ U; (14.7) 

A briefer notation for the partial derivatives at the operating point can also be 
adopted: 

dx. dxx 

etc. (14.8) 

Substituting the changes indicated by Equations (14.7) and (14.8) into Equation 
(14.6) then gives: 

r* 

d^OxU 
oxx 

OX\ 

df\ * df1 * 

dx„ 

+ ^OX*„+^Out + 
axn aux 

dum 

(14.9) 

— o x l + . - . + — o x n + — o u l + . . . + — ou„ 

Finally, the Jacobian Matrices Jx and Ju are introduced, whose elements are 
constants, where: 

dxx dx2 dxn dux du2 dum 

. ®Lo 
dxx dx2 dxn 

J„ = 
dux du2 

%LQ 
% o %Lo • 

dxx dx2 dxn . _dux du2 

Equations (14.9), therefore, finally become: 

x* =Jxx*+Juu* 

(14.10) 

(14.11) 

Equation (14.11) is now a linear state-space model, to which all the previous 
techniques can be applied. It represents the nonlinear system x — f (JC, u) and is 
val id for small deviations (x* and w*) from the operating point (J C 0 , W 0 ) . 

The output equation y = Cx + Du can st i l l be applied directly i f it is linear (it 
w i l l automatically be linear i f each output is simply a state variable, for example). I f 
it is nonlinear, then it can be treated in the same way as the state equation to obtain a 
linearized version. 

A n example w i l l dispel some of the mystique. 
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Example 14.1 Linearized model for the system of 
Figure 14.11 
Earlier (Equation (14.1)), a nonlinear model of the system shown in Figure 14.11 was 
obtained as: 

x \ = fl(xl,x2,u) = x2 

x2 = fi(x\,x2,u) = - 2 * i - l.5xxx2 + u 

To linearize this, the Jacobian matrices (Equation (14.10)) are evaluated: 

Ju 

%_ 
dxx dx2 

dh dh 
_dxx dx2 

du 

df2 

- du -

-6X2

Xq-1.5X2Q 

1 

-1.5x 
and 

x0,u0 (14.12) 

When the operating point values (JC 0 ,M 0 ) are substituted into Equation (14.12), the resulting 
(constant) Jacobian matrices can be used in the linear model, as in Equation (14.11) (valid 
for small deviations from the operating point). 

It is now necessary to specify the operating point. Since the forward path o f Figure 
14.11 contains pure integrators, any steady operating point must have the integrator inputs 
at zero. Under these circumstances, the nonlinear damping feedback term ( = l.5xxx2) w i l l 
be zero (because x2 must be zero), so the feedback from the transducer must balance the 
steady-state input signal. Specifying an operating point at u = 1, the steady-state output at 
the operating point must therefore be xx = 0.7937, in order for the input to the first 
integrator to be zero. 

Such operating points can also be found by simulation. Figure 14.12(a) shows a 
M A T L A B (Appendix 3) simulation of the nonlinear system from zero ini t ia l conditions 
wi th an input step of u — 1. The steady-state values are the same as those predicted by 
physical reasoning above. The M A T L A B m-file figl4_12.m on the accompanying disk w i l l 
duplicate this result. 

Note that, since nonlinear systems can have multiple equil ibrium points and ini t ia l -
condition-dependent stability, it w i l l by no means always be the case that a M A T L A B 
simulation from zero ini t ial conditions w i l l just happen to end up at the desired operating 
point for every system. S I M U L I N K (Appendix 4) can be used more easily than M A T L A B 
to find the operating point values of nonlinear systems. This is the outline procedure: 

• Bu i ld up a S I M U L I N K block diagram of the system of Figure 14.11 (wi th ' inport ' and 
'outport ' blocks from the 'connections' library at the input and output respectively; and 
a 'Fen' block from the 'nonlinear' library, containing u A 3 for the cubic function). 

• Save it wi th a filename nlmod (for example). 

• From the M A T L A B prompt, issue the command: 
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Figure 14.12 Linear and nonlinear model responses of the system of Figure 14.11. 

> [ x o , uo, yo, dx] = t r i m ( ' n l m o d \ [ l 1]',1,1,[ ],1,[ ] ) % finds the operating point 

> [ j x , j u , c, d] = l inrnod( 'nlmod\xo,uo) % finds the state-space model at the 
% operating point given by xo and uo 

Assuming that S I M U L I N K is available, use the M A T L A B commands help trim and help 
linmod for more detail. In outline, the [1 1] ' in the trim command is an ini t ia l guess at the 
values in JC0, the first o f the two unity elements is the specified value o f w 0 , while the 
second is an ini t ial guess at y 0 (the plant output at the steady operating point). The three 
elements [ ] , 1 , [ ] are two empty matrices which give the algorithm permission to vary the 
values o f x0 and y 0 in its search for the steady operating point, and a unity element which 
tells i t that the specified value of u0 is fixed, and must not be allowed to vary. 

Returning to the M A T L A B simulation in the m-file jigl4_12.m, using u0 = 1 and 
JC0 = [0.7937 0 ] T in Equations (14.12) and (14.11) gives the required linearized model 

x* = 
0 1 

-3.78 - 1 . 1 9 
* "0" 

1 
(14.13) 

for deviations from this operating point. 
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To test the model, the same nonlinear M A T L A B simulation that produced Figure 
14.12(a) is rerun, but this time with the init ial condition JC0 = [0.7937 0 ] T and u0 = 1. 
Wi th these conditions, the system ought to remain in this condition and, in fact, it does so. 
A n extra input step is therefore superimposed upon u0 to represent a deviation from the 
operating point. This same input (deviation) can be applied to the linear model o f Equation 
(14.13), al lowing comparison of the resulting behaviour. 

I f a step of - 0 . 1 unit is applied to the linear model, and an additional step o f - 0 . 1 
unit to the operating point of the ful l nonlinear simulation, Figure 14.12(b) results. The 
responses for x2 are more or less identical on these scales, but the linear model response 
for xx is based on zero, while the ful l nonlinear response is based on 0.79 (the operating 
point). This is entirely correct, because the linear model is showing the deviations from the 
operating point, and the operating point for x2 just happens to be zero, while that for x{ is 
not. 

To get a direct comparison, the operating point values need to be added to the 
responses generated by the linear model. Doing this produces Figure 14.12(c), from which 
i t is seen that the linear model is a reasonable approximation to the plant (although it does 
not look quite so good on a larger-scale plot). 

Mov ing away from the operating point causes the accuracy of the linear model to fall 
off. For example, a step of +0.5 unit wi th respect to the operating point produced Figure 
14.12(d). Use of M A T L A B , or a similar package, to experiment wi th the models proves 
quite interesting. For example, the performance of the linear model deteriorates much more 
rapidly for negative steps away from the operating point, than for positive steps. Also, wi th 
no nonlinear damping at al l , this system is unstable and produces a very nonlinear 
response. 

As a final comment in this section, it is worth noting that the production of the 
linearized model by S I M U L I N K , mentioned during the example, is done by 
numerical perturbation of the ful l nonlinear simulation. This approach allows 
S I M U L I N K (or other packages, such as ACSL - Mi tche l l and Gauthier (1987)) to 
obtain the Jacobian matrices equally well for systems which contain discontinuous 
nonlinearities, and which therefore could not be handled by the analytical Taylor 
series method used in this section. O f course, the linearized approximation is l ikely 
to be of rather l imited applicability in such systems, i f the effects o f the 
discontinuous element are significant. 

14.5 Phase plane analysis 
This is the first method which aims to analyse nonlinear behaviour, rather than 
' ignoring ' i t by linearization. This method is studied first because: 

• i t is a time domain method, so the results are easily visualized; 

• i t is relatively straightforward to derive and apply; 

• the results i t produces are a useful way of depicting nonlinear system behaviour, 
which w i l l be used in other sections. 
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Approximations and limitations involved in this method are: 

• The linear part of the plant is l imited to second order. There is no reason in 
principle why higher orders cannot be considered, but i t is difficult to interpret 
the results. Once the second-order approximation is made, no other 
approximations are involved except that i t is a graphical technique, wi th the 
normal limitations that implies i f drawn by hand. 

• The parameters of the plant must be stationary (non-time-varying). 

• General input signals cannot be handled. However, in i t ia l conditions are 
automatically included, so it is normally possible to investigate the effects of step 
or ramp inputs. 

• The method is traditionally applied 'on paper' to discontinuous nonlinearities, 
although it is equally possible to investigate continuous ones. Normal ly only one 
nonlinear element can be handled. I f more than one nonlinear element is to be 
considered, their effects may have to be combined, or computer simulation 
should be used. 

• One advantage of the phase plane approach is that i t can handle very severely 
nonlinear systems, so long as the other constraints are met. 

• These days, a computer simulation would normally be used to obtain the same 
kind of information which is available from phase plane plots, so the need 
actually to produce such plots is diminishing. However, phase plane analysis st i l l 
gives valuable insights into system behaviour, and a rapid check on the val idi ty 
of simulation results. It is useful both for these reasons, and because it can give a 
good idea of nonlinear system behaviour when there is no computer or CACSD 
package available. 

14.5.1 The phase plane 
Imagine a mass suspended on a long linear spring in the air, and at rest. I f the mass 
is now pulled downwards by one metre and then released, the resulting behaviour 
can be visualized - i t w i l l be a damped oscillation which w i l l eventually end when 
the mass is back at its starting point and at rest. Defining downward displacement as 
positive, the displacement w i l l trace out the curve which begins at +1 .0 in Figure 
14.13(a). 

A t the same time, the velocity o f the oscillating mass w i l l behave as shown in 
the second trace in Figure 14.13(a). The velocity begins to increase in a negative 
direction because the mass ini t ial ly accelerates upwards, which has been defined as 
the direction of negative displacement. 

This behaviour is wel l approximated by a second-order linear model (so long 
as the spring is not stretched too far, and so long as the damping effects are more or 
less linear). I f a state-space model of the system were to be writ ten, the position 
(displacement) and velocity of the mass would probably be chosen as the state 
variables (because they are physically meaningful, measurable and give rise to a 
reasonable model structure). The captions on Figure 14.13(a) assume that 
displacement has been chosen as state xx and velocity as x2. The model is derived 
in Example 14.2, below. 
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Since there are only two states in this model, the state space is a plane, wi th 
axes xx and x2. The behaviour of Figure 14.13(a) can therefore be directly 
transferred to this plane to give a picture of the state trajectory o f the system as 
shown in Figure 14.13(b), showing how the state vector of the system varies as time 
passes (time increases along the curve). The state vector begins at x = [1 0 ] T and 
ends at x = [0 0 ] T wi th the obvious oscillations in between. The same behaviour is 
visible in this plot as in Figure 14.13(a). For example, velocity (x2) is zero whenever 
displacement (xx) is a maximum or min imum (that is, the mass is reversing). 

The plane in Figure 14.13(b) could be called a state plane. However, a special 
condition is also operating here, namely that x2 = xx. The plot is therefore o f some 
system variable (in this case displacement) versus its derivative. A state plane wi th 
such axes is called a phase plane, and the plot o f a variable versus its derivative is 
called a phase plane trajectory (PPT). 

The form of the PPT depends entirely upon the system and the ini t ia l 
conditions on x. For example, i f there were zero damping in the mass-spring 
system, the PPT would be a circle centred on the origin. The radius o f the circle 
would depend upon the point from which the mass was released. Several different 
release points plotted on the same phase plane would yield a family of concentric 
circles centred on the origin. Such a family of PPTs is called a phase portrait. 
Similarly, a phase portrait could be obtained in Figure 14.13(b) by plott ing more 
PPTs for several different release points. 

PPTs and phase portraits can yield much useful information about nonlinear 
systems including stability (which, as described in Section 14.2.2, can be difficult to 
determine analytically), switching points, l imi t cycles, overshoot and steady-state 
error. In addition, i t is possible to timescale PPTs so as to determine all the usual 
time-domain measures such as rise time, peak time and settling time. This can be 
done by hand (Section 14.5.5), but it is normally much better to obtain timescale 
information from computer simulations i f accurate results are required. 

We now look at how PPTs can be produced, and at some of their 
characteristics. 
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14.5.2 The method of isoclines 
Careful study o f Figure 14.13(b) reveals some information which w i l l help in the 
construction o f PPTs in general. Since the variable o f interest (x{) is always plotted 
on the horizontal axis and its derivative (x2) on the vertical axis, some conclusions 
can be drawn about the direction a PPT might take in the plane. For example, i f x2 is 
positive then xx must be increasing, while i f x2 is negative xx must be decreasing. 
This implies that PPTs must circle in a generally clockwise direction. I t cannot be 
said that they w i l l always circle the origin, though. They may wel l be centred on 
some non-zero value. 

O f even greater interest is the fact that whenever x2 is zero then xx must be 
constant. This means that whenever any PPT crosses the horizontal axis (x2 = 0) it 
must be vertical. In any PPT, the horizontal axis is therefore a line jo in ing points 
where the PPT has infinite slope. A line jo in ing points o f equal slope is called an 
isocline, so the horizontal axis is an isocline wi th an associated slope o f infinity. I f 
several other isoclines could be found for any given system, each wi th a known 
associated slope, then the PPT could be sketched fo l lowing the principle shown in 
Figure 14.14. This follows, because the ini t ia l conditions for the system would be 
known (giving the starting point in the phase plane). I t has also been determined 
that the PPT must progress from the starting point in a generally clockwise 
direction. The starting point and the slopes associated wi th the isoclines therefore 
fix the route o f the PPT. Obviously the more isoclines there are, the more accurate 
w i l l be the result. Note that isoclines are not necessarily straight lines. For systems 
wi th continuous nonlinearities, they may be curves. 

How can these isoclines be found? First, a linear system w i l l be considered, in 
order to establish the method. Remember that only second-order systems wi th no 
general input can be considered, and that it w i l l always be the case that x2 = xx. The 
state equation for the linear part of any system for which a PPT can be drawn w i l l 
therefore be of the form of Equation (14.14), perhaps wi th the addition o f constant 
terms to represent step or ramp inputs (although these might also be represented by 
the ini t ia l conditions on x). 

0 1 

Va2\ <*22j 
(14.14) 

It is not strictly necessary for al2 to be unity ( in other words, x2 could be a scaled 
version o f the derivative of x{), but i t w i l l always be assumed equal to unity in this 
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text. Note that this is a standard companion form state-space model (see Equation 
(2.51) in Section 2.5.1). 

Now, from Figures 14.13(b) and 14.14, the slope N o f a PPT at any point is 
given by 

* r d x i i - i i • dx2/dt . AT x2 N = —— which can be rewritten - — — - i.e. N = — 
dxx axx/at xx 

(14.15) 

Equation (14.15) is used to determine the equations o f isoclines for the system 
under consideration. For this simple linear system, the state equations o f Equation 
(14.14) can be substituted directly into Equation (14.15), to give 

N = x2 = 021*1 + a22x2  
x \ x2 

This can then be rearranged to give 

N — a22 

Equation (14.16) shows that the isoclines for a purely linear (second-order) system 
are always straight lines passing through the origin of the phase plane. The model 
coefficients a2X and a22 w i l l be known, so it is merely necessary to choose a 
number of values o f N (the slope of the PPT when it crosses the isocline) and use 
Equation (14.16) to work out the equation of the isocline for each value of PPT 
slope. The isoclines can then be drawn in the phase plane and, given the init ial 
conditions on x, the approach of Figure 14.14 can be used to sketch the PPT. Care 
must be taken wi th regard to the accuracy of drawing, since any errors are 
cumulative along the PPT. There are more accurate geometrical techniques for 
PPT construction (Atherton, 1982) but the assumption is that hand-drawn PPTs 
w i l l be used only for approximate investigations nowadays, so they w i l l not be 
described here. Almost all the PPTs in the figures were computer-generated by the 
M A T L A B m-files on the accompanying disk. 

Example 14.2 PPT for a linear mass-spring-
damper system 
Consider the example used in Section 14.5.1 and Figure 14.13. Let the mass be M kg, the 
spring stiffness be K N m " 1 and the viscous damping coefficient of the air be B N / ( m s _ 1 ) . 
I f positive displacement xx (m) is measured downwards from zero at the equil ibrium 
position, then the restraining force due to the spring w i l l be Kxx N (opposing downward 
motion), the damping force w i l l be Bxx N (opposing motion) and the force accelerating the 
mass w i l l be Mxx N . For equilibrium in the face of no input other than ini t ia l conditions, 
these forces must sum to zero. The equation of motion is therefore 

-Kxx - Bxx = Mxx 
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Given that x2 = xx, this equation can be rearranged to give the state-space model 

x j = x2 

Now, let the mass be 1.9 kg, the spring stiffness be 3.0 N m " 1 and the damping coefficient 
be 1.2 N / ( m s _ 1 ) . This gives x2 = -l.58 .Xj - 0.63x 2 in Equation (14.17), so that the 
coefficients a2X and a22 in Equation (14.14) are - 1 . 58 and -0 .63 respectively, for this 
system. 

Substituting into Equation (14.16) gives the isocline equation 

-1.58JC, 
x2=- N + 0.63 

into which values of N can be inserted to find several isoclines. For example, i f TV = oo, 
x2 = 0, g iv ing the horizontal axis, as expected. However, i f N = 1 then x2 = -0 .969*! , so 
the straight line passing through the origin and the point ( 1 , - 0 . 9 6 9 ) is an isocline wi th 
which is associated a slope of 1, which the PPT must adopt every time it crosses this 
isocline. This isocline is shown in Figure 14.15 along wi th several others obtained using 
the given values of N (that is, the slope of the PPT associated wi th the isocline) in the 
equation above. 

Given that the mass is released from a displacement o f xx = 1 m , and from rest 
(x2 = 0), the PPT can be sketched in as shown in Figure 14.15. In fact, the result should 
be identical to that o f Figure 14.13(b), as this is the system which produced that figure, 
too. 

From the PPT in Figure 14.15, information such as the fo l lowing can be obtained: 

• The system is stable (it settles to a steady state). 

• The system settles after about three complete cycles o f oscillation (which is also in 
agreement w i th Figure 14.13(a)). 

• The system comes to rest at zero displacement and zero velocity. 

http://-l.58.Xj
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• There is a peak overshoot to about - 0 . 4 4 m in the displacement, that is, about 44 per 
cent since the system is effectively responding to a unit step input. 

• Since the system model is second order, the damping ratio can be ascertained from 
standard curves (see Figure 3.19 in Section 3.2.2), where i t is found that 44 per cent 
overshoot corresponds wi th a damping ratio of about 0.25. This can also be checked 
from the original model, because a standard second-order system in companion form 
gives a plant matrix 

" 0 1 

- c o 2 -2Cov 
Comparing the model stated after Equation (14.17) wi th this, i t must be the case that 
co2

n = 1.58 and 2£a)n = 0.63. Solving these gives ( = 0.25, which agrees wi th the result 
from the PPT and the standard curves. 

• The peak velocity is about - 0 . 9 ms" 1 (that is, 0.9 m s _ l i n an upwards direction). 

• The PPT can also be time-scaled, but that is left unt i l Example 14.6. 

I t can be seen from this simple linear example that the PPT is a useful 
representation of second-order system behaviour. 

14.5.3 Application to nonlinear systems 
This topic is best studied by example. However, one or two points are worth noting 
at the outset. I f the behaviour at the output o f a plant is of interest, i t makes sense to 
plot a PPT of the output versus its derivative. 

I f the response to a step input is being considered, this w i l l normally cause no 
problem. However, i f the response to a ramp input is sought, i t may wel l be the case 
that the output w i l l never settle (it w i l l probably fol low the ramp), so a PPT of the 
output might then be of l imited use. 

I n such cases, i t is often preferable to plot the PPT of some other variable 
which does settle (for example, the error signal in the feedback loop of a linear 
second-order system should settle to a steady value in response to a ramp input, 
even though the output w i l l be ramping). The output behaviour can then be inferred 
from the behaviour of this other variable. 

Also note that the location of the nonlinear element makes no difference to the 
method. I t can be an actuator at the input, a nonlinear transducer, or something 
(such as backlash) at the plant output. However, i t may sometimes be difficult to use 
the method for a particular combination of type o f nonlinearity, type o f input signal 
and nonlinear element location. Example 14.4 w i l l eventually illustrate this. 

Example 14.3 A system with input saturation 
Figure 14.16 shows a plant controlled by an amplifier and actuator wi th a gain o f 2, which 
saturates at ±2 units. What is the overshoot at the output in response to an input step of 4 
units? How has the saturation affected the response? What would be the maximum input 
step size which could be applied without the nonlinear element saturating? 

First, i t can be seen that the nonlinear actuator w i l l cause the system behaviour to 
divide into three distinct classifications. Each w i l l be considered separately. 
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4 

Figure 14.16 A system 
with a saturating actuator. 

( 1 ) When the actuator is not saturated, the system w i l l be purely linear, w i th a gain o f 2 from 
the slope o f the actuator characteristic. 

(2) When the actuator is saturated at the upper l imi t , the linear part o f the plant w i l l have a 
constant input o f 2 units at all times. 

(3) When the actuator is saturated at the lower l imi t , the linear part o f the plant w i l l have a 
constant input of —2 units at all times. 

First, in the unsaturated condition, the forward path is linear w i th a gain o f 2 from the 
actuator, so the closed loop transfer function of the plant becomes: 

Y 2 
to U w 2s2 + s + 2 

Cross-multiplying, taking inverse Laplace transforms w i t h zero ini t ia l conditions and 
substituting u = 4 for the step input gives 

2y + y + 2y = 2w = 8 

Now, letting xx = y (because the output is o f interest) and x2 = xx (as always), gives: 

2*2 + x2 + 2xx = 8 or, in state space f o r m : 

xx — x2 

x2 — — xx — 0 . 5 * 2 + 4 

From Equation ( 1 4 . 1 5 ) , the isocline equation is therefore: 

Xj — X] — 0 . 5 * 9 + 4 

N = ^ = —1 2- ( 1 4 . 1 8 ) 

** leading to: 

^ = N + Ö3 + NTÖ3 (14-19) 

Equation ( 1 4 . 1 9 ) is the equation of a straight line wi th a non-zero intercept on the * 2 axis. 
- A convenient way to draw these is to substitute zero values for xx and * 2 in turn. When xx  

: is zero, Equation ( 1 4 . 1 9 ) gives 

*2 
N + 0 . 5 

When * 2 is zero, Equation ( 1 4 . 1 9 ) yields xx = 4 . 
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Therefore, every isocline for this system passes through the point (4,0), and has an 
intercept on the x2 axis given by 

Af + 0.5 

The first two rows of Table 14.1 give a few values, and the resulting isoclines can be seen 
' centred around xx = 4, x2 = 0 in Figure 14.17(a). Note that the region o f the phase plane 

: over which these isoclines are valid is not yet known. I t can be seen from Figure 14.17(a) 
that they have only been drawn in the range 3 < xx < 5. The proof that this is the correct 
range w i l l emerge as the other regions are considered. 

I n the second region (actuator saturated at the upper l im i t ) , the input to the plant is a 
- constant + 2 units, so the output is given by 

^ Y(s) 
2s2 + s 

Table 14.1 Isocline parameters for Figure 14.17. 

N - 2 - 1 - 0 . 5 —0.25 0 0.25 1 C O 

x2 (linear intercept) - 8 / 3 - 8 C O 1 6 8 16/3 8/3 0 

x2 (upper sat. intercept) - 2 / 3 - 2 C O 4 2 4/3 2/3 0 

x2 (lower sat. intercept) 2/3 2 oo - 4 - 2 - 4 / 3 - 2 / 3 0 

3 

2 

1 

X * 0 

- 1 

- 2 

(a) 

A/ = -1 3 

N = 0 <&*^~ system J \ " ^ - " ^ ^ ! 
y^N = 0.25 " _ J ; 

^^^^•—"«4 Nonlinear system " 

" " N " = " ~ T j 
y 

.../V = -2 -Î- \  

: / N = -0.5 : ^ = - 0 . 2 5 X 1 

N = -2 

N=oo 

N = ^ 

N = 0.2i 

N = 0 

(b) 

Figure 14.17 P P T and time responses for y in the system of Figure 14.16. 
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Cross-multiplying and taking inverse transforms as before gives 2y; + y — 2. Substituting x} 

and x2 exactly as before results in : 

* j = x2 

x2 = - 0 . 5 * 2 + 1 

The isocline equation is therefore 

Ar x2 -0 .5*2 + 1 
N = — = -

*! * 2 

leading to 

1 

The isoclines in this region are therefore horizontal lines at values o f * 2 determined by N. 
I t is also necessary to work out where this region is in the phase plane. From Figure 

14.16, in order for the upper saturation l imi t to be reached, e > + 1 . Since u = + 4 , this 
implies that xx = y < + 3 . The * 2 values for these horizontal isoclines are in the third row 
of Table 14.1, and they appear in the left-hand half of Figure 14.17(a). 

For the third case, where the actuator is in the lower saturation region, the reader 
should be able to show that application of an identical approach yields the isocline 
equation 

- 1 
X 2 " i v + a5 

val id for the region of the phase plane where xx > 5. These values are given in the last 
row of Table 14.1, and appear in the right-hand portion o f Figure 14.17(a). 

The region over which the linear system isoclines (calculated earlier) are val id is now 
known. Note also that the isoclines wi th the same associated slopes neatly meet up at the 
boundaries o f the three regions. This does not happen for all systems, but when it does it 
is a good indication that the solution is proceeding correctly. In addition, once we realize 
that this is going to happen for any particular system, i t can save a lot o f calculation. For 
example, in the present system, once the central isoclines had been calculated, and the 
boundaries o f the regions had been found, the rest could have been drawn in immediately 
wi th no further calculation, after working out that the first horizontal isocline behaved in 
this way. 

The PPT itself is plotted in precisely the same way as before. Zero ini t ia l conditions 
are assumed (that is, the response begins at the origin o f the phase plane). Note also that i f 
the plotting o f the PPT had been begun as soon as the isoclines for the left-hand and 
central regions had been obtained, it would have been discovered that those for the 
right-hand region need not be calculated at a l l , as the PPT barely enters that zone. 

To get a comparison wi th the performance o f the system in the absence of saturation, 
the set o f isoclines corresponding wi th linear (unsaturated) operation is extended over the 
entire plane, and used for a second PPT as shown. More isoclines would be needed to 
obtain the accuracy shown, especially in the early parts o f the trajectories, but they have 
been omitted for clarity. 

N o w the ini t ia l questions can be answered. The peak value o f y ( = xx) from the PPT 
of the nonlinear system in Figure 14.17(a) is seen to be about 5 units. The overshoot is 
therefore about 25 per cent. In the absence of the nonlinear (saturation) effect, the peak 
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value from the PPT of the linear system is about 5.86 units (46.5 per cent overshoot). In 
this system, the presence o f the saturation has therefore tended to stabilize the system, 
reducing overshoot (and settling time to within any given percentage of the final value). 
Note that this is not a general effect of all nonlinearities (for example, backlash can often 
have a very destabilizing effect, and so might saturation in other circumstances). 

The behaviour is confirmed by the time responses for the system which are given in 
Figure 14.17(b). The nonlinear behaviour is particularly evident in the response o f x2. 

The question regarding the maximum input step which would not cause saturation 
cannot be answered from the PPT. This kind of question is generally best answered by 
simulation. However, in this case, since the system is linear for small input signals, the 
answer could be found by linear analysis of the behaviour o f e, by analysing the response 

This w i l l not be done rigorously here, but intuitively, since y cannot change 
instantaneously, any input step is init ial ly passed unaltered (because the feedback signal 
has not yet moved from zero) to the nonlinear element. A n y step o f magnitude greater 
than 1 unit w i l l therefore cause saturation. The error transfer function represents an 
underdamped system, wi th a steady-state gain of zero. A n input of 1 unit w i l l therefore 
cause an immediate error of 1 unit, followed by an underdamped transient response in the 
error signal in the opposite direction, aiming at zero. Since there is some damping in the 
system, this cannot overshoot by 100 per cent, so it w i l l not exceed - 1 unit. The error 
response w i l l therefore remain in the linear region for input steps of less than 1 unit in 
magnitude. 

Example 14.4 A system with output deadzone 
This example is deliberately chosen because it is awkward, and illustrates some of the 
pitfalls of the approach. Figure 14.18 shows a second-order system wi th a deadzone at the 
output. Say that i t is desired to examine the output behaviour in response to a ramp input 
of 1 unit per second. 

Consideration of the system structure indicates that at steady state, y w i l l be 
continuously increasing in response to the ramp input. The PPT for y would therefore be 
difficult to interpret. However, since the linear part of the system is second order, the error 
e will settle to some constant value. The PPT for e rather than y might therefore be 
considered, and the behaviour of y inferred from it . 

However, a worse problem then occurs. The nonlinear element w i l l divide the phase 
plane into three regions, as in Example 14.3, but i t is not possible to tell where they are. 

2s2 +s 

2s2 + s + 2 

i \ Slope 

Figure 14.18 A system 
with an output deadzone. 
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For example, in the positive 'linear' region, it is evident that m > 0.8, but i t is not possible 
to convert this information into a condition on e and e so as to determine where this is 
val id on the phase plane for e. There are other problems too, but the conclusion is that this 
system cannot be handled by the method of isoclines. O f course, a computer simulation 
could easily be performed, and e plotted against e to produce the PPT, but that is not the 
purpose here. 

In order to be able to produce a PPT for this system by hand using the method of 
isoclines, the problem w i l l have to be modified! Let us examine the response to a unit step 
input instead. 

Wi th a step input, the output should eventually settle i f the system is stable, so an 
attempt to draw the PPT for y would be made. Unfortunately, there is now yet another 
problem. I n the deadzone, the value o f y is fixed at zero, and so y must be zero, too. 
However, when y leaves the deadzone, y must immediately adopt the value o f m, thus 
producing discontinuities in the PPT. These, together w i th the fact that the PPT for y vs. y 
w i l l always return to the origin when the deadzone is entered, w i l l make i t difficult to 
interpret. 

Again, recourse is made to plotting a PPT for e rather than y. However, a moment's 
thought shows that since e is related to y by a simple subtraction from the (constant) input, 
the same qualitative behaviour w i l l be evident in e and e as in y and y. 

Finally then, it is decided to draw the PPT for the linear plant output signal m, and to 
infer the behaviour of y from it. As usual, the three portions o f the nonlinear characteristic 
are considered separately: 

In the deadzone, y = 0, so e = w — 0 = 1 . Therefore, 

16 

™ ~ s 2 + 4 s + 8 

Cross-multiplying, taking inverse Laplace transforms, letting xx—m and x2 = m leads to: 

xx = x2 

x2 = -4x2 - Sx{ + 16 

Using Equation (14.15) to calculate the isocline equation as before gives: 

_ -Sxx 16 
X l ~ w + 4 + N + 4 

that is, the isoclines in the deadzone are straight lines passing through the point (2,0) and 
having x2 axis intercepts given by 16/(N + 4). These isoclines are val id over the range 
- 0 . 8 < m < 0.8. 

For the positive 'linear' region, m > 0.8. In this region, the system has a unity 
negative feedback loop, but the signal fed back is not equal to m. Rather, it is y = m - 0.8. 
This implies that 

m = - r iii -y) = (u - m + 0.8) 

Proceeding in the usual manner leads to m + 4m + 8m = \6(u - m + 0.8) = 28.8 - 16m. 
Making the usual substitutions for x{ and x2 and using Equation (14.15) to find the isocline 
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equation then gives 

- 2 4 * t 28.8 

* 2 ~ N + 4 + N + 4 

These are straight lines passing through the point (1.2,0) and having * 2 axis intercepts 
given by 2 8 . 8 / ( N + 4). 

I t is unlikely that m w i l l ever become < - 0 . 8 in response to a (positive) unit step, so 
no isoclines w i l l be calculated for the negative 'linear' region. 

Table 14.2 gives a few values from the equations above and Figure 14.19(a) shows 
the resulting PPT (only relatively few isoclines are shown). I t can be seen that the peak 
overshoot in m (x{) is about 18 per cent. However, the percentage overshoot in the output 
(y) w i l l differ from this, because m has to reach a value of 0.8 units before y begins to 
move. The value of y w i l l be zero until m reaches 0.8, and (m - 0.8) thereafter. The final 
value o f y w i l l therefore be 1.2 - 0.8 = 0.4, and the peak value of y w i l l therefore be 
about 1.42 - 0.8 = 0.62, giving an overshoot in y of about 55 per cent. 

Figure 14.19(b) shows the time responses, confirming these findings. Also shown is 
the response of the linear-only system (that is wi th a deadzone of zero) for comparison. 

Table 14.2 Isocline parameters for Figure 14.19. 

N - 6 - 4 - 2 - 1 0 1 2 4 12 oo 

x2 (deadzone intercept) - - - 4 3.2 2.7 2 1 0 
x2 (pos. linear intercept) -14.4 oo 14.4 9.7 7.2 5.8 4.8 3.6 1.8 0 

Example 14.5 A system controlled by an ideal 
relay 
Consider the system of Figure 14.20(a). Here a relay controls the plant, and it w i l l switch 
whenever the sign o f e changes. The plant input is therefore always either 1 or - 1 unit, 
and this is represented as sgn(e) = 1 when e is positive and sgn(e) = - 1 when e is 
negative. Analysing the error signal for step inputs to the system, 

3 sgn(^) 
e — u—y — u — —z 

J 2s2 + s 

For step inputs, cross-multiplying and taking inverse Laplace transforms wi th zero 
ini t ial conditions (as in the previous examples) yields 2e + e = - 3 sgn(e). Lett ing xx = e 
and x2 = e gives: 

x \ = x 2 

x2 = - 0 . 5 * 2 _ 1.5sgn(e) 

Using Equation (14.15) to find the isocline equation gives: 

* 2 _ -0 -5 * 2 - L 5 sgn(e) 
X\ * 2 
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1.6 

Figure 14.19 PPT and time 0.0 0.5 1.0 1.5 2.0 2.5 3.0 
response for m in the system Time (s) 
of Figure 14.18. (b) 
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i 
1 _ e E > 

3 
• 

-1 
s(1 + 2s) 

(a) 

Figure 14.20 An i< 
relay system and fc 
the PPT. 

(14.20) 

This shows that every isocline is horizontal, and that the value of x2 depends upon N and 
the sign of the error. Note that the value of u (the input step size) does not figure in this 
equation at al l . However, it w i l l reappear when the ini t ial conditions are calculated (note 
also that i f the denominator of the plant transfer function contained a non-zero constant 
term, then u would contribute directly to Equation (14.20), and so would xx, so the 
isoclines would not be horizontal). 

Table 14.3 gives some values for the cases when the error is positive (sgn(e) = 1) and 
negative (sgn(e) = - 1 ) . These lead to Figure 14.20(b), which shows some possible part-
trajectories. The actual behaviour depends upon the ini t ia l conditions, but the trajectories 
w i l l always fol low the patterns shown in the various regions of Figure 14.20(b). 

Table 14.3 Isocline parameters for Figures 14.20(b) and 14.21. 

N - 3 - 2 -1 -7/8 -3/4 -1/2 -1/4 -1/5 -1/8 0 1/4 1 2 C O 

x2 (error positive) 3/5 1 3 4 6 -oo - 6 - 5 - 4 - 3 - 2 -1 -3/5 0 
x2 (error negative) -3/5 -1 - 3 - 4 - 6 oo 6 5 4 3 2 1 3/5 0 
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In operation, the relay w i l l switch every time e crosses zero. This means that the PPT 
w i l l switch repeatedly from one set of trajectories to the other. Figure 14.21(a) shows 
about 15 seconds' worth of an actual response to an input step of 4 units. The starting 
point is found from e = u — y, so for a step input and a constant zero ini t ia l output e = u 
and e — 0 ini t ial ly. The resulting behaviour at the output y (over 20 seconds) is shown in 
Figure 14.21(b). 

A system such as this w i l l end up in a l imi t cycle, because the signal at E must be 
either + 1 or — 1 , so the system can never settle. However, as Figure 14.21(b) shows, the 
amplitude o f the l imi t cycle can be very small. Also, from Figure 14.20(b), it can be seen 
that any ini t ia l condition w i l l eventually lead to the same l i m i t cycle, since starting points 
in the ranges (e positive and e > — 3) and (e negative and e < + 3 ) w i l l give the same 
qualitative behaviour as in Figure 14.21(a); while for any other starting point, the 
magnitude o f the slope associated wi th the isoclines is always between 0.5 and zero, and 
always leads the trajectory towards the x2 — + 3 or x2 = — 3 isoclines as appropriate. Once 
either o f these isoclines is reached, the trajectory w i l l slide along i t unt i l e changes sign, 
when the behaviour reverts to the former set of isoclines. 
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Figure 14.21 Responses of Time (s) 
the system of Figure 14.20. (b) 
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14.5A Optimal switching 
The digital computer simulation leading to Figure 14.21 in Example 14.5 is not easy 
to perform correctly. The reason is that the switching o f the relay (being assumed to 
be ideal) is exceedingly fast compared wi th the dynamics o f the rest o f the system. 
Therefore, a very small discrete time step is required i f a digital simulation is to be 
successful in predicting the result (there were 20 000 data points per plot in the data 
file which produced the figure, although only every fifth point was plotted). The 
instant at which the relay switches in the simulation can be up to one time step late 
compared wi th the real (continuous-time) system. For the system of Example 14.5, 
i f the time step is more than a millisecond or so, this effect becomes visible as a 
clockwise skewing of the switching line (the vertical axis in Figures 14.20(b) and 
14.21(a)). This simulates the effect of a time delay, and affects the whole response 
in a potentially misleading manner. 

O f course, in the real system there will be some time delay, since no relay 
(even a solid state one) is instantaneous. I f a delay of 100 ms is introduced into the 
relay characteristic, the PPT is modified as shown in Figure 14.22(a), and the time 
response as in Figure 14.22(b). This time, there is no doubt about the l i m i t cycle. Its 
amplitude is indicated in Figure 14.22(a), and can be confirmed from Figure 
14.22(b) (it becomes only slightly smaller i f further points are plotted). 

Figure 14.22 shows that the performance has been changed significantly by 
moving the switching line. Although the result is qualitatively worse than that of 
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(b) 
Figure 14.22 Responses of the system of Figure 14.20 with 100 ms switching delay. 
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Figure 14.21 (the time delay having its usual destabilizing influence), this leads to 
consideration of the possibility that the switching line might be moved deliberately 
in an effort to obtain better performance. 

So long as the definition e — u — y is maintained, and so long as the input to 
the linear part of the plant is either + 1 or - 1 , the general phase portrait o f Figure 
14.20(b) holds true. This means that some function o f the designer's choice (it 
might be called a compensator) can be inserted between the signal e and the relay as 
shown in Figure 14.23, but the trajectories o f Figure 14.20(b) could st i l l be used. 
M o v i n g the switching line simply 'covers up' some parts o f the portrait while 
'uncovering' others. For example, in Figure 14.22(a), the PPT in the vic ini ty o f the 
points (—0.1, —2.25) and (0 .1 , 1.75) is fo l lowing parts of the phase portrait which 
were not visible in Figure 14.20(b), because of the different positions of the 
switching lines in the two figures. 

Figure 14.23 Addition of a 
nonlinear controller to the 
plant. 

The time delay leading to Figure 14.21 could have been modelled in this way 
as e' = f{e, e) = e + 0.\e for a 0.1 s delay (that is the value o f e, plus its rate of 
change mult ipl ied by the time for which it persists). This fits the form of Figure 
14.23, and the switching line in Figure 14.22(a) can be seen to fol low the 
relationship for e' = 0 (that is, e = — lOe). 

I f the switching line could be rotated anticlockwise rather than clockwise, 
better performance might be expected, as the isoclines would then always give a 
PPT ending at the origin. Consider Figure 14.24, in which the switching line is a 
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straight line of slope —l/k (where k is some positive constant), wi th the phase 
portrait of Figure 14.20(b) superimposed and suitably extended. In order to make 
this happen, the relay needs to give an output as follows: 

+ 1 when e > - \ e, and - 1 when e < - \ e 
k k 

The relay in Figure 14.23 now switches when e' = f(e, e) = 0, so a compensator 
function e' = f(e, e) = ke + e is required. 

This is actually a familiar compensator. Since e = u — y, i t follows that 
e = —y for step inputs. The relay input is therefore given by e' = e + ke = e - ky. 
This is rate feedback, as shown in Figure 14.25, and much used in linear controllers 
(see, for example, Section 4.5.3 or Section 12.6.1). I t is equivalent to adding some 
phase lead control or derivative action. The signal y may be available directly, as 
shown. 

Figure 14.25 The system 
with rate feedback. 

i 
1 

-1 1 +2s 

Alternatively, i f y is a position signal in a servo, then y might be generated 
using a tacho. I f none of these is possible, a linear observer might be used 
(Chapter 9). 

Figure 14.26 shows the responses for a k value o f 1/3. The ini t ia l part o f the 
response is, as expected, the same as that in Figure 14.21. However, when the 
switching line is reached, the PPT switches to the 'other' set of curves as shown in 
Figure 14.24. The performance is obviously improved, and the PPT eventually 
'slides' to the origin along the switching line. In fact, the PPT oscillates from one 
side of the switching line to the other during this sliding (the relay 'chatters' 
between its two states) and ends up in a small-amplitude l imi t cycle near the origin 
(due to the ideal relay characteristic), but these phenomena are invisible on the scale 
of the plot. The magnitude of the chattering depends upon the slope of the switching 
line and the linear system dynamics. 

To make the behaviour better still (minimum settling time), the compensator in 
Figure 14.23 could be chosen such that f(e,e) actually implemented the curves o f 
the PPTs marked ' Z ' in Figure 14.24. This is called optimal switching, and the 
system w i l l then settle from any init ial condition after a single switching of the 
relay. As soon as the PPT encounters the switching line (Z) , the PPT actually 
becomes the switching line, so it should slide to the origin without any chattering. In 
practice, non-ideal characteristics of the relay may cause chattering, but the 
response w i l l be much improved. Also, the small deadzone inherent in relays (or the 
hysteresis deliberately built into electronic comparators) w i l l tend to quench the 
chattering and the l imi t cycle at the origin giving a stable steady state, but a small 
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(a) 

(b) 
Figure 14.26 Responses of the system of Figure 14.25. 

steady-state error. On-o f f (or 'bang-bang') t ime-optimal controllers of this type 
can be designed using a Hamiltonian approach to optimal control, based on 
Pontryagin's maximum principle (Banks, 1986). 

14.5.5 Timescaling PPTs 
This is a rather inaccurate procedure, and i f reliable timescaling is needed a 
computer simulation w i l l always be preferable. However, the procedure outlined 
here w i l l give a quick guide when required. 

Since, for PPTs, it is always the case that 

dxx dt 1 
—— — x2, then —— = — 
dt dxx x2 

Integrating this wi th respect to xx gives 

t = — dxx J * 2 

This means that the time to any point on the PPT is the area up to that point under 
the curve of 1 /x2 versus xx. Therefore, the xx axis can be divided into a number o f 
segments, small enough that the corresponding behaviour o f x2 is adequately 
represented, the value of x2 corresponding to each segment can be measured, 
converted to l/x2 and the resulting areas can then be evaluated by hand, totalling 
them to give t. 
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Example 14.6 Timescaling a PPT 
The timescaling procedure is applied (roughly) to the PPT of Figure 14.13(b), in order to 
find the time to the first peak. The first two columns of Table 14.4 show the information 
taken from the figure. The fourth column converts to l/x2. Here, there is a problem due to 
the fact that x2 is sometimes zero. This can be avoided by taking the mean of two adjacent 
x2 values in each case, before calculating \/x2. The fifth column shows the area o f the 
resulting segment of the plot of l/x2 versus xx (note that the width of each segment is a 
constant xx = 0.1). The time is shown in the sixth column as the cumulative sum of the 
values in the fifth (that is, the integral). I t can be seen to be in approximate agreement 
wi th Figure 14.13(a). For example, the time when xx first crosses zero can be found from 
the table as t — 1.48 s, and the time to the first peak is approximately the final value in the 
table, t = 2.21 s. The agreement wi th Figure 14.13(a) would be better for a smaller xx 

increment. 

Table 14.4 Timescaling for the PPT of Figure 14.13(b). 

Mean of each Magnitude Area = 1 /x2 

X\ pair of x2 values of 1 /x2 xO.l Time 

1.0 0 — - -

0.9 -0.54 -0.27 3.7 0.37 0.37 
0.8 -0.68 -0.61 1.64 0.16 0.53 
0.7 -0.79 -0.74 1.35 0.14 0.67 
0.6 -0.84 -0.82 1.22 0.12 0.79 
0.5 -0.86 -0.85 1.18 0.12 0.91 
0.4 -0.90 -0.88 1.14 0.11 1.02 
0.3 -0.90 -0.90 1.11 0.11 1.13 
0.2 -0.86 -0.88 1.14 0.11 1.24 
0.1 -0.84 -0.85 1.18 0.12 1.36 
0 -0.79 -0.82 1.22 0.12 1.48 

-0 .1 -0.72 -0.75 1.33 0.13 1.61 
-0 .2 -0.62 -0.67 1.49 0.15 1.76 
-0.3 -0.48 -0.55 1.82 0.18 1.94 
-0 .4 -0.25 -0.37 2.70 0.27 2.21 

14.5.6 Classification of PPTs - critical points and Lyapunov's first method 
This section ends wi th some general guidelines on typical forms of PPTs for various 
configurations of the linear part of the system. The presentation of such general 
guidelines is only feasible because of the l imitat ion to second-order systems. These 
standard forms give an immediate guide to the general form of the PPT for the 
linear part of any second-order system, and sometimes allow an estimate to be made 
of the form of the PPT for systems wi th quite complicated nonlinear behaviour. 

In general, a critical point (or equilibrium point) of a system is defined as a 
point in the state space at which all derivatives are zero. I t is therefore a point at 
which the system might theoretically come to rest. However, although this w i l l be 
possible in a carefully constructed simulation, i t may not always be possible in the 
real world . I f attention is restricted to two dimensions for simplicity, it is found that 
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the PPT of any system either ends at, begins at, or circles around a cri t ical point. For 
systems wi th no forcing input, i t is the case that x = Ax = 0 at the cri t ical points 
(this is true for higher order systems too, of course). I n PPTs, the relationship 
xx = x2 has always been used, wi th x2 plotted vertically, so it can be concluded that 
the crit ical points in PPTs w i l l be on the horizontal axis. Their actual location 
depends upon the system dynamics and any ini t ia l conditions which may be 
applied. 

In the neighbourhood of a critical point, and wi th the or igin o f the phase plane 
moved onto the critical point (so that the state vector contains deviations from that 
point), the representation x = Ax is a linearized model o f the nonlinear system. I t 
should therefore be a good approximation to the true behaviour o f the system, so 
long as operation does not move far from the cri t ical point. The dynamic behaviour 
is determined by the eigenvalues of the A matrix, as shown in Table 14.5 (the curves 
are qualitative indications only) . There are various special cases involv ing repeated 
and zero eigenvalues (see, for example, Leigh (1983)). 

In the case of the stable and unstable nodes, the two straight lines through the 
origin of each plot are the eigenvectors o f the linear part o f the system. The one 
which is an asymptote for the other PPTs is called the slow eigenvector and 
corresponds to the eigenvalue having the smaller magnitude. The other is the fast 
eigenvector because it corresponds to the larger eigenvalue, and therefore the 
solutions move faster in this direction (because e~X]t decays faster than e~Xlt i f Xx is 
greater than X2). 

A linear second-order system has only one crit ical point (for instance, 
Example 14.2 and Figure 14.15 are for a system whose only cri t ical point is a stable 
focus). On the other hand, a nonlinear system can have mult iple cri t ical points. A 
simple example is the pendulum considered in Example 2.10 and Figure 2.23 (see 
Section 2.4.5). This has two kinds o f crit ical point at which the system can come to 
rest. One is the obvious one in which the mass hangs vertically below the pivot and 
intui t ively this also is a stable focus. These w i l l occur at angles o f 6 = 0, ± 2 7 r , 
±4n.... radians. 

The other k ind of critical point is the unstable equi l ibr ium condition when the 
pendulum is balanced wi th the mass vertically above the pivot. Consideration o f 
Table 14.5, wi th a little imagination o f the various possibilities o f the behaviour o f 
position and velocity (xx and x2 respectively) as the pendulum oscillations approach 
this second crit ical point, w i l l reveal that i t is a saddle point. These w i l l occur at 
± 7 c , ±3n,... radians. 

Information like this can be used to sketch a rough PPT for the system. This is 
actually an application of Lyapunov's first method. The method is applicable to 
systems of any order. I t derives the local stability of a nonlinear system in the region 
of each of its critical points, by determining the eigenvalues o f the linearized model 
about each crit ical point. 

In general, i f the eigenvalues of the linearized model about a cri t ical point all 
have negative real parts, the critical point w i l l be stable and, for ini t ia l conditions 
sufficiently close to the critical point, the state vector o f the nonlinear system w i l l 
converge to the point as time passes. I f any eigenvalue has a positive real part, the 
crit ical point w i l l be unstable, and the nonlinear system state vector w i l l diverge 
from i t . However, i f the linearized model around a cri t ical point has a zero 
eigenvalue, even i f all the other eigenvalues have negative real parts, the linearized 
model allows no conclusion to be drawn about the stability o f the nonlinear system. 
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Table 14.5 Critical point classifications. 

Name Phase portrait Eigenvalues Comments 

Stable 
node 

Unstable 
node 

Saddle 
point 

Stable 
focus 

Unstable 
focus 

Centre 
(vortex) 

Both real 
Both negative 

Both real 
Both positive 

Both real 
One negative, 
one positive 

Complex 
Real parts 
negative 

Complex 
Real parts 
negative 

Imaginary 

PPTs approach 
monotonically 

PPTs leave 
monotonically 

PPTs approach 
and leave 

monotonically 

PPTs approach 
in an oscillatory 

manner 

PPTs leave 
in an oscillatory 

manner 

PPTs are 
ellipses 

For second-order systems, the results are as given in Table 14.5. Although the 
predicted behaviour w i l l change as operation moves away from a crit ical point (that 
is, as the linearized model becomes inaccurate), i t should fol low smooth curves. 
Therefore i f critical points are reasonably close together, the behaviour of a 
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nonlinear system can be envisaged by connecting up the known phase portraits for 
the linearized system at each crit ical point. 

For the pendulum, the stable foci and saddle points occur at the locations 
determined above. Application o f the method described above gives a resulting 
phase portrait of the type indicated in Figure 14.27 (the figure is not intended to be 
accurate). The figure repeats indefinitely along the real axis, and such behaviour is 
also correct from physical considerations. 

For example, i f the pendulum begins in the stable condition at xx = 8 = 0 
radian, and is then given a large ini t ia l positive velocity (x2 = 6 = some large 
positive number o f rad s" 1 ) , then i t w i l l fo l low a trajectory such as that uppermost 
i n Figure 14.27. When the saddle point at 180° is reached (that is, when xx = n 
radians - the saddle point on the right o f Figure 14.27), the velocity is st i l l 
sufficiently high to carry the pendulum right past the vertical and into the next 
section o f the PPT (where xx > 180°, beyond the right-hand edge of Figure 14.27). 

14.6 Lyapunov's second (direct) method 
This is also a time-domain approach to nonlinear system analysis. Its purpose is to 
examine the stability o f any system whose model can be expressed in a general 
state-space form. The investigation o f stability is one o f the most important 
requirements o f any control system design, but particularly so for nonlinear systems 
where stability is a rather complex topic. I n this method, no approximations are 
made (other than the ini t ial modelling). I t is applicable to: 

• systems of any order 

• linear systems 

• nonlinear systems wi th any number o f nonlinearities 

• t ime-varying systems 

• multivariable systems 

• systems whose models are not entirely numerical - that is, i t can be used in 
principle wi th unknowns in the state space model, and therefore assist i n 
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controller design by allowing the unknowns to be calculated to give whatever 
stability characteristics are required. 

This is the nearest yet to a general approach to nonlinear system analysis, so i t is 
an extremely powerful technique. However, there are some limitations: 

• I t is not directly applicable to systems wi th discontinuous nonlinearities (because 
a state-space model is required). 

• Application o f the method involves a search for a mathematical function o f the 
system variables which has certain properties (to be described below). This 
search can be extremely difficult. Although the method is based on state-space 
models, there is no 'synthesis' approach for finding these functions; intui t ion and 
experience are needed. 

14.6.1 Lyapunov stability 
Section 14.5.6 outlined Lyapunov's first method, i n which the stability of a 
nonlinear system in the vicini ty of a critical point is determined by calculating the 
eigenvalues of a linear model of the system (linearized about that crit ical point). 
The second method allows the determination o f stability without having to solve the 
system equations (that is, without having to find the eigenvalues - hence i t is called 
the direct method). This is useful for nonlinear and/or time-varying systems, where 
solution of the state equations is usually impractical. 

The general state-space model x = f(x) is used, where the functions in / can 
be linear or nonlinear. Subject to certain constraints, / can also be time-varying 
(Slotine and L i , 1991). 

As wi th Lyapunov's first method, the critical point under investigation w i l l 
be considered to be located at the origin of the state space (that is, where 
xx — x2 = ... = xn = 0). Analysis of any critical point to which this does not apply 
can be carried out after firstly shifting the axes of the state space so that the origin 
corresponds wi th the critical point. This is done by substituting x - xc for x in the 
state-space model, where xc contains the values o f the state variables at the critical 
point. 

Firstly, the main kinds of stability possible for nonlinear systems are defined. 
The definitions are illustrated in the phase plane in Figure 14.28, which obviously 

(a) (b) (c) 

Figure 14.28 Types of nonlinear stability, (a) Global asymptotic stability; (b) local asymptotic stability; (c) Lyapunov 
stability. 
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applies to second-order systems. For third-order systems, the plane areas in Figure 
14.28(b) and (c) become three-dimensional surfaces, while for higher orders they 
become abstract hypersurfaces. However, the ideas and the subsequent 
mathematics apply to systems of any order. 

Globally asymptotically stable (or stable ' i n the large' - Figure 14.28(a)) 
describes a system whose state vector decays to the or igin and remains there as time 
passes, in response to any ini t ial condition (this is the k ind o f stability which applies 
to linear systems, for example Figure 14.13). I t is worth noting that this definition 
can only be fulfilled for systems having a single crit ical point at which the system 
can come to rest. 

Locally asymptotically stable (or stable ' i n the small ' - Figure 14.28(b)) 
describes a system whose state vector decays to the origin and remains there as time 
passes, so long as the init ial condition vector was wi th in a certain 'distance' of the 
origin (this is not intended to imply a circle, merely to give a physical ' feel ' for the 
behaviour). In other words, there is some region around the or igin o f the state space 
in which ini t ia l condition vectors w i l l lead to asymptotically stable responses. This 
is called the zone of attraction to the origin. I f the system is released from ini t ia l 
conditions outside this region, the response may be unstable or, i f i t is stable, the 
state vector may never again approach the origin. The simple pendulum is an 
example of this k ind of system. In practical systems, asymptotic stability is often 
the requirement. I f the system is not globally asymptotically stable, then the zone 
of attraction may have to be made sufficiently large that no disturbance can fal l 
outside it . 

Lyapunov stable (Figure 14.28(c)) describes a system in which the state vector 
w i l l remain in some region around the origin as time passes (but w i l l not necessarily 
ever approach the origin), so long as the ini t ia l condition vector was wi th in a certain 
'distance' of the origin. In other words, there is some region around the origin o f the 
state space in which init ial condition vectors w i l l lead to responses which cause the 
state vector to remain wi thin some other region around the or igin. L i m i t cycles are a 
good example of this k ind o f behaviour - a l imi t -cyc l ing system could not be called 
'stable' in the same sense as linear system stability is defined, but nor is i t unstable 
in the sense that the magnitude of the state vector can increase without l i m i t as time 
passes. Rather, the oscillation is contained wi th in some region of the state space, 
and the system is said to be 'stable in the sense of Lyapunov' . Systems wi th this 
k ind o f stability are not usually designed deliberately (except for electronic 
oscillators), but i t is useful for describing system behaviour, and is also used in 
formal mathematical definitions o f asymptotic stability. 

14.6.2 Lyapunov functions and their application 
I f it is desired to investigate the stability o f the state-space model o f any system, 
however complex, i t would be very helpful i f some function o f all the system states 
could be found which could be shown to be always decreasing in magnitude (that is, 
towards zero) as time passes. The existence o f such a function, i f it was constructed 
in a suitable manner, would then imply that eventually the state vector would reach 
zero, and the system would be asymptotically stable. 

As an example, for mechanical or electrical systems, an equation for the total 
energy stored by the system might be writ ten in terms o f the state variables. The 
energy stored can only be a positive (or zero) quantity. I f i t can be shown, for some 
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particular system, that the rate of change of energy stored is always negative, then 
that system must eventually lose all its stored energy and come to rest at a crit ical 
point. The fact that the rate of change of stored energy is always negative therefore 
guarantees asymptotic stability (but not necessarily global asymptotic stability, as 
w i l l become apparent later). 

Example 14.7 Stability analysis of the simple 
pendulum 
Consider again the pendulum of Figure 2.23 (Section 2.4.5). The equation o f motion for 
this arrangement has already been derived in Example 2.10 as Equation (2.30), repeated 
here for convenience: 

d29 mg . n „ 
m —T + sin 9 = 0 

dt2 I 

This simple model ignores frictional effects, so it is conservative - i f the pendulum is 
given some ini t ia l displacement and released, i t w i l l oscillate for ever. To make the model 
more realistic, the friction due to the pivot and air must be included, since this is the term 
which dissipates the energy and causes the oscillations to die away. The simplest way to 
do this is to include the resulting viscous damping torque, which might be represented as 
T = B dO/dt, N m ( rad / s ) - 1 , where B is the damping coefficient. Mul t ip ly ing the original 
equation o f motion (above) by / 2 , so that i t is expressed in terms of torques, and including 
this damping torque term, then gives the improved equation of motion: 

ml2 + B ^ + mgl sin 9 = ml29 + B9 + mgl sin 9 = 0 (14.21) 
dt1 dt 

Now consider the energy in the system. A t any instant, this comprises the potential energy 
and the kinetic energy. The potential energy is given by mgh, where h is the vertical height 
of the bob above the rest position, namely h = / - / cos 9. The kinetic energy is \mv2, 
where v is the tangential velocity, namely 

: v=id4=ie 
dt 

for 9 i n radians. Call ing the total energy V(9) therefore gives: 

V(0) = mgl - mgl cos 9 + \ml292 (14.22) 

Differentiating Equation (14.22) wi th respect to time gives the rate o f change of energy: 

V(9) = rnglO sin 9 + ml299 = 9(mgl sin 9 + ml29) 

Substituting from Equation (14.21) for the term in parentheses: 

V(9) = -B92 (14.23) 

Since Equation (14.23) is always negative, this shows that the energy is always decreasing 
and therefore the system w i l l be asymptotically stable (but i t has not yet been shown that 
the stable point w i l l be at the origin). From a physical viewpoint, i t also shows that i t is 
the damping term (B) which is responsible for dissipating the energy. I f there were no 
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H damping then Equation (14.23) would be zero. This means that the total energy would be 
^ conserved and repeatedly converted, without loss, from potential to kinetic energy and 

back again, according to Equation (14.22). The system would then not be asymptotically 
* stable as i t would oscillate for ever in a l imi t cycle. However, i t would be Lyapunov stable. 
i Another point worthy of note is that Equation (14.22) (the V function) cannot be 

negative, and can only be zero i f cos 9=1 and 9 = 0. This could happen at angles of 
9 = ±n2n, where n = 0 ,1 ,2 ,3 . . . , that is, w i th the bob stationary directly below the pivot. 
This corresponds to the only stable critical points of the system as discussed in Section 
14.5.6. I f the possible values of 9 are l imited to the range —n<9<n, then the single 
crit ical point at 9 = 0 is found. However, the system w i l l not necessarily settle at this 
particular crit ical point unless the init ial value o f velocity (9) is also constrained as 
discussed at the end of Section 14.5.6. This shows that in this case, analysis o f stability in 
this way applies in the vicini ty o f critical points; i t does not necessarily tell us about 
stability in the large. The approach w i l l now be generalized, and this system w i l l be 
considered further in Example 14.9. 

Lyapunov's second method is a generalization o f the approach o f Example 14.7 to 
any system expressible in state-space form, even i f energy is not a meaningful 
concept for the system under investigation. 

Let R represent some region o f the state space including the origin (a crit ical 
point), and let V(x) be some scalar function o f the system states ( in Example 14.7, 
choosing xx = 9 and x2 = 9 would make V(9) such a function). The function V(x) 
is said to be positive definite in the region R, so long as i t has continuous partial 
derivatives and is always greater than zero for any state vector in R, except that 
V(0) = 0. I f the function V(x) is never less than zero, but can be zero for some non
zero value o f x i n the region R, then V(x) is said to be positive semi-definite. 
Negative definite and negative semi-definite functions are defined in the same way, 
but exchanging 'greater than' and 'less than' as one would expect. 

I f V(x) is positive definite in the region R, and i f V(x) is negative semi-definite 
in the region R, then V(x) is called a Lyapunov function. 

I f a Lyapunov function exists for a system, i t is Lyapunov stable in the region 
R. Furthermore, i f such a function can be found for which V(x) is negative definite, 
rather than negative semi-definite, then the system is asymptotically stable in the 
region R. I f V(x) is positive definite in the region R, the or igin is an unstable crit ical 
point. This latter statement allows attempts at proving instability i f stability cannot 
be proved. 

Some of these ideas are illustrated in Figure 14.29 for a second-order system. 
Contours of a Lyapunov function V are drawn for three different values o f V. I f V is 

V,>V2>V3
 x 2 k 

Figure 14.29 Illustration of 
a Lyapunov function. 
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always negative except at the origin (negative definite), any state trajectory must 
always move from an outer curve to an inner one, ending up at the origin. I f V is 
negative except that i t can become zero somewhere other than at the or igin 
(negative semi-definite), the state trajectory would not reach the origin, but would 
remain some distance from it , possibly in a l im i t cycle, as the dissipation o f 'energy' 
in the system would then have ceased (analogous to the behaviour of the pendulum 
in Example 14.7 wi th zero damping). 

Example 14.8 Stability investigation and 
controller design for a different system 
Consider the stability of the system shown in Figure 14.30(a), ignoring the external inputs 
ux and u2 for the present. This system is described by the state-space model: 

xx = -4xx - xxx\ + x3 

x 2 = x x - x l (14.24) 

x3 =xx 

I f a Lyapunov function for this system can be found, its stability is guaranteed as 
described above. In the search for such a function, first choose a V(x) which is positive 
definite, and then test it to see whether V(x) is negative semi-definite (or preferably 
negative definite). 

Let us try V(x) = ax] + bx\ + cx\ since this is guaranteed to be positive definite so 
long as a, b and c are all positive constants. Note that every state variable must appear in 
V() i f i t is to have a chance of being positive definite. For example, i f x2 did not appear, 
then V() would be zero everywhere along the x2 axis (where xx = x3 = 0), making it 
positive semi-definite only. This V(x) can be differentiated wi th respect to time using the 
rule 

df(x) = df(x) dx 

dt dx dt 

which gives: 

V(x) = 2axxxx + 2bx2x2 + 2cx3x3 (14.25) 

To discover whether or not V(x) is a Lyapunov function for the system of Equation 
(14.24), i t is necessary to substitute Equations (14.24) into Equation (14.25) and test for 
negative definiteness. The substitution yields: 

V(x) = - 8 a * 2 - 2ax\x\ + 2{a + c)xxx3 + 2bxxx2 - 2bx\ (14.26) 

I f Equation (14.26) can be shown to be negative definite, the system has been proved to be 
asymptotically stable (or Lyapunov stable, i f Equation (14.26) is only negative semi-
definite). Unfortunately, neither is the case here. The first two terms in Equation (14.26) 
are both negative definite. However, the last term can be seen to be negative definite only 
so long as x2 is constrained to be positive. Following from this, xx would have to be 
negative in the penultimate term, and x3 positive in the third term. This set o f conditions 
cannot be guaranteed and V(x) is therefore not a Lyapunov function for this system. 
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Figure 14.30 A nonlinear system, with open-loop response and response with SVF. (a) The open-loop system; (b) the open-
loop response; (c) the response with state variable feedback. 

I n fact, these restrictions (that is, xx < 0, x2 > 0 and x3 < 0) show that the or igin o f 
the state space is precisely at one corner o f the region i n which Equation (14.26) would be 
negative definite (that is, the cubic region o f the state space defined by xx < 0, x2 > 0 and 
x3 < 0) and therefore the real system could not be stable, since an arbitrarily small 
disturbance on x at the origin could take it out o f the stability region. 

I t is most important to note that the system has not been proved to be unstable', we 
have only failed to prove that i t is stable. 

In order to avoid this k ind o f conclusion and arrive at a V function which is a 
Lyapunov function for the system, it is necessary to be able to remove al l such products as 
xxx2 and xxx3 from Equation (14.26), since these are always indefinite. I t can be seen that 
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no possible choice of a, b and c (all of which must be positive, remember) can achieve 
this here. A plot o f the system response for an arbitrary ini t ia l condition vector 
x=[—l 1 - 1 ] T is given in Figure 14.30(b), and the predicted instability does occur, 
especially once xx becomes positive (slightly beyond the RHS of the plot) , fo l lowing 
which the response o f x2 rapidly becomes vertical. The simulation is to be found in the 
M A T L A B m-file figl4_30.m on the accompanying disk. 

A different choice of V function might yield a better result and, in general, i f one 
such as that tried above does not work, i t might next be wise to try including functions 
such as 2exxx2 i n the V function. This means that a and b (for example) are no longer 
constrained to be positive, but e must be chosen such that the overall V function remains 
positive definite (a test for which is given in Section 14.6.3 below). This modification 
would add a term 2exxx2 + 2exxx2 to the RHS of Equation (14.25). Substitution o f the state 
equations then often gives the possibility of choosing e so that Equation (14.26) is negative 
definite. I n the present case, this is not very successful either, so the system w i l l be 
assumed to be unstable for practical purposes (note again that this has not actually been 
proved), and an investigation w i l l be carried out to see how the Lyapunov approach can 
assist in the design o f a stabilizing controller. 

The state-space model is cast in the usual way, so that external inputs can be applied 
as shown in Figure 14.30(a). I f state variable feedback is applied from the states xx and x2 

via a feedback matrix -K (see Section 5.4), this implies that these system inputs become: 

= -Kx = -
*„ ^12 * i 3 ' X = 

—kxxxx ~ k\2x2 ~ *13*3~ 
. " 2 . 

= -Kx = -
.^21 ^22 ^23. -k2Xxx ~ ^22x2 ~~ ^23*3 . 

making the system equations: 

xx = - ( 4 - f kxl)xx - xxx\ — kx2x2 + (1 — kX3)x3 

x2 = (1 — k2X)xx — x\ — k22x2 — k23x3 

x3 =xx 

Substituting these into Equation (14.25) yields the new result: 

V(x) = -2a(4 + kxx)x\ - 2ax\x\ - (2akX2 - 26(1 - k2X))xxx2 

+ (2a(l - kX3) + 2c)xxx3 - 2bx\ - 2bk22x\ - 2bk23x2 (14.27) 

Although this looks complex at first sight, i t is better than the previous result, as the 
feedback gains in K can now be chosen to remove the unwanted product terms in Equation 
(14.27). I n some cases an infinite number of choices exists, each of which yields a 
different performance. Just one choice w i l l be used here to illustrate the method. 

A n y negative definiteness of Equation (14.27) w i l l not be spoiled by choosing 
— ^12 = ^23 = 0. I t may appear that k22 could also be set to zero, but notice that the 

term in x% w i l l be positive i f x2 is negative. Therefore k22 must be retained as a ' tuning ' 
parameter so that the overall set of terms involving x2 can be made negative definite ( i f 
possible). Wi th these choices, Equation (14.27) becomes: 

V(x) = -Sax] - 2ax\x\ + (26(1 -

4 - ( 2 a ( l - t 1 3 ) + 2 c ) ^ 3 

* 2 l ) ) * l * 2 

- 26x2 - 2bk22x\ (14.28) 
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The first two terms in Equation (14.28) are negative definite. The awkward products can 
now be removed from the third and fourth terms by choosing k2X = 1 and kX3 = 1 + c/a. 
This just leaves the last two terms, which can be written -2bx\{x2 + k22), and w i l l 
therefore be negative definite so long as x2 > -k22. The larger we make k22, the greater 
w i l l be the stability margins of the plant, but the harder we shall drive the input. Choosing 
a — b = c = 1, and k22 = 10 gives: 

K 
0 

10 
and 

V(x) = - 8 X 2 - 2x54 -2x1-204 (14.29) 

Overall, Equation (14.29) is negative semi-definite (because i t does not contain x3 and w i l l 
therefore be zero anywhere on the x3 axis) for all xx and for x2 > - 1 0 . A plot o f the 
controlled system's response appears in Figure 14.30(c) for the same ini t ia l conditions as 
Figure 14.30(b). Different choices for K would yie ld better performance, but the stability 
guaranteed by the Lyapunov approach is clearly visible and is actually asymptotic, so the 
Lyapunov analysis was pessimistic. 

Example 14.8 showed that there can be many Lyapunov functions for a system. 
I t is entirely possible that there is a different Lyapunov function for the system 
of Example 14.8 which would prove a much greater stability region, or even 
asymptotic stability; so the analysis may be rather conservative. This is the major 
problem wi th the approach - how is the search for Lyapunov functions to be made 
and, i f one is found, is i t the best? Unfortunately, there is no easy answer, since 
every nonlinear system can have unique properties. I f the system is an electrical/ 
mechanical one, in which the total energy can be calculated, then choosing V(x) as 
the energy in the system (as in Example 14.7) w i l l often work. For more general 
systems, or for a 'second opinion' on an energy-type system, the form o f function 
used in Example 14.8 is also a good candidate (as is the modification to i t which 
was suggested there). Leigh (1983) gives some other suggestions, but often it 
depends upon intuition. Note again that the failure to find a Lyapunov function 
does not imply instability; i t may just be that the search has not been sufficiently 
thorough. 

To find the region of stability, i t is necessary to discover the region o f the state 
space over which the chosen Lyapunov function is val id . I n Example 14.8 this was 
found as part of the exercise. However, in Example 14.7 i t was not done at a l l , 
merely noting that stability depended upon the in i t ia l velocity. W i t h the present 
level o f knowledge, that investigation can be repeated. 

i Example 14.9 The simple pendulum of Example I 14.7 revisited 
i 
1 I n Example 14.7, i t was shown that one o f the requirements for V(6) i n Equation (14.22) 
I to be positive definite was that 6 be restricted to the range —n < 6 < n (except that this 
I terminology was not used at that time). I t was also noted that the stability behaviour 
I depended upon the ini t ia l value of the velocity 6. 
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m 

* This section has shown that, in order to prove asymptotic stability, V{0) must be 
I positive definite, and V(0) negative definite. This allows l imits to be placed on the range 

of values o f 0 which can appear in Equation (14.22) i f the system is to be asymptotically 
# stable. I t is necessary to find the 'contour' in the state space corresponding to the 
i maximum allowable value o f V{0) (similar to the contours shown in Figure 14.29). A n y 

trajectory remaining wi th in the contour w i l l then yield an asymptotically stable solution. 
Using the definitions xx = 0 and x2 = xx = 0, Equation (14.22) becomes: 

V(x) = mgl - mgl cos xx + \ml2x\ (14.30) 

It is known from Example 14.7 that the l imits on xx are ±n. I t is also known that x2 = 0 
at the critical points represented by these l imits (the saddle points shown in Figure 14.27). 
Substitution of either l im i t into Equation (14.30) yields V(x) = 2mgl. For a contour o f 
constant V(x), substitution of this value into Equation (14.30) gives: 

i 

^ ( l + C O S J C i ) „ [g 0 

M For any specific value o f /, this curve can be plotted in the state space (the phase plane in 
^ this case). The resulting contour is shown in Figure 14.31. 
^ I f any ini t ia l conditions or disturbances cause responses which remain wi th in the 
* closed curves, such responses w i l l settle asymptotically to the origin of the particular 
* critical point concerned (that is, to xx = 0, ±2n, ±4n, and so on as appropriate), as was 

predicted from physical arguments earlier. What the analysis does not show is that the 
* system is also stable for any ini t ial conditions - but w i l l not necessarily settle at the 

'nearest' critical point i f released outside the closed curves o f Figure 14.31 (the critical 
point which w i l l finally capture the trajectory depends upon the ini t ia l velocity and the 

i point o f release). 

Figure 14.31 Regions of 
asymptotic stability for the 
simple pendulum. 

14.6.3 The Lyapunov approach for linear systems and the Lyapunov equation 
Lyapunov's direct method is also applicable to linear systems. For linear systems, a 
V function can always be chosen which has the fol lowing quadratic form. I t can 
then be tested to see whether i t is a Lyapunov function (although written for a 
different context, Example 12.2 gives a brief introduction to matrix quadratic 
forms): 

V(x) = xTQx (14.31) 

where Q is some chosen symmetric and positive definite matrix ('definiteness' 
wi th regard to matrices is covered in Section A 1.4). 
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Quadratic Lyapunov functions can be expanded to test for definiteness. For 
example, for a second order system (and remembering that Q is symmetric), the 
Lyapunov function could be written: 

V(x) = [xx x2] #11 Qn 

.#12 #22. 
= #11*1 + 2#12*1*2 + #22*2 

Here, q u , q22 and ql2 replace a, b and e respectively, as used in Example 14.8. The 
definiteness of Q can be tested by the methods i n Appendix 1 to give the 
definiteness properties of V. 

Having chosen a symmetric and positive definite Q, the derivative o f 
Equation 14.31 is tested for negative definiteness, in the same manner as was 
done for scalar V functions. Differentiating Equation (14.31) w i th respect to 
time, and then substituting the state equation 

x = Ax 

gives 

where 

V(x) = xTQx + xTQx = xTQAx + xTATQx = xTPx 

P = QA+ ATQ (14.32) 

Equation (14.32) is called a Lyapunov equation. I f P turns out to be negative 
definite wi th our choice of Q, the system w i l l be asymptotically stable. O f course, 
for a linear system, this also means that i t w i l l be globally asymptotically stable, as 
there w i l l be only one critical point. 

Unfortunately, approaching the problem this way is l ike ly to provide l i t t le 
useful information, because any randomly chosen Q matrix can fai l to give the 
correct properties in P, even i f the system is stable. 

The properties of the Lyapunov equation (Equation (14.32)), and theorems 
associated wi th i t (Atherton, 1982), imply that i t is better to begin w i th a negative 
definite and symmetric P matrix, and effectively solve Equation (14.32) for the 
corresponding Q. I f this turns out to be positive definite, the system is 
asymptotically stable. Moreover, this always works for a stable system, so the 
test is conclusive i f performed this way round, and P can be chosen simply as 
P = - / . However, the solution of Equation (14.32) is often not straightforward. 
Several nonlinear control texts, for example Atherton (1982) and Slotine and L i 
(1991), give more detail; but beware some notational changes. 

14.7 The describing function method 
This is the first of three methods to be studied which work in the frequency domain. 
The describing function (DF) approach allows the use o f polar plots in the analysis 
of nonlinear systems. Again, the technique aims to investigate the stability 
conditions for the system under investigation, particularly the prediction o f the 
existence and frequency o f l im i t cycles. 

As wi th all the methods for nonlinear systems, this approach has its advantages 
and disadvantages, which determine the type o f system to which i t is best applied. 
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To a l imi ted extent, this approach and the phase plane approach are complementary, 
some of the weaknesses of one being covered by the strengths o f the other. The D F 
approach: 

• is applicable to systems whose linear part is of any order (as opposed to the phase 
plane method, which is l imited to second order). I n fact, the D F approach works 
better for higher order systems than lower in general 

• works for continuous and discontinuous nonlinearities 

• allows for the use of simple polar plots, and the familiar interpretation of 
frequency response information. 

Approximations and limitations are as follows. There are methods which allow 
most of these to be relaxed (Atherton, 1982), but these lead to much more 
complicated procedures than the one to be described here. In addition, the last-
mentioned approximation is fundamental, and is often the major l imitat ion o f the 
D F approach: 

• Normally, only a single nonlinearity is considered. 

• The nonlinear element cannot be time-varying. 

• The input-output characteristic of the nonlinearity should be symmetrical about 
the origin (as are all those shown in Figures 14.5 to 14.8 and 14.10). I t is also 
preferable that they exhibit odd symmetry (which would exclude Figure 14.5(c)), 
and only such cases w i l l be considered here. 

• The D F approach works best for systems where the nonlinearity is not too severe, 
because it is an extension of linear techniques (as opposed to the phase plane 
approach which is usable for grossly nonlinear systems). 

• The approach assumes that the linear part of the plant acts as a very good low-
pass filter (which is why the method tends to work better for systems wi th higher-
order linear parts). 

14.7.1 The describing function 
Strictly, this approach is the sinusoidal input describing function, which 
distinguishes it from the more complicated procedures hinted at in the previous 
section. However, since this is the only approach to be covered, the simple 
abbreviation ' D F ' w i l l suffice. 

Figure 14.32 shows the type of system to be considered. G(jco) represents the 

Figure 14.32 System 
configuration for basic 
describing function 
analysis. 

*€>• 
A 

NL M G(jco) NL G(jco) 
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transfer function of the linear part of the plant, and NL the nonlinearity. Note that 
the application of an external forcing input is not allowed ( in any case, the D F w i l l 
not reveal much about the transient response o f the system, only its stability 
properties). 

Wi th the restrictions shortly to be defined, i t makes no difference whether the 
N L element is in the position shown, or at the output side o f G(yco), or in the 
feedback path. In addition, multiple N L elements may be able to be included under 
certain conditions (given below after Example 14.10). 

The problem in analysing the behaviour o f Figure 14.32 from a frequency 
domain standpoint is that the approaches o f Bode and Nyquist do not work for the 
nonlinear element. However, under certain conditions, a frequency-response type 
of model can be generated to represent the N L element, and then a modified version 
of the Nyquist criterion used in linear control can be applied. The fundamental 
approximation which allows this analysis is now given. For any system not meeting 
these conditions, the method is inappropriate. 

It is assumed that i f the system can exhibit a l i m i t cycle, then the signal at e 
during the l imi t cycle w i l l be sinusoidal. Since the output from the N L element ( M ) 
w i l l almost certainly not be sinusoidal, this seems unlikely at first sight. However, 
the signal at M w i l l be periodic ( in a l im i t cycle) and can therefore be represented as 
a Fourier series of sinusoidal components, beginning wi th a non-oscillatory (bias) 
term, and adding components of ever increasing frequency unt i l sufficient accuracy 
is reached. For example, 

M(t) = - ^ + Afj sin(cof + <t>x) + M2 sin(2o;i + </>2) H (14.33) 

where M0 is the amplitude of the bias component, Mx o f the fundamental, M2 o f 
the second harmonic and so on, and (f)2, and so on are the phase shifts at the 
various frequencies. 

The assumption that e is sinusoidal is now justified as fol lows. For signals 
in real systems, i t is the case that the amplitude o f the Fourier components (Mx, 
M2 and so on) generally decreases as frequency increases. Furthermore, the 
linear part of any real plant G(jco) w i l l have low-pass filter characteristics to 
some degree (these both fol low from the fact that no real system can respond to 
infinitely high frequencies). The basic assumption is that these two conditions 
combine so that, however irregular the waveform at M , only the (sinusoidal) 
fundamental component of i t w i l l appear back at e having traversed the control 
loop. To ensure that there is no bias component, attention is restricted to 
nonlinear elements whose characteristics exhibit odd symmetry, as mentioned 
earlier. 

The describing function (DF) is then defined as the ratio o f the fundamental 
component o f the N L element output (M) to the sinusoidal N L element input signal 
(e); in other words, i t is the transfer function (strictly, the frequency response 
function) of the N L element, considering only a sinusoidal input and the 
fundamental component of the output. This w i l l become clearer below when 
some DFs are derived. 

This transfer function analogy may now be used as fol lows, but the analogy 
must not be pushed too far. Representing the N L element in Figure 14.32 by a 
describing function N(j(o), the closed loop frequency response function can be 
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seen to be 

G(jco)N(j(o) 

1 + G(ja))N(ja)) 

A stability rule derived from the characteristic equation can now be used, in the 
same way as is done in linear analysis: 

l+G(j(o)N(j(o)=0 so = -N(jco) 

For stability, the frequency response of 

1 

(that is, the inverse Nyquist plot of the linear part of the system) must encircle the 
points given by -N(jco). The ( - 1 , 0 ) point of linear stability analysis is therefore 
replaced by the (negated) frequency response plot o f the N L element, namely 
-N(jco), which normally also turns out to be a function o f signal amplitude. 

14.7.2 Evaluation of describing functions 
This is rather tedious, and can usually be avoided by looking up DFs i n tables such 
as Table 14.6 (to be discussed later) or the far more comprehensive tables in 
Atherton (1982). Here, the method of derivation and a couple of examples are 
given. 

I f the N L element input signal is given by e(t) = Em sin cor, whose period (T) 
is defined as T = In/co, then the Fourier series expansion o f the N L element's 
output waveform is given by (see, for example, Balmer (1991)): 

A 0 0 

M(t) = + ^2 c o s n € 0 t ~*~ s m n(°t) 
2 n=l 

where 

2 f ' 0 + r 

An = - M(t) cos ncDt.dt (14.34) 

and 

2 f t o + T 

Bn = - M( f ) sin ncot.dt 

Note that Equations (14.33) and (14.34) are identical by letting Mn = > / ( A 2 + BQ 
and 

4>n = t an" 1 £ 

Restricting attention to N L elements whose input-output characteristics have 
odd symmetry about the origin, there w i l l be no bias term in Equation (14.34) 
( A 0 = 0). This is because any positive bias component generated by the N L element 
in response to the positive half-cycle of the input w i l l be precisely cancelled by that 
generated by the negative half-cycle. 



14.7 The describing function method 701 

Taking into account the additional assumption that al l harmonics higher than 
the fundamental are negligible, the expression then becomes: 

M(t) « Ax cos cot + Bx sin cot = Mx sin(cor + (f>x) 

where (14.35) 

Mx = J A] + B\ and 0 ! = t a n - 1 - 1 

v flj 

Equation (14.35) w i l l now be used to derive the describing functions o f two 
common N L elements. 

• Example 14.10 DF for a saturation element 
mm 1 

1 

i 

I 

1 

1 

1 

I 

1 

i 
f 

1 
iff 

Figure 14.33 shows the N L element characteristic, and its input and output waveforms. 
Notice that the output o f the N L element saturates at a time f s, when the input has reached 
an amplitude o f Es. The gain of the central portion o f the N L characteristic is K, so this 
generates a saturated output level o f KES. 

Since the output is in phase wi th the input, there can only be sine terms i n Equation 
(14.35), so it is immediately apparent that Ax= <j>x= 0. The only quantity to calculate is 
therefore BXi and the appropriate expression from Equation (14.34) is used to evaluate this, 
namely: 

_ 2 f r 

Bx = - Af ( i)sin cot.dt 

The term to be integrated w i l l always be positive and the symmetry o f the resulting 
B waveform means that the integral need only be performed over 1/4 o f the period, g iving: 

H 
| 8 (T/4 
m Bx = - M(r )s in cot.dt 
m j j Q 
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| From Figure 14.33, M(t) = KEm sin cor (0 < t < r s ) , and M(t) = KES (ts < t < T/4). 
fg Therefore, 

r 
Jo 

KEm s in 2 cot.dt + 
f r / 4 

KE^ sin cot.dt 

f r / 4 
# £ m ( 0 . 5 - 0.5 cos 2cot).dt + KES sin coi.Ji 

Jo Jrs 

= - <^ KEm\0.5t s i n 2cot -KEA \ 

T{ m [ co Jo L o> \ta J 
After substituting the limits into the results of the integrations, and then making the 
substitutions cor /4 = rc/2, sin 2cor = 2 sin cot cos cor, and Em sin cors = Es, the final result 
becomes: 

2K 
(Emcots + Es cos cors) 

which, from Equation (14.35) wi th Ax = 0, is the magnitude Mx o f the fundamental 
component of the output signal from the N L element. 

The definition of the D F is the ratio between this magnitude and that of the signal 
input to the N L element so, for the saturation element, the D F is: 

N(jco) 
By 2K 

cors + —— cos COL (14.36) 

The D F result of Equation (14.36) has no phase shift component. This tends to be 
the case for single-valued nonlinearities. Double-valued and multi-valued N L 
elements such as hysteresis and backlash generate phase shifts. Note also that the 
term Es/Em is the same thing as sin(cor s). This can lead to different representations 
of the DF, such as the frequency-independent ones which w i l l be used later. 

I f the system contains more than one N L element, one might expect that their 
DFs could be combined by multiplication, as in the case of other frequency 
response functions. However, this is not generally allowable, because the DFs 
describe nonlinear elements and so superposition does not apply (for example, the 
output of the first N L element would be non-sinusoidal, thus breaking the rules at 
the input of the second N L element, and making its D F invalid) . The rules for 
multiple N L elements are therefore that the DFs can be mult ipl ied together, but 
only i f the N L elements are separated by low-pass elements, which filter out 
everything except the fundamental. I f this is not the case, the N L characteristics 
must be combined, and the D F evaluated for the combined characteristic (see 
Problems 14.8 and 14.9(a)). 

For some N L elements, the DF can be plotted against signal amplitude. This 
gives an insight into the correlation between the D F and the physical behaviour of 
the N L element. Again, various approaches are possible. One approach begins by 
normalizing Equation (14.36), so that the D F is evaluated in terms of the quantity 
Em/Es (that is, the ratio between the peak amplitude o f the N L input signal 
and the amplitude at which saturation occurs). Making the substitution 
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cos cots = Vl - s in 2 cots in Equation (14.36), and then substituting sin(eoi s) = 
Es/Em leads to: 

(14.37) 

I f Em/Es < 1, then obviously the peak value o f the input signal (Em) is less than 
£ s , and w i l l not saturate the N L element (by inspection o f Figure 14.33), and its 
D F (which is just the effective gain, since there is no phase shift) w i l l then simply 
be K. For Em/Es > 1, saturation w i l l occur, and Equation (14.37) then applies. 
Plotting N(Em/Es) for a selection of values o f Em/Es gives the plot o f Figure 
14.34. 

The plot shows that for Em/Es = 1, the D F (the N L element gain) is K. As the 
value of Em increases wi th respect to £ s , the saturation effect comes into play, and 
the D F (and hence the output amplitude) is therefore reduced (as shown in Figures 
14.33 and 14.34). The higher the ratio Em/Es becomes, the greater is the effect o f 
the saturation, and the further the D F (gain) falls. Finally, for very large values of 
£ m , the saturation w i l l effectively cl ip of f almost al l the signal, so that the N L 
output (and hence its gain, and hence the DF) is approximately zero in comparison. 

Example 14.11 DF for an ideal relay element 
l Figure 14.35 shows the N L element characteristic w i th the input and output waveforms. 

The approach is identical to that of Example 14.10. For this N L element, i t can again be 
seen that the output is i n phase wi th the input, so that there can only be sine terms in 
Equation (14.35), and therefore Ax= <t>x = 0, leaving just Bx to be calculated using the 
appropriate expression from Equation (14.34), as in Example 14.10. 
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M(t) 

K 

Figure 14.35 Input-output 
behaviour of an ideal relay 
element. 

-K 

M(t)^ 

K 

*e(f) 

-K 

T/2 

Input jf. 
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The symmetry of the output waveform means that again the integral need only be 
u performed over 1/4 of the period, giving 

8 r r / 4 

B { = - \ M(r )s in cot.dt 

i s : 

8 f / 4 

From Figure 14.35, i t can be seen that M(t) = K (0 < t < T/4). Therefore, the expression 

8 r 7 / 4 , 8A: r cos cot i 7 "/ 4 

Bx = - K sin cot.dt = — CO Jo 

i After substituting the l imits into the result of the integration, and then making the 
i substitutions cos (coT/A) = cos(7i /2) = 0 and coT = In, the final result is that 

71 

As before, this represents the magnitude Mx o f the fundamental component of the 
' output signal from the N L element. To obtain the DF, the ratio between this magnitude and 

that of the signal input to the N L element is again needed so, for the ideal relay element, a 
D F is obtained of: 

4K 

In the D F of the ideal relay, the dependency on Em indicates that the effective gain 
of the relay falls as Em (the peak magnitude at the relay input) increases. This 
makes sense because the relay output is always ±K, so i f Em is very large, the 
output becomes negligible in comparison, giving a very low gain. 

The DFs evaluated in Examples 14.12 and 14.13, together wi th those o f a few 
other common N L elements, appear in Table 14.6. In that table, an input signal of 
e(t) = Em sin cot is always assumed. Note that al l the single-valued N L elements 
give a D F which has no phase shift component, because the output signal w i l l 
always be in phase wi th the input. However, i n the case of the hysteresis and 
backlash elements this is not so. Phase shifts w i l l occur between the input and 
output o f the N L elements (see Example 14.13, below), and so both the Ax anc\Bx 

terms exist in the Fourier expansion (Equation (14.35)), and are given in the table 
accordingly. Note especially the division by Em when combining Ax and Bx to 
calculate N for the hysteresis and backlash elements (this is easily overlooked). See 
Atherton (1982) for more comprehensive tables. 
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Table 14.6 Some common describing functions for an input signal e{t) = Em sin cot. 

[nput-output characteristics Describing function 
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14.7.3 Stability analysis using the DF 
A t the end of Section 14.7.1, it was stated that the fundamental approach is to plot 
the inverse Nyquist plot of the linear part of the plant, and investigate its 
intersections wi th the frequency response function of (minus) the DF. This is 
illustrated by two examples based on the antenna-positioning system, before some 
more general comments conclude the topic. 

Example 14.12 The antenna positioner with a 
softly saturating control amplifier 
Figure 14.36(a) shows the system under consideration. The linear part of the plant is the 
transfer function used before (see, for example, Figure 2.48 in Section 2.7), w i th a d.c. 
gain o f 10. The D F of the N L element is given in the second row of Table 14.6 and, w i th 
Kx = 1, K2 = 0.5 and Es = 2, becomes: 

For values o f Em < 2, this equation is invalid (because Es = 2 in Table 14.6), and 
-N = - 1 . For values of Em between 2 and oo, the locus of -N (that is, the DF) is plotted 
in Figure 14.36(b), together wi th the inverse Nyquist plot of the linear part of the plant. 

I f the inverse Nyquist plot passed entirely to the left of the D F (that is, - A O , the 
system would be stable. However, this is not the case unless Em > 14. For Em < 14, the 
system w i l l be unstable. Therefore, even wi th no input except for an arbitrarily small 
ini t ia l condition, the system w i l l tend to oscillate and the oscillations w i l l increase unti l Em 

Slope = 0.5 
50 

yco(5 + yco) (1 + yco) 
A 

(a) 

0.1 

Figure 14.36 The DF 
approach applied to the 
antenna positioner with 
saturating amplifier. (b) 

-0.1 
-1.2 -1.0 -0.8 -0.6 

Real 
-0.4 -0.2 0 
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exceeds 14 units. A t this point, the system becomes stable. In a stable system wi th no 
input, any oscillations w i l l tend to die away. The oscillations therefore decrease until Em 

again becomes less than 14 units. Instability then returns. 
I t can thus be seen that the system w i l l settle into a l i m i t cycle w i t h Em = ± 1 4 units. 

It is also evident that this is a stable l imi t cycle, as the system w i l l return to i t i f disturbed 
in either direction. Since the system must operate somewhere on the inverse Nyquist plot, 
and also on the DF, the l imi t cycle occurs at the intersection of the two, and its frequency 
is therefore predicted to be 2.2 rad s _ 1 . 

The predicted amplitude and frequency can be confirmed by simulation, using the 
M A T L A B m-file Jigl4_36.m on the accompanying disk, but i t is necessary to use a very 
short sampling period (1 or 2 ms) to represent the discontinuity o f the N L element 
sufficiently accurately. Also the oscillation is quite slow to bui ld up, taking about 90 
seconds to settle into the l imi t cycle from an init ial condition o f 0.1 unit on the output. 
The simulation therefore takes a long time to run, and generates a huge quantity of data. 
A n analog computer would do better here, or a variable step numerical integration method 
in S I M U L I N K (Appendix 4). 

Finally, note that the D F is useful in design too. It can be seen from Figure 14.36 that 
the system would be unconditionally stable i f the inverse Nyquist plot crossed the negative 
real axis anywhere to the left of the point (—1, 0), since the D F would then be enclosed 
for any value o f Em. This can be achieved by increasing the apparent gain o f the plot by a 
factor o f 1/0.6 = 1.67. However, since this is an inverse Nyquist plot, the gain of the 
system must be reduced by this factor to make it unconditionally stable. A n y numerator 
term lower than 50/1.67 = 30 would achieve this. 

Example 14.13 The antenna positioner with 
backlash in the output drive 
Figure 14.37(a) shows the same linear system, but wi th a small amount o f backlash in the 
output drive gear. The N L element also has an inherent gain factor of 0.3 as shown on its 
characteristic (representing an additional gearbox reduction ratio). 

The relevant part of the inverse Nyquist plot of the linear part of the system appears 
as 

1 

G(jco) 

in Figure 14.37(b). I t is, of course, identical to that in Figure 14.36(b), since the linear part 
of the system is the same. The general describing function for the backlash element is 
given in the last row of Table 14.6. Wi th the values Eb = 0.1 and K = 0.3 from Figure 
14.37(a), the Fourier components are 

0.003 0.06 

and 

n . 0 . 1 \ 0.1 / 0 . 1 \ , " 03E„ 
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Em st i l l refers to the peak value of the input sinusoid to the N L element, so in the 
; arrangement of Figure 14.37(a) Em refers to the peak value of y, the linear system output. 

~: The Fourier components given above must be calculated for several values o f Em and then 
r used to calculate the magnitude and phase shift o f the D F at each value o f Em using 

= VAi+Bi d ^ = + t a n - i 4i f r o m T a b l e U 6 

Note the addition of n radians (180°) to the values of </>. This is done so as to yield —N 
directly for plotting. Plotting the resulting values of —N on top of the inverse Nyquist plot 
gives the curve shown in Figure 14.37(b). The curve begins at Em — 0.05, since the D F 
is only val id for Em > Eb/2 (for smaller values of Em, the output would never overcome 

I the backlash, assuming the init ial condition to be at the origin o f its characteristic). 
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I As Em increases, the curve is traversed in an anticlockwise direction, ending at the 
* point ( - 0 . 3 , 0) for Em —> oo. This endpoint also makes physical sense since, for very 

large input signals, the effect of the backlash becomes negligible, leaving only the inherent 
./« gain o f 0.3. 
% I t can be seen that the inverse Nyquist plot intersects the D F twice. For values o f 

t Em < 0.0563, the inverse Nyquist plot (only just) encloses the DF, and so the system is 
: (only just) stable. However, i t would be physically impossible to operate the system in a 

¿1 manner which would keep Em below this value, bearing i n mind that no output w i l l be 
# obtained at al l unt i l Em exceeds 0.05. In any case, the models are unlikely to be 
$ sufficiently accurate to allow reliance on the difference between 0.05 and 0.0563. 

As soon as Em does exceed 0.0563, the inverse Nyquist plot no longer encloses the 
<- DF, so instability sets in . This w i l l make Em tend to increase unt i l i t reaches the value 

0.146 shown in Figure 14.37(b). A t this point, the inverse Nyquist plot again encloses the 
DF, so the system becomes stable. Following the same arguments as in Example 14.12, a 

^ stable l i m i t cycle would be expected to develop wi th an amplitude o f ± 0 . 1 4 6 units, at a 
H frequency o f 1.31 rad s"1 (this corresponds to a period o f oscillation o f about 4.8 s). 
£ Figure 14.37(c) (generated by the M A T L A B m-file figl4_37.m on the accompanying 
H disk) shows a time response of y and M from an ini t ia l condition o f y = 0.06 (just enough 
H to get out o f the deadband ini t ia l ly) and M = 0. Again, the simulation requires a rather 
«if small time step size, but not as small as Example 14.12. The figure is plotted for a time 
^ step o f 10 ms, but even this involved 7000 points per plot. A smaller t ime step does result 

in a final amplitude nearer to the predicted value o f ± 0 . 1 4 6 , rather than the ± 0 . 1 5 shown, 
^ but again, i t is unrealistic to seek this k ind of accuracy. The frequency o f the l i m i t cycle 

m can be seen to have been correctly predicted. Note that the frequency gradually alters unti l 
the l imi t cycle is established - this is another k ind o f behaviour typical only o f nonlinear 
systems. 

As i n the previous example, Figure 14.37(b) is useful for design, in that i t allows the 
% determination o f how far the linear system's gain should be reduced so that the inverse 
i f Nyquist plot would enclose the D F under all circumstances. 

This section ends wi th a few general points which these examples could not bring 
out. First, nonlinearities do not always lead to instability and l i m i t cycles (as was 
seen in Example 14.3). I f Figure 14.36 had contained a deadzone element (the 
fourth line in Table 14.6) rather than the soft saturation, the D F would again 
occupy a linear segment of the negative real axis, but would start at the or igin for 
Em = Ed/2, and end at ( - 1 , 0) for Em —> oo (assuming K — 1). The direction o f 
increasing Em would therefore be opposite to that in Figure 14.36. This means that 
the system would be stable so long as Em remained below the level at the 
intersection of the D F and the inverse Nyquist plot (assuming the system 
parameters to be such that an intersection existed). However, for higher values o f 
Em the system would be totally unstable, so i t would not be very robust. 

A N L element having both a deadzone and saturation (the fifth line in Table 
14.6) has a D F plot which begins at the or igin for Em = Ed/2 and then, as Em 

increases, moves out along the negative real axis unt i l Em = Es, when i t reverses 
and returns to the origin as Em —> oo. Such a system, in which the inverse Nyquist 
plot o f the linear part intersects the DF, w i l l remain stable for relatively low values 
of Em, but go into a stable l imi t cycle i f some value o f Em is exceeded. 
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A system wi th a hysteresis nonlinearity (the penultimate line in Table 14.6) has 
a D F plot which is a curve in the second quadrant, similar to the backlash one in 
Figure 14.37(b), except that its base is on the imaginary axis rather than the real 
axis. I t starts on the imaginary axis above the origin, when Em — Eh/2, at a value o f 
$K/(nEm). As Em increases, i t traces out a semicircular type o f curve, arriving at 
the origin as Em —• oo. I f the inverse Nyquist plot of the linear part o f the system 
intersects this curve, l imi t cycle operation is again l ikely to result. 

Other types of N L element give rise to similar phenomena. For example, a 
system wi th both hysteresis and a deadzone w i l l have a D F plot which begins and 
ends at the origin, making a loop in the second quadrant as Em varies. 

Popov's method is the second frequency-domain technique for the study o f 
nonlinear systems. Like Lyapunov's time-domain approach (Section 14.6), i t 
allows the system stability to be determined without having to investigate the 
nonlinear equations of the system. In fact, Popov's method can be derived from a 
Lyapunov viewpoint (Khal i l , 1992). I t can also be derived using functional analysis 
(Banks, 1986). Popov's method is an excellent example of the fact that a method 
which is easy to apply w i l l only be applicable to a rather restrictive class o f 
situations! 

Popov's method is based upon the assumption that the characteristic o f the 
nonlinear ( N L ) element in the system is constrained to lie i n a sector of the first and 
third quadrants, as indicated in Figure 14.38. Since this is the only information that 
it is necessary to know about the N L element, some potentially significant 
behaviour may clearly be overlooked. However, Popov's method gives a result 
which does guarantee the asymptotic stability of the system ( i f i t is indeed stable). 
The conclusion is that this stability guarantee must be rather conservative - in other 
words, i f it were possible to take into account the finer detail of the N L element, 
then stability could doubtless be proved over a wider range of conditions than 
Popov's result would suggest. Note that the same limitations apply to Lyapunov's 
method, the circle criterion (Section 14.9) and any other method which does not 
involve investigation of the actual nonlinear equations. 

Since the ful l nonlinear equations can rarely be solved anyway, Popov's 
method often turns out to be the most easily applicable and useful result, so long as 
its restrictions are met. In practice it is often used in preference to the Lyapunov 

Output M A 

14.8 Popov's method 

Figure 14.38 A sector-
bounded nonlinear 
characteristic. 
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approach, because of the difficulty of finding a Lyapunov function in the latter 
method. Indeed, for one particular class of commonly used Lyapunov functions 
(called Lur 'e functions and involving a quadratic and integral term), i t transpires 
that Popov's result is, in any case, the best that can be achieved (Atherton, 1982). 

Here, Popov's method w i l l be regarded as applying to systems of the form of 
Figure 14.32, and the major points to note about the method include: 

• Its use is l imited to sector-bounded N L elements such as that in Figure 14.38. 
This covers a very wide range of practical N L elements, but does imply some 
specific limitations: 

- applies to a single N L element 

- applies only to N L elements whose characteristics have odd symmetry 

- applies only to N L elements wi th no hysteresis, backlash or similar behaviour 
which would take the characteristic into the second or fourth quadrant. 

Addit ional points are: 

• I t applies only to continuous or piecewise continuous N L elements. This means 
that the slope of the N L characteristic is not permitted to be infinite at any point, 
so N L elements such as relays must be specified wi th a finite (but very steep) 
slope to the switching characteristic. 

• The N L element must be stationary (non time-varying). 

• The linear part of the plant must not have any poles in the right-hand half of the s-
plane. 

• A n y reference or disturbance inputs to the system must be of a generally 
impulsive type (that is, they are not considered at a l l , or they must be such that 
they tend to zero as time passes). 

• The results may be rather conservative. 

The method is applied as follows. 
In Figure 14.38, the lines bounding the sector in which the N L characteristic 

lies have equations: M = kxe and M = k2e, where kx < k2 are both positive 
constants. For the N L characteristic to lie between these lines, it must be the case 
that 

N(e) 
kxe< N(e) < k2e or, alternatively kx < —— < k2 (14.38) 

e 

I f Popov's method is to be applied, the linear part o f the system must have no poles 
in the right-hand half of the s-plane, and the N L element must meet the criterion in 
Equation 14.38. 

The constant kx cannot be zero i f the system has imaginary-axis poles. The 
reason for this is that kx = 0 implies that the output from the N L element could be 
zero at some non-zero value of e. The forward path would then be effectively open-
loop, so the system poles would be those of G(jco) (see Figure 14.32) and, i f some 
of these were on the imaginary axis, the system could then not be asymptotically 
stable. 
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Forcing kx to be positive ensures that the output from the N L element can be 
zero only when e is zero. Wi th the earlier restriction on the input function tending to 
zero as time passes, this implies that asymptotic stability w i l l then be achieved i f the 
overall system is proved to be stable. 

I f the linear part of the system is asymptotically stable (that is, G(jco) has no 
poles on the imaginary axis, but all its poles are strictly in the left half o f the s-
plane) then Equation (14.38) can be relaxed somewhat, in that kx can then be zero. 

So long as the above conditions are met, Popov's criterion states that the 
overall system w i l l be globally asymptotically stable so long as there is a positive 
number q and a second arbitrarily small positive number 8, such that the fo l lowing 
inequality holds: 

Re [ ( l + j(oq)G(jco)} +^~>S co > 0 (14.39) 

A graphical test, similar in principle to the Nyquist criterion for linear systems, is 
available to show whether or not Equation (14.39) is fulfil led. This is how it works. 

A modified Nyquist diagram for the linear part o f the system is constructed as 
follows. The real part of G(jco) is used as i t stands, but the imaginary part is first 
mult ipl ied by co at each frequency point. Thus, the Nyquist diagram for G*(jco) is 
plotted, where 

G*(ja>) = Re[G(ya))] +yco Im[G(yco)] 

The diagram is called a Popov plot or Popov locus. Using this equation for G*(yco) 
in Equation (14.39) gives (see Problem 14.5): 

1 1 8 
Im[G*(;co)] < - Re[G*(;co)] + - co > 0 (14.40) 

q qk2 q 

For q positive, and 8 positive and arbitrarily small, Equation (14.40) implies that 
the Nyquist plot of G*(jco) must lie entirely to the right o f a straight line o f slope 
l/q and real axis intercept —l/k2. 

The truth of this condition can easily be checked graphically and, i f true, 
the system w i l l be globally asymptotically stable. Note that, because of the 
conservative nature of the result, i f a system fails this test it will not necessarily be 
unstable. Equation (14.40) is a sufficient condition for stability, but not a necessary 
condition. 

Example 14.14 The antenna positioner with 
-• saturating control amplifier analysed by Popov's 

method 
**" This example revisits the system of Example 14.12 and Figure 14.36(a). 

• The N L element can be seen to fit the sector-bounded l imitat ion o f Figure 14.38 wi th 
k{ any arbitrarily small positive constant, and k2 > 1. The linear part o f the system is 
stable (not asymptotically stable due to the pole at the origin, but this is acceptable since 
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kx > 0) and the N L element is not time-varying. The N L element is also piecewise 
continuous. Popov's method is therefore applicable to this system. 

Figure 14.39(a) shows the Popov locus for the linear part of the system (that is, the 
: Nyquist plot o f G*(jco) = Re[G(yco)] + jco ]m[G(j(o)])9 together w i t h a Popov line passing 

through the point (—l/k2,0) = ( - 1 , 0 ) , and of arbitrary slope l/q = 1. 
I t can be seen that there is no positive constant q (that is, no positive slope between 

horizontal and vertical) for which the Popov line could be drawn in a manner which would 
avoid the Popov locus while passing through the point ( - l / £ 2 , 0 ) = (—1,0). Therefore this 
test fails, and we cannot conclude that the system is asymptotically stable. Unfortunately, 
because o f the conservative nature of the Popov test, we can draw no conclusion about the 
stability o f the system - we cannot conclude that i t is unstable, only that i t has not been 
proved to be stable. In Example 14.12, the describing function (DF) approach showed that 
a l i m i t cycle w i l l develop, but no such information is revealed by the Popov test. 

I t is possible to proceed further, though. Let the constant k2 (and hence the real 
- intercept —\/k2) be regarded as a variable parameter. Examination o f the Popov locus then 

: allows a prediction of the maximum value of k2 for which asymptotic stability will be 

: guaranteed. In Figure 14.39(b) a Popov line is drawn for k2 = 0.6 and q = 1.2. I t can be 
seen that under these conditions the system w i l l be asymptotically stable. The system is 

^ therefore stable for any k2 < 0.6. 
This ties in very wel l wi th the information gained from the D F method in Example 

14.12. A t the end o f that example, i t was discovered that the system should be 

f unconditionally stable (no l imi t cycle) i f the d.c. gain in the linear part o f the system was 
reduced by a factor of 0.6. The simpler Popov approach has now suggested that the slope 
o f the central part o f the N L characteristic (that is, k2) should be reduced by a factor o f 
0.6. (Note that this is not absolutely identical to reducing the linear d.c. gain by a factor of 
0.6 - to do that, the slopes of the soft-saturated parts o f the N L characteristic would also 
need reducing by 0.6, but the Popov result shows that to be unnecessary.) 

-3 -2 -1 0 -3 -2 -1 0 
Re Re 

(a) (b) 
Figure 14.39 Popov's method applied to the antenna positioner with saturating amplifier. 
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I n addition, the Popov result shows that the system would be asymptotically stable for 
any other N L characteristic which remained in a sector bounded by the slopes k2 = 0.6 
and kx — an arbitrarily small positive number. This information was not available from the 
D F method. In the D F method, i t would be necessary to look up, or derive, the D F of any 
different N L element whose effect was of interest, and apply the method for each one 
separately. 

14.9 Zames' circle criterion 
This is the last method to be studied for nonlinear systems. It is another frequency-
domain method and is a development of Popov's method described in the previous 
section. The salient features of the method are similar to those of Popov's method, 
wi th the extra points: 

• The circle criterion allows the use of a normal (unmodified) Nyquist plot o f the 

linear part of the system. 

• The N L element may be time-varying. 

• The N L element characteristic must be odd, but is not restricted to the first and 
third quadrants only. 

• The linear part of the plant may be unstable in open-loop. 

• The results can be extremely conservative. 

The N L element is again considered to have a characteristic bounded by the sector 
shown in Figure 14.38. I f the N L element is time-varying, it must remain wi th in 
the sector at all times. The linear part of the plant may have right half-plane poles, 
but its transfer function must be strictly proper (that is, the denominator order must 
be higher than the numerator order, or the state-space model must have no D 
matrix) and it must be both controllable and observable (that is, there must be no 
mode cancellations). 

The normal linear system Nyquist criterion is then applied, but wi th the ( - 1 , 0 ) 
point replaced by a circular disc. This disc is centred on the negative real axis, and 
cuts that axis at the points — \/kx and — \/k2 as shown in Figure 14.40(a). The 
interpretation of the plot depends upon the relationship between kx and k2 in Figure 
14.38 as follows: 

• For k2 > kx > 0 (as shown in Figure 14.38), the overall system w i l l be globally 
asymptotically stable i f the Nyquist plot of G(jco) does not touch the disc, and 
encircles it anticlockwise a number of times equal to the number o f right half-
plane poles of G(yco) (Figure 14.40(a)). Note that this is precisely the Nyquist 
criterion for linear systems, but wi th the disc replacing the (—1, 0) point. 

• For k2 positive and kx = 0, the overall system w i l l be globally asymptotically 
stable i f the Nyquist plot of G(jco) remains to the right of a vertical line through 
the point ( - 1 /k2,0) (Figure 14.40(b)). This is similar to the Popov result for the 
same case. 
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• For k2 positive and kx negative, the overall system w i l l be globally 
asymptotically stable i f the Nyquist plot of G(jco) remains inside the disc 
(Figure 14.40(c)). 

• For k2 and kx both negative, the overall system w i l l be globally asymptotically 
stable i f the Nyquist plot of G(jco) does not touch the disc, and encircles it 
clockwise a number of times equal to the number o f right half-plane poles of 
G(jco). 

Example 14.15 The antenna positioner with 
saturating control amplifier analysed by the 
circle criterion 
Consider again the system of Examples 14.14 and 14.16, shown in Figure 14.36(a). 

For the circle method, kx could be regarded as being zero, and the test o f Figure 
14.40(b) could be applied. However, one look at the Nyquist plot of the linear part o f the 
plant (Figure 14.41(a)) shows that a vertical line at —\/k2 = - 1 would give very poor 
conclusions. In order to avoid the Nyquist plot, Figure 14.41(a) indicates that the vertical 



716 Nonlinear systems 

7 line would have to be placed somewhere around -l/k2 = - 1 2 , namely k2 = 0.08. Since 
f both the describing function method and Popov's method have shown that k2 can be as 
; high as 0.6, the value o f Jc2 suggested now is far too conservative and would lead to 

I extremely poor performance. 
Tightening up the sector onto the N L characteristic w i l l give a better result. I t is not 

\ necessary to set kx = 0. Rather, as large a value for kx as possible should be used, so as to 
; generate a disc of as small a radius as possible, which can then be fitted up against the 

Nyquist plot to find the maximum permissible value of k2 for stability. In the present case, 
the Nyquist plot must not encircle the disc, as there are no unstable open-loop poles. 

From the N L element characteristic in Figure 14.36(a), i t can be seen that the lower 
sector bound on the nonlinear characteristic could be taken as kx = 0.5, since this would 

„ never intersect the saturation characteristic, no matter how large e were to become. The 
test o f Figure 14.40(a) can therefore be applied wi th -l/kx = - 2 . Looking at the portion 

1 o f the Nyquist plot near the origin, shown in Figure 14.41(b), i t is now clear that a disc 
can be fitted as shown (it is mathematically circular - only the plot scaling makes it 
physically not so!). The maximum value of k2 for guaranteed stability is seen to be 0.55, 

: which is close to the previous results (0.6), but more conservative. 

Finally, although an example w i l l not be given, note that there is a generalized 
version of the circle criterion. In this version, one circle is drawn for each 
frequency value used in calculating the Nyquist plot. The centre o f each circle is at 
a location in the s-plane given by: 

and the points of intersection wi th the negative real axis are as shown in Figure 
14.40(a). Choosing q = 0 gives the criterion as previously used. 

The general version of the criterion states that the system is globally 
asymptotically stable i f a real value of q can be found such that the previously stated 
stability criterion is met at each individual frequency value. This is obviously much 
harder to test, but gives a more accurate (that is, less conservative) result. For 
instance, in Example 14.14, the circle drawn in Figure 14.41(b) touches the Nyquist 
plot at a point corresponding to a frequency of about 2.1 rad s - 1 . Using this value in 
Equation (14.41), a value of q could be chosen which would allow a larger value o f 
k2 to be specified by pull ing the centre of the circle vertically upwards, while 
maintaining the real axis intercept point — \/kx and the real axis intercept point for 
the modified value of —\/k2. It would then be necessary to check that the chosen 
values of q and k2 predicted stability at every other frequency value. 

In this chapter i t was stressed that all real systems are nonlinear to some degree, 
and that the linear analysis tools developed in the rest o f the book are applicable 
only to linear models which are an approximation to the real world . Approximate 
linear models of known nonlinear systems were obtained by linearization, for both 
SISO and M I M O systems. Several types of behaviour which might occur in 

14.10 Summary 
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nonlinear systems, but which are not predictable by linear analysis methods, were 
discussed. 

Nonlinear systems cannot be solved in any general way, so i t is fortuitous 
indeed that linear approximations are often sufficiently accurate for practical 
designs. When this is not the case, recourse must be made to the study o f a system 
model wi th sufficient nonlinearities added to make i t an acceptable representation 
of the real world. There is no general approach to the study of such models, so 
several of the more important techniques have been presented, from which the 
most appropriate can be selected. 

In the time domain, the method of producing and analysing phase plane 
trajectories was studied, as were the two Lyapunov approaches. In the frequency 
domain the describing function (DF) approach, Popov's method and the circle 
criterion were all introduced. I t was also mentioned several times that computer 
simulation is the major technique for handling nonlinear systems, but that one still 
needs recourse to analytical methods to check the feasibility o f results and to 
suggest l ikely ranges for ini t ial conditions. The problem wi th simulation is 
knowing when all possible operating regimes have been covered. 

For simulation using digital computers, the choice of integration algorithm 

SB 
and time step size is crucial for the accurate simulation o f systems wi th 
discontinuous nonlinearities - it is very easy to be misled. Evidence o f this has 
been presented in the examples, and M A T L A B m-files on the accompanying disk 
show how most of the results were generated. Analog computer simulation does 
not share these problems, but such techniques have not been covered, due to the 
(unfortunate) relative scarcity of analog computers these days. 

The phase plane (PP) and DF approaches each take into account the shape of 
the nonlinear characteristic, and therefore tend to give relatively accurate results 
for the classes o f systems to which they apply. In addition, these two methods are 
complementary to some extent, one working better where the other falls short. 
However, both make considerable approximations in order to make the analysis 
possible, thus restricting the number o f systems to which they truly apply. The 
major approximation of the PP method is that the linear part o f the system can be 
adequately represented by a second-order model, whi le the major approximation of 
the D F technique is that the linear part of the plant is a sufficiently good low-pass 
filter that only the fundamental frequency of any oscillating signal leaving the 
nonlinear element w i l l survive the trip around the feedback loop. The PP method is 
the only one giving transient response information, the D F method being used to 
investigate l imi t cycles. 

The Lyapunov direct method and the Popov and circle methods are also 
used primarily to investigate stability. The Popov and circle methods do not even 
consider the shape of the N L characteristic, and therefore tend to give 
conservative stability estimates. Systems w i l l usually be stable over wider ranges 
of conditions than the results of these methods suggest, but this can never be 
guaranteed. Furthermore, because of this conservatism, i f these methods fail to 
predict stability, it cannot be assumed that the system is unstable. In the case of 
the Lyapunov approach, it can be very difficult to find a Lyapunov function, but 
in that case i t st i l l cannot be said that the system is not stable - only that 
stability has not been proven. Due to this difficulty, the Popov or circle methods 
are often preferred, despite their inaccuracy. The Popov method is usually the 
preferred technique for classes of system to which i t applies, due to the ease of 
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application (especially when computing power is available to produce the Popov 
locus). 

The specialist references (Atherton, 1982; Kha l i l , 1992; Slotine and L i , 1991) 
give extensions to several of the techniques, which remove some o f the restrictions 
which were imposed to allow the introductory treatment in this text. Extensions 
and specific methods for mul t iva r ia te nonlinear systems w i l l also be found there. 

14.11 Problems 
14.1 (a) Consider a first-order system whose state 

equation is nonlinear, and is given by 
x = x2 + u. Show that the addition of state 
variable feedback using a nonlinear measuring 
transducer, such that the signal fed back (and 
subtracted from a reference input) is x 2, will 
linearize the state equation, 

(b) What would be the practical problems with the 
implementation of this solution? 

14.2 The system of Figure 14.20(a), using an ideal relay 
as the control element, was analysed by the phase-
plane trajectory approach in Example 14.5. A real 
electromechanical relay will have a deadzone 
(because it will not switch in response to very 
small signals). Its characteristic will then be 
approximately that of Figure 14.5(e) - note that no 
switching delay is being included. 

Introduce a deadzone of ±0.25 unit into the 
ideal relay in Figure 14.20(a). This will give a third 
region in the phase plane compared with Example 
14.5. Produce the PPT for this new arrangement in 
response to an input step of 4 units from zero 
initial conditions. Comment upon the effect of the 
deadzone upon the system (compared with Example 
14.5), and produce a plot of the system output (y) 
vs. time. 

14.3 Derive the describing function of the hysteresis 
element given in Table 14.6. 

14.4 Derive the describing function of the backlash 
element given in Table 14.6. Note that this is a 
deceptively difficult problem. It requires 
considerable thought about signal magnitudes and 
polarities if the correct answer is to be obtained. 

14.5 Equation (14.39) gave a relationship used in the 
development of Popov's method, namely: 

Re[(l + jcoq)G(jco)] + > 5 co > 0 

where G(jco) is the frequency response function of 
the linear part of the system under investigation, co 
is the angular frequency (rad s _ 1 ) and k2, q and 3 
are constants. 

Popov's method is actually applied to a modified 
form of this equation, however, as given in 
Equation (14.40). To obtain this, the frequency 
response function G(jco) is replaced by the modified 
form G*(jco) = Re[G(yco)] + jco Im[G(;co)]. 

Make this substitution in Equation (14.39), 
and show that Equation (14.40) results, namely: 

1 1 /S 
Im[G*(yw)] < - Re[G*(jco)} + co>0 

q qk2 q 

14.6 A linear system defined by 
15(s + 0 . 4 ) ( s + l ) 

K ) s2(* + 2)(* + 0.3)(* + 4.5) 

has an actuator which suffers from a large 
deadzone. The system is included in a feedback 
loop as shown in Figure PI4.6. 

(a) Use the describing function approach to predict 
the behaviour of the system. A frequency range 
from about 0.1 rad s - 1 to about 1.4 rad s _ 1 will 
be found to be adequate for the polar plot of the 
linear part of the system. 

(b) If you have a suitable CACSD package, use 
simulation to verify the predictions of part (a). 
You will find that the results do not agree as 
closely as one might wish. Why is this? 

Mi 

- 0 .5 

Slope 
* =0.8 

/ 0.5 " 
M G(s) 

Figure P14.6 System for Problem 14.6. 

14.7 A linear system with the transfer function 

r n = 25 
W {\.5s2 + 0.45 + \5.5)(s2 + 03s + 3) 

is to be put into a closed-loop arrangement with a 
backlash nonlinearity in its output as shown in 
Figure PI4.7. 
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(a) What would the closed-loop behaviour be like if 
the nonlinearity was absent, and the feedback 
was therefore directly from q(t)l 

(b) Using the describing function approach, discuss 
fully the behaviour of the system as shown in 
Figure 14.7. Mention appropriate amplitudes and 
frequencies of the signals at both q(t) and y(t). 

(c) If the system is not unconditionally stable in the 
form shown in Figure 14.7, design a simple gain 
to be put in front of the linear part of the plant, 
which would make it unconditionally stable. 

(d) If you have access to SIMULINK (Appendix 4) 
or a similar package, confirm your findings by 
simulation (in this case, the agreement should 
be very close). Something like SIMULINK is 
the only method that can easily be used here. It 
is possible to program the simulation in any 
technical language, but in lower-level languages 
(even MATLAB), the correct programming of 
the backlash element is not a simple task. 
Also, simulation with fixed time step 
algorithms is time-consuming and generates 
huge quantities of data, because it is very 
important to tie down accurately the instants at 
which the backlash characteristic changes 
direction (perhaps to sub-millisecond 
resolution). Even slight mis-timing of these 
events can have significant effects on the 
simulated behaviour. 

Linear part 
of plant 

<7(f) 
y(f)i 

Slope ' 
= 0.8 v 

y* y'odi 
/» , / 5 " 

y(f) 

Figure P14.7 System for Problem 14.7. 

14.8 Rather than deriving describing functions from 
scratch, the DF for a nonlinear characteristic which 
can be represented as the sum of two (or more) 
other characteristics can be obtained from the sum 
of the DFs of the other characteristics. Using this 
rule: 
(a) Show that the DF of a deadzone (fourth row of 

Table 14.6) can be obtained from the DF of a 
saturation element (first row of Table 14.6) 
subtracted from a linear gain K. 

14.9 

(b) Derive the DF of a deadzone with saturation 
(fifth row of Table 14.6) from the sum of the 
DFs of two suitably specified deadzone 
characteristics (fourth row). 

Figure PI4.9 shows a linear system element with 
a mechanical actuator. The actuator contains 
an output element which is constrained by 
preloaded springs, giving the nonlinear 
characteristic shown. 
(a) By adding a suitable gain and a relay DF, show 

that the DF for the nonlinear element is given 
by 

N = -

(b) If 

G(s) 
0.25 

s(2.5s2 + s + 2) 
investigate the stability behaviour of the system 
with no driving input other than initial 
conditions inside the system. If there is a limit 
cycle, estimate its amplitude and frequency. 

J 
M G(s) 

Figure P14.9 System for Problem 14.9. 

14.10 Consider the system of Figure PI4.10, with 

7 
G W - , 2 + 3 , + 2 

and a step input of 4 units applied at r. 
(a) Using Lyapunov's first method (see Section 

14.5.6), predict the form of the phase plane 
trajectory of (the linear part of) the system, by 
evaluating the closed-loop eigenvalues of the 
system with no deadzone present. 

(b) What would be the expected percentage 
overshoot and steady-state output for the zero-
deadzone configuration of the system used for 
part (a)? 

(c) Plot the phase plane trajectory for the system 
including the deadzone, and compare the form 
of the PPT and its overshoot and steady-state 
characteristics with those predicted for the 
zero-deadzone system in part (b). Account for 
any differences. 
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M G(s) 

Figure P14.10 System for Problem 14.10. 

14.11 For the system shown in Figure P14.6, the 
deadzone characteristic now has unity slope (rather 
than the value of 0.8 given in Figure P14.6), and 

10 
G ^ - 5 3 + 5 2 + 5 5 + 1 

(a) Use Popov's method to predict the stability 
properties of the system. 

(b) If you have access to MATLAB and its 
Control Systems Toolbox (or a similar 
package), test the predictions. 

(c) If the system is not guaranteed to be stable, 
what modification to the slope of the deadzone 
characteristic would be required in order for 
stability to be guaranteed by Popov's method? 
If it is guaranteed stable, what change in the 
slope of the deadzone characteristic could be 
tolerated before the guarantee was lost? 

(d) Repeat part (c) with reference to modifications 
to the d.c. gain of G(s), rather than the 
deadzone slope. 

(e) What difference would it make to your 
previous analysis of this system if the 
deadzone width was changed to ±0.1 unit, or 
to ± 5 units. What does this tell you about the 
method? 

(f) If G(s) contained a pure integrator (1/s), how 
would the specification of the problem need to 
be altered, before we could tackle it using 
Popov's method? 

14.12 Repeat all parts of Problem 14.11 for the same 
G(s), but with the nonlinear element replaced with 
the one shown in Figure P14.12. In part (c), keep 
the saturation level unaltered, just change the 
slope. 

Slopes = 1̂ Ĵ j i 

-0.8 \ 
: -0.5 ^ 

-0.8 \ 
: -0.5 ^ 

0.5 j "e 
0.8 

M 

14.13 Obtain a linear model of the pendulum of 
Example 2.10 in Section 2.4.5, but linearized 
about the unstable critical point 6 = n radians. 
Compare the result with that of Example 2.10. 

14.14 Figure P14.14 shows a nonlinear plant in which 
two signals are multiplied together, and a third 
signal is generated by a measuring transducer 
having a square-law characteristic. 
(a) Obtain the steady-state operating point of this 

plant when w, is a step input of size 3 units, 
and u2 is a step input of size 9 units. Use the 
state variables shown in the figure. If there is 
more than one possible operating point, use 
one having positive values for the state 
variables. 

(b) Obtain a linearized model of the plant, about 
the steady operating point determined in part 
(a). 

(c) If you have access to MATLAB and its 
Control Systems Toolbox, or to SIMULINK or 
some similar package, compare the linearized 
model with the nonlinear model for a range of 
input signals. How far from the operating 
point do you think the linear model remains 
valid? 

Multiplier 

Figure P14.12 Nonlinearity for use in Problem P14.12. 

Figure P14.14 System for Problem 14.14. 

14.15 Figure PI4.15 shows a nonlinear plant containing 
three signal multipliers (one of which is connected 
as a squarer). 
(a) Obtain the steady-state operating point of this 

plant when ux is a step input of size +14 
units, u2 is a step input of size —2 units and 
u3 is a step input of size -4/3 units. Use the 
state variables shown in the figure, and any 
others you find to be necessary. 

(b) Obtain a linearized model of the plant, about 
the steady operating point determined in part 
(a). 
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Multiplier 

X 

Multiplier 

Multiplier 

"3 r * ^ y ^ ï x 

Figure P14.15 System for Problem 14.15. 

(c) Inspect the eigenvalues of the linearized model 
(that is, of Jx) and hence comment on its 
likely usefulness. Also, consider the 
implications for the full nonlinear model. 

(d) You will need computer assistance for this 
part. Using the methods of Chapter 5 (via the 
MATLAB place command) a state-variable 
feedback regulator can be designed for the 
linearized model, which keeps the stable 
eigenvalues in their original locations, but 
moves the unstable ones to (say) - 6 ± 6j. A 
gain matrix which achieves this (there are 
mfinitely many others) is 

0 0 0 0 

K= -0.0442 -0.1812 -0.8356 -0.603 
0.1156 1.2277 2.7717 2.6627 

Apply this SVF gain matrix both to the linear 
model (for which it was designed) and also to 
the full nonlinear model. Compare the 
linearized model with the nonlinear model for 
a range of input signals. How far from the 
operating point do you think the linear model 
remains valid? Note that the steady operating 
point moves, as a result of applying the SVF, 
to JC0 = [-3.9354 1.9838 - 0.2607 0] T 

14.16 For the system of Figure PI4.14, but ignoring the 
inputs, use Lyapunov's direct method to 
investigate its stability properties. If you fail to 
find a suitable Lyapunov function, try reinstating 
the inputs and adding state variable feedback 
from x to u via a 2 x 3 matrix of gains K, such 
that u = —Kx. Use Lyapunov's direct method to 
investigate the stability properties for this new 
configuration (which should prove easier). 

14.17 For the system shown in Figure PI4.6, the 
deadzone characteristic now has unity slope 

(rather than the value of 0.8 given in Figure 
P14.6), and 

r M _ 10  
U ^ - 5 3 + 5 2 + 5 5 + 1 

(a) Use the circle criterion to predict the stability 
properties of the system. 

(b) If the system is not guaranteed to be stable, 
what modification to the slope of the deadzone 
characteristic would be required in order for 
stability to be guaranteed by the circle 
method? If it is guaranteed stable, what change 
in the slope of the deadzone characteristic 
could be tolerated before the guarantee was 
lost? Compare your result with that of Problem 
14.11(c). 

(c) Repeat part (b) with reference to modifications 
to the d.c. gain of G(s), rather than the 
deadzone slope. Compare your result with that 
of Problem 14.11(d). 

14.18 Again consider a system as in Figure P14.6, and 
with the same G(s) as in Problem 14.17. However, 
this time replace the nonlinear element with that 
shown in Figure P14.18. The range of operation of 
the system is such that the horizontal part of the 
saturation characteristic is guaranteed never to be 
reached. 
(a) Use the circle criterion to investigate the 

stability of the system. 
(b) If the system is not guaranteed to be stable, 

design a modification to the nonlinear 
characteristic which will make it so. Note that 
the gain must always change at an input value 
of ± 6 units, and the output must still saturate 
at ± 9 units if the input reaches ± 3 0 units 
(though you may still assume that it will not). 

(c) Achieve the result of part (b) by leaving the 
nonlinear characteristic in its original form, 
and designing a gain reduction for G(s). 

e 
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Figure P14.18 Nonlinearity for use in Problem P14.18. 



Appendix 1 
Matrix algebra relevant to 
control systems 

A1.1 ELEMENTARY MATRIX ALGEBRA REVIEW 
A1.2 EIGENVALUES, EIGENVECTORS AND THE 

CHARACTERISTIC EQUATION 
A1.3 PARTITIONING OF MATRICES 
A1.4 DEFINITENESS OF MATRICES 
A1.5 OBTAINING THE MCMILLAN FORM OF A MATRIX 
A1.6 THE SIMILARITY TRANSFORM 
A1.7 A NON-DYNAMIC EXAMPLE OF MATRIX 

EXPANSION (SPECTRAL DECOMPOSITION) 

A 1.1 Elementary matrix algebra review 
There are often situations in which the control engineer needs to handle 
simultaneously many equations containing many variables. For example, a 
system to be analysed or controlled may have several inputs and outputs. In 
order to describe the system mathematically, i t w i l l probably be necessary to have at 
least one equation relating each input to each output, so the number o f equations can 
rapidly become quite large. In such situations (and others) it is best to use the 
techniques o f matrix algebra to handle the equations. This reduces the complexity 
of the notation, in that many equations can be encapsulated in a single expression. I t 
also eases the solution of the equations, because computers are very good at solving 
matrix equations. 

Many readers w i l l be very familiar wi th the normal algebra required for 
manipulating single equations, yet be unfamiliar wi th the matrix algebra which is 
introduced here - or they may have once known the matrix algebra, but forgotten it 
due to lack of use. 

This appendix is an introduction to, and handy reference for, the basic 
operations of matrix algebra. It also introduces some more advanced topics in linear 
algebra which are required for the study of some branches of control engineering 
later in the text. I t may be best to skip these later topics unti l their use is required. 

The early sections of this appendix are written from an unusual angle which 
links the matrix operations wi th the structure of physical systems from a control 
engineering viewpoint. For greater detail on matrix algebra in general, refer to such 
texts as Kreysig (1993) or Ayres (1987). 
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A 1.1.1 Matrices and vectors 
A matrix is simply a rectangular array of numbers, these being referred to as the 
elements o f the matrix (matrices whose elements are algebraic expressions w i l l also 
be used). 

From the control engineering viewpoint, there are two fundamental ways of 
visualizing what a matrix does. A n example o f each is given below. The first is the 
usual mathematical interpretation which views a matrix as representing the 
coefficients in a set of simultaneous equations. The second approach to matrices 
may be less familiar, but can be extremely useful. I t is to regard a matrix as 
something which operates on a set of input signals to produce a set of output signals. 
This fits in wel l wi th other standard control engineering ideas such as block 
diagrams and transfer functions. It is worth mastering this second approach, as it is 
often the most helpful in control systems analysis. 

As an example (which is presented, and then explained afterwards), consider a 
set o f three signals, xx, x2 and j t 3 , which are combined in various proportions to form 
two other signals yx and y 2 . The equations for this operation might be: 

yx = 2xx + 3x2 - x3 

y 2 = x x - 6x2 

( A l . l ) 

Now, it is much neater to represent this pair o f simultaneous equations in matrix 
form: 

> 1 ~ "2 3 - 1" 

J 2 . 1 - 6 0 *2 

X3 

or, even more neatly, as 

y = Cx, where y c = 
J 2 . 

3 

-6 
and x 

( A l . 2 ) 

(A1.3) 

C is known as a ' two by three' matrix (written as 2 x 3), because it has two 
rows and three columns. Sometimes (but not in this text) a mathematical shorthand 
C G ^ 2 x 3 is used, which means, 'the matrix C belongs to the set o f real matrices of 
size 2 x 3' . The size (or 'dimensions', or 'order ') o f a matrix is always specified 
in the order (rows x columns). Upper-case, bold, italic characters are used to 
represent matrices. 

The quantities represented by lower-case bold, italic characters (x and y ) are 
vectors. A vector is just a special case o f a matrix - i t has only one row or column. 
Thus, in the example above, x is a three-element column vector, and y is a two-
element column vector. A geometrical view o f vectors is mentioned in Section 
A1.2 . 

Equations (A 1.2) and (A 1.3) show the usual mathematical approach o f 
representing a set of simultaneous equations in matrix form, and the matrix C 
has arisen naturally as a result. I f the reader is totally unfamiliar (or very out of 
practice) wi th the method of mul t ip ly ing out Equation ( A 1.2) to get back to 
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3 
C 

2 
C 

Figure A l . l Matrices and 
vectors in a block diagram. 

Equation ( A l . l ) , that problem w i l l be discussed below. Before that, the second 
approach to visualizing matrices w i l l be introduced. 

Equation (A 1.3) states that y = Cx. To the control engineer, i t seems fairly 
natural to represent this equation (as wi th all other equations, whenever possible!) 
in the form of a block diagram, for example as shown in Figure A l . l (block 
diagrams are studied in Chapter 2). 

There are one or two things worth noting about Figure A l . l . First, the input 
path carries three signals and the output path two signals ( in figures in the text, the 
V wi th the number of signals adjacent is often omitted, but wide lines are always 
used for paths carrying more than one signal). I t is always the case that, for a matrix 
in a block diagram, its size is given by (number of outputs) x (number o f inputs). 
Another way of stating this is as follows: 

f number of rows = number of outputs 

number of columns = number of inputs 

Furthermore, this ordering rule (output first, input second) can always be applied to 
the elements o f a matrix to generate the corresponding interconnections. This is 
how it works. Each element of any matrix is referenced by two subscripts. The first 
gives the row in which the element lies, and the second the column. Thus, for the C 
matrix, the elements are 

c l l c 12 c 13 
c 21 c 22 c 23 . 

So c 1 3 = — 1, c22 = —6, etc. Now, applying the ordering rule, element c 1 3 (for 
example) feeds output 1 o f matrix C from input 3 o f matrix C; while element c 2 i 
feeds output 2 of matrix C from input 1 o f matrix C; and so on. Wherever more 
than one contribution is made to the same output, the separate contributions are 
simply summed. Treating the whole C matrix in this way leads to the alternative 
representation of Figure A 1.2. 

I f the equations of this diagram are written down, i t w i l l be found that they are 
the same as Equation ( A l . l ) . Thus, the two views of matrix C are shown to be 
equivalent. 

In summary, i f the reader is of mathematical inclination, a matrix can be 
thought o f as representing a set of equations, and Figure A l .2 can be drawn from the 

Figure A1.2 A simple 
vector-matrix equation 
expanded as a block 
diagram. *3 — 1 — 0 (No connection to y 2) 
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equations. I f the reader prefers to think in terms of block diagrams, Figure A l .2 can 
be drawn directly from the matrix elements, using the ordering rule (output first, 
input second) on the element subscripts, without ever needing to write out the 
equations. 

The only thing to watch out for is that the ordering rule applies to the outputs 
and inputs of the matrix under consideration, and these w i l l not necessarily be the 
outputs and inputs of any particular plant. Indeed, i f matrix C was in a feedback 
path around a plant, then the outputs of matrix C (which were called 'outputs' when 
generating Figure A 1.2) would actually be the inputs o f the plant, and the outputs o f 
the plant would be the inputs o f matrix C. I t is therefore important, when applying 
this rule, always to do what was done above, that is, mentally refer to 'the outputs of 
matrix C" and 'the inputs of matrix C\ rather than just 'the outputs' and 'the 
inputs'. This should avoid confusion. 

I n this section, i t was also seen that the size of a matrix in a block diagram is 
always given by (number of outputs) x (number o f inputs), that is, one row per 
output from the matrix and one column per input to the matrix. 

A1.1.2 Basic matrix operations and properties 

Addition and subtraction 
I n order for two matrices (or vectors) to be added or subtracted, they must be o f the 
same size. I t is then just a case of adding or subtracting the corresponding elements. 
For example: 

Ì 2 - 3 ' " - 4 1 8" "-3 3 5" 
+ — 

6 14 2 + 3 2 0 9 16 2 

and 

T 2 - 3 " " - 4 1 8" '5 1 - 1 1 " 

6 14 2 3 2 0 3 12 2 

In physical terms, the operation o f subtraction is shown in Figure A 1.3 as an 
example. 

Figure A1.3 Matrix 
subtraction. 

y= x 
3 

C-D 
2 

Multiplication by a scalar (that is, by a number) 
Each element is mult ipl ied by the scalar. For example: 

' 4 8 - 1 2 " 

24 56 8 

"1 2 

6 14 

1 2 

6 14 
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I n physical terms, this represents a scalar gain applied simultaneously to every 
input (or every output) of a system. 

Multiplication of matrices 
Again, the block diagram approach can shed a new light on some of the 
mathematical rules which may previously have been learned about mul t ip ly ing 
matrices. Consider a system as shown in Figure A1.4 , in which D has 2 outputs (z) 
and 3 inputs (x), while C has 2 outputs (y) and 2 inputs (z). 

Figure A1.4 Matrix 
multiplication. 

3 
D 

z 2 
C 

2 

/ w D C 

1 
CO -

E = CD 
2 

E = CD 

From Section A l . 1 . 1 , C must be of size 2 x 2 , and D must be o f size 2 x 3 
(remember: outputs x inputs). From Figure A 1.4, y = Cz and z = Dx, therefore 
y = CDx, as shown on the right-hand side of Figure A 1.4. It can also be seen that 
the overall matrix relating y and x physically has to be of size 2 x 3 to relate the two 
signals of y wi th the three of x. 

Now, the product CD (which is the overall matrix relating y and JC) involves 
mul t ip lying a 2 x 2 matrix by a 2 x 3 matrix. Let the result be E, so that y = Ex, 
where 

E = C D 

2 x 3 2 x 2 2 x 3 

From this, note that the number of columns in C ( = second dimension = number o f 
inputs of C) is the same as the number of rows in D ( = first dimension = number 
of outputs of D). I t is obvious from Figure A1.4 that the number of outputs o f D 
must be the same as the number of inputs of C, since they both represent the vector 
of signals z. I t is also an unbreakable mathematical rule that, in order to be able to 
multiply two matrices together, the number of columns of the first must equal the 
number of rows of the second. Or, i f the sizes are written down, as was done 
above, the inner dimensions must be the same. 

From Figure A 1.4, it was noted that the result E w i l l have to be of dimension 
2 x 3 . Again, in mathematical terms wi th which the reader may be familiar, i f the 
sizes of the matrices are written down as above, the size o f the product is always 
given by the outer two dimensions. A l l these things (fortunately) agree, tying 
together the mathematical rules wi th what can be seen to be necessary from Figure 
A1.4. 

From these rules, it is apparent that the order of wri t ing down the product 
E = CD cannot be reversed. In this case, it is said that the matrices are not 
conformable for multiplication i f written in the order DC ( implying (2 x 3)(2 x 2) 
which w i l l not work according to the rules above). This care which is necessary in 
the order in which the matrices are written down is true of matrix multiplication in 
general. Even i f C and D were both square (both 2 x 2 or both 3 x 3 say; in which 
case they are conformable i f written either way round), the product CD would, in 
general, differ from DC (the matrices are then said not to commute). For products 
involving non-square matrices (except in the special case where one matrix is of 



A1.1 Elementary matrix algebra review 727 

size (a x b) and the other is of size (b x a)), i f the product CD is conformable, then 
the product DC is simply not defined - i t does not exist. The definition o f how 
to calculate a matrix product w i l l now be given, and then the above points w i l l be 
illustrated by an example. 

A matrix product is evaluated one element at a t ime. To calculate element 
(/, j ) of the product, all the elements in the zth row of the first matrix are mult ipl ied 
wi th the corresponding elements in the yth column of the second matrix, and the 
results are summed. This confirms that the number o f elements in each row of the 
first matrix must be the same as the number in each column of the second matrix, 
that is, the number of columns of the first must equal the number of rows o f the 
second, as has already been deduced physically. 

As an example, consider the product of two matrices 

"2 - 1 ' "3 2 - 1 ' 
and 

1 5 4 - 2 

According to the rules above, element (2 ,1) o f the product, for example, is 
calculated by summing the products o f the elements in the second row of the 
first matrix and the first column of the second matrix, that is, element 
(2 ,1) = 1 x 3 + 5 x 4 = 23. The whole product is: 

"2 - 1 " "3 2" " 2 6" 

1 5 4 - 2 23 - 8 

I f the order of multiplication is now reversed: 

'3 2" "2 - 1 " "8 7" 

4 - 2 1 5 6 - 1 4 

then, as suggested above, the result is different. I f the matrices had been of 
dimensions, say, 2 x 2 and 2 x 4 , then only one product exists, the other being 
impossible to calculate according to the rules. 

In block diagram terms, this means that matrices must always be multiplied 
together in the order which works against the signal flow ( 'work ing backwards'). 
Only in this way can the previous mini-derivation leading to the equation y = CDx 
be satisfied for Figure A1.4. 

Multiplying matrices and vectors 
The same rules for multiplication apply as for general matrices, and vector-matrix 
products were used in the previous section. However, i f the reader is unfamiliar 
wi th such operations, it is possible to become confused by the fact that there is only 
one element in certain rows or columns. A few examples should clarify matters. 

I f a 1 x 3 row vector is mult ipl ied by a 3 x 2 matrix, the rules suggest that the 
result should be of dimensions 1 x 2 . Here is an example: 

[1 3 2] 

4 2 

2 - 1 

3 - 6 

= [16 - 13] 



728 Matrix algebra relevant to control systems 

I f a 3 x 2 matrix is multiplied by a 2 x 1 vector, the expected result is 3 x 1: 

"4 2" 
T 
9 

8" 

2 - 1 
T 
9 = 0 

3 - 6 
L 

- 9 

Perhaps more surprisingly, i f a 2 x 1 vector is mult ipl ied by a 1 x 3 vector, 
then a 2 x 3 result should be expected: 

[ 1 3 2] = 
1 3 2 

2 6 4 

and i f a 1 x 2 vector is multiplied by a 2 x 1 vector a 1 x 1 (scalar) result should 
appear: 

[5 2] = 12 

Even these cases obey all the previous rules. 
For a geometrical view of matrix-vector multiplication see Section A1.2 . 

The transpose of a matrix 
The transpose of a matrix A is denoted by A T (or sometimes by A ' , but not in this 
text other than in M A T L A B examples), and is obtained by interchanging the rows 
and columns. Thus: 

T 4 2 

3 8 9 

5 7 6 

n T 1 3 5 

4 8 7 

2 9 6 

and 
1 3 2 

2 6 4 

1 2 

3 6 

2 4 

The transpose of a row vector is a column vector, and vice versa. The transpose of 
a product (AB)T is given by BTAT (the reader can easily try a simple example to 
become convinced). 

In physical terms, there is no analogy to the operation of transposition. I t is 
therefore to be regarded as a mathematical tool, rather than a physical operator. 

The determinant of a matrix 
This falls into the same category as the transpose - i t is a mathematical device 
which w i l l be needed in analysis on a number of occasions. 

The determinant of a matrix is a scalar value which has certain characteristics 
inherited from the original matrix. I t is defined for square matrices only. For a 
matrix A , the determinant is written as |A | , and is calculated for a 2 x 2 matrix 
example as: 

1 3 

2 5 
1 x 5 - 3 x 2 = - ! 

In words, the determinant of a 2 x 2 matrix is the product of the elements on the 
leading diagonal (top left to bottom right), minus the product of the elements on 
the other diagonal. For larger matrices, the determinant can be found by breaking 
the matrix down into 2 x 2 sub-matrices (known as minors) in a certain wel l -
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defined manner, and calculating the determinants o f these. For example, for a 
3 x 3 matrix the result is written down as follows (and then explained): 

1 4 2 
8 9 4 2 

+ 5. 
4 2 

- 3. + 5. 
7 6 7 6 

+ 5. 
8 9 

5 7 6 

= + 1 . ( - 1 5 ) - 3.(10) + 5.(20) = 55 

Once the series of three 2 x 2 determinants is obtained, the previous rule for 
evaluating them is followed. Where did they come from though? I t w i l l be noticed 
that, except for the signs, the numbers mul t ip ly ing the three 2 x 2 determinants are 
the elements o f the first column of the original matrix. The signs were obtained 
from an array l ike this: 

~ + - +~ 
- + -
+ - + 

which begins wi th a + for element (1 ,1) , and then proceeds i n the obvious manner 
for any size of matrix. Thus the values 1 and 5 have + signs associated w i t h them, 
but the value 3 has a — sign. To obtain the 2 x 2 determinant associated wi th each 
of these elements, the row and column of the original matrix which contain the 
element in question are simply deleted. Thus, for example, i n the case o f the value 
5 (element (3,1)) , row 3 and column 1 are struck out, leaving the determinant 

4 2 

8 9 

This determinant is called the minor o f element (3 ,1) . 
In the above example, the determinant o f the original 3 x 3 matrix was 

expanded by the first column. However, expanding i t by any row or column w i l l 
give the same result (one of the interesting properties o f matrices). To prove the 
point, the reader might l ike to check by picking a different row or column, and 
applying the same method (remember the array o f + and — signs). 

For even larger matrices, the procedure is simply extended. For example, for a 
4 x 4 matrix, expansion would be done by some chosen row or column (hopefully 
one containing lots o f zeros), to obtain a series o f four 3 x 3 determinants, and then 
each o f these would be treated as above. 

Note that the minor associated wi th each element o f a matrix, when the sign 
from the array o f + and - signs is also included, is called the cofactor o f the 
element. Thus, in the case o f element (2 ,3) i n the above example, the cofactor of 
element 

(2 ,3) 
1 4 

5 7 
= 13 

This definition is needed below. 
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A 1.1.3 Matrix division - the inverse of a matrix 
Matr ix division, as such, is not defined. Rather, i f it is desired to solve for x in an 
equation such as Ax = b, then each side is pre-multiplied by the inverse o f A . 
Although i t is possible to define inverses for rectangular matrices (known as 
pseudo-inverses), attention w i l l be restricted to the case of square matrices in this 
text. 

The inverse of A is that matrix, written as A - 1 , which makes the matrix 
product A A " 1 = A _ 1 A = / . The matrix / is described below, but is analogous to 1 
in the equivalent scalar case a.o~x = a~l.a = 1. 

/ is a special matrix called the unit matrix, or the identity matrix. I t is a 
diagonal matrix. That is, it is square, and every element is 0, except for elements on 
the leading diagonal. 

In the case of the unit matrix, all these diagonal elements are 1. Thus, some 
unit matrices are: 

1 0 

0 1 
and IA = 

"1 0 0 0" 
0 1 0 0 

0 0 1 0 

0 0 0 1 . 

In use, the subscript is usually omitted, as the size is clear from the context. 
Readers can soon convince themselves that any matrix or vector, when pre- or 

post-multiplied by a suitably dimensioned unit matrix (square, remember), remains 
unchanged (as in the analogous scalar case of multiplication by 1). Therefore, 
returning to the equation AJC = b, premultiplying by A " 1 gives A~lAx = 
lx = x = A~lb (the RHS), and the equation is solved. 

Unfortunately, for some square matrices, an inverse cannot be found. This can 
lead to severe problems when trying to solve systems of equations. I t is therefore 
important to be able to tell whether or not any given matrix is invertible. Various 
methods exist, but as a representative example consider a method involving 
determinants (see previous section). One derivation of the inverse of a matrix A is 
given by 

adj(A) 
( A l . 4 ) 

The quantity adj(A) is the adjoint matrix o f A . I t is found as the transpose of the 
matrix of cofactors (refer back to the section on determinants for the definition of a 
cofactor). For the example above, namely 

1 4 2 

3 8 9 
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n 
1 w 

C n C 

Figure A 1 . 5 A square 
system, y — Cx. 

the matrix of cofactors is given by (some of the elements were calculated in the 
section on determinants): 

-15 

-10 

20 

27 - 1 9 

- 4 13 

- 3 - 4 

and the adjoint is the transpose of this, namely: 

- 1 5 

27 

- 1 9 

- 1 0 20 

- 4 - 3 

13 - 4 

The determinant of this matrix has already been calculated as 55 in the section on 
determinants. Therefore, the inverse, from Equation (A1.4) , is this matrix divided 
by 55, that is, 

- 0 . 272 

0.491 

-0 .345 

-0.182 0.364 

-0.073 -0 .055 

0.236 -0 .073 

' 1 4 2 

3 8 9 

_5 7 6 

The result can be checked by mul t ip ly ing the matrix and its inverse: 

-0.272 - 0 . 1 8 2 0.364" 

0.491 -0 .073 -0 .055 

-0.345 0.236 -0 .073 _ 

"1.002 - 0 . 0 0 2 - 0 . 0 0 2 ' 

0.007 0.994 -0 .005 

0.001 -0 .005 0.997 

Wi th in the l imits of the rounding errors in the inverse, the result is, indeed, / 3 . 
The work involved in calculating the inverse need not cause concern. I t is 

rarely necessary to do i t , as plenty o f suitable computer packages exist. I t is worth 
noting that they do not use the approach taken here, but use other methods which are 
less subject to numerical error, and are computationally more efficient. 

Returning to Equation (A 1.4), it is evident that the inverse o f a matrix cannot 
be calculated i f its determinant is zero. A square matrix w i t h a zero determinant 
is called a singular matrix, and does not have an inverse. 

In physical terms, a singular matrix w i l l either be found to have some complete 
rows or columns o f zeros, or some rows (or columns) w i l l be found to be linear 
combinations of others. I f the matrix is viewed in block diagram terms, as shown in 
Figure A 1.5 (which can be expanded to look l ike a suitably sized equivalent of 
Figure A 1.2), then the first case (rows or columns o f zeros) implies that there is no 
connection either from one input to any o f the outputs (for a zero column), or from 
any input to one of the outputs (for a zero row) . The second case (linear dependence 
of rows or columns) implies that one output is a linear combination o f the other 
outputs. 
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I n either case, i t is not possible to derive the values in x by measuring the 
values of y, because there are fewer than n degrees of freedom available to solve the 
n resulting equations. The only condition under which the values o f x can be 
calculated from measurements of y is the case where the inverse of C exists (then 
y = Cx so x = C~ly). 

A1.1.4 The rank of a matrix 
As mentioned before, i f a square matrix has a non-zero determinant, i t also has an 
inverse. Such a matrix is said to be of full rank. 

Technically, the rank of a matrix is the dimension o f the largest non-zero 
determinant which can be extracted from i t . This applies as much to rectangular 
matrices as to square ones but, in the case of a rectangular matrix, the maximum 
possible rank is the minimum dimension of the matrix. I t w i l l be necessary to find 
the rank o f rectangular matrices in connection wi th controllability and observability 
studies (introduced in Chapter 5). As an example, the matrix 

" 1 3 7 2 1 

2 2 3 4 1 

0 4 11 0 1 

could have a maximum rank of 3 (because no larger determinant than 3 x 3 exists 
in this matrix). This would be ful l rank for this matrix. I t w i l l be found, however, 
that there is no 3 x 3 determinant extractable from this matrix, whose value is non
zero. As an example, try columns 2, 4 and 5: 

3 2 1 

2 4 1 

4 0 1 

Any other possible 3 x 3 determinant extracted from the rectangular matrix above 
is also zero. The reason for this is a lack of linear independence. Row three can be 
seen to be twice row one minus row two. 

I t is possible to extract a large number of non-zero 2 x 2 determinants from the 
matrix, therefore its rank is 2 (note that just one non-zero 2 x 2 determinant is 
sufficient to confirm this). Since its rank could have been 3, this matrix is said to 
have a rank deficiency of 1 (full rank minus actual rank). This number (the rank 
deficiency) w i l l also be of use in the text. 

At.2 Eigenvalues, eigenvectors and the characteristic 
equation 

The physical significance of these properties of a matrix is discussed in the main 
text. Here, the method of calculating them is reviewed. 

The eigenvalues and eigenvectors of a matrix are particular values which give 
the result 

Xv = Av (A1.5) 

where: 
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A is a square matrix o f size (n x n) 

X is an eigenvalue o f A , and is a scalar quantity 

v is an eigenvector o f A corresponding to X. I t is o f size (n x 1) 

Equation (A 1.5) implies that there are some particular values of v associated 
wi th A , for which multiplication o f the vector v by the matrix A simply scales each 
element of v by the scalar factor X . 

A vector can be regarded as a line having magnitude (length) and direction, in a 
vector space wi th as many dimensions as the order o f the vector (more than three 
dimensions are difficult to visualize, but the principle s t i l l holds good). For 
example, the vector v = [1 2 3 ] T can be represented as in Figure A1.6 . In the 
product A v , the square matrix A operates on v to produce a result having the same 
dimensions as v, and therefore being plottable in the same vector space (see Figure 
A1.6) . 

Figure A 1.6 Vectors in a 
vector space. 

Equation (A1.5) therefore represents the rather special case in which Av and 
v point in the same direction, differing only in length, by the factor X. 

To find the eigenvalues and eigenvectors, proceed as fol lows. First, rearrange 
Equation (A1.5): 

Xv-Av = 0 or [XI-A]v = 0 (A1.6) 

where 0 is a null vector (of size n x 1, and wi th all elements zero). 
Note also the necessity to keep the matrix dimensions conformable by 

inserting the unit matrix I n to mul t ip ly the scalar X, when extracting v as a factor. 
This is a common requirement in matrix algebra, and must not be overlooked. I t is 
also important that v was extracted as a factor from the right-hand side o f the 
bracket in order to keep the order o f mult ipl icat ion correct. 

Equation (A 1.6) can be rearranged as v = [XI - A ] _ 1 0 . This has a t r iv ia l 
solution v = 0, but that is not of interest, and therefore i t is required that the inverse 
of [XI - A] should not exist, as the t r iv ia l solution w i l l then be avoided. This w i l l be 
the case when: 

\XI-A\=0 (A1.7) 

Equation (A 1.7) is an extremely important equation, which is used a lot i n the text, 
and is called the characteristic equation o f A . I f the use o f characteristic equations 
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is recalled from transfer functions in frequency-domain control, it w i l l eventually 
be seen that this is the same thing in a different guise. 

Solving Equation (A 1.7) for X gives the eigenvalues o f the matrix. For 
example, for the matrix 

the characteristic equation (Equation (A 1.7)) is: 

_ X-6 - 2 

- 4 X-l 

= {X- 6){X - 1 ) - 8 = X2 -IX - 2 = 0 

the solutions for which are found to be Xx = 7.275 and X2 = —0.275. 
Returning to Equation (A 1.5), and substituting each eigenvalue in turn, gives 

the eigenvectors. Since these specify the direction in which Equation (A1.5) holds, 
their magnitude is unimportant, and therefore they can be scaled in any desired way, 
so long as the same is done to each element. 

Using Xx and A in Equation (A 1.5) gives 

7.275 
"6 2" " v n~ 

. V21. 4 1 . v21. 

leading to: 7 .275v n = 6 v n + 2v 2 1 and 7.275v 2 1 = 4 v n + v 2 1 . Or, gathering terms: 
1.275v n = 2 v 2 1 and 4 v n = 6.275v 2 1 . Upon closer inspection, these two equations 
are found to be identical. They therefore have, as suggested above, an infinite 
number of possible solutions, obtained from each other by simple scaling factors. 
Arbi t rar i ly choosing v n = 1 yields v 2 1 = 0.638. Thus, corresponding to the 
eigenvalue Xx = 7.275 is an eigenvector 

_ r I 
V l " [o.638 

The reader is invited to check that the eigenvector corresponding to X2 = -0 .275 
is similarly given by 

1 

-3 .138 

I f the M A T L A B eig command (see Appendix 3) is used to calculate the 
eigenvectors of a matrix, i t w i l l be found that they are scaled in such a way that they 
are normalized to unit length. For example, the two eigenvectors above would be 
given by 

-0.304" 

0.954 

respectively. The directions are the same, but the lengths have been scaled to unity. 
Some matrices have eigenvalues which are very easy to find and lead to system 

models having particularly useful structures for some purposes. For example, a 
diagonal matrix (Section A l . 1 . 3 ) has its eigenvalues on the leading diagonal. I f i t is 

X 0 

0 X 

6 2 

4 1 

0.843 

0.538 
and 
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drawn as a block diagram element (Section A 1.1.1), i t represents a series o f 
independent gains (equal to the eigenvalues) wi th no interaction between them. A 
triangular matrix has all elements below, and to the left of, the leading diagonal 
equal to zero, for example 

"1 6 5* 

0 - 4 2 

0 0 7_ 

Such a matrix also has its eigenvalues on the leading diagonal (that is, the 
eigenvalues of this matrix are 1, —4 and 7). I n block diagram terms, this matrix 
represents a system in which input 1 only feeds output 1 (but so do inputs 2 and 3), 
output 3 is fed only from input 3 (but input 3 also feeds outputs 1 and 2), and the 
interactions between the other signals fol low a definite pattern. 

Eigenvalues also have other interesting properties. For example, the 
determinant of any square matrix is the product o f its eigenvalues. The trace o f 
any square matrix (the sum of the elements on the leading diagonal) is the sum o f its 
eigenvalues. These two things are easily seen to be true for diagonal or triangular 
matrices, but also apply to all other square matrices. 

A 1.2.1 Left-hand eigenvectors 
The eigenvectors calculated in Section A1.2 are strictly 'right-hand eigenvectors', 
because v is a factor on the right-hand side o f each term in Equation (A1.5) . There is 
no reason why a similar type of equation vX = vA could not be used instead. The 
eigenvectors here are called 'left-hand eigenvectors' o f A and w i l l have to be row 
vectors, rather than columns (why is this?). 

Normally, i f eigenvectors are mentioned ( in any context), i t is assumed that 
right-hand eigenvectors are used by default, to the extent that many people are 
unaware that left-hand ones even exist. However, a use for these left-hand ones is 
occasionally found. 

For the second eigenvalue of the matrix A o f Section A 1.2, i t was discovered 
that X2 = -0 .275 . Using this in the left-hand eigenvector equation, above, gives 

h i v 1 2 ] ( - 0 . 2 7 5 ) = [ v n v 1 2 ] 

from which the fol lowing result is obtained: —0.275v n = 6 v n + 4 v 1 2 and 
- 0 . 2 7 5 v 1 2 = 2 v n + v 1 2 . Gathering terms yields: 6 .275v u = - 4 v 1 2 and 
2 v u = - 1 . 2 7 5 v 1 2 . 

Again, these two equations are found to be identical. This time, i t is decided 
(arbitrarily) to set v 1 2 = 1, so that v n = —0.638, g iv ing the left-hand eigenvector 
[—0.638 1]. This obviously bears a relationship to the right-hand eigenvector 
obtained for the other eigenvalue (X{) in Section A1.2 . This need not be pursued 
here, but the reader can similarly obtain the result for the left-hand eigenvector 
corresponding to Xx, and compare it wi th the right-hand eigenvector calculated for 
X2 i n Section A 1.2. 

'6 2 

4 1 
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A1.3 Partitioning of matrices 
In general, matrix methods are used as a means of wri t ing system equations 
(especially state-space models) in a compact way, and carrying out analysis much 
more elegantly than could otherwise be done. Partitioning is a device which can be 
used to simplify matrix algebra even further. 

I t turns out that i f a vector-matrix equation is divided (partitioned) into sub-
matrices (partitions), by drawing straight lines through it in a systematic manner, 
then the basic operations of matrix algebra can be carried out using the separate 
partitions as i f they were single matrix elements. Consider the fo l lowing equation 
pre-multiplying a 3 x 2 matrix by a 3 x 3 matrix. Ignoring the partitioning lines, i t 
w i l l be found to be correct: 

2 - 4 r "2 -1" "-7 0 

•3 3 0 3 0 = 3 3 

1 7 2 1 2 25 3 

Now allow the lines to divide the matrices into the partitions shown. These can 
then be named (for example) as follows: 

u V 
w X 

where 

U 

Y = 

2 - 4 

- 3 3 

'2 - 1" 

3 0 z = [ l 2] 

w • [1 7] , 

Performing the matrix multiplication in the partitioned equation gives P = Uy + vz 
and q = wY + xz. Substituting the numerical values of U, v, w, x, Y and z, i t is 
found that 

"-8 -2" T 2 "-7 0" 
+ — 

3 3 + 0 0 3 3 

and 

q=[23 - l ] + [2 4] = [25 3] 

which is correct. This partitioning procedure can generally be applied at w i l l . I t is 
only necessary to ensure that the selected partitions are of consistent dimensions 
for the operations to be carried out. 

Addi t ion and subtraction of partitioned matrices fol low the obvious pattern. 
Other operations on partitioned matrices require more care. For example, a 
partitioned matrix can be transposed, but the individual partitions must also be 
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transposed at the same time. By inserting the numerical values, i t can be verified 
that, for the matrix above, 

u V T H> T ] 
w X 

(the transpose operator on x is not really needed in this example, because it is a 
scalar). There are more complicated rules for inverses o f partitioned matrices. 

Eigenvalues o f partitioned matrices w i l l sometimes be o f use in the text. 
Specifically, i f a partitioned matrix is triangular or diagonal (sometimes called a 
block triangular or block diagonal matr ix) , and al l the partitions on the leading 
diagonal are square, then its eigenvalues w i l l be those o f the partitions on the 
leading diagonal. This is directly analogous to the unpartitioned cases discussed at 
the end o f Section A1.2. 

Some of the problems at the end o f Chapter 2 use partit ioning to obtain 
combined state-space models of systems made up o f subsystems in state-space 
form. 

A 1.4 Definiteness of matrices 
This topic is only of relevance to parts o f Chapters 12 and 14. 

A non-zero scalar value is clearly positive or negative. For non-zero matrices, 
this concept is replaced by the notion of 'definiteness' i n suitable circumstances. 
For example, a quadratic form xTQx (see Equation (12.2), for example) in which 
the matrix Q is either positive definite or positive semidefinite, w i l l always have a 
non-negative scalar result for any non-zero values in JC. The difference between 
semidefinite and definite is the difference between whether the result can or cannot 
adopt the value zero itself, respectively. Negative definite and negative semidefinite 
matrices are similarly defined, wi th the obvious sign changes. 

These definiteness properties can therefore be used in an optimal control 
performance index (for example) to ensure that a non-negative min imum w i l l 
always exist. 

I f a matrix is diagonal, and all the diagonal entries are positive, i t w i l l be 
positive definite. I f all the diagonal entries are non-negative, i t w i l l be positive 
semidefinite (wi th similar definitions for negative definite and negative 
semidefinite). For more general matrices, a test is necessary. 

One test is to find the eigenvalues. I f they are al l real and positive, the matrix is 
positive definite. I f they are all real and non-negative, the matrix is positive 
semidefinite. 

Another test is to examine the principal minors o f the matrix. These are the 
determinants o f increasing size, each starting w i t h element (1 ,1) . Thus, for the 
n x n matrix Q (wi th n > 3), the principal minors are: 

<7n> 
<7n Qi2 

a 2 \ a22 

a \ \ <7l2 <7l3 
a 2 \ a22 a23 

<?31 <?32 <?33 
161 

I f al l these are positive, Q is positive definite. I f they are non-negative, Q is 
positive semidefinite. The definitions o f negative definite and negative semidefinite 



738 Matrix algebra relevant to control systems 

fol low the lines which would be expected. I f Q meets none o f these definiteness 
criteria, i t is said to be indefinite. 

A 1.5 Obtaining the McMillan form of a matrix 
This is not a rigorous mathematical derivation, but gives sufficient information to 
bridge the gap in Chapter 10 of the text. In some references, this form, or a very 
similar one, is called the Smi th -McMi l l an form, or the Smith normal form of a 
matrix. 

Starting wi th the matrix of Equation (10.8): 

G{s) 

1 

5 + 1 5 + 3 

1 1 

L 5 + I 5 + l J 

firstly the monic least common multiplier is extracted (monic means that this term 
must have a unity coefficient for the highest power o f 5 ) , so as to leave a 
polynomial matrix: 

G(s) 1 
( J + 1 ) ( Ì + 3 ) 

s + 3 25 + 2' 

5 + 3 5 + 3 
(A1.8) 

The polynomial matrix from Equation (A1.8) is then worked on as follows: 
Find the greatest monic common divisor g^s) (say) o f all the first-order 

minors. Recall from Section A l . 1 . 2 (the part on determinants) that a minor is 
effectively the determinant of a sub-matrix. The first-order minors are determinants 
of size 1 (that is, scalars). In the polynomial matrix from Equation ( A 1.8), there are 
therefore four such first-order minors (that is, the individual elements). They only 
have a common divisor of unity, so in this case, gx (s) = 1. 

Next, g{ ( 5 ) is made to appear in element (1,1) by row and column operations. 
In the present case, subtracting 0.5 x (column 2) from column 1, and then 
mul t ip lying row 1 by 0.5, gives: 

2 5 + 2' 

0.5 (5 + 3) 5 + 3 
then 

1 5 + 1 " 

0.5 (5 + 3) 5 + 3 

The next step is to use further elementary operations to obtain the general form ( x 
is a general entry) 

gl(s) 0 0 . ¬

0 X X - -
0 X X - . 

or, in this simpler case, 

o- "1 0" 

0 x . 0 X 
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This might be done by subtracting ( 5 + 1) x (column 1) from column 2, then 
subtracting 0.5 (5 + 3) x (row 1) from row 2, and finally mul t ip ly ing row 2 by - 1 , 
giving: 

1 0 

0.5 (5 + 3) 0 . 5 ( 5 + 3)(1 - s ) 
then 

1 0 

0 0 . 5 ( 5 + 3 ) ( 5 - 1)_ 

Next, the greatest monic common divisor o f al l the second-order (that is, 2 x 2 ) 
minors is found, g2(s). In the present case this is t r iv ia l , because there is only one 
such minor in a 2 x 2 matrix (the entire matrix is one), but i t illustrates how the 
method would be continued for a larger matrix. For the present case, 
g2(s) = (s + 3)(s-l). 

82(s)/g\(s) is t n e n niade to appear in element (2 ,2) by row and column 
operations. In this case, this simply means mul t ip ly ing row 2 by 2, giving 

1 0 

0 ( 5 + 3 ) ( 5 - 1) 
(A1.9) 

For a larger matrix, in order to continue the process the fo l lowing form would 
be found: 

o 
0 
0 

0 

Si 

0 

0 

0 

0 

x 

x 

0 

0 

x 

x 

Then £ 3 ( 5 ) would be found as the greatest monic common divisor o f the third-
order minors, g3(s)/g2(s) would be made the next diagonal element, and so on. 

In the present example, the process is complete by Equation ( A 1.9), and the 
end result is obtained by re-including the factor extracted in Equation ( A 1.8), to 
give: 

M(s) = 
1 0 1 

( 5 + l ) ( 5 + 3) L0 ( 5 + 3 ) ( 5 - l ) _ 

or, as in the text, 

M{s) 

1 

( 5 + l ) ( 5 + 3) 

0 
(s-l) 

( * + l ) J 

A 1.6 The similarity transform 
This is an interesting matrix operation which is required at a number o f points in the 
text, and also in the next section. I t can be applied to partitioned matrices (Section 
A1.3) . Here, i t is introduced from a state-space viewpoint. 
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Consider the usual state equation x = Ax + Bu, having a state vector x. I t may 
be desirable to use a different set of states (JC, say), either for its own sake, or 
perhaps in order to achieve a different form of the A matrix for some reason. 

Now relate this new set of states to the existing set by a transformation matrix 
T, which must be invertible, such that JC = Tx. Substitution into the state equation 
then gives Tx = ATx + Bu. Premultiplying each side by T~l then gives the new 
state equation: JC = AJC + Bu where A = T~lAT and B = T~lB. Treating the output 
equation y = CJC + Du in the same way leads to y = CJC 4- Du, where C = CT. 

Careful choice of the transformation matrix T can lead to some interesting 
effects. For example, i f T is chosen to be the eigenvector matrix (modal matrix) o f 
A , then A w i l l be found to be a diagonal matrix having the eigenvalues o f A on its 
leading diagonal. 

As an example, consider the matrix 

- 3 -2 

1 0 

Using the methods of Section A1.2, this is found to have eigenvalues o f —2 and 
— 1, and eigenvectors 

1 

-0.5 
and v 2 = 

I f a transformation matrix is chosen as 

T = [v, v 2 ] = 
1 

-0.5 

then 

and 

T~ AT 
2 2 

- 1 -2 

- 2 0 

0 - 1 

-3 

1 

= A 

1 

- 0 . 5 

1 

- 1 

where A is the diagonal matrix having the eigenvalues o f A on the leading 
diagonal as predicted. The fact that A and A have the same eigenvalues makes 
them similar matrices in the mathematical sense, and this happens for any 
allowable choice of T, not just the choice leading to a diagonal A . This is the 
reason for the name of the transform. Since the eigenvalues o f similar matrices are 
the same, so are their determinants (which are the products o f the eigenvalues). 

The operation of the similarity transform is viewed ' i n reverse' in the next 
section. By this, i t is meant that any square matrix can equivalently be regarded as 
being made up of a similarity transform acting on a diagonal matrix of its 
eigenvalues (A). This is easily justified by pre-multiplying both sides o f the 
equation T~lAT =A (which was derived above) by T, and post-multiplying by T~l. 
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This leads directly to A = TAT~X, which is used in Section A 1.7 (wi th Q and W in 
place of A and T). 

Note that some texts use a notation o f the type A = TAT1, where this text 
uses A= T~XAT. This is not an error; i t simply means that whereas T is the 
transformation matrix here, the other text used T~x, beginning from the premise 
that x = Tx, rather than x = Tx. 

There are other interesting choices for T. For a controllable (see Section 5.4), 
single-input system, T can be chosen to give the matrix A = T~XAT in a 
controllable companion form which is useful for some purposes. Another o f the 
properties o f similar systems is that their controllabili ty is the same, so the original 
system must be controllable in this case. I t is used in Ackermann's method for 
designing state variable feedback controllers (Section 5.4.5). 

A 1.7 A non-dynamic example of matrix expansion (spectral 
decomposition) 

This section follows directly from Section A1.6, but is writ ten in language to suit 
Chapter 10. Consider the matrix 

-2/3 

4 

By the usual methods (Section A1.2) , this is found to have eigenvalues given by 
Xx = 3 and X2 = 2. The corresponding eigenvectors (Section A1.2) are 

and v 2 = 

The eigenvector matrix (modal matrix) is thus 

1 

-1.5 

W 1*1 Vl\ 
1 

-1.5 
and so W — 

-2/3 ' 

2 /3 . 

I f the quantity W . d i a g { A l 5 / 1 2 } . W 1 is evaluated (see Chapter 10 and also Section 
A1.6) , the fol lowing is obtained: 

= Q 

Although not a proof in the mathematical sense, this indicates that a square 
matrix can be viewed as a decomposition involving a similarity transform (Section 
A1.6) , in which the modal matrix is used as the transforming matrix, operating on a 
diagonal matrix of the eigenvalues o f the original matrix. 

1 1 "3 0" " - 1 - 2 / 3 " 1 - 2 / 3 " 

- 3 - 1 . 5 P 2 . 2 2/3_ 3 4 



Appendix 2 
Partial-fraction expansions in 
inverse Laplace transforms 

A2.1 INTRODUCTION 
A2.2 CASES RELEVANT TO HAND CALCULATION 
A2.3 CASES RELEVANT TO MACHINE CALCULATION 
A2.4 HEAVISIDE'S PARTIAL-FRACTION TECHNIQUE 
A2.5 EXAMPLES 

A2.1 Introduction 
In Section 2.5.3, Equation (2.71) defined a Laplace function as a rational 
polynomial in s: 

F(s)='j(s) = b ^ + b ^ S m ~ 1 + - + b o  

w D w sn+an_{sn~l + - . - + 0 Q 

where N(s) and D(s) are polynomials as shown. 
This appendix addresses the problem of how to put F(s) into partial fractions 

which appear in the Laplace transform tables and thus allow time-domain solutions 
to be found. The type of partial fraction expansion depends upon the roots o f D(s). 

A2.2 Cases relevant to hand calculation 
For hand calculation only two cases need be considered. 

A2.2.1 An unrepealed real, or complex, root of D(s) 
I f — pj is an unrepeated pole of F(s), there is a corresponding partial fraction 

c, 

S+Pi 

for which i t is evident that 

C, 
Cfi-p>' (A2.1) 

[S+Pi, 

Note that a root o f D(s) is a pole o f F(s) since, at s = —ph F(s) becomes infinite. 
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A2.2.2 A repeated real, or complex, root of D(s) 
I f —pi is a pole of order n (that is, i f there are n poles all at s = —/?/), there is a 
corresponding partial-fraction expansion of the form 

c c 
\7f ' " • + ••• + 

c ; , i 

and the inverse transform is, from Tables 2.8 and 2.9, 

L(^+A)"J 

tk-

k=l (k-iy. 
(A2.2) 

Equations (A2.1) and (A2.2) may be combined so that, i f F(s) has a total o f N 
distinct poles, the complete inverse transform is given by 

/(') = E È c>* 
where / denotes the pole, and A: the order o f the pole in the partial fraction. 

(A2.3) 

A2.3 Cases relevant to machine calculation 
For machine calculation, Equation (A2.3) would normally be used only to find the 
inverse transform of real poles. I f a pole is complex, i t is more convenient to 
combine it wi th its complex conjugate, which w i l l always exist i f the coefficients of 
D(s) are real. Therefore, for a pair of complex conjugate poles, s = —a+jb and 
s = -a - jb, i t is usual to write the corresponding partial function in the form 

As + B 

(s + a)2 + b2 

where A and B are real constants. 
In this form two further expansions need to be considered. 

A2.3.1 An unrepeated pair of complex conjugate roots of D(s) 
A quadratic, unrepeated factor of D(s) w i th poles at s = — a ± jb contributes a term 
in the time response f(t) defined by 

M) = sr 
As + B 

(s + a)2 + b2 

In partial-fraction form this is 

- 1 CR + JCi + CR ~ Jci 
s + a + jb s + a — jb 

and the inverse Laplace transform is 

/ i W = (CR + iC,)e-^< + (CR - JOe-l-** (A2.4) 
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Equation (A2.4) may be rearranged, using Equation (2.65) (Section 2.5.2 in the 
main text) to give 

fx (t) = e~at(2CR cos bt + 2Cj sin bt) 

which is the required inverse transform. 

A2.3.2 A repeated pair of complex conjugate roots of D(s) 
I f D(s) has n repeated quadratic factors of the form [(s + a)2 + b2]n, there 
corresponds a partial-fraction expansion having an inverse Laplace transform given 
by 

e~at E ((jF~T)i (2C*<cos
 b t J r l c h s i n *')) 

This result follows directly from the previous three cases considered. 

A2.4 Heaviside's partial-fraction technique 
I n each of the above four cases the partial-fraction expansion leads directly to the 
inverse Laplace transform, but i t remains to find the coefficients C o f the various 
partial-fraction expansions. This is done by using the procedure which has been 
credited to the electrical engineer Oliver Heaviside (1850-1925) and called the 
Heaviside technique. The method consists o f four formulae for calculating the 
inverse Laplace transforms of components in the decomposed form o f F(s). Each 
formula corresponds to one of the four types of factor, already considered, which 
can arise in the denominator of F(s). They are as follows: 

A2.4.1 A distinct linear factor of the form (s + p}) 
I f the denominator of F(s) contains a linear factor s + p{ (that is, i f there is a first-
order real pole at s — -/?,), there w i l l be a term in f(t) corresponding to this factor 
which can be computed from the equation 

ms+p=[(s+Pi)F{s)es\=_Pi (A2.5) 

Thus, the coefficient C, in Equation (A2.1) may be written as 

C, = l i m [(s+Pi)F(s)] 

or 

Q = l i m 

or 

r - N { s ) 

D'(s) 

(s+Pi) 
N(s) 

D(s) 
(A2.6) 

(A2.7) 

where D'(s) denotes the differential of D(s) w i th respect to s. 
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Coefficients of simple, non-repeated linear factors are called residues; 
Equations (A2.6) and (A2.7) may be used to find the residue C,. 

A2A.2 Repeated linear factors of the form (s + p,)n 

I f there is a factor (s + p^f in the denominator o f F(s), there w i l l be corresponding 
terms i n / ( r ) which can be computed from the equation 

(«- ! ) ! 
(A2.8) 

i = - p , 
Alternatively, Equation (A2.8) may be written in the form 

fit) (s+PiT 
t = , x{n-k)\{k-\)\ds> 

Thus, Cijc in Equation (A2.2) is given by 

t k - \ ^n-k 

—k[(s+Pi)nF{s)\ 
S=-Pi 

(A2.9) 
S=~Pi 

The above two methods of finding coefficients are val id for both real and complex 
poles. However, as has already been indicated, for machine computation it is 
preferable to use other formulae when the poles are complex. 

A2.4.3 A distinct quadratic factor of the form (s + a)2 + b2 

A quadratic unrepeated factor representing a pair o f complex conjugate poles at 
s — —a± jb contributes a term in / ( r ) defined by 

/(0I (^) 2+^ = e~at(2CR cos *' + 2Cl sin *') 

where CR and Cj are the real and imaginary parts o f 

[(s + a-jb)F(s)]\s=_{a+jb) 

(A2.10) 

( A 2 . l l ) 

A2.4.4 Repeated quadratic factors of the form [(s + af + t?f 
Finally, for each repeated quadratic factor there w i l l be a term of the form 

n t k - \ 

/M l 
(A2.12) 

k=\ 

where 

CRk + jCIk 

1 id 
(n-k)\ \ds> s=-{a+jb) 

(A2.13) 

Equations (A2.5), (A2.8) and (A2.10)-(A2.13) are the required Heaviside 
formulae. 

http://A2.ll
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A2.5 Examples 
The remainder of this section illustrates wi th examples some techniques o f partial-
fraction expansion. A n examination of these examples, together wi th the Laplace 
transform tables, Tables 2.8 and 2.9, should enable each o f the Heaviside formulae 
to be derived. 

Example A2.1 Partial fraction expansion for 
unrepeated real poles 
Prove that Equation (A2.6) gives the partial fraction coefficient associated wi th a linear 
unrepeated factor of the denominator of F(s). 

Let 

N(s) C 
F(s) = — — = l-—h (all other terms arising from the factors of D(s)) 

D(s) s+Pi 

To find the partial fraction coefficient Q mult iply throughout by s + pt to give 

N(s) 
(s + Pi) T T T T = Q + (s + Pi) x ( a U o m e r terms) D(s) 

I f s is set equal to —ph then 

which is the required solution. In practice, the above equation amounts to what is 
sometimes called 'the cover-up rule' . The factor s + p( in the denominator of the rational 
polynomial F(s) is covered up, and to find the coefficient C, all the remaining values of s 
are set equal to -pv 

Example A2.2 Partial fraction expansion for 
repeated real poles 
Prove that Equation (A2.9) gives the partial-fraction coefficients associated wi th a linear 
repeated factor in the denominator polynomial D(s). 

Let 

cin cin_{ CiX 
F(s) = 7 H 1 ——r ̂  • : 1- ( a 1 1 remaining terms) 

(s+Pi) (s-f-A-) S+Pi 
Mul t ip ly ing throughout by (s + p^f and setting s = -pt w i l l yield the sum Ci n . This is 
exactly the same procedure as used in the previous example, Example A 2 . 1 . 
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To find Cin_{ first mult iply throughout by (s + p()n to give 

(s + Pi)nF(s) = CUn + CUn_x[s + p,) + (s + p;)* x (al l other terms) 

Differentiating both sides of the above equation wi th respect to s gives 

4- [(s + Pi)nF(s)\ = Cin_{ + n(s + p , ) " - 1 x (all other terms) 
as 

Evaluating at s = —pt gives Cin_x and, by induction, 

/ n-k 

which is the required proof (see Equation (A2.9)) . 

S=-Pi 

Example A2.3 An inverse Laplace transform of 
mixed type 
Find the inverse Laplace transform of 

f(s) = s + 3 

(s+l)\s-2) 

The partial-fraction expansion of F(s) is 

S + 3 _ C\ C2,2 Q>,1 
( J + 1 ) 2 ( J - 2 ) i - 2 ( s + 1 ) 2 i + 1 

The coefficients Cj and C 2 2 are easily calculated using the cover-up rule to be 5/9 and 
—2/3 respectively. C 2 1 is obtained by differentiation: 

S=-l 

The inverse Laplace transform then follows as 

f(t) = -lte-t-5-e-t + 5-e2t 
3 9 9 

A n alternative way to find the partial-fraction expansion would be to let 

F( ) = — L * + 3  

W s+1 ( J + 1 ) ( J - 2 ) 

Taking a partial-fraction expansion of the right-hand side gives 

- 2 / 3 + 5/3 
( s + l ) 2 ( * + l ) ( i - 2 ) 
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A further partial-fraction expansion yields the required result: 

- 2 / 3 5/9 5/9 

(s+iy s+l 5 - 2 

Example A2.4 An inverse Laplace transform 
involving repeated differentiation 
Find the inverse Laplace transform of 

5 + 2 
F(s) = 

(s- 1 ) V 

This example is included since it requires repeated differentiation. The expansion of F(s) 
takes the form 

F(s) 
'1,2 

( s - i y •+• 
C2 3 Cy ? £-2 

+ ^ + - ^ + — 

The coefficients Cx 2 and C 2 j 3 are readily evaluated using the cover-up rule as 3 and 2 
respectively. Cx x and C 2 2 require a single differentiation: 

and 

- i , i 

-2,2 

d s + 2 

ds 5 3 

-8 
5=1 

d 5 + 2 

& (s-iy 5=0 

The final coefficient is obtained by double differentiation. From Equation (A2.9) , 

_ 1 i d 1 5 + 2 
C 2 , l - ÔÏ I ^ 2 2! \<& ( 5 - 1 ) 2 / , = 0 

from which it follows that the time function is 

f{t) = 3te{ - Se' + It2 + 5t + 8 

In ending this section, i t is worth noting that i f a factor px is complex, the 
coefficient Q is complex, too. This poses no real problem for hand calculation, but 
it does make machine computation awkward. 
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brief introduction to 

MATLAB® and its toolboxes 
A3.1 INTRODUCTION - WHAT IS MATLAB, AND WHAT 

OTHER REFERENCE SOURCES ARE THERE? 
A3.2 TOOLBOXES AND M-FILES 
A3.3 THE MATLAB HELP SYSTEM - AND OTHER TIPS 
A3.4 THE MATLAB DIRECTORY STRUCTURE -

INCLUDING THE WORKING DIRECTORY AND 
THE MATLABPATH 

A3.5 OPERATIONS WITH MATRICES AND VECTORS -
WITH COMMENTS 

A3.6 PLOTTING - AND HARDCOPY (ALSO 
INTRODUCING THE TRANSPOSE OPERATOR) 

A3.7 NUMERICAL PROBLEMS 
A3.8 'OUT-OF-MEMORY' MESSAGES 
A3.9 BLOCK DIAGRAM MANIPULATION IN MATLAB 

M A T L A B (The Mathworks Inc., 1993a, 1993b - first referenced in Section 1.3.7) 
is basically a 'number-crunching' mathematical software package, wi th add-on 
'toolboxes' which can be bought to make it more easily usable for specific areas of 
work (such as control systems work) . I t is described more ful ly below, together 
wi th the 'bi ts ' o f i t which are necessary in order to be able to carry out the 
examples in the text. 

I t is assumed that it is known how to start M A T L A B on whatever machine is 
being used. Wi th M A T L A B versions of 4.0, or later (referred to as ' v4 .x ' from now 
on - version 4.2c. 1 is current at the time of wri t ing) , this w i l l normally be done by 
selecting an icon from a windows-type operating environment (for example, on a 
PC, Mac ' , or workstation). In older versions o f M A T L A B (for example, version 3.5, 
referred to as 'v3 .x ' from now on), M A T L A B might st i l l have been set up to run 
from an icon in a windows-type operating environment, but i t is equally l ike ly that 
it may be necessary to type matlab at an operating system prompt, for example. I f i t 
is not known how to start M A T L A B at this stage, another source o f help must be 
consulted - for example, the M A T L A B manuals for the specific installation, or the 
computer system manager. These notes are to al low a start to be made wi th using 
M A T L A B , particularly for the examples on the disk accompanying this book, and 
to answer frequently asked questions. They are not intended to replace other sources 
o f reference. 
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A3.1 Introduction - what is MATLAB, and what other reference 
sources are there? 

M A T L A B is a command-driven, interactive language, aimed at the solution o f 
problems involving vectors and matrices (some of the commands are listed shortly). 
That may sound rather restrictive, but in fact the opposite is true. Sets of data from 
real plant can be written in rows or columns, when they immediately become 
vectors. Several sets of such data form a matrix. The coefficients in a transfer 
function (or any other equation) can be written as a row of numbers - a vector again. 
I f a plant or a control system is modelled in state-space form, then the model is 
already written in terms of matrices and vectors. This means that M A T L A B is good 
for providing computer assistance in most branches of science and engineering. 

The only data structure which M A T L A B uses is a non-dimensioned matrix (or 
array), the dimensions being adjusted automatically by M A T L A B as required. 
Thus, given a matrix 

A = 

1 2 3 

2 8 4 

1 7 9 

for example, it is very easy to enter the matrix into M A T L A B and, by way of an 
example, to find its inverse and its eigenvalues. A l l that is necessary is to type the 
fol lowing commands (at the M A T L A B prompt » , terminating each line w i th a 
'Return' (or 'Enter') keystroke (some comments fol low the example): 

» a = [ l 2 3 

2 8 4 

(or, alternatively, » a = [ l 2 3; 2 8 4; 1 7 9]) 

1 7 9] 

» inv(a) 

» eig(a) 

Comments: M A T L A B is case-sensitive. This can be overridden, but it is 
recommended that lower-case is used throughout so, in this appendix, a is used 
where A would normally appear, for example (vectors and matrices are 
distinguished purely by their context and size). Lower-case input should certainly 
always be used for M A T L A B commands, otherwise they may not be executed in 
some versions. For example, to exit M A T L A B , the command is: 

» quit 

I f > QUIT is entered instead, i t is possible that an error message may result, or the 
command may simply be ignored, depending upon the setup (version number and 
operating system). 

Two different methods of entering the matrix a are shown above. Whichever is 
preferable to the user w i l l work. It is always possible to enter more than one line's 
worth of M A T L A B commands on a single line, by using semicolons to separate 
information that ought to be on separate lines. 
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I f the commands above are entered, it w i l l be found that M A T L A B displays 
the result of each one. To prevent this, simply terminate the command wi th a 
semicolon. For example, the command 

» a = [ l 2 3; 2 8 4; 1 7 9] ; 

w i l l enter the matrix a into the workspace, but w i l l not echo the result. 
Many M A T L A B commands can be used either wi th or without left-hand 

arguments. For example, the command inv(a), above, displayed the inverse o f the 
matrix a. I f seeing the result was unnecessary, the command could be terminated 
wi th a semicolon. What then would be the point o f using it? Not much! However, 
the inverse of a might wel l be required in some later calculations, so i t could be 
stored as a new matrix (say ai), by the command: 

ai = inv(a); 

I t is a reasonably general rule that i f a command is used w i t h left-hand arguments 
i t w i l l store data for use later, whereas i f i t is used without them i t w i l l give 
immediate results (a number, a plot, and so on). More examples w i l l be found 
later. 

Another fairly general rule is that square brackets [ ] are used to delimit 
vectors and matrices, while parentheses ( ) are used to enclose command argument 
lists. 

Apart from these notes, other reference sources are M A T L A B ' s own help 
system (see later), textbooks such as Biran and Breiner (1995), Ogata (1994, two 
titles) and Strum and K i r k (1994), together wi th the manuals published by the 
Mathworks (1993a, 1993b) (the suppliers of M A T L A B ) . I f Internet access is 
available, the Mathworks maintain a Web site which includes a list o f textbooks 
based on M A T L A B , together wi th other useful information. I t can be found at 
http://www.mathworks.com. 

In many versions of M A T L A B , further information is forthcoming after using: 

>̂ intro 

and > demo 

Several M A T L A B commands have already been used in this section. Very 
many more are used in the examples on the disk which accompanies this text. Here 
is a list of about one hundred which are mentioned by name in the text, wi th a 
selection o f sections in which they appear. Note that some of these commands are 
not in M A T L A B itself, but are in add-on toolboxes (which are described in the next 
section). The vast majority of the commands are either in M A T L A B , or in the 
Control Systems Toolbox (see Section A3.2) (the rest are in the Multivariable 
Frequency Domain Toolbox or S I M U L I N K ) . The M A T L A B help system (see 
Section A3.3) can be used to provide information on any o f these commands. I f 
i t fails to do so, the command in question is probably in a toolbox which is 
unavailable on the reader's system. The indicated text sections, together wi th the 
associated files on the accompanying disk, give examples o f their use. 

acker 5.4.7; align 10.6.3, 10.6.5; augstate Chapter 5 problems, A3.9; 

bode 3.5.1, 3.5.2, A3.6; 

http://www.mathworks.com
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c2dm (and c2d) 3.6.2, Chapter 3 problems, 9.8.2, Chapter 11 
problems, A5.5.5; c2dt 3.7; cd A3.4; circ 3.5.2; clear A3.3, A3.8; 
chop 3.5.1, 4.3.3, A3.9; conv 3.5.1, 4.3.3, A5.4; ctrb 5.3.1; 

d2c Chapter 3 problems; dcgain 3.5.2; demo A 3 . 1 ; d/ag 12.6.1, 
12.6.2; dimpulse Chapter 3 problems, A5.4; dir A3.4; 9.8.2; dlqr 
12.4.2, Chapter 12 problems; dstep 3.6.2, Chapter 3 problems; eig 
5.3.3, 5.6, A 3 . 1 ; end 3.6.1, 5.3.3; exp 8.3; eye 5.3.3; 

face 10.6.3, 10.6.5; /cgers/z 10.7.5; feedback Chapter 5 problems, 
A3.9; feig 10.6.5; fget 10.7.5; fgetf 10.6.5; filter 3.6.1; find 10.6.5; 
/zm> 10.7.5; fmisalg 10.6.3; y»mi/ 10.6.5, 10.7.5; fmulf 10.6.5; / o r 
3.6.1, 5.3.3; fperron 10.8.1; gmpwi 4.3.3, A3.6; grid 4.3.3, A3.6; 

Ae/p A3.3; hold 3.5.1, 3.5.2, 3.5.3; impulse 9.6.2; map4 (custom m-
file on the disk) 10.7.5; intro A 3 . 1 ; inv A3.1; length Chapter 3 
problems; linmod ( S I M U L I N K ) 14.4.2; linspace A3.5; logspace 
3.5.2, 4.3.3, 10.6.5, A3.6; lookfor A3.3; fyr 12.3.1, 12.4.2, 12.6; Isim 
3.6.2, 9.6.2; 

margin 3.5.2, 4.3.3; matlabpath (not a command, as such) A3.4; 
mv2fr 10.6.5; mv2step (custom m-file on the disk) 10.4, 10.6.5, 
10.7.5; mvfb 10.6.5, 10.7.5; mvser 10.6.5, 10.7.5; mvtf2ss 10.6.5; 

ngrid 3.5.3; nichols 3.5.3; nyquist 3.5.2, 4.3.3; 

tffov 5.3.2; tfnes 3.6.1; tfrienr A3.6; 

p a c £ A3.8; parallel A3.9; patf/i A3.4; p/z/ag 4.5.4, 10.6.3, 10.6.5, 
10.8.3; phlead 4.5.4; place 5.4.7, 9.6.2; p/ctf (and several associated 
commands) 3.5.2, 3.6.1, A3.6; plotnyq 10.7.5; polar 3.5.2; print 
A3.6; pzmap A5.5.5; 

quit A 3 . 1 ; rand 9.8.2, Chapter 11 problems; rank 5.3.1, 5.3.2, 5.3.3; 
rlocfind 4.4; rfoews 4.4; roots 3.3.2, 4.3.3, 5.3.2, A5.5.5; 

semilogx A3.6; series A3.9; sgrid A5.5.5; sigma 10.6.4; simulink (see 
Appendix 4) 5.7, 7.7, 14.4.2, 14.7.3, Chapter 14 problems; sin 8.3, 
A3.5; size A3.3; s$2(f Chapter 2 problems, 5.3.2, 5.3.3; step 3.3.4, 
3.6.2, 4.3.3, 5.7, 9.6.2, 11.2, A3.9; 

tf2ss Chapter 2 problems, 5.3.3; i r im ( S I M U L I N K ) 14.4.2; type A3.3; 

what A3 A; who A3.3; 

zgrid A5.5.5. 

A3.2 Toolboxes and m-files 
Since M A T L A B was written to handle matrices and vectors, and since real-world 
data can be represented as vectors (columns of values against time, for example), i t 
follows that M A T L A B finds wide use in all fields of science and engineering. 
Various toolboxes are available, which extend the functions o f M A T L A B into 
specific areas of work. Each has its own manual. 

There are many functions in M A T L A B of direct use in control engineering. 
The Control System Toolbox (The Mathworks Inc., 1994) (CSTB) was therefore 
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written to make use of these in commands which extend M A T L A B ' s basic 
facilities. This provides single commands for such things as Bode plots, t ime 
responses, state variable feedback design and so on. These are for single-input-
single-output (SISO) systems (some CSTB commands w i l l also work wi th mul t i -
input-single-output systems), represented in any o f a number o f continuous and 
discrete forms (Laplace or z transfer function, state space, and so on). M A T L A B 
plus the CSTB w i l l suffice for most o f the work in this text. 

There are many other toolboxes available for M A T L A B . The only other one 
used in this text is the Multivariable Frequency Domain Toolbox (Cambridge 
Control, 1990) ( M V F D T B ) used mainly in Chapter 10. 

The way these toolboxes work is o f some relevance. They are actually written 
in M A T L A B (that is, they use the statements and commands o f the M A T L A B 
language). They consist of collections of files called m-files (because they have the 
filename extension .m, short for 'meta') . Anyone can write an m-file. I t is just an 
A S C I I file created using any A S C I I text editor, and containing a sequence of 
M A T L A B commands, typed exactly as they would be from the keyboard when 
using M A T L A B interactively, wi th nothing else added. 

In M A T L A B versions 4.x, the process is made easy by (on a PC system, for 
example) cl icking on file in the menu bar, then on new, then on m-file - which w i l l 
open a system editor. (To alter an existing m-file, use file in the menu bar, then open 
m-file - but remember that the editor's save command must be issued before any 
changes take effect.) Thus, an m-file called garbage.m might be created, containing 
nothing but the fol lowing lines: 

a = [ l 2 3; 2 8 4; 1 7 9] 

inv(a) 

eig(a) 

and simply entering the filename (without the .m extension) in response to the 
M A T L A B prompt, would execute the commands in the file. Thus 

> garbage 

would have exactly the same result as entering the original commands in Section 
A 3 . 1 . The file garbage.m has effectively become a new M A T L A B command. A l l 
the m-files on the accompanying disk work in this way. 

I t is exactly the same wi th the toolboxes. A n y toolbox installed on the system 
simply adds its own collection of m-files to the M A T L A B directory structure (see 
Section A3.4) , and they become new M A T L A B commands. I t is not necessary for 
the user to know that they are in a toolbox - i f they are on the system, they appear 
just as any other M A T L A B commands, and are run by entering their command 
name at the M A T L A B prompt. 

Finally, i f i t is desired to 'crash' running m-files which have gone into a loop, 
or which are not doing what was intended, the usual things can be tried, such as 
< C T R L > C and < C T R L > Z (but do not blame anyone except yourself for the 
results!). 
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A3.3 The MATLAB help system - and other tips 
One disadvantage of M A T L A B to the new (or occasional) user is that i t is necessary 
to know the commands before they can be used! However, given some idea o f what 
a required command might be called, or what i t needs to do, the online help is 
reasonable. I f the fol lowing command is entered: 

» help 

in any version of M A T L A B , some assistance w i l l be forthcoming. I n earlier 
versions (v3.x), the procedure after that is normally just to type help fol lowed by a 
command name of interest. For example: 

» help eig 

w i l l tell you all about the eig command which was used earlier - i t w i l l be found 
that i t can give eigenvector information as wel l as eigenvalues. 

I n later versions (v4.x), that is also the basic way to use help. However, there 
are alternatives. For example, typing help on its own now gives a list of broad help 
topics, and typing help topic (where ' topic ' is some interesting item from the list) 
then gives more detail. For example, in the topic list is a topic matlab\general. The 
command: 

> help general 

w i l l then expand this category, giving about six further categories, each containing 
(say) eight or nine individual commands. One of these is the command who. 
Typing 

y help who 

then informs you that the who command lists variables currently in the workspace. 
Executing the command, thus: 

y who 

lists them. I f the examples above have been followed, the variables a and ai w i l l be 
listed as current. What they contain can be discovered simply by typing their name 
at the M A T L A B prompt, as in : 

»a 
The size of a variable can be found by typing the fo l lowing command, and so on. 
)> help size explains this, and the command whos is also worth a try: 

y size(a) 

I f the control toolbox is installed, there w i l l have been a topic toolbox\control in 
the help list. 

>̂ help control 

w i l l list its contents, from which some commands o f interest w i l l be noticed (step, 
bode, impulse, nyquist and so on). Again, help nyquist (for example) w i l l give 
more information. 
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I f this method of searching for l ikely commands is thought too unwieldy, try 
the lookfor command. >̂ help lookfor w i l l give information about i t but, as an 
example, to find out how to integrate a function, try: 

y lookfor integ 

This command might result in a list of several suggested commands which could 
be considered (depending on the toolboxes available). The normal help command 
can then be used to check those of greatest interest. 

Finally, help can be selected from the menu bar at the top o f the M A T L A B 
window, in installations where this is visible. 

Help can also be obtained on some syntactical aspects o f M A T L A B . For 
example, the colon is a potentially powerful operator in several circumstances and, 
although it might be rather advanced for new users at this stage, the fo l lowing 
command w i l l give the details: 

y help colon 

Note that the command help: w i l l list all the possible syntactic and logical topics, 
although not all have any further help available beyond that which is then given. 

To find out even more detail about a command than the help system w i l l give, 
there are two options. Firstly, the relevant manual may contain more information. 
Secondly, for many commands (most toolbox commands), the actual M A T L A B 
code is available in the m-file which corresponds to the command name. This can be 
extremely useful, as i t allows the M A T L A B commands to be edited so as to make 
them behave in a different way. For example, the step command from the CSTB 
could be altered, so that it draws grid lines on the step response by default. When 
doing this, be sure not to overwrite the original M A T L A B command - use a copy 
wi th a slightly different name. 

To look at commands in this way, use the type command as below, or simply 
use any A S C I I text editor (which w i l l have to be done in any case, i f the command is 
to be altered). 

y type step 

Note again that, i f commands are altered in this way, the modified version must be 
saved wi th a new m-file name - do not try to overwrite the original command. 
Note also that M A T L A B w i l l only allow m-file-type commands to be viewed and 
altered in this way - not bui l t - in M A T L A B functions. I f the m-files on the 
accompanying disk are to be used as templates for your own work, these too 
should be copied and renamed - do not overwrite the originals! 

Another point worthy of note is that i f a standard word processor is used in 
A S C I I mode (or 'text only ' , or 'nondocument', perhaps) then some W P packages 
are better than others at really being 'text only ' . A t least one very wel l -known WP 
package is notorious for adding extra characters at the ends o f lines in a file which is 
supposedly pure A S C I I text. I f a WP package, which has not been used successfully 
for m-files before, is used to write an m-file, and the m-file does not run as expected, 
then this aspect should be investigated, as wel l as checking the M A T L A B code. 

I n Section A3.5, it is shown how to add help text for your own m-files to the 
bui l t - in help system. 

One final note in this section - i f a program variable is given the same name as 
a M A T L A B command, the variable name w i l l take precedence. For example, i f a 
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variable called eig is created, and later the eig command is issued, an error message 
w i l l be generated. I f error messages have no obvious cause, i t is worth checking to 
see i f a variable wi th the same name as the command causing the error exists in the 
workspace (use who). To get rid of such a variable, copy it to a variable having a 
different name, and then clear it from the workspace using (for example): 

» eigv = eig; 

y clear eig 

The eig command w i l l then work properly again, and the variable eigv contains the 
data that used to be in the variable eig. 

A3.4 The MATLAB directory structure - including the working 
directory and the matlabpath 

This may vary somewhat wi th version and installation, and is the authors' 
interpretation of events. The fol lowing comments apply largely to v4.x, running 
under Windows on PCs. I f M A T L A B is simply to be used as supplied (assuming a 
correct installation), this section can be omitted. However, i f m-files are to be 
written, or the ones from the accompanying disk are to be installed on a hard disk 
drive, then some thought must be given as to how M A T L A B w i l l find them. 

When M A T L A B is invoked from the operating system, it w i l l run in a certain 
working directory, which depends upon the setup. I f new m-files are always saved 
(or copied) to this default directory, all w i l l be OK, but the (lack o f ) structure w i l l 
get 'messy' and eventually i t may become difficult to distinguish additional files 
from the original M A T L A B installation files. There are various options for keeping 
things tidier. 

M A T L A B has a buil t- in search path for files called, imaginatively, the 
matlabpath. This is initialized each time M A T L A B is started. Whenever a 
command name is issued, M A T L A B searches its workspace ( in memory) and then 
every directory in the path until i t resolves the command reference (or fails to find 
i t ) . Toolboxes are usually installed as subdirectories under the M A T L A B root 
directory (for example, below the matlab directory), and are automatically added to 
the bui l t - in matlabpath by their installation software. The search path is initialized 
by the matlabpath command. Note that there is no help available for this, as i t is an 
operating system environment variable. However, help path can be typed instead. 
In v4.x, the matlabpath command w i l l be found in the file matlabrc.m, in the root 
directory o f the M A T L A B installation. This file can be viewed (and altered) using 
any A S C I I text editor. The command w i l l be found towards the end of the file, and 
might begin something like this: 

matlabpath([.. . 

'C : \MATLAB\ too lboxMoca l ' , . . . 

' ;C:\MATLAB\toolbox\matlabNdatafun' , . . . 

' ;C : \MATLAB\ too lbox \ma t l ab^ l fun ' , . . . 

and continue in a manner dependent upon the selection of toolboxes installed. 
Maybe the neatest way to organize new work is therefore to put any new m-files 

file://'C:/MATLAB/toolboxMocal'
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into a subdirectory (created by you) which fits this structure (for example, 
c:\matlab\toolbox\mymfiles), and to add this new subdirectory name to this 
matlabpath command in the obvious manner. M A T L A B w i l l then always include a 
search of the new directory when looking for a command name, so your commands 
are just as accessible as the original M A T L A B ones. I t is also possible to alter the 
search path in any desired way from the M A T L A B prompt, using the path 
command, but any such alteration w i l l be forgotten when M A T L A B is closed 
down. 

There are other ways of accessing new m-files. For example, maybe selections 
of m-files are kept in project subdirectories, along wi th al l the other work on the 
same project. In this case, either the appropriate subdirectories can be added to the 
matlabpath command, as above, or M A T L A B can be started, and then the working 
directory can be changed to the one containing the m-files i t is desired to execute. 
This is done using the cd command in the usual way (for MS-DOS machines), for 
example: 

> cd a: % or: 

y cd c:\projectl\filters 

to change to a floppy-disk drive, or a different hard-drive directory, respectively. 
Note that in later versions of M A T L A B (v4.x), the cd command is a M A T L A B 

command (as is the dir command to check what is i n the new directory). For earlier 
versions, such commands w i l l need to be issued as operating system commands. 
This is done by using an exclamation mark to precede the operating system 
command. For example, on a PC running M A T L A B v3.x under MS-DOS: 

> !cd c :\project M i t e r s 

» !dir 

These also work in v4.x and higher, but may leave an inactive operating system 
window open every time they are used. To list just the M A T L A B m-files and data 
files in the current working directory, the what command can be used. 

I f running M A T L A B on a network in an academic institution, there are l ikely 
to be restrictions on directory manipulation commands. For example, teaching staff 
might place m-files in a file-server directory q:\matlab\toolbox\staffile which can be 
read, but not altered. However, what can then be done is to open the files wi th an 
A S C I I text editor, and save them to a disk o f your own in the a: drive (for example) 
- then they can be altered as necessary and, presumably, the a: drive w i l l already be 
on the M A T L A B search path. 

A3.5 Operations with matrices and vectors - with comments 
Most mathematical operators are entered into M A T L A B either just as they would be 
written on paper, or in a similar way to most other technical computing languages. 
The good thing about M A T L A B is that this also applies to vector and matrix 
manipulation. For example, to check that the matrices a and ai entered in Section 
A3.1 really are inverses of one another, they can be mul t ip l ied together, and the 
result can be inspected to ensure that i t is a unit matrix. I t is as easy as (the spaces 
used for layout are optional): 

file://c:/matlab/toolbox/mymfiles
file://c:/projectl/filters
file://q:/matlab/toolbox/staffile
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y a * ai 

The answer w i l l be displayed. I f i t was not required to display the answer, but 
rather to store i t in the variable prod for use later, then the fol lowing would be 
used: 

> prod = a * ai; 

M A T L A B always assumes that vector-matrix maths is required by default. For 
example, to set up a 3 kHz sinewave having 200 sampling intervals in the time 
range 0 s to 2 ms, these commands can be used (as always, the spacing is 
optional): 

> t = [0 : 0.002/200 : 0.002]; % see notes (a) and (c) below 

y x = sin(2 * p i * 3000 * t) ; % see Section A3.6 for ways of 

% plotting this 

• Note (a): the first command sets up a vector of data points (time values) between 
0 and 0.002 s, in steps of 0.002/200 seconds. A n alternative would have been to 
use the linspace command to generate the 201 points as follows: 

» t = linspace(0, 0.002, 201); % could use 2e - 3 instead o f 0.002 

• Note (b): the equation x = sm(2nft) is evaluated at every point in the time vector 
t by the single command shown, so x w i l l also be a 201-element vector (note that 
pi is a buil t - in M A T L A B function, so it can be used l ike this without prior 
definition). There is no need for the do ox for loops which would be necessary in 
other languages. 

• Note (c): everything following a % sign is a comment, and is ignored by the 
interpreter. Such comments can be placed at the end of a command as shown 
above, or on a line of their own (with % as the first character). 

The M A T L A B help system works by looking for comment lines at the start o f 
the m-file containing the command, and listing them unti l it comes to the first non-
comment line (which may be a blank line). New m-files can therefore be added to 
the help system automatically. For example, the file garbage.m created in Section 
A3.2 could have been written: 

% The command garbage sets up a specific 3 x 3 matrix and lists 
% its inverse and eigenvalues. 

% The two lines above would appear in response to help garbage. 

% These lines would not, because of the blank line in between. 

% These lines can be used to add more details for the user who is 
% prepared to open the file and read its contents. 

a = [ l 2 3; 2 8 4; 1 7 9] 

inv(a) 

eig(a) 
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Because of the vector-matrix mode of operation, there are a couple o f operations 
not found in other languages. The first is to allow element-by-element operations. 
For example, say that i t is required to modulate the 3 kHz sine wave created above 
(in the variable x ) , wi th a 600 Hz sinewave. To do this, the data points for the 
600 Hz wave would be created at the same time values as the 3 kHz wave: 

» y = sin(2 * p i * 600 * t) ; 

(Note that this command to form y can be issued by using the upward arrow key to 
recall previous commands, unti l the one is reached which formed x. This can then 
be edited to look like the command above, and 'Return' , or 'Enter' pressed to 
execute i t . ) 

Now the two waves need to be mult ipl ied, but the problem is that the 
expressions x*y andy*jc are both invalid, since both x and y are 1 x 201 vectors, so 
the product makes no sense in either case (see Section A l . 1 . 2 ) . What is actually 
required is to mul t ip ly together the individual values of x andy at each value of time 
in t. M A T L A B can be instructed to do this by using a fu l l stop (period), or dot, in 
conjunction wi th the multiplication sign: 

> z = x .* y; 

A dot can also be used wi th the exponentiation operator (as in . A ) , so as to raise 
every individual element in a vector or matrix to the same power. 

The other MATLAB-specif ic vector-matrix operation is backward division for 
solving equations. Say there is an equation p = Qr where 

1 2 

3 4 

The fol lowing commands w i l l solve for r: 

» P = [ 4 ; 6 ] ; q = [ l 2; 3 4 ] ; 

» r = q\p 

A3.6 Plotting - and hardcopy (also introducing the transpose 
operator) 

This is probably the major area of difference between earlier M A T L A B versions 
(v3.x), and more recent ones (v4.x). I f basic plots are al l that is required, there is 
l i t t le obvious difference. However, as soon as anything more complex is attempted, 
the differences begin to become apparent. They are caused by the fact that v4.x uses 
a graphical environment completely rewritten in an object-oriented form, and based 
on an extremely flexible graphical user interface. This means that there is great 
f lexibil i ty over the production and presentation o f plots, but i t does take some 
getting to grips wi th! Here, only the very basic operations are discussed. The help 
system w i l l give more information about every command used, but i f i t is necessary 
to get to grips wi th the later graphics in a serious way, then i t is necessary to read 
the appropriate M A T L A B User's Guide and Building a Graphical User Interface 
manuals (The Mathworks, Inc., 1993a, 1993c). 

To get a plot of the sinewave data created in Section A3.5 , i t is only necessary 
to issue the command: 

and Q 
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» plot(t,x) 

Using v4.x, the plot w i l l appear in a separate window and, i f i t is not visible, i t w i l l 
be hiding behind the command window. I t can be brought to the front by any 
method appropriate to the operating system in use. 

The basic plot can be altered in a number o f ways. The most common thing to 
do is to add grid lines. Issuing the command grid at the next M A T L A B prompt w i l l 
do this, but i t could have all been done at once, thus: 

» plot(t ,x); grid 

Alter ing the plot colour, number and style of gridlines, adding text on the plot grid, 
and so on is all possible, but not described here. Simple titles and labels can be 
added to the plot as follows: 

» t i t le( '3kHz Sine Wave') 

» x labe l (Time (s)') 

» ylabelCsin(2 * pi * f * t ) ' ) 

To see all three waveforms from Section A3.5 on the same axes, the fo l lowing 
command could be used: 

» plot(t, [x; y; z]); grid 

which forms a matrix having the elements o f x on row 1, y on row 2 and z on row 
3, then plots them against t in whichever way causes the number o f points to match 
up. Thus, the fol lowing command, which introduces the use o f the single 
apostrophe as the M A T L A B transpose operator, would also work (this time 
stacking JC, y and z as three columns prior to plotting): 

» plot(t, [x ' y ' z ' ] ) ; grid 

I f an error message about incompatible rows and columns is encountered during 
such multiple plots, the most l ikely cause is that one of the dependent variables is 
stored as a row, and one as a column. For example, the sinewaves above were 
created using the (row) time vector, but vector results of most M A T L A B 
commands would appear as columns by default. Using the command size(x), for 
example, w i l l determine which is which, and the transpose operator can then be 
used on appropriate variables to correct things. 

The last common basic requirement is to examine a small section o f the plot. 
This can be done by using the axis command. Note that in M A T L A B v3.x, this must 
be issued before the plot command, but in the windows-type versions v4.x, i t must 
be issued afterwards. To see the section of the existing plot in the x-axis range 
(0.0008, 0.001) and the y-axis range (0, 0.4), use: 

» axis([8e^l , l e - 3 , 0, 0.4]) 

Note that, on this scale, the plots are rather crude - this would be cured by using 
more time values in the t vector. 

Many M A T L A B functions (especially toolbox functions) produce their own 
plots i f issued wi th no left-hand arguments, or produce data for subsequent 
manipulation i f used with left-hand arguments. For example, to use the bode 
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command from the control systems toolbox to get a frequency response plot o f the 
system model having the Laplace transfer function 

r M _ 3 J + 4  
W ~ s ( s 2 + 2s + 8) 

proceed as follows: 

y num = [3 4 ] ; % numerator coefficients in a vector 

> den = [1 2 8 0 ] ; % denominator coefficients in a vector (all 
% must be present - note 0 coefficient o f s°) 

y bode(num,den) 

This w i l l produce the standard magnitude and phase plots on the screen. However, 
i t might be preferred to see the magnitude plot separately (for example), in which 
case it must be produced explicitly. Using the bode command wi th left-hand 
arguments allows this: 

y [mag, pha, w] = bode(num,den); % semicolon prevents listing of 

% all data 

>̂ semilogx(w,20*logl0(mag)); gr id % produce dB plot on 
% semilogarithmic axes 

Finally, a specific frequency range can be used, i f the default one chosen by 
M A T L A B is unsuitable. These are the values in w, and i t w i l l probably be the case 
that M A T L A B chooses 0.1 to 10.0 rad s~l for this system. I f i t was required to use 
200 values in the range 0.01 to 100 rad s - 1 , the logspace command would be used 
to generate a logarithmically spaced set o f such points, and these would be used in 
the bode command, rather than al lowing M A T L A B to set its own default values: 

>̂ w = logspace(—2, 2, 200); % required values for w 

y [mag, pha] = bode(num,den,w); % w now on right-hand side 

> semilogx(w,20 * loglO(mag)); gr id % produce dB plot on 
% semilogarithmic axes 

A t this point, note also that M A T L A B has a ginput command, a l lowing data points 
to be picked of f plots. This can be used in various ways (use the help system to 
investigate), but the simple command ginput at the next M A T L A B prompt w i l l put 
up a crosshair on the existing plot. This can be moved over the plot (typically using 
a mouse) to the point of interest, the left-hand mouse button clicked, and then the 
return key pressed, when the data values at the point w i l l be reported. I f several 
points are clicked before pressing return, the coordinates o f every selected point 
w i l l be reported. 

To get hardcopy of plots, there are basically three options. The simplest is to do 
a screen dump, by whatever means your computer system uses. This may be the 
most convenient for earlier versions of M A T L A B , but is l ike ly to give the poorest 
quality. The next method ( i f using v4.x) is to print from the windows-type 
environment, by using the file menu-bar i tem in the figure window, and then 
selecting the print option. The final option, usable w i t h any M A T L A B version, is to 
divert hardcopy to a word processor. 
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To obtain word processor compatible hardcopy of a plot, i t is clearly necessary 
to produce the plot as a data file which the word processor can read. The examples 
below assume that HPGL format (Hewlet t -Packard® graphics language) w i l l be 
used, either for sending to a plotter, or for importing into a W P wi th an input filter 
for such files (for example, Microsoft® Word for W i n d o w s ™ ) . 

In earlier versions o f M A T L A B (v3.x), proceed as follows: 

y meta filnam % produces a device-independent metafile called 
% filnam.met in the working directory, where 
% filnam is a name of your choice. 

y !gpp filnam /dhpgl /o l % issues an operating system command for the GPP 
% (graphics post-processor) routine to convert 
% filnam to the chosen W P format (it w i l l create 
% filnam.hpgl in this case). Typing gpp at the 
% operating system prompt gives help. 

In later versions of M A T L A B (v4.x), proceed as follows: 

y orient landscape % necessary to prevent the plot appearing sideways. 

y print -dhpgl filnam % produces file filnam.hgl i n the working directory 
% which can be plotted, or imported to 
% a suitable WP. help print gives more info. 

Note that different file forms used for such transfers give different results. In the 
above example, M S ® Word for W i n d o w s ™ w i l l import the H P G L file as a M S ® 
D r a w ™ file (using insert then picture) - so it can subsequently be edited at w i l l , 
just l ike any other drawing. I f some printer file format had been selected instead o f 
HPGL, and imported into the WP, it may wel l be imported as a (non-editable) bit 
map instead. The appearance in the document would be more or less the same, but 
nothing could be done wi th the image, other than change its size. 

A3.7 Numerical problems 
In common wi th all languages capable of matrix manipulation, numerical problems 
due to both rounding errors and il l-conditioning can occur. As an example of i l l -
conditioning (from the CSTB manual) consider the matrix equation Ax — b where 

"0.78 0.563 "0.217" 
A -

0.913 0.659 0.254 

and it is desired to solve for JC. 
The M A T L A B command x=a\b w i l l do this, as mentioned in Section A3.5. The 

answer is x = [— 1 1 ] T . However, i f the values in A are slightly perturbed by adding 
0.001 to each element in the top row, subtracting 0.002 from element (2,1) and 
0.001 from element (2,2) , M A T L A B then gives the result x = [ - 5 7.3085] T . 

This does not indicate that there is a problem wi th M A T L A B (checking the 
answer shows it to be correct). The problem is that the matrix A is almost singular, 
so that i t is ill-conditioned wi th respect to inversion. What it does indicate is that 
(particularly in the case of high-order or multivariable systems) much care is 
required in the formulation of this k ind of problem. 
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Further discussions in this area w i l l be found in any numerical analysis text. 
For present purposes, it is sufficient to note that real single-input-single-output 
problems, together wi th the choice o f algorithms used in M A T L A B , rarely cause 
any difficulties for systems of order less than five (according to the CSTB manual). 
As wi th any other computer-aided analysis software, i t is obviously beneficial i f the 
user has a ball-park idea of the correct answer, so that such problems should not 
mislead too much. 

A3.8 'Out-of-memory' messages 
Trying to run M A T L A B (especially the later versions, v4.x) without much system 
memory can give rise to such messages. The first thing to be sure o f is that the 
system is set up correctly - especially wi th regard to such matters as environment 
space in PC systems, for example (consult the release notes and installation notes 
for your version of M A T L A B ) . Assuming this to be O K , the fo l lowing matters are 
worthy of consideration. 

Is any other program being run which uses a lot o f memory simultaneously (for 
example, some TSR programs, or word processors for import ing M A T L A B plots)? 
I f so, these may have to be closed, letting M A T L A B have all the memory. Also note 
that some programs are not very good at releasing memory when they terminate, so 
it may even be necessary to reboot, and run M A T L A B only. 

Are there large matrices or vectors in memory which are no longer required? 
This is often worth checking if, for example, a plot command generates the out-of-
memory message. I t may be that several long vectors have been generated in the 
process of creating the plot data, but are not needed actually to produce the plot 
itself. In this case, the whos command can be used to look for the largest variables 
which are no longer required, and the clear command can be used to delete them 
and free up the memory they were occupying. For example: 

y clear va r l var2 var3 

The fol lowing command w i l l clear from memory any compiled m-files: 

>̂ clear functions 

After issuing such commands, the pack command should be used to reorganize the 
unused memory into contiguous blocks. The M A T L A B manual suggests that using 
pack in i t ia l ly may avoid the need actually to clear any variables, but the authors' 
experience is that normally some variables must be cleared first. Finally, the 
command below gives some system-specific tips for various platforms: 

>̂ help memory 

A3.9 Block diagram manipulation in MATLAB 
There is one more technique worthy of mention in this appendix, because it is used 
i n many of the m-files on the accompanying disk. 

Apart from plotting frequency responses, and carrying out various design 
procedures, the major use of M A T L A B in this text is i n producing simulations - that 
is, time responses. Often, S I M U L I N K would be better for this, but M A T L A B has 



764 A brief introduction to MATLAB® and its toolboxes 

deliberately been used for all but one or two o f the simulations, so as to make the 
results (and the underlying design and simulation methods in the m-files) available 
to readers who may have M A T L A B , but not S I M U L I N K . 

Before time responses can be produced for anything but the simplest o f 
systems, i t is necessary to connect together the various subsystems making up the 
whole simulation. Some of these w i l l be in series, and some in feedback paths, and 
the M A T L A B CSTB series, feedback, parallel and cloop commands are used for 
this purpose (the more specialized connect and blkbuild commands could be used, 
but have not been in this text). 

The problem is that the commands mentioned above only allow connections to 
the inputs and outputs of subsystems. However, in state-space work, i t is often 
necessary to feed back the states o f a system, rather than the outputs, so special 
arrangements have to be made to allow this. I n the same way, the step command 
generates output responses. When used wi th left-hand arguments i t w i l l also 
generate the state responses, which can be plotted separately. However, i t is often 
desirable to view the input signal to a block in a system, so as to check for 
unrealistic controller demands, for example. Again, i f the block has to be buil t into 
an overall block diagram, special steps are necessary to achieve this. 

The technique in each case is straightforward. I t is to modify the C and 
D matrices of the state-space model, so that extra outputs are defined, 
corresponding wi th the signals to be plotted or fed back. A t first sight, this 
arbitrary alteration of the system model can appear to be a questionable approach -
what right have we to do it? Are we not changing the model of the system being 
analysed? However, note that the only quantities in the state-space model which 
w i l l usually be changed in this way are the C and D matrices. These do not affect the 
poles (eigenvalues) of the model in any way (those are determined by the A matrix, 
which w i l l never be altered arbitrarily), nor do they affect the manner in which the 
system inputs drive the model (that is determined by the B matrix, which w i l l only 
very occasionally need to be modified, and then in a manner which does not affect 
the existing inputs in any way). The only thing the C and D matrices affect is the 
generation of the model outputs according to the usual output equation 
y = Cx + Du. This means that the zeros of the model could be affected, but they 
w i l l not be, so long as the original model outputs are preserved. 

A n y modifications to the C and D matrices w i l l therefore be made in such a 
way that they simply generate extra outputs which did not exist in the original 
model. This is equivalent to going to the plant being modelled, and measuring some 
extra variables which is, of course, acceptable. Figure A3 .1 shows a state-space 
model of a system wi th three state variables, which is to be arranged in a state-
variable feedback arrangement, as shown. The obvious thing is to feed back the 
three states, xx, x2 and x3, but the M A T L A B feedback command can only feed back 
outputs. I t is therefore necessary to define all the signals to be fed back as extra 
(new) outputs, as shown. Also shown is a new output connected directly to the 
input, which w i l l allow the controller action to be plotted by the step command. 

In general, to obtain a new output which is a 4straight-through' connection 
from the input, a row of zeros is added to the bottom of the C matrix, and a new row 
is added to the bottom of the D matrix containing a unity element only in the 
column corresponding to the input which is to become the new output signal (wi th 
zeros elsewhere). 



A3.9 Block diagram manipulation in MATLAB 765 

Original state-space model 

Figure A3.1 Modifying a 
state-space model by adding 
new outputs. 

[102.8 1.2] 

y 1 = x 1 (original) 
y 2 = u (new) 

- ^ y 3 = x 2 ( n e w ) 
- ^ y 4 = x 3 ( n e w ) 

~0 1 0" "0" 

A = 0 - 1 1 , b = 0 

0 0 - 5 _ 5 

For example, consider the model o f the antenna-positioning system used in 
Example 5.4 (coincidentally, in Section 5.4): 

c = [\ 0 0] and d = 0 

This represents a system wi th three state variables, one input and one output. I t is 
the forward path block in Figure A 3 . 1 . Using the variables a, b, c and d to 
represent A , b, c and d in M A T L A B , the commands: 

» a = [0 1 0; 0 - 1 1; 0 0 - 5 ] ; b = [0 0 5] ; 

» c = [1 0 0 ] ; d = 0; 

y step(a, b, c, d); grid 

w i l l plot the time response (to a unit step input) o f the system output. This is the 
angular position of the antenna (in radians). Since this system has an eigenvalue 
(a pole) at the origin, the open-loop step response is predominantly a ramp, due to 
the action of this integrator (a constant input causes the antenna to rotate 
continuously). I f i t was desired to see the state responses too (the antenna's angular 
velocity and acceleration), this could be achieved simply by using left-hand 
arguments in the step command: 

» [ y. x> *] = step(a, b, c, d); 

» plot(t, x) ; grid 

This is fine, but sti l l does not show the input signal. Nor could these state responses 
be used in a feedback scheme by the M A T L A B feedback command, for example, 
since it can only feed back outputs. 

To see the plant input on the same trace, the procedure outlined above can be 
followed. A second plant output is defined, which is made equal to the input. The 
existing output is not altered in any way. The step command w i l l then show this 
second output (which is the input) too. The existing c and d quantities represent the 
output equation: 

y = cx + du = [1 0 0]x = JCJ 
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This output w i l l now be called yx, and a second (new) output w i l l be added such 
that y2 = u (see Figure A3.1). The new output equations are therefore: 

yx = \ X { + 0X2 + 0X3 + 0U 

and y2 = 0xx + 0x2 + 0x3 + lu 

In vector-matrix terms, y = Cx + du, where 

T 0 0" 
and J = 

"0" 
0 0 0 and J = 

1 0 0 0 1 

This can be seen to represent the new output equations, and also fits the procedure 
outlined above. In M A T L A B , the modification to the model is easy: 

» c = [c; 0 0 0]; 
» d = [d; 1]; 

> step(a, b, c, d); grid 

% zero row added to c 

% new row added to d wi th 1 coupling the 
% input to output 2 

A t this stage, the system of Figure A3.1 now has two outputs - the original yx and 
the new y 2 . Now both outputs are plotted, the second of which is, o f course, equal 
to the step input. M A T L A B v4.x plots each output on a separate graph. To see 
them on the same axes, use: 

> [y, x, t] = step(a, b, c, d); 

» plot(t, y) ; grid 

Similarly, to add state variables as new outputs, in general a row of zeros is added 
to the bottom of the D matrix for each new output; and a new row is added to the 
bottom of the C matrix for each new output, which contains a unity element only in 
the column corresponding to the state variable which is to become the new output 
signal (wi th zeros elsewhere). 

There is a M A T L A B CSTB command augstate which w i l l automatically 
append all a system's states as new outputs - this can make things easier, but i t may 
not be necessary to define all the states as new outputs in any given case (this 
command simply adds an identity matrix to the bottom of the C matrix, and a 
correspondingly sized zero matrix to the bottom of Z>). I n the example above, 
output yx is equal to the state xx. I t would therefore be possible to use this output as 
xx in a state variable feedback system, and define two more extra outputs to be the 
states x2 and x3. Using exactly the same reasoning as in the case of the new output y 2 

above, x2 and x3 can be made to appear as outputs y 3 and y 4 (see Figure A3.1) by 
modifying the output equation matrices and vectors to: 

1 0 0 
0 0 0 
0 1 0 
0 0 1 

and d = 

Starting from the modified versions of c and d for the two-output system, the 
M A T L A B commands could be written: 
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» c = [c; 0 1 0; 0 0 1]; d = [d; 0; 0 ] ; 

> [ y, x, t] = step(a, b, c, d) 

» plot(t, y) ; grid 

This w i l l now plot the four outputs of the open-loop forward path of Figure A3.1 
(no feedback loop is yet in place) in response to a unit step at w, on the same graph 
as follows: 

yx is the original output (and is equal to xx) 

y2 is equal to the system input (a unit step from the step command) 

y 3 is equal to x2 

y4 is equal to x3 

Now that all the states are available as outputs, i t is easy to bui ld the state variable 
feedback scheme designed in Example 5.4, and also shown in Figure A 3 . 1 . The 
required feedback vector for feeding back the state variables was found to be 
k = [10 2.8 1.2]. The state variables are available as outputs 1, 3 and 4. The 
M A T L A B feedback command can feed these back to the input, but also needs a 
state-space model of the feedback gain vector k. The easiest way to provide this is 
to specify a model wi th empty a, b and c quantities, and the d quantity equal to k. 
This is because the d quantity in a state-space model specifies the direct coupling 
from the input to the output, wi th no dynamics (which is what the gain vector k is). 
I n M A T L A B , an empty matrix is represented by a pair o f opening and closing 
brackets, w i th nothing between them. Designating the closed-loop system state-
space model by ac, be, cc and dc, it can now be generated by M A T L A B using: 

» [ac, be, cc, dc] = feedback(a, b, c, d, [ ] , [ ] , [ ] , [10 2.8 1.2], . . . 
% . . . indicates a contuation line - 1 , [1 3 4 ] ) ; 

y [ y, x, t] = step(ac, be, cc, dc) 

» plot(t, y) ; grid 

The quantities a, b, c, d in the feedback command are the forward path state-space 
model, [], [], [], [10 2.8 1.2] are the feedback path state-space model (the 
constant feedback gain vector, in this case), the quantity ' — 1' tells M A T L A B to 
connect the feedback to input 1 of the forward path system (that is, the only input 
in this example) using negative feedback. The vector [13 4] specifies the forward 
path outputs which are to be to be fed back. 

The resulting plot shows all four outputs o f the closed-loop system of Figure 
A3.1 - namely, the three states, and the plant input. The fact that the plant input is 
displayed makes it possible to assess the control effort being imposed by the 
controller. Wi th the exception of this new input trace, the other three responses 
should be identical to those in Figure 5.4 ( in Section 5.4). 

The approach used in the m-file fig5_4.m on the accompanying disk (which 
produced Figure 5.4) is the same, in principle, to that used above. However, the 
version in the m-file is slightly simpler, as no input is displayed, and the only 
forward path outputs are the three state variables, so that it is unnecessary to specify 
(to the feedback command) the vector of outputs to be fed back (the default of 
feeding back all outputs is sufficient). 
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Many other m-files on the disk use these kinds o f techniques for building up 
systems models for simulation. Some are more complex than the case above. For 
example, it may have been necessary to cascade the forward path state-space model 
in Figure A3.1 wi th a fol lowing forward path block before closing the feedback 
loop. This would be done using the series command, but the B matrix o f the 
fol lowing system in the forward path would then also require alteration so that the 
new outputs generated above could be fed into matching (new) inputs on the next 
forward path block, and then, in turn, to new outputs of that block. The ideas are, 
however, identical to those worked through above, and the m-files are reasonably 
heavily commented; so the interested reader should be able to fol low what is 
going on. 
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A brief introduction to 
SIMULINK® 

A4.1 SIMULINK 
A4.2 BUILDING THE SYSTEM DIAGRAM 
A4.3 SETTING THE SIMULATION PARAMETERS AND 

THE SCOPE CONTROLS 
A4.4 RUNNING THE SIMULATION 

A4.1 SIMULINK 
S I M U L I N K (The Mathworks, Inc., 1993d) works in conjunction wi th M A T L A B 
(Appendix 3), and is installed just like a M A T L A B toolbox (Section A3.2) . The 
version described here w i l l only run wi th M A T L A B versions 4.0 or later, running 
under 4 Windows'-type operating systems. 

S I M U L I N K is a dynamic system simulation environment. This means that the 
user enters details of a system into S I M U L I N K , specifies the inputs which w i l l drive 
the system, and S I M U L I N K then predicts the system's behaviour by means o f on
screen plots, or data written to files. O f course, M A T L A B (without S I M U L I N K ) 
can also do these things. The main reasons why S I M U L I N K would often be chosen 
instead include: 

• Systems can be entered simply by 4 w i r i n g up ' their block diagrams on the 
computer screen - there is no programming to be done (although a basic 
familiari ty wi th entering vectors and matrices into M A T L A B is helpful for use in 
the dialogue windows, which are used to specify the parameters o f the various 
blocks). 

• System models can be entered equally easily in Laplace transfer function, state-
space or discrete-time forms, or any mixture o f these. 

• S I M U L I N K includes blocks for nonlinear system elements (such as saturation or 
backlash - see Chapter 14). I t is very tedious to program some of these in a 
M A T L A B (or any other high-level language) simulation. In S I M U L I N K , the 
nonlinear block is simply dragged into the diagram and 'wi red up' in exactly the 
same way as any other block. 

• I f a system model exists as a set of nonlinear differential equations (which can 
often be the case for complex real-world systems), then the S I M U L I N K model 
can be built directly from these equations by wr i t ing them into a specially 
constructed file. Unless the reader has had to cope wi th such models, it may not 
be clear how much of an advantage this can be! 
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• Once a nonlinear system model is entered (by any method), S I M U L I N K is 
capable of providing the linearized model o f the system about a chosen operating 
point ( i f you have S I M U L I N K , type help linmod at a M A T L A B prompt for more 
detail). 

• S I M U L I N K has a good selection of bui l t - in numerical integration algorithms for 
solving the system's equations to produce the time response. The most 
appropriate algorithm for the system can therefore be chosen. In M A T L A B , 
the algorithm of the step command (for example) might not suit some systems 
(leading to very long simulation runs, perhaps). 

Having said all that, since most of the examples used in this text are o f relatively 
simple systems, it has been decided to stick wi th M A T L A B and the Control 
systems toolbox (see Appendix 3) for most o f the simulations, even though this 
makes some of those in later chapters more complicated to program than would 
otherwise be the case. This has been done so that readers wi th access to M A T L A B , 
but not to S I M U L I N K , can run nearly all the simulations on the accompanying 
disk and, perhaps more importantly, have access to them for modification to suit 
problems of their own. 

A4.1.1 Starting SIMULINK 
S I M U L I N K is invoked by first starting M A T L A B (see Appendix 3), and then 
issuing its name as a M A T L A B command: 

y simulink 

This w i l l result in the opening of the S I M U L I N K control window. Cl ick on file 
then new from the menu bar of this control window to obtain a blank worksheet to 
hold a new system diagram. 

Once a system has been entered (as described below), its diagram can be saved 
to disk (using file then save). To retrieve the diagram of an existing system which 
has been saved previously, use file then open. Note that the name of a previously 
saved system can also be issued directly as a command at the M A T L A B prompt. 
This w i l l start S I M U L I N K and open the block diagram of the system automatically, 
together wi th whatever S I M U L I N K settings were in force at the time the system 
was saved. This might be more convenient i f it is desired simply to run the model 
(however, i f further editing of the diagram is to be done, i t is better to invoke 
S I M U L I N K first, then open the existing model file from the S I M U L I N K control 
window as suggested earlier). 

The block libraries in the S I M U L I N K control window can be opened by 
double-clicking them in the normal way (or whatever is appropriate to the computer 
system being used), and w i l l be found to contain numerous system elements of the 
appropriate type (note that a pure time delay can be found as a time function in the 
nonlinear library, although its Laplace transfer function would be linear). These 
system elements can be dragged into the worksheet and released (for example, by 
holding down the left-hand mouse button to do the 'dragging' on PC systems) to 
form the required system diagram. 
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A4.2 Building the system diagram 
(This section describes work on a PC system, but using other systems should be 
sufficiently similar for i t to be useful.) 

As an example, investigate the performance o f the system containing a 
backlash element (see Chapter 14), shown in Figure A 4 . 1 . This example is chosen 
because i t would not be easy to study it without a program like S I M U L I N K ; correct 
programming of the backlash element in M A T L A B - or other technical computing 
languages - is a surprisingly non-trivial task! 

Figure A4.1 A block 
diagram of a system with 
backlash at its output. 

r(t) Linear part 
of plant 

q(t), 

y{t) 
Slope 
= 0.8 

0.9 

The linear part of the system has the Laplace transfer function model 

25 
G(s) = 

(1.5s 2 + 0.4s + 15.5)(s 2 + 0.3s + 3) 

The input r(t) is to be a step of + 1 0 units applied after 0.2 s. 
Start wi th a blank worksheet, as above, and bui ld up the diagram of Figure 

A4.2, aided by the comments below: 

• Use the L H mouse button to drag the required icons into the worksheet from the 
menus as follows. The Backlash element is from the nonlinear collection; the 
Gain blocks, Transfer Fen and Sum blocks are from the linear collection; the 
Step Input block is from the sources collection; the Scope block is from the sinks 
collection and the M u x block is from the connections collection. The purpose of 
the M u x (multiplexer) block is to allow the display of more than one signal on 
the (nominally single-channel) Scope. 

Step Input Sum 

25 
conv([1.5.4 15.5],[1.3 3])(s) 

Transfer Fen 

Figure A4.2 A SIMULINK 
simulation diagram of the 
system of Figure A4.1. 

Gain 1 

Backlash Gain Mux Scope 
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• The feedback gain block can be made to face the right way by selecting it (one 
cl ick) and then clicking on options and flip horizontal. I t does not actually matter 
i f it is left facing the wrong way, the effect is purely one o f presentation. 

• Double-click the Sum block and set the inputs to + and - by typing H — into the 
list of signs dialogue box (the number o f inputs can be changed in the same way, 
i f required). 

• Double-click the M u x block and set the number o f inputs to 2, by overwrit ing the 
default 3 in the number of inputs dialogue box. 

• Double-click the Step Input block. Set the Step Time to 0.2 and the Final Value to 
10. 

• Double-click the Gain blocks and set the gains to 0.8 and 0.9 as required (note 
that the backlash element is assumed to have a gain o f unity in the ' l inear' part o f 
its characteristic, so the required gain o f 0.8 has to be set externally using the 
extra Gain block). 

• Double-click the Backlash element, set the deadband width to 10 and the other 
parameters to zero. 

• Double-click the Transfer Fen block and set the numerator to 25, and the 
denominator to the M A T L A B command conv([ 1.5 0.4 15.5], [1 0.3 3]) which 
saves having to mult iply out the coefficient vectors - use help conv for details. 

• Make the interconnections by dragging lines between the icons wi th the L H 
mouse button. Where there are branches in the signal paths, create one path, and 
then add the next by positioning the cursor on the existing path, and holding 
down the < C T R L > key while dragging the new connection. 

To delete blocks or connections, select them (one cl ick) , then press the < D E L > 
key. 

A4.3 Setting the simulation parameters and the scope controls 
S I M U L I N K works by automatically forming the system equations from the block 
diagram, and then solving them by numerical integration to obtain the time 
responses. There is a selection of integration techniques available, but the default 
(fifth-order Runge-Kutta) w i l l suffice for most examples in this text. This is a 
variable-step algorithm (meaning that i t can change the length of its integration 
time step, depending on the perceived behaviour o f the system). Short time steps 
give better accuracy when the system response is changing rapidly, but long 
execution times for the simulation. Longer time steps give faster execution times, 
but less accurate results during transient behaviour. The idea behind variable-step 
algorithms is that the best of both worlds is obtained by changing the time step 
according to the system's behaviour - when responses are changing rapidly, the 
time step w i l l be shortened, and when things are relatively steady, i t w i l l be 
lengthened. 

Systems wi th discontinuous nonlinearities, such as the present one, can easily 
'catch out' variable-step algorithms, in that the nonlinear element can suddenly pass 
through a discontinuity and change its behaviour suddenly, when the system as a 
whole is exhibiting only very slowly varying behaviour. The algorithm may then 
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have selected a long time step, and the switching point o f the nonlinearity may be 
drastically misplaced in time, giving totally misleading results for the subsequent 
behaviour o f the system. For this reason, the maximum time step which the 
algorithm is allowed to take must be restricted ( in fact, the default value in 
S I M U L I N K is too long for many of the purely linear systems in the text too, so the 
procedure below is to be recommended in every case). 

It is always wise to try running a simulation which contains continuous system 
elements (Laplace transfer functions or state-space models) wi th both a shorter and 
a longer Max Step Size setting than the ini t ia l selection, to see how sensitive it is to 
the choice o f time step. In general, i f the apparent behaviour changes significantly 
wi th a shorter maximum time step, then it is not yet short enough to give accurate 
results. On the other hand, i f the behaviour does not change noticeably wi th either a 
shorter or a longer maximum time step, then the time step can be lengthened in the 
interests o f faster execution. The author has been involved wi th simulations of relay 
control schemes (see Chapter 14) where a maximum step size o f a few micro
seconds was necessary for reasonably realistic performance (such simulation is sti l l 
better done on an analog computer!). 

To l imi t the time step selection to suitable values for the present example, cl ick 
on simulation and parameters, and set the Max Step Size to 0.01 (seconds) and the 
M i n Step Size to 0.001 (to save a bit of execution time when possible). Note that the 
Stop Time is set to 999999 (seconds) in this example - that is, the simulation w i l l 
run continuously, once started. This is set to a shorter time i f i t is desired to stop the 
simulation after some given time. 

The Scope block gives an oscilloscope-style display, and it is therefore 
necessary to have some idea of the axis calibrations. These can be found by trial and 
error. In the present case, the system w i l l settle into a large-amplitude l imi t cycle 
(see Chapter 14), and an adequate display can be obtained as follows. 

Double-click the Scope block. A simulated 'scope screen should appear, wi th 
sliders to adjust the horizontal and vertical ranges above i t . I f the sliders do not 
appear, increase the size of the 'scope window by dragging one corner o f i t , unti l 
they do. To get the correct operating ranges for this system, overwrite the numerical 
values in the Horizontal and Vertical Range boxes wi th 20 (seconds) and 30 (units) 
respectively, and click on OK. This w i l l make the Scope display vanish in some 
installations, but double-clicking the Scope block should get it back again, w i th the 
correct settings intact. 

There are other output devices available in the Sinks library. The Scope has the 
advantages of simplicity, and speed of execution, but the disadvantage o f a fairly 
crude display. For a better display, but slower execution, the Graph block can be 
substituted - again it is necessary to scale the axes manually. For automatic axis 
scaling, the Auto-Scale Graph block can be used. This removes any need to 
calibrate the axes, but can significantly increase the run time of the simulation, and 
can also have the annoying habit of losing the trace at the end o f the simulation run 
in some circumstances. It is also possible to send the simulation results to the 
M A T L A B workspace for further analysis or plott ing using M A T L A B , as noted in 
the next section. 
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A4.4 Running the simulation 
Click on Simulation and start, and (hopefully) watch the fun! The two traces show 
the input of the backlash block (the smooth trace) and the overall system output (the 
discontinuous trace). A l l being wel l , after several oscillations, the output should 
gradually build up to a sustained continuous l imi t cycle. I t takes quite a while to get 
there. Cl ick on Simulation and stop, when enough has been seen. 

I f the simulation diagram is saved (using file and save as usual), i t w i l l be 
saved as an m-file (see Section A3.2) which sets up S I M U L I N K appropriately when 
it is rerun as noted previously. 

As an alternative (or addition) to plotting during the simulation run, numerical 
values can be sent to M A T L A B , and plotted there in the normal way after the 
simulation is finished. To do this, drag two or three To Workspace blocks from the 
sinks library and connect one to each signal of interest. Double-click on each of 
them in turn, and name them as you feel fit. After running the simulation, all these 
variables w i l l be available in M A T L A B , and can be plotted in the normal way. The 
only extra requirement is that M A T L A B needs also to know the time values at 
which the data points were generated. To make S I M U L I N K supply these, cl ick on 
simulation and parameters, and then type t into the Return Variables dialogue box. 
S I M U L I N K interprets this as an instruction to send a variable called t to the 
M A T L A B workspace, containing all the time values corresponding to the data 
points, when the simulation is run. (As an alternative, a copy of the Clock icon can 
be dragged into the workspace from the sources library, connected to a To 
Workspace block and the time values w i l l sent to M A T L A B in whatever variable 
name is specified for the To Workspace block.) 

Note also that the number in the Maximum number of Steps dialogue box for 
the To Workspace blocks may have to be increased to get sufficient stored points. 



Appendix 5 
The 'true' z-transform 

INTRODUCTION 
THE z-TRANSFORM 
USEFUL FACTS ABOUT THE z-TRANSFORM 
INVERTING THE z-TRANSFORM 
RELATIONSHIP BETWEEN THE s-PLANE AND 
THE z-PLANE 

A5.1 Introduction 
In Chapter 5, we introduced the z-transform, but we did i t in a rather non-rigorous 
manner. We first introduced z" 1 as a one-time-step-delay operator, and then 
performed the z-transform by making various substitutions for s into Laplace 
transfer functions. In this appendix, we give the somewhat more formal background 
to V , required for Chapter 7. 

A5.2 The z-transform 
This transform is a special case of the Laplace transform, which deals wi th sampled 
quantities. Such quantities have non-zero values only at sampling instants. Figure 
7.1 shows a digital control loop in which the function u(t) (for example) is shown as 
being sampled at intervals T. 

We assume that the samples actually last for a time T, which is taken to be short 
but not zero, as shown by the shaded areas in Figure 7.2. 

The next step is to determine the Laplace transform of the series o f samples. 
This is done by treating them as a series o f impulses o f strength equal to their areas 
on the graph. The area of the one at time t = 0 is T«(0) SO , since the Laplace 
transform of an impulse at t = 0 is simply the strength o f the impulse, i t transforms 
tO T «(0 ) . 

For a general function / ( r ) , this ini t ia l impulse would therefore have a Laplace 
transform T / ( 0 ) . The Laplace transforms of the subsequent 'impulses' are only 
slightly more difficult. We remember from the Laplace transform real shift theorem 
(Section 2.5.2 and Table 2.9) that, i f the Laplace transform of an undelayed signal is 
F(s), that of the same signal delayed by a time T is F(s)e~sT. So the subsequent 
'impulses' transform to xf(T)e~sT, then xf(2T)e~2sT, and so on. The transform of 
the entire series of 'impulses' is the sum of the individual transforms, so the sum 
w i l l be 

oo 
T ( / ( 0 ) + e~sTf(T) + e-lsTf{2T) + • • •) or T £ e~msTf(mT) 

m=0 

A5.1 
A5.2 
A5.3 
A5.4 
A5.5 
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In practice, we omit the T, but make a mental note that i t is there. So the z-
transform of f(t) is defined as £ ~ = 0 e-msTf{mT). 

So where does 'z' come in? We introduce z as a more convenient way of 
expressing esT, so esT becomes z. Our definition therefore becomes 

oo 

z(/(0) = E z~mKmT) 

m=0 

This means that z-transforms of common functions can be determined by summing 
infinite series. A simple example follows, but take heart - l ike Laplace transforms, 
it is usual to look them up in tables in practice! Example A5.1 Find the z-transform of e 

Using the above definition, 

oo 
Z(e~at) = z-me-amT 

I f we think about this expression, it becomes clear that i t is a geometric series, that is, 
each term of i t is equal to the previous one times e~aTz~l. The first term is 1, so we can 
use the formula '<?/(l — r)9 for the sum to infinity of the series a, ar, ar2 This gives 
the sum as 1/(1 — e~aTz~l). I f we mult iply top and bottom of the fraction by z, the result 
is z/(z — e~aT), which agrees wi th the transform given in Table A 5 . 1 . 

The reader may like to try the calculation for a unit step function at time t = 0, 
which should produce z/(z — 1). 

A5.3 Useful facts about the z-transform 
Since z = esT, frequency response in z can be calculated by putting s = jco, which 
gives z = ejü)T, which can be expressed by De Moivre 's theorem as 
z = cos(coT) + j sin(coT). The resulting sums are tedious by hand but easy by 
computer program or spreadsheet. 

There is a result comparable to the Laplace final value theorem to obtain the 
steady-state value of f(t) from F(z) without having to invert i t . I t is: 

steady-state f(t) = / ( o o ) = l i m [(z - l )F (z ) ] 
z—»1 

We w i l l verify that the result is sensible by testing it both for a unit step (which 
should give a final value of 1) and for a decaying exponential e~al\ which should 
give a final value of zero. The expressions for F(z) come from Table A 5 . 1 . 

Unit step: F(z) = z/(z - 1), so (z - l)F(z) = z, which becomes 1 as z tends 
to 1. 

z (z - l ) z 
Exponential: F(z) = so (z - l ) F ( z ) = ^ — w h i c h becomes 

zero as z tends to 1. 
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Table A5.1 Table of z-transform pairs. 

Time function f(t) Laplace transform F(s) 
z-transform F(z) 
(Sampling interval = T) 

Unit impulse ò(t) 

Step function u(t) 

2 

1 - e~a[  

sin(cüi) 

cos(coi) 

e~at sin(a>/) 

e~at cos(a>/) 

1 
1 
s 

1 

s + a 

1 

a 
s(s + a) 

CD 

s2 + C Ü 2 

( 5 4- a) 2 + a;2  

( 5 + a)2 + a>2 

1 
z 

z - 1 

Tz 

7̂ 2(2+ 1) 
2 ( z - l ) 3 

z 

Tze-"' 

(z-e-°T)2 

(l-e~'T)z 
(z-l)(z-e-T) 

z s'm(coT) 
z2 - 2z cos(cor) + 1 

z[z - cos(cor)] 
z 2 - 2z cos(cor) -I- 1 

ze~aT sm(a)T) 
z2 - 2ze~aT cos(a;r) + e ' 2 0 7 

z[z - e~aT cos(ajr)] 
z 2 - 2ze~aT cos(coT) + e~2aT 

A5.4 Inverting the z-transform 
Like the Laplace transform, the z-transform can be inverted by using tables and, 
where necessary, partial fractions to arrange the overall transform i n a form in 
which it can be directly inverted from the tables. I t must be borne in mind, however, 
that the inverse is only val id at sampling instants. 

A n alternative strategy is to produce the inverse as a time series by using the z-
transform to obtain a difference equation. Both procedures w i l l be demonstrated by 
an example. 

Example A5.2 Finding an inverse z-transform 
(using two different methods) 
Find the inverse z-transform (using the two different methods) o f the fo l lowing expression 
in z, assuming a sampling interval T o f 0.1 s: 

( z - l ) ( z 2 - 1.5Z + 0.6) 
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\ (i) Solution by partial fractions and tables 
Table A5 .1 gives the fol lowing conversions which look as i f they might fit the two 
denominator terms: 

z 

1 
ze a T sin cot 

z 2 - 2ze~aT cos œt + e - 2 * r 

z 2 - ze~aT cos œt 

z 2 - 2ze~aT cos œt + e - 2 0 7 

unit step 

sin coi 

e a T cos cor 

(A5.1) 

(A5.2) 

(A5.3) 

First, F{z) must be divided into partial fractions (see Appendix 2 for a discussion o f partial 
fractions in the context of the Laplace transform). 

50 Az z(Bz + C) 

(z - l ) ( z 2 - 1.5z + 0.6) z - 1 z 2 - 1.5z + 0.6 

Mul t ip ly ing out the RHS, we are suggesting that: 

50 z{Bz + C) (z - 1) + Az(z2 - 1.5z + 0.6) 

(A5.4) 

(z - l ) ( z 2 - 1.5Z + 0.6) ( z - l ) ( z 2 - 1 . 5 z + 0.6) 

So the denominators agree, and the numerator of the expression must equal 50. 
; The numerator can be rearranged as z(—C + 0.6A) + z 2 ( C — B — 1.5A) + z3(Z? 4- A ) . 

A t first sight, since there is no z° term in the numerator, i t cannot compare wi th the 
: constant value 50. The conclusion is that a delay o f one sampling interval is in force and 

that the rearranged numerator is therefore to be mult ipl ied by z - 1 , g iving: 

( - C + 0.6A) + z(C - B - 1.5A) + z2(B + A) 

and the final version of Equation (A5.4) w i l l then be: 

50 

50 

( z - l ) ( z 2 - 1.5z + 0.6) 

Az z(Bz + C) 

z - 1 z 2 - 1 . 5 z + 0.6 

(A5.5) 

(A5.6) 

^ Now, comparing coefficients of powers of z between the LHS and RHS of Equation (A5.5) 
; gives: 

z 2 : {B+A)=0 so B — -A 

z 1 : C - B - 1.5A = C - 0 . 5 A = 0 so A = 2C 

C + 0.6A - C + 1 . 2 C = 50 so C = 250 

By substituting the last result back into the previous two, it follows that A = 500 and 
l \ B = - 5 0 0 which, when substituted back into Equation (A5.6), means that we are therefore 

inverting: 

500z - 5 0 0 z 2 + 250z 
+ (A5.7) 

The first term is easy (giving a step of height 500 from Equation (A5.1) , delayed by one 
sampling interval as a result of the z" 1 term on the right-hand side). The second term w i l l 
take a li t t le more thought. 
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Comparing the denominators of either of Equations (A5.2) or (A5.3) wi th that o f the 
second term in Equation (A5.7), we have: e~ 2 a r = 0.6, so — aT = 0.5 ln(0.6) = —0.2554. 

As T is given as 0.1 s, a — 2.554 s - 1 . ^ ^ 
We similarly have 2e~aT cos(cor) = 1.5, so cos(co7) = ' — = = 0.9682. Thus 

coT = 0.2527 rad and co = 2.527 rads" 1 . 2 x ^ 0 . 6 
The —500z2 in Equation (A5.7), means that we shall have to use the transform pair 

wi th numerator z 2 — ze~aT cos(coi) (Equation (A5.3)) , g iv ing —500z2 + 375z on 
mult ipl icat ion by —500. We now have 375z instead o f 250z, so we must subtract 125z by 
means of the transform pair having a numerator ze~aT sin(atf) (Equation (A5.2)) . That 
numerator evaluates to 0.1937, so we must mul t ip ly by 250/0.1937 = 1291 to obtain the 
required 250. 

The overall inverse is therefore zero up to t = 0.1 s (because o f the transport lag 
represented by the z - 1 mul t ip lying everything) and as follows thereafter: 

500 - 500e- 2 5 5 4 ( / - 0 1 ) cos [2 .527( r -0 .1 ) ] - i 2 9 1 e - 2 5 5 4 ( ' - 0 1 ) sin[2.527(r - 0.1)] 

(ii) Solution by means of a difference equation 
This approach is based on the fact that the inverse of a z-transform expressed as a time 
series is the same as the impulse response of a discrete-time system whose transfer 
function is that z-transform. The impulse transforms to 1, that is, 1 + 0 z _ 1 + 0z~ 2 + • • • 

Let the input (impulse) be u and the output (z-transform inverse) be y. So: 

u ( z - l ) ( z 2 - 1.5z + 0.6) 

This expression gives (z - l ) ( z 2 - 1.5z + 0.6)y(z) = 50w(z). 
Mul t i p ly ing out, we obtain (z 3 — 2.5z 2 + 2.1z — 0.6)y(z) = 50w(z) and mul t ip ly ing 

* both sides by z " 3 gives (1 - 2 .5z _ 1 4- 2.1z~ 2 - 0 .6z _ 3 )y (z ) = 50z~ 3 w(z), or: 

y(z) = 50Z~ 3 M(Z) + (2 .5z _ 1 - 2.1z~ 2 + 0 .6z" 3 )y(z) 

This equation converts to a discrete-time equation: 

yn = 50H„_3 + 2.5y„_! - 2 .1y„_ 2 + 0 .6y„_ 3 

which we can use as follows to determine the progress o f y in response to our unit impulse 
input. The fo l lowing algorithm w i l l produce and output the values o f yn (as w i l l the 
M A T L A B commands given later): 

Set al l yn to zero 

Set all un to zero 

Set u0 to 1 

Set n = 0 
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M Loop: Calculate yn = 50un_3 + 2.5yn_x - 2.1yn_2 + 0.6yn_3 

Output n and yn 

Set y „ _ 3 = yn_2 

Set y „ _ 2 = ^ - 1 

> S e t y , ^ = yn 

Set W„_3 = w„_ 2 

M Set un_2 = un_x 

Set un_x = un 

Set AZ = n + 1 

4 

Goto Loop 

s The inverse transform was calculated by computer using both methods and the results for 
/ the first 20 steps appear in Table A5.2. Good agreement resulted, the slight differences 

being explicable by numerical rounding errors. 
M A T L A B can perform this discrete-time simulation in three commands: 

> num = 50; % numerator of transfer function 

gi > d e n = [ l -2 .5 2.1 - 0 . 6 ] ; % denominator coefficients (descending powers 
% o f z ) 

y dimpulse(num, den, 40) % this usage o f dimpulse plots the response (40 
% points) 

Table A5.2 Numerical values of the inverse z-transform from Example A5.2. 

Time Results using partial Results by simulation of 
(second) fractions and tables difference equation 

0 0 0 
0.1 0 0 
0.2 -0.01457 0 
0.3 49.97998 50 
0.4 124.9813 125 
0.5 207.4865 207.5 
0.6 286.2433 286.25 
0.7 354.8751 354.875 
0.8 410.5683 410.5626 
0.9 452.9286 452.9188 
1.0 483.0527 483.0408 
1.1 502.8225 502.8101 
1.2 514.4024 514.391 
1.3 519.9102 519.9008 
1.4 521.2239 521.217 
1.5 519.8896 519.8857 
1.6 517.1001 517.0989 
1.7 513.7162 513.7177 
1.8 510.3141 510.318 
1.9 507.2414 507.2473 
2.0 504.6736 504.6811 



A5.5 Relationship between the s-plane and the z-plane 781 

M A T L A B could also have mult ipl ied out the denominator, using the convolution command 

» d e n = conv( [ l - 1 ] , [ 1 - 1 . 5 0.6]); 

We can compare the results wi th the tabulated ones using: 

> y = dimpulse(num,den,20) % this usage of dimpulse tabulates the resulting 
% output 

A5.5 Relationship between the s-plane and the z-plane 
On several occasions, we have plotted the poles and zeros o f a system's Laplace 
transfer function model in the s-plane. We have found that knowledge o f the s-plane 
locations o f the poles and zeros can tell us a lot about how a system w i l l behave in 
the time domain. 

Clearly, a z-domain transfer function also has poles and zeros (which would be 
plotted in the z-plane), and it is natural to ask whether the same kind o f knowledge 
is available from these. Indeed it is, and the various contours we discussed in the s-
plane (of constant natural frequency, constant damping ratio, and so on - see Figure 
3.21 in Section 3.2.2) all have their counterparts in the z-plane. Since the mapping 
from the s-plane to the z-plane is nonlinear, they are not the same shapes as in the 
s-plane. We shall consider these z-plane contours and their interpretation in this 
section. 

When the general complex expression for s (that is, s = o + ja>) is mapped 
into the z-plane using z = esT, the result is 

z = e°Teja,T (A5.8) 

Equation (A5.8) shows that z is a complex quantity, having magnitude eaT and 
phase angle CDT radians. This gives us the basis for examining the mapping o f the 
various s-plane contours into the z-plane. 

A5.5.1 Lines of constant damping factor (£con) - and the stability boundary 
For a system modelled by a dominant pair o f second-order poles, lines o f constant 
damping factor (Cco„) are verticals in the s-plane, as shown in Figure 3.21(c). 
Whatever its derivation, any vertical line in the s-plane clearly has a constant real 
part (equal to cr) as w varies. From Equation (A5.8) , such verticals in the s-plane 
therefore map to z-plane circles of radius eaT centred on the origin. 

For verticals in the left half o f the s-plane, o < 0, so the radius o f the 
corresponding z-plane circle is less than unity. For verticals in the right half o f the 
s-plane, the z-plane circle w i l l be o f radius greater than unity. For the s-plane 
imaginary axis, o = 0, so the corresponding z-plane circle has unity radius. 

This means that for stability, whereas al l a system's s-plane poles must lie in 
the left-half plane, all its z-plane poles must lie wi th in the unit circle. The entire left 
half o f the s-plane maps to the unit circle in the z-plane. 

Progress around any of these circles as frequency varies can be determined in 
terms o f the quantity coT in Equation (A5.8) , which has units o f radians. Since T is 
the sampling period, it is related to the (radian) sampling frequency by T = 2n/cos. 
A general frequency co therefore corresponds to a phase angle in the z-plane o f 
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coT = 2nco/cos radians. Therefore, when co = 0, the phase angle is zero, and the 
corresponding point (on the circle of radius eaT) w i l l lie on the positive real axis in 
the z-plane. When co = cos/4, the phase angle is n/2 = 90° , and the point w i l l lie on 
the positive imaginary axis of the z-plane. Similarly, when co = cos/2, the point w i l l 
lie on the negative real axis of the z-plane and when co = cos, i t is back at the 
positive real axis again. 

Clearly, co can carry on increasing, and more revolutions o f the circle occur. 
Strictly, the behaviour is now more complicated due to aliasing, and each revolution 
of the circle really ought to be drawn on a new copy of the z-plane (such a mul t i -
sheet 'plane' is called a Riemann surface), but since we assume anti-aliasing 
filtering to be used, and that signals w i l l not appear at frequencies greater than 
co = cos/2, we shall not further describe such behaviour here, and we shall assume 
that a single copy of the z-plane is sufficient for all our needs. 

Stable s-plane pole pairs lying close to the imaginary axis (and therefore 
having long decay or rise times) correspond to poles on a circle close to the unit 
circle. We can therefore conclude that the closer a stable z-plane pole is to the unit 
circle, the longer w i l l be its decay or rise times. Non-real poles in the z-plane have 
to occur in complex conjugate pairs, for the same reasons as they do in the s-plane. 

A5.5.2 Lines of constant frequency - and real s-plane poles 
Figure 3.21(a) shows lines of constant frequency as horizontals in the s-plane. 
According to Equation (A5.8), constant frequency w i l l give lines of constant phase 
angle (that is, radial lines) in the z-plane. For any given frequency, co, the angle o f 
the line in the z-plane w i l l be given by coT radians, where T is the sampling period. 
Again, we can use the relationship coT = 2nco/cos, where cos is the (radian) 
sampling frequency. 

As in Section A5.5 .1 , i f co = 0, the corresponding points lie on the positive real 
axis in the z-plane. This means that all non-oscillatory (that is, real) s-plane poles 
map to the positive real z-plane axis. Stable real s-plane poles map to the segment o f 
the positive real z-plane axis in the range zero to unity. The corollary o f this is that 
any z-plane pole which is wi thin the unit circle, but not on the positive real axis, 
must be associated wi th oscillatory responses, and must therefore be one of a pair o f 
poles. The difference from the s-plane is that such a pair o f poles can appear on the 
negative real axis in the z-plane - so they are not necessarily complex conjugate 
pairs in the z-domain (but they w i l l either occur as a double negative real pole, or a 
negative and positive real pole having the same magnitude). We now illustrate this 
point. 

The locations of poles in the z-plane depend on the chosen sampling frequency. 
Since the negative real axis of the z-plane corresponds to a radial line at an angle o f 
n radians (180°), it can be seen from the relationship coT = 2nco/cos (above) that s-
plane poles wi th an associated frequency value co w i l l always map onto the negative 
real z-plane axis, i f co is half the sampling frequency. The sampling period for this to 
occur is therefore T = 2n/cos = n/co seconds. 

For example, the s-domain LTF G(s) = 13/ (s 2 + 6s + 13) has (s-plane) poles 
at s = - 3 ± j 2, therefore lying on the co = ±2 rad s _ 1 horizontal lines in the s-
plane. I f we were to sample this system at cos = 4 rad s _ 1 (that is, using a sampling 
period of T = n/2 s) , then the z-plane poles would both be negative and real (also, 
due to the discussion in Section A5.5 .1 , since the s-plane poles lie on the vertical 
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line a = - 3 , they should both appear on the circle o f radius eaT — e~3n/2 — 0.009). 
Therefore, for this system sampled at intervals o f T = n/2 s, we expect to find a 
double z-plane pole at z = —0.009. This is confirmed by the first M A T L A B 
example in Section A5.5.5. 

The case where two (stable) real poles in the z-plane have the same magnitude, 
but opposite sign, is the case which occurs in the Dahl in controller in Example 7.5. 
What happens in this case is that the positive pole corresponds to a stable decaying 
envelope as expected. The negative one clearly has the same envelope, but due to 
the sampling, its response changes sign at each sampling instant. 

A5.5.3 Lines of constant damping ratio 
Complex pairs o f s-plane poles are associated w i t h lines o f constant damping ratio 
( 0 which are radial lines in the s-plane (Figure 3.21(b)). Having variable real and 
imaginary parts, these are a lit t le harder to map into the z-plane, but i t can be shown 
that the result is a logarithmic spiral. We shall not prove this here, but the M A T L A B 
zgrid command can superimpose such lines on the z-plane, and the results appear in 
Figure A 5 . 1 . 

A5.5.4 Lines of constant undamped natural frequency - and the s-plane origin 
The s-plane circles of constant undamped natural frequency {con) (see Figure 
3.21(d)) similarly map to strange shapes in the z-plane, and these are also shown in 
Figure A 5 . 1 . 

Alm(z) 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 
Re(z) 

Figure A5.1 Contours of constant £ and con in the z-plane. 
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Combining the information of Sections A5.5.1 and A5.5.2 shows that the 
origin of the s-plane corresponds to the point ( + 1 , 0 ) in the z-plane, so this is where 
we would expect to find the z-plane pole of a pure integrator. Inspecting the table of 
z-transforms (Table A5.1) shows this to be the case. 

I t is also interesting to note that all the s-plane to z-plane conversions discussed 
above, together wi th a careful inspection of Figure A 5 . 1 , show that poles in the 
vicini ty o f the point ( + 1 , 0) in the z-plane have the same contours and rules 
associated wi th them as poles in the vicini ty of the s-plane origin. O f course, as we 
move away from these points, this ceases to be true. 

A5.5.5 Tests using MATLAB 
I t is both easy and instructive to use a package such as M A T L A B (Appendix 3) to 
investigate the migration of poles and zeros between the s-plane and z-plane. This 
can be done as follows (obviously, you can enter any transfer function you wish, but 
it may be better to start wi th single poles to isolate the effects). Note that the c2dm 
command is used wi th LTF models (c2d only works wi th state-space models), and 
the conversion is assumed to be done wi th a zero-order hold by default (other 
methods can be specified - use help c2dm to discover how). Note also that extra 
zeros w i l l appear in the z-transfer function due to the hold element which is 
combined wi th G(s) during the conversion process. 

For the system discussed in Section A5.5.2 
> snum = 13; % LTF numerator 
> sden = conv( [ l 3 + 2 j ] , [ l 3 - 2 j ] ) ; % evaluate LTF denominator 
> [znum,zden] = c2dm(snum,sden,pi/2); % convert to z at T = n/2 second 
> roots(zden) % list z-plane poles 
> roots(znum) % note new z-plane zero 

For a more complicated system 
For the system 

C M - ( 5 + 1 ) ( s - 2 ) 
s ( s - l ) ( s 2 + 1 . 6 s + l ) 

> snum = conv( [ l 1],[1 - 2 ] ) ; % evaluate LTF numerator 
> sden = conv( [ l - 1 0] , [1 1.6 1]); % and denominator 
> pzmap(snum,sden),sgrid % s-plane map, wi th zeta and w n contours 
> [znum,zden] = c2dm(snum,sden,0.6); % convert to z at T = 0.6 second 
> pzmap(znum,zden),zgrid % z-plane map, wi th zeta and wn contours 



Appendix 6 
Random signals and the 
Kalman filter derivation 

A6.1 DEFINITION OF RANDOM SIGNAL QUANTITIES 
A6.2 SOME COMBINATIONS OF RANDOM SIGNALS 
A6.3 DERIVATION OF THE KALMAN FILTER 

There are very many published papers and books containing details o f the Kalman 
filter derivation. However, students often find them too difficult to fol low. This is 
partly due to the fact that the papers often contain notation that the general reader 
does not understand; and partly due to the fact that they are usually written by 
people o f advanced mathematical capabilities, and tend to leave portions o f the 
derivation to the imagination of the reader - who may not be as mathematically 
adept. The authors are unaware of any derivation which both follows the notation 
used in this text, and has no steps omitted; so one is provided here. 

I t is quite possible, given the knowledge in Section 9.8 o f the text, to make use 
of the Kalman filter without understanding every step of its derivation. However, 
for the interested reader, this appendix contains the necessary background of 
random (stochastic) signals to allow the Kalman filter derivation to be developed. 
The main mathematical part of the derivation itself is also given here. 

A6.1 Definition of random signal quantities 
The purpose of the Kalman filter in this text is to extract estimates o f the state 
variables of systems from noisy measurements. The noise on the measurements is 
assumed to be caused by randomly varying disturbance signals. The starting point 
must therefore be a definition o f the various quantities required to allow the 
handling of such randomly varying signals. 

A6.1.1 Mean (or average value, or expected value, or expectation) (scalar case) 
For N samples of a single (that is, scalar) t ime-varying signal jc(r), taken at times 
tx,t2,...tN and having corresponding values xl,x2,...xN, the mean (or average) 
value is simply given by the sum of all the values, divided by the number o f samples 
taken: 

1 N 
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I f a guess was required as to what the value o f x might be at any given time then, in 
the absence of any further information about the signal x ( r ) , this mean value is 
perhaps the best guess that could be made. It is therefore often called the 'expected 
value' or 'expectation' of x (written as E[x]). Remember, i t is just the average 
(mean) value of all the samples: 

E[x] = x 

A6.1.2 Variance (scalar case) 
This is another quantity which is required in the analysis later. I t is a measure o f the 
uncertainty involved when guessing the value o f a signal from the signal's mean 
value. It carries information about how far the samples o f the signal x{t) (namely 
xx,x2,...%) are spread around their mean value. A low value o f variance implies 
that most of the samples are generally close to the mean value, so i t is relatively 
certain that the mean value of the signal over all times is a good guide as to the 
l ikely value of the signal at any particular time. On the other hand, a high value o f 
variance implies that the individual samples o f the signal are scattered widely to 
either side of the mean, so that the mean value is not a good guide to the l ikely 
signal value at any particular time, and the value is therefore relatively uncertain. 
More w i l l be said about this in Section A6.1.3. 

The variance is defined as the square o f the 'population standard deviation' ox 

which, in turn, is the root-mean-square (r.m.s.) o f the deviations of the samples 
from the mean, given by: 

1 N 

'*=^§ (**-* )2 

So, 

variance 
1 N \ \ N 

or, in terms of expectations, 

<x2 = E[(* - xf\ = E[x>] - x2 = Ejx2] - {EM}2 

In words, the variance of a set of measurements (a set o f samples o f a signal) is 
the mean of the squares of the deviations o f all the individual samples from the 
mean value of the set. I f variance is zero, then the signal must be equal to its mean at 
every sample. 

As discussed in Section 9.8, the Kalman filter is a minimum-variance 
estimator, the variance in question here being that of the error between the 
estimated value and the true value of the state vector o f a system. The Kalman filter 
therefore minimizes the uncertainty in the state estimates compared wi th other 
estimators. In this sense, it is sometimes referred to as an optimal state estimator. 
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A6.1.3 Gaussian variables (normal distribution) 
In order to say something about the 'randomness' o f a t ime-varying signal, either its 
variations of amplitude wi th time can be considered, or the spectrum of frequencies 
which make up the signal can be considered, or both. For example, the amplitudes 
of many samples of the signal might be measured, and from all these measurements 
the probability of the signal being at any particular level at any given time can be 
calculated. I f these probabilities are plotted against signal level, a graph such as 
Figure A6 .1 might result (infinitely many other shapes are possible). Considering 
only the overall shape of Figure A 6 . 1 , the highest probability is that an individual 
sample of the signal w i l l be near its mean value x. The 'bell-shape' o f this curve 
means that the probability that an individual sample o f the signal w i l l have an 
amplitude very much greater (or very much smaller) than the mean value is very 
small. 

Figure A6.1 A normally 
distributed (Gaussian) 
signal. 

Amplitude of probability density function f (x) 

x - 3cv x - 2ov x - ov x + Gv x + 2crv x + 3a, 

A smooth curve such as that in Figure A6.1 can be represented by an equation 
(known as a probability density function). A variable which is described as being 
'Gaussian' in probability distribution can be represented by the particular equation 

f{x)=_J=e-(^)2/(2<ri) 
yj 2710-2 

This particular bell-shaped curve is called a 'normal distr ibution' , and sufficiently 
large sets of samples of very many real-world quantities (from random noise to 
examination marks) tend to fol low such a distribution. 

For this Gaussian distribution, samples of the signal can be expected to be wi th in 
± 1 , 2 or 3 standard deviations of the mean value, w i th the probabilities shown in 
Figure A 6 . 1 . I f the variance (and hence the standard deviation) is small, the peak in 
Figure A6.1 w i l l be sharp compared wi th the data range of the jc-axis. I f the variance is 
large, the peak w i l l be broad compared wi th the data range o f the jc-axis. 
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As an example, someone might say that a set o f examination results has a mean 
of 55 per cent, and a standard deviation of 15 per cent (since the variance is just the 
square of the per unit standard deviation, i t could be used instead i f preferred). From 
Figure A 6 . 1 , this implies that the mean value (x) would be at 55 per cent on the 
horizontal axis. I f a large number o f candidates had been considered, and a 
normally distributed set of marks was assumed, then 68.26 per cent o f the 
candidates would be expected to have scores between 40 per cent and 70 per cent. 
This implies that about 32 per cent of candidates would have marks either lower 
than 40 per cent, or higher than 70 per cent. I f 40 per cent represents a failure, and 
70 per cent a first-class result, then on average 16 per cent o f candidates might be 
expected to fai l the examination, and 16 per cent to get a first-class result. 

A6.1.4 White noise 
A 'white noise' signal can be defined as a signal containing all possible frequency 
components at equal levels o f probability, that is, i t has a flat probability 
distribution as far as frequency is concerned. 

I f i t is Gaussian in terms of its amplitude probability density, as discussed 
above, then its amplitude can be defined in terms o f mean and variance (or standard 
deviation, i f preferred). Thus the signal w i l l have a certain mean value, but samples 
taken at different times may be greater or smaller than this according to the 
distribution in Figure A 6 . 1 . The term 'random' below is taken to refer to such 
'white noise' signals. 

A6.2 Some combinations of random signals 
For reasons of mathematical convenience, i t is normal to work wi th the variance o f 
a signal, rather than its standard deviation. For analysis o f systems containing 
random signals of the kind discussed previously, i t is therefore necessary to know 
what happens to such signals in terms of their mean values and variances, when they 
are combined in various ways wi th other signals. 

A6.2.1 Multiplication by a scalar 
I f a random signal jc(r), having mean x and variance ex2, is mult ipl ied by a constant c 
and has a bias term (that is, a constant level shift) d added, then we obtain the new 
(random) variable y ( i ) , given by 

y(t) = cx(t) + d 

The mean of the new signal y(r) is given by: 

E[y] = y = cx-\- d 

and hence the variance of y(r) is given by: 

n{y-y)2] = a) = Sol 
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A6.2.2 Addition 

I f two random signals are added together, such that y(r) = w(t) + v(f ) , then 

E\y] = E[w) + E[v], that is, y = w + v 

E[(v — v)(w — w)] — covariance (see below). 

A6.2.3 Multiplication 
The multiplication of two random signals, one o f which may be time-shifted 
relative to the other by T seconds, can lead to the cross-correlation, auto
correlation or covariance functions as follows: 

For random signals v(t) and w(t), 

E[v(t)w(t)] = l i m i f v(t)w(t + z)dt = * W ( T ) 
T^°° T Jo 

This is the cross-correlation function. 
I f w(r) = v ( i ) , the result becomes: 

E[v ( f)v ( f ) ] = l i m i f v ( f)v ( f + T ) dt = RVV(T) 
T^°° T Jo 

This is the auto-correlation function. 
I f v(f) and w(t) are zero-mean signals (or have their mean values subtracted), 

and T is zero (that is, no time shift), then: 

E [ { v ( i ) - v}{w(t) - w}} = l i m i f {v ( f ) - v}{w(t) - w} dt 
T^°° T Jo 

= cov(vw) = <JVW 

This is the covariance function. 
Note that i f v(r) and w(t) are uncorrelated (that is, they are independent o f one 

another), then cov(vw) = zero. 

A6.2.4 The vector case - the covariance matrix 
N o w imagine that rather than just one (scalar) random signal x(t) a set (or 
'ensemble') o f n random signals xl(t),x2(t),... ,xn(t) exists, making up a signal 
vector x(t) as shown in Figure A6.2 . A t any particular sampling instant k there is 
therefore a set of values (see Figure A6.2) xk = [xx x2k . . . *„JT. A t the next instant 
k + 1, the set x M = \x, x? ... x„ 1 T w i l l exist. 

and 

where ovw — 
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Figure A6.2 A set 
(ensemble) of random 
signals. 

/c+1 
Time 

Associated wi th such a random signal vector is a covariance matrix, 
containing all the possible covariances between the elements of the vector, hence: 

x \ <v2 
oY Y 

x \ x l * ' °x\xn 

<JY Y 
x2xl 

x2 
oY Y 

X2X3 ' ' °x2xn 

oY r 
x3xl ° x * l ' ' °xlxn 

°xnxX Gxnxl 
Gxnx3 ' • • 

Such a matrix has some special properties which w i l l be useful later, namely: 

• From the definition of covariance in Section A6.2.3, o^ = Ojh so the matrix is 
always symmetric. Therefore RT = R. 

• I f the elements jc 1 (r) , jc 2 (r) , ...,xn(t) o f the signal vector x(t) are uncorrected 
(that is, they are independent of each other), then all such terms as ox_x w i l l be 
zero. R w i l l then be diagonal. 

• R = E[jar T ] (remember R = Efjc2] for the scalar case of a zero-mean signal). 

A6.2.5 Covariance transformation 
I f x(t) contains zero-mean random variables, and C is a constant matrix which 
operates on it such that y(f) = Cx(i) ,what is the covariance matrix of y(r)? 

C Ov[y(0] = E[yy T ] = E[CxxTCT] = CE[xxT}CT 

Thus, cov[Cx(i)] = CRCT, where R = cov[x(r)] . 
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A6.3 Derivation of the Kalman filter 
This is the most heavily mathematical part of the derivation begun in Section 9.8. 
A l l the required steps are described here and should be digestible i f fol lowed slowly 
line by line. In Section 9.8, the estimation error (Equation (9.35)) was defined as: 

*k+i — xk+l ~ (9.35) 

Equations (9.30) (for xk+l) and (9.34) (for from the main text can now be 
substituted into Equation (9.35) to obtain 

= *xk + Auk + rwk-[I- KC][0xk\k + Auk] - KzM 

Rearranging, and including Equation (9.31) (the noisy output equation) to 
eliminate z gives 

= *** " **k\k + r * k + KC[0xklk + Auk] - K[CxM + vM] 

This can be greatly simplified by again substituting for x M f rom Equation (9.30), 
then using xk - xk\k = xk (from Equation (9.35)) to eliminate xk\k, then mul t ip ly ing 
out and re-grouping terms to leave 

x M = [ I - KC}[0xk + rwk) - KvM (A6.1) 

We also know that the covariance matrix o f the estimation error is defined as 
Pk = E[xkxJ}. 

The design o f the K F follows from a choice o f K such that Pk is minimized, 
g iv ing the minimum variance estimator as mentioned in the text. 

To achieve this, some information is required about the noise signals. I t is 
assumed that wk and vk have zero mean over all k ( i f not, the mean values can be 
subtracted, w i th suitable modification o f the equations). 

I t is also assumed that w and v are vectors o f stationary white noise sequences 
(that is, their statistical properties are constant w i t h t ime), having covariances given 
by: 

E[w*W] = S h i * and E[v*vJ] = R\^k 

Remember that Q and R are symmetric matrices. Also, i f the separate noise signals 
in the vector w are uncorrected, then Q w i l l be diagonal (similarly for v and R) 
(from Section A6.2.4). The main text has some comments on practical evaluation 
of Q and R. 

Now, an expression for the covariance o f the estimation error at the next step 
Pk+l can be obtained, so that an investigation can be made as to a suitable choice o f 
K to minimize i t . First, rewrite Equation (A6.1) so as to separate the noise terms: 

x M = [I - KC]0xk + [/ - KC\rwk - KvM 

which, wr i t ing F = [I — KC] for ease of notation is 

x k + l = F0xk + FTwk - Kvk+l 
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Post-multiplying each side by its transpose (similar to squaring in the scalar case) 
gives: 

**+i*t+i = C*** +FTwk- Kvk+l] 
x [xT

k<PJFT + wlrJFr - vJ+lKT] 
= F<PikxJ<l>TFT + Frwkw[rTFT + KvMvJ+lKT 

+ F4>xkwJrTFT - F0xkvJ+lKT + Frwkxj$TFJ 

- FrwkvJ+iKT - KvMxj0TFT - Kvk+lwjrTFT 

Assuming that JC, w and v are uncorrelated, the expected value o f any product o f 
samples of two different vectors w i l l be zero (see Section A6.2.3). There are such 
products in the last six terms on the RHS of the above equation, so i t can be 
simplified greatly i f i t is rewritten in terms o f expected values. Using the 
expectation operator on each side therefore, only the expected values o f the first 
three terms on the RHS remain: 

E [ x t + 1*i + 1] = F<PE(xkxJ}4>TFJ +FrE[wkwJ]rTFr 

Each of the four expectation terms is recognizable as previously defined 
covariance matrices (see Section A6.2.4), so the equation is: 

pk+l = F0Pk0TFT + FrQrTFT + KRKT 

= F[0Pk0T + rQrT]FT + KRKT 

Next, defining 

p* = 4>pk<pT + rQrT
 (A6.2) 

and reinstating the expansion F = [I — KC], yields 

Pk+X = [I - KC]Pt[I - KC]T + KRKT
 (A6.3) 

The values of the matrix K which minimize Equation (A6.3) must now be found, 
so as to result in the Kalman filter. Equation (A6.3) is called a matrix Riccati 
equation, and w i l l be encountered again in Chapter 12, on optimal control. I t is not 
obvious how to minimize this equation by choice o f K, and at this point most texts 
and papers (even Healey (1979), who gives an otherwise fairly complete 
derivation) make one or two rather large leaps! 

A n ini t ial mult iplying out of Equation (A6.3) and a rearrangement to obtain K 
in slightly more isolated positions gives 

PM = KCPtCTKT + KRKT - PtCTKT - KCPt + P? 
or 

PM = K[CPtCT + R]KT - PtCTKT - KCPt + pt (A6-4) 
To understand more easily how to solve Equation (A6.4) for K, an analogy can be 
drawn wi th a simpler-looking equation. Visualizing the first term on the right-hand 
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side of Equation (A6.4) as KGK , and noting that a matrix term such as KGKT is 
broadly equivalent in its behaviour to a term K2G in scalar algebra, consider a 
scalar equation: 

Pk+l=K2G-f(K,G)+P* (A6.5) 

in which it is desired to solve for K, but the function f(K, G) is not convenient for 
analysis. 

One approach is to investigate the existence o f a new variable M , such that 

Pk+i = K2G - 2KMG + P* 

This is known as 'completing the square' to get a more useful form for analysis, as 
K is now completely isolated: 

pk+l = (K- M)2G - M2G + Pt (A6.6) 

Setting Equation (A6.6) = Equation (A6.5) would then eliminate several terms, 
and hopefully allow a solution for A' by a suitable choice o f M . 

Returning to the vector-matrix case, and bearing in mind that K2G in the scalar 
case is equivalent to KGK1 in the vector-matrix case, Equation (A6.5) is then 
equivalent in form to Equation (A6.4), w i th G = CP*CT + R. 

The method leading to Equation (A6.6) suggests that a new equation be 
written, equivalent to Equation (A6.6) , o f the form: 

Pk+{ = [K- M)G[K - M]T - MGMT + P* (A6.7) 

where the matrix M is yet to be specified, and it is desired to solve for K so as to 
minimize Pk+\. 

Expanding the equation gives: 

Pk+l = KGK1 - MGKT - KGMT + P* (A6.8) 

Now, setting Equation (A6.8) = Equation (A6.4) (wi th the term [CP*CT + R] 
replaced by G) as suggested by the scalar analogy, the first and last terms w i l l 
cancel, and the two fol lowing equalities result, which can be investigated to see i f 
they really are an acceptable solution. 

MGKT = PtCTKT (A6.9) 

and 

KGMT =KCPt (A6.10) 

Recall again that the covariance matrices P* + 1 , Q and R are symmetric. 
Therefore, from Equation (A6.2), P* must also be symmetric. Since 
G = CP*CT + R, G must also be symmetric. From Equation (A6.9) , 
MG = P*CT, and taking transposes gives G TAf T = CP* T. 

Since G and P* are symmetric, this implies that GMT = CP*. 
This is in agreement wi th Equation (A6.10). Therefore, the choice o f 

Equations (A6.9) and (A6.10) is self-consistent, and a matrix M must exist such that 
Equations (A6.4) and (A6.8) are identical. Hence, from Equation (A6.9) : 

M = P*C TG _ 1 = PtCT[CPtCT +R]~l ( A 6 . l l ) 

http://A6.ll
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Now, since it is desired to minimize Equation (A6.7) by choice o f K, the quadratic 
form of Equation (A6.7) shows that the min imum occurs when K — M. 

Noting that the values of K which minimize Pk+l may differ from those which 
minimize Pk+2 and so on, this particular matrix w i l l be called Kk+l. Therefore from 
Equation ( A 6 . l l ) : 

KM = P*kCT[CP*kCT + R}-1 (A6.12) 

Wri t ing K - M = 0 and M = KM i n Equation (A6.7), the optimal solution is then 
obtained: 

From Equation (A6.12), i t can be seen that Kk+l [CP*C T +R]= P*C T . Combining 
wi th the previous equation yields: 

n+i = -PtCTKj+l +P*k = Pt[I - CTKj+l] 
Transposing both sides: 

pi+1 = [/-cx+1mT 

which, remembering that PM and P* are symmetric, gives: 

PM = \I-Kk+lC}Pt (A6.13) 

Equations (A6.2), (A6.12), (9.34) (wi th varying K) and (A6.13) together form a 
recursive set which w i l l implement the KF. They are gathered together as 
Equations (9.36) to (9.39) in the main text, and discussed further there. 

/>* = 4>pk4>T + rgrT
 (9.36) 

Kk+\ = PtCT[CP*kCT + / ? ] " ' (9.37) 

*t+i |*+i = [ ' " + M l + Kk+iZk+i (9-38) 

Pk+l = [I-Kk+lC}P*k (9.39) 

http://A6.ll


Appendix 7 
Derivation of Plackett's 
algorithm for online least-
squares fitting 

The derivation starts from the basic concept o f ordinary least-squares. I n the single-
input-single-output case, we start wi th a series o f corresponding values o f the actual 
input and output over time. We then formulate a model o f appropriate order and 
adjust its parameters to minimize the mean value o f the square o f the difference 
between the actual output and that predicted by the model. A model o f the fo l lowing 
form w i l l be used: 

where vn is a random error ('noise' o f mean value zero w i l l be assumed). 
Apart from the noise term, Equation (A7.1) is identical to Equation (11.1) in 

Chapter 11. Since the noise term is zero mean, the best guess we could make as to 
its value at any given instant is zero. The value o f yn predicted by the model of 
Equation (A7.1) w i l l therefore exclude the vn. 

Since we wish to minimize the mean square o f the error over the total number 
of time steps taken (AO, we shall be trying to choose the elements o f the vectors a 
and b so as to minimize: 

Since we are to minimize the mean o f the error, the reader may wonder why there 
is no division by N i n Equation (A7.2) . A li t t le thought w i l l show that this would 
make no difference to the location o f the min imum i n terms o f the values o f a and 
b. I t would change the value at the min imum, but that is immaterial. The values o f 
the coefficients in the a and b vectors can be found by partial differentiation wi th 
respect to each ar and br term, or by numerical minimizat ion by one o f the 
standard methods (for example, maximum gradient or Fibonacci search). 

The problem wi th such an approach in the online context (that is, inside a 
digital control scheme) is that all the calculations have to be re-performed whenever 
a new pair o f values of y and u occurs. A n arrangement for online parameter 

(A7.1) 

N 

(A7.2) 
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estimation based on that approach is therefore impractical, since the number o f 
terms over which the summations must be done w i l l soon become extremely large, 
when the system w i l l effectively come to a halt! 

Algorithms have been devised which allow an existing estimate o f the a and b 
values to be updated in the light of the most recent pair o f values o f y and u only. 
Many of these are based on Plackett's algorithm, which is explained and derived as 
follows. 

First, we modify Equation (A7.1) in the same way as in Chapter 11, by 
combining the a and b values into a vector 0 (a stacked over b) and sufficient past 
values of y and u to fulfi l Equation (A7.1) as a vector x ( y stacked over u). This 
means that Equation (A7.1) becomes: 

y„=XTn-l9 + Vn (A7-3) 

Now consider how the parameter estimator ( ' identifier ') w i l l operate. Using the 
notation of Plackett (1950 - except that we have substituted x for z so as to avoid 
confusion wi th the z-transform), i t w i l l update 0 each time step by taking a 
weighted average of a quantity / „ times the previous estimate of 0 (namely 0n-X) 
and a vector kn times the latest error (defined as the difference between the 
predicted value xT

n_x0n_x and the observed value y„), giving: 

0n = / A - i + K(xT

n-iOn_x - y„) (A7.4) 

I f the noise were zero, and we had estimated 0n_x accurately, the bracket fo l lowing 
kn would be zero. In those circumstances no change in 0 would be required. 
Therefore Jn = 1. 

Now we see how the least-squares method is incorporated. For the single-
input-single-output scenario, we were minimiz ing the mean-square error between 
actual and model outputs. In statistical terms, that is the variance o f one o f those 
outputs assuming the other one to be the true value. 

In the online case, the approach is to proceed similarly wi th the vector 0, 
assuming the error in our estimation of that vector to be a vector (0n - 0), where 0 is 
the true value. Again the idea is to minimize the mean-square value o f this 
difference. The fact that the difference is now a vector is overcome by the use the 
covariance matrix of this error Pn (see Section A6.2.4), which is defined as 

Pn = Vn-Wn-0)T (A7.5) 

This is the outer product of the two vectors, thus giving a matrix result. The values 
on the leading diagonal w i l l be the mean-square errors (variances) of the individual 
members o f 0. Those off the leading diagonal w i l l be products of the error in one 
term of 0n and that in another term of 0n. Two things fol low wi th regard to the off-
diagonal terms (Appendix 6): 

• I f the errors are random, the average values o f the off-diagonal terms should be 

zero. 

• The matrix w i l l be symmetric. 
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Since Pn is a measure o f the error in the parameter estimates, the next step is to 
determine the expected value o f Pn and minimize i t . Substituting Equation (A7.4) 
(wi th J n = 1) into Equation (A7.5) gives: 

Pn = +M*I- i*„ - i -yn) - O\[0n_x + kn{xl_x0n_x -yn) - 0}T 

which, by substituting for yn from Equation (A7.3) , becomes 

Pn = K-i +kn(xT

n_i0n_1 - xT

n_x0 - v„) - 0} 

X [0n-\ + *„(*I-10„-1 - *l-xO - V„) - 0}T 

We now perform some matrix algebra to simplify this expression prior to 
min imiz ing Pn : 

Pn = [(I+knxT

n_l)(0n_1-0)-knvn] 

x [ ( / + * / , ) ( t r « ) - W T 

= [I+knxT

n_l}[0n_l-0}[0n_l-0}T[I+knxT
n_l]T 

- [ / + M i - i R - i - Qfyn + K<kT

n 

Two things now emerge. Firstly, the product [0„_x - #][#„_i - 0]T is, by 
definition, the covariance matrix as i t existed at t ime step n — 1 (that is, Pn_t). 
Secondly, i f we examine the expected value o f Pn, we can ignore any term 
mult ipl ied by the noise v„ as its expected value is zero (note, however, that the 
square o f v„ has a non-zero average value). We therefore have: 

Pn = ( / + M l _ , ] i ' „ _ , [ / + M i - , ] T + * „ v ^ 

and wi th one further transposition step 

Pn = [/ + M l - i f t - i [ / + V i ^ + ^ v ^ (A7.6) 

The idea is now to choose kn to minimize Pn given the existing values o f 
everything else. We therefore investigate the variation o f Pn as kn is changed by a 
small amount Akn (note that the latter is a vector o f small amounts). Thus Equation 
(A7.6) becomes: 

Pn + JPn = [/+ (*„ + Akn)x[_x\Pn_x [/+*„_,(# + Akl)} 

+ (kn + Jkn)v2

n(kT

n+JkT

n) 

For a min imum, we need to examine APn relative to Akn. Expanding the previous 
equation w i l l give rise to several terms which do not involve Akn, so we shall omit 
those for clarity. Also, some terms o f the expansion involve both Akn and its 
transpose. Since Akn is assumed to be very small, these can also be ignored 
(roughly equivalent to ignoring the square o f a small error in scalar analysis). Wi th 
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these omissions, the terms involving Akn in the expansion o f the RHS of the 
previous equation are: 

AknxT

n_xPn_x(I+xn_xkT

n) + (I+knxT

n_x)Pn_xxn_xAkT

n 

+ Aknv2

nkT

n+knv2

nAkT

n 

For a min imum in Pn, APn must be zero for small changes in kn, so the fo l lowing 
must both be val id from the list of terms above which cause the changes: 

and 

^ „ [ ^ _ 1 P „ _ 1 ( / + x n _ 1 * I ) + v2

nkl] = 0 

[(/ + + knv2

n)Akl = 0 

These two equations give the same solution. Using the second one, and assuming 
that, since Akn contains small (but nonzero) changes, the vector represented by the 
term in square brackets must be zero, we have: 

Pn-\Xn-l + kn^l-l?n-\Xn-\ + ^nVn ~ 0 

or 

kn[xTn-\Pn-\Xn-\ + V n ] = ~^n-\Xn-\ 

Noting that the term in square brackets is scalar, we obtain the solution: 

^ = ~Pn-\xn-\ 

This equation can also be used to update Pn by substituting i t into Equation (A7.6): 

Pn-\xn-lx1-l 
D n-l 

X n - \ X l - \ P n - l 
•T n 

D 

+ 
Pn-\xn-\vnXn-\Pn-i 

D2 

where D = xT

n_xPn_xxn_x + v2

n. 
Noting that P is symmetric, so PT = P, and rearranging and simplifying yields 

which factorizes to 

D2Pn_l-2DPn_lxn_lxT

n_lP„_l 

+Pn-ìxn-\xì-lPn-\xn-\xì-\Pn-l + ^n-1 xn-1 v n * n - 1 fit-1 

D 2 

D 2 i »„_ , - IDP^x^xl^P^ 

+^ > / i - l J c n - l [ J i : « - l ^ > n - l*n - l + ^ l ^ n - l ^ n - l 
D2 
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Further, noting that the term in square brackets is D (which is scalar), the equation 
now simplifies dramatically: 

that is, 

p P n - \ x n - \ x l i - \ P n - \ 

j> Pn-\Xn-lXn?-lPn-\ 
r n - \ ~ " 

V„ + Xn-\"n-\Xn-\ 

We also require an updating equation for 0. We have from Equation (A7.4) , w i th 

Jn = \: 

On = o«-\+K(*l-\On-\-y*) 

which, on substituting for k„ from Equation (A7.5) , becomes: 

a _ a Pn-\Xn-l(xTn-l6n-l ~ >,) 
"n-Vn-l V2 + XT p x 

I n practice, we do not usually know the value o f vn. I n consequence, i t is usual to 
set i t equal to 1 and work wi th a 'normalized' covariance, g iv ing the fo l lowing 
updating equations used as Equations (11.3) and (11.4) in the main text (Chapter 
11): 

p _ p _ n-\-Kn-\-xn-\i n-l 
n ~ n ~ X U r T P r 

1 -t- * n - \ * n - l x n - l 

Pn-\Xn-\{xl-\0n-\ ~ 3̂ n) 

1 + xJ-lPn-lXn-l 

On — 0n_\ — 

Other formulations o f these equations exist, and can be found i n the works o f 
Plackett (1950) and several subsequent authors. 
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Index 

A 
absolute value detector 653-4 
accelerometer 49 
accuracy, see wordlength 
Ackermann's method 330-2 
across variable 33 
actuator 3, 11 
adaptive control 

gain scheduling 562, 563 
model-reference 562, 578-80 
model-reference, adaptation gain 579 
need for it 560-2 
see also self-tuning control 

aerial, see antenna 
air to fuel ratio, see internal combustion engine 
aliasing 23, 24, 403, 411, 424, see also filter, anti-aliasing 
align algorithm 521-2, 527 
analog to digital (A-D) conversion 23, 347, 654 
analogy, see force-current analogy. See also equivalent circuit 

diagrams 
angle criterion 265 
antenna positioning system 

with backlash in the drive 707-9 
block diagram manipulation in MATLAB 765-8 
block diagram model 98-9 
controllability test 312 
with deadzone in the actuator 709 
direct programming state-space model 101 
eigenvectors 335-6 
full-order observer and state variable feedback regulator 465-8 
Kalman filter and state variable feedback tracking system 

492-5 
lead compensation 292—4 
optimal controller 615-9 
poles and eigenvalues 125 
reduced-order observer and state variable feedback regulator 

458-65 
reduced-order observer and state variable feedback tracking 

system 468-80 
with saturation of the control amplifier 706-7, 712-14, 715-16 
state equation solution 337-8, 339^0 
state variable feedback regulator 320-4 
state-space model with pre-defined states 103 
various state variable feedback tracking systems 327-30 
SVF regulator by Ackermann's method 331-2 
transfer function model 100 
velocity feedback 294-5 

anti reset windup, see integral desaturation 
approximate commutative controller 523, 527-30 
Argand diagram 85 

ARMA, see discrete-time model, ARMA 
asymptotes 

for Bode plots 179-85 
for root loci 263, 266, 267, 270 

asymptotic stability, see stability, asymptotic 
asymptotic state estimator, see observer, full-order 
asynchronous quenching 648 
auto-regressive model, see discrete-time model, ARMA 
autocorrelation 417, 789 
automobile, see suspension system. See also internal combustion 

engine 

azimuth control system, see antenna positioning system 

B 
backlash 

friction dominant 655-6 
inertia dominant 656 

bandwidth, see performance criteria, bandwidth 
bang-bang control, see controller, on-off 
Bernoulli's law 58 
bias, see controller, output offset 
BIBO, see stability, bounded-input-bounded-output 
block diagram 3, 87-96 

algebra 95 
manipulation rules 92 
reduction rules 91, 93 
see also MATLAB and block diagram manipulation 

blow-up, see estimator blow-up 
Bode 

form, see Laplace transfer function 
gain 86 
plot 175-88 
plot, closed-loop 187 
sensitivity, see sensitivity, Bode 

bounded-input-bounded-output, see stability, bounded-input-
bounded-output 

Bucy see Kalman filter 
bumpless transfer 355, 359, 469-70, 473-5 
Butterworth filter 333 

C 
capacitor microphone 61 
capacitor, see mathematical model 
cascade controller 278-9 (elsewhere, this means a controller with 

a forward-path compensator) 
causal system 33 
central heating, see control system 
characteristic 

direction 336 
equation 15, 733-4 

Of\A 
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and stability 156 
in Laplace transfer functions 85, 240 
in state-space models 124-5, 320-3 

locus 518 
locus method 518-34 

locus method design steps 520-3 
polynomial 168 
value 516 

chopper 382-3 
circle criterion, generalized 716 
circle criterion, see nonlinear systems, Zames' circle criterion 
circuit, equivalent, see equivalent circuit diagrams 
C L C E , see characteristic equation in state-space models 
closed-loop 

characteristic equation, see characteristic equation in state-space 
models 

information from open-loop, see Bode plot and Nyquist plot 
pole locations 332 
system 4, 117 

clutch, see slipping clutch 
cofactor 729 
column dominance, see diagonal dominance 
companion form 70 
comparator 3 
compensator 3, 20-2 

D, I, P, PD, PI, PID, see three-term controller 
design 275-95 
digital 22 
discrete-time 22 
feedback 189, 197, 240, see also velocity feedback 
lag, see lag compensator 
lag-lead, see lag-lead compensator 
lead, see lead compensator 
lead-lag, see lead-lag compensator 

complex conjugate poles, see poles, complex conjugate 
complex frequency, see Laplace 
complex shift theorem, see Laplace 
condition number 525 
conservative systems 16, 60, 66 
control engineering 2 
control system 3 

inputs 6, see also input 
outputs 6, see also output 
model, see mathematical model 

control system examples (a selection only) 
antenna positioner (comprehensive treatment), see antenna 

positioning system 
domestic central heating 5 
domestic oven 4 
domestic washing machine 5 
McDonnell Douglas DC-X 5 
machine tool drive 589-90 

optimal control 611-15 
PID control 609-11 

multivariable (several methods), see pneumatic (multivariate) 
system 

pressure (full-order observer) 446-9 
pressure (reduced-order observer) 453-5 
see also robotic arm 

Control Systems Toolbox, see MATLAB 
controllability 303-13, 334, 741 

of full-order observer 444-5 
controllable companion form 70 
controlled rectification 383 
controller 3 

analog implementation 292-303, see also safety 
digital 22-5, 347-64, 387-^411, see also three-term controller, 

digital 
digital, implementation 379-82, 468-80, see also safety 
design by Lyapunov's method (nonlinear systems) 692-5 
on-off 369-72, 648, see also optimal switching; programmable 

logic controller 
output offset 282, 303 
programmable logic, see programmable logic controller 
sequential, see controller, on-off 

see also adaptive control; bumpless transfer; compensator design; 
optimal control; three-term controller; self-tuning control; 
state variable feedback 

convolution 81-3 
correlation testing 414-27 
cost function, see performance index 
coupled tanks 

interacting, block diagram model 89, 90 
interacting, differential equation model 53 
non-interacting 64 

coupling between control loops, see interaction 
covariance 789, see also matrix, covariance 
cover-up rule 746, 747 
critical point, see equilibrium point 
cross variable, see across variable 
cross-correlation 416, 789, see also correlation testing 
crossover frequency, see gain crossover; phase crossover 
cut-off rate, see performance criteria, cut-off rate 

D 
D-contour, see Nyquist contour 
d.c. 

diagonalization 540 
gain 128, 131 
motor 382 

Dahlin controller 403-10, 411, 567, 573-6 
damped frequency 132, see also s-plane; z-plane 
damper, see mathematical model 
damping 

critical 134 
factor 781 
ratio 132, see also s-plane; z-plane 

dead time, see transport lag 
dead-beat 

controller 397^00,410 
response 393 

deadband, see deadzone 
deadspace, see deadzone 
deadzone 384, see also relay with deadzone 
decade 172 
decoupling 13, 114 
derivative action time, see three-term controller, derivative action 

time 
describing function 

evaluation 698-705 
method, see nonlinear systems describing function method 
multiple (combining) 702, 719 
table of 705 

design-type methods 25, 109, 500-1 
detection element 3 
determinant 728 
deterministic system, see mathematical model, deterministic 
DF, see describing function 
diagonal dominance 534—40 
diagonalization, see d.c. diagonalization. See also similarity 
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transform 
difference equation 105, 352-3 

model, see discrete-time model 
digital control, see controller, digital. See also scaling; wordlength 
digital signal processing chip 377-8 
digital simulation, see simulation 
digital to analog (D-A) conversion 24, 347 
direct programming 101 
discrete-time model 105-7,204-11 

ARMA 106, 204, 564 
integrator 476 
reduced-order observer 475-6 
state-space 107, 208, see also Sylvester's expansion theorem 
state-space, time delay 213 
step response 204-8 
see also simulation 

distance-velocity lag, see transport lag 
distributed parameter model, see mathematical model, distributed 

parameter 
disturbances 4, 7, 624 
dither 385, 656 
DMRE, see matrix Riccati equation 
dominant poles, see poles, dominant 
DSP, see digital signal processing chip 
dual 316 
dynamic programming 592-600 
dynamic system 15 

E 
eigenvalues 732-5 

and critical points 685-6 
and phase portraits 685-6 
and stability of state-space models 125-6 
see also spectral decomposition 

eigenvectors 334—6, 732-5 
fast 685 
left-hand 735 
and phase portraits 685-6 
slow 685 
see also spectral decomposition 

electrical components, see mathematical model 
elementary row operations, see row operations 
emissions control, see internal combustion engine 
equilibrium point 684-7, 688 

multiple 647-8, 687 
equivalent circuit diagrams 44—6 
error, see measurement error; performance criteria, steady-state 

error 
estimate notation (Kalman filter) 482 
estimator blow-up 571 
Euler integration, see numerical integration, Euler 
Evans' rules, see root locus construction rules 
expected value (expectation) 482, 785-6 

F 
feedback compensation, see compensator, feedback 
feedback loop 4 

minor, see cascade controller 
feedforward control 277-8 
filter 

anti-aliasing 347-8, 362, 469 
first order 130 

filtering 169, 171, 187 
properties of optimal controller 601 

final value theorem 83, 84, 136-7 

z-domain 776 
first-order lag, see first-order system 
first-order system 129-31 

digital simulation 341-4 
unit step response 131 

flow control 276 
fluid (hydraulic) systems 37-9, 53-4 
fluid capacity, see mathematical model 
fluid resistance, see mathematical model 
fluid valve, flow linearization 58 
force-current analogy 34—41, 113, see also equivalent circuit 

diagrams 
force-voltage analogy 34 
forgetting factor 570-2 
free-body diagrams 48-51 
frequency response 144-53 

magnitude ratio (or magnification factor) 146, 148-51 
phase shift 146, 148-51 
plots 173-204, see also Bode; Inverse Nyquist; Nichols; 

Nyquist 
steady-state 145-6 
testing 226-32 see also system identification 

see also second-order system, frequency response plots; z-domain 
frequency response 

frequency-domain methods 25, 73, 144-54 
see also frequency response; Laplace; multivariate 

friction 
Coulomb 657 
static 283,385,414,656 
viscous 656-7 

G 
gain 

crossover 153, 203 
margin, see performance criteria, gain margin 
scheduling, see adaptive control, gain scheduling 
space 512-13, 515 

Gaussian signal 418, 486, 572, 787-8 
Gershgorin's theorem 536-8 
Gershgorin band 537 

H 
Hx 633-8 
H2 633-8 
harmonic generation 649 
Heaviside partial fractions 744—5, see also inverse Laplace 

transform 
hunting 655 
hydraulic system 384, see also fluid 
hysteresis 219, 654-5 

I 
IAE, see integral of absolute value of error 
identification, see system identification 
identity observer, see observer, full-order 
DES, see integral of error squared 
IMC, see internal model control 
impulse 

response 155 
response testing 226, see also PRBS testing; system 

identification 
INA, see inverse Nyquist array 
inductor, see mathematical model 
inertia, see mathematical model 
infinite horizon optimal control 607-8 
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initial conditions 88 
initial value theorem 83, 84 
inlet manifold, see internal combustion engine 
innovations sequence 483 
input 

pulse 118 
ramp 118,622 
step 19,117,622 
exogenous 240 
matrix, see matrix, input 
pseudo-random 120, see also PRBS 
random 119-20, see also PRBS 
sinusoidal 119 
unit impulse 21, 118, 120 
vector, see state-space model 
see also tracking errors 

inputs, see control system 
insertion loss factor 298 
instability 13, 123 

see also stability 
integral 

action time, see three-term controller, integral action time 
desaruration 355, 470, 476 
of absolute value of error 138 
of error squared 19, 138, 633 
of time by absolute error 138 
wind-up 355, 470 
see also tracking system 

interaction 13, 279, see also multivariate systems in the 
frequency domain 

interconnected system models 64-6 
internal combustion engine inlet manifold 42 
internal model control 624, 625, 627 
inverse 

Laplace transform 73, 79-83 
Laplace transform partial fraction expansions 80, 742-8 
of a matrix 730 
Nyquist array method 534-49, see also Perron-Frobenius 

method 
Nyquist plot 249-50 
polar plot, see inverse Nyquist plot 
z-transform, see z-transform, inverse 

inverted pendulum 2, 10 
ISE, see integral of error squared 
isocline 667 

ITAE, see integral of time by absolute error 

J 
journey by road 586-8, 591-5 
Jacobian, see matrix, Jacobian 
jump resonance 649 
K 
Kalman 

controller 400-3, 407^8, 410, 411 
filter 480-95, 786, 790-4 
filter, extended 487 
filter, practical pointers 484-7 
filter, stationary 485 
gain 482,491 

KF, see Kalman filter 
Kirchhoff's laws 47 

L 
lag compensator 22, 275, 286-8 

analog implementation 302 
electrical 113 
mechanical 112 

lag-lead compensator 291-2, 551-2 
mechanical 51, 112 
electrical 113 
see also lead-lag compensator 

Lagrange's equations 60 
Laplace 

for differential equations 78 
operations 74, see also initial and final value theorems and 

convolution 
shift theorems 77 
table of transform pairs 75 
transfer function 6, 84—7 

Bode form 86, 176 
digitizing 349-53 
matrix, see transfer function matrix 
relationship with state-space models 96-8, 108-9, 125-6 
root locus form 85 

transform 73-9 
see also frequency response; inverse Laplace; MATLAB; step 

testing 
latching contacts 374 
lead compensator 21,275,283,288-94 

analog implementation 298-303 
electrical, differential equation model 47, 113 
electrical, pole-zero plot 87 
electrical, state-space model 71-3 
electrical, transfer function model 86 
mechanical 112 

lead-lag compensator 523 
analog implementation 302 

leading diagonal 70, 728 
least-squares 

extended 572 
fit to correlation results 421-4 
see also Plackett's algorithm 

left-hand rule, see stability, left-hand rule 
level control loops 276 
LFT, see linear fractional transformation 
Liapunov, see Lyapunov 
limit cycle 151, 647-8, 679, 680, 689, 707, 709, see also 

nonlinear systems 
linear 

approximation 17 
fractional transformation 642 
quadratic Gaussian problem 591 
quadratic regulator 590-1, 633 
system 8-9, 32 

linearization 647, 657 
by Taylor series approximation 55-7 
limitations 649 
multivariate systems 658-64 
and SIMULINK 662-3 
see also fluid valve; operating point; pendulum 

logic 
electronic 371 
fluidic 371 
see also programmable logic controller 

loop failure, see loop integrity 
loop integrity 274, 279 
low-frequency gain, see d.c. gain 
L Q G , see linear quadratic Gaussian 
LQR, see linear quadratic regulator 
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LTF, see Laplace transfer function 
Luenberger observer 441, 483 
lumped parameter model, see mathematical model, lumped 

parameter 
Lyapunov 

equation 696-7 
first method 684-7 
function 689-96 
and linear systems 696-7 
second (direct) method 687-97 

M 
M peak, see performance criteria, maximum magnitude ratio 
M-circle 192, 193, 198 
M-contour 202 
m-file, see MATLAB, m-files 
McDonnell Douglas DC-X, see control system 
magnitude (or magnification factor), see frequency response, 

magnitude ratio 
see also performance criteria, maximum magnitude ratio 

magnitude criterion (root locus method) 266 
mapping of .s-plane contours 246-9, see also z-plane 
margin, see gain margin, phase margin 
marginal stability, see stability, marginal 
mass, see mathematical model 
mathematical model 7, 26, 31 

deterministic 33, 480 
discrete-time see discrete-time model 
distributed parameter 28 
electrical components 33-41 
linear 32, see also Linearization 
lumped parameter 28, 31-44 
mechanical components 33^1 
model-plant mismatch 622 
nominal 622 
stationary 11, 33 
stochastic 33, 480 
validation 32 
see also under individual systems (e.g. accelerometer, slipping 

clutch, etc.) 
MATLAB 25,749-68 

and block diagram manipulation 764-8 
Control Systems Toolbox 25, 753 
conversions between transfer function and state-space models 

110-11 
m-files 753-* 
Multivariable frequency Domain Toolbox 196, 753 
see also SIMULINK. See also usage in many examples 

matrix 
adjoint 730 
algebra 722-41 
in block diagrams 724-7 
block diagonal 737 ^ 
block triangular 737 
cofactors of 729 
covariance 484, 789-90, 796 
determinant of 729 
diagonal 730, 790 
eigenvector, see matrix, modal 
Hamiltonian 638 
identity 730 
ill-conditioned 524 
indefinite 738 
input 68 
inverse of 730 

Jacobian 487, 661 
leading diagonal 728 
McMillan form 512-16,738-9 
minors of 728-9 
modal 338,517,740,741 
multivariate frequency response 526 
MVFR, see matrix, multivariate frequency response 
negative definite 737 
negative semi-definite 737 
output 68 
partitioning of 736-7 
plant 68 
plant, closed-loop 320 
positive definite 696, 737 
positive semi-definite 737 
principal minors of 737 
rank deficiency of 732 
rank of 732 
similar 740 
singular 731 
skew-symmetric 619 
Smith form, see matrix McMillan form 
symmetric 790 
system 68 
matrix trace of 735 
transition 124, 337, 339 
triangular 735 
unit 730 
see also norms 

matrix Riccati equation 600, 608, 792 
measurement 

element 3 
error 167 

mechanical compensators, see under compensator type 
mechanical components, see mathematical model 
mechanical parallel systems 49 
mechanical series systems 49 
microprocessor-based systems 371-3, 377 
MIMO, see multivariate 
minimal realisation 309, 315 
minimum phase system 184, 214-17 
minimum variance estimator, see Kalman filter 
minor 728-9 

principal 737 
misalignment angles 522 
mode of response 310, 337—40 
model, see mathematical model 
model-reference adaptive control, see adaptive control, model-

reference 
MRAC, see adaptive control, model-reference 
multi-input-multi-output, see multivariate systems 
Multivariate Frequency Domain Toolbox, see MATLAB 
multivariate systems 9, 12, 623 

in the frequency domain 499-556 
sensitivity analysis 628-9 
stability of 512-17, see also Gershgorin's theorem; Ostrowski 

bands 
state-space models 95-6, 112, 114 
SVF design 331,334-5 
see also transfer function matrix; pneumatic (multivariate) 

system 

N 
N-circle 193, 198 
N-contour 202 
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negative definite function 691, see also matrix, negative definite 
negative semi-definite function 691, see also matrix, negative 

semi-definite 
Newton's laws of motion 48, 49 
Nichols 

chart 193, 201 
plot 201-204 

noise signal 4, 33, see also Gaussian signal 
non-minimum phase system 213-17, 427 
nonlinear systems 9, 487, 625, 645-716 

describing function method 697-710 
Lyapunov methods 684—97 
operating point 56, 659 
phase plane method 664-84 
Popov's method 710-14 
stability, see stability of nonlinear systems 
time-varying 688 
valve flow 385 
Zames' circle criterion 714—16 
see also linearization 

nonlinearity 
continuous 652 
discontinuous 652-6 
double-valued 654-5 
multi-valued 655 
single-valued 652—4 

normal distribution 787-8 
norms of a matrix (or vector) 633-8 
numerical integration 345 

Euler 341-3 
Runge-Kutta 343-5 
see also sampling interval; SIMULINK 

Nyquist 
contour 188, 247-9, 518, 536 
frequency 348 
plot 188-96, 246, see also inverse Nyquist plot 
plot, obtaining closed-loop information 191—6 
stability criterion for multivariable systems 516-18 
stability criterion for SISO systems 188, 245-59 

O 
objective function, see performance index 
observability 310,313-15,439 
observers 

in closed-loop systems 456-80 
full-order 438^9 
pole locations 445, 447 
reduced-order 450-6 

octave 172 
offset, see controller, output offset 
on-off control, see controller, on-off 
open-loop system 4, 117 
operating point 282, 324, 505, 590, 657, 658, 660, 664, 770, see 

also nonlinear systems, operating point 
operational amplifier 298-303, 375-7 
optimal 

control 583-619, 633, 634 
state estimator, see Kalman filter 
switching 680-3 

order of a system 66, 67, see also first-order system; second-order 
system 

oscillator 151, 647 
Ostrowski bands 540-1 
output 

equation 68, 104 

matrix, see matrix, output 
vector, see state-space model 

outputs, see control system 
oven, see control system 
over-damped system 134 
overshoot, see performance criteria 

P 
P-F, see Perron-Frobenius 
Pade approximation 211,434-5 
parallel programming 104,110 
parameter estimation 218, 565-72, see also system identification 
Parseval's theorem 633-5 
partial fractions, see inverse Laplace transform, partial fraction 

expansions 
partitioned matrices and vectors 736-7 
PD controller, see three-term controller, PD 
peak overshoot, see performance criteria 
peak time, see performance criteria 
pendulum 

equilibrium positions 16, 17 
inverted, see inverted pendulum 
analysed using Lyapunov's direct method 690-1, 695-6 
analysed using Lyapunov's first method 685-7 
regions of stability 695-6 
simple linearization 57 

performance criteria 
bandwidth 170-1, 194, 202-3, 629 
cut-off rate 172, 187, 194 
frequency domain 167-73 
gain margin 153, 170, 189, 202-3, 215 
maximum magnitude ratio 171, 202-3, 284, 634 
number of oscillations to settle 141 
peak overshoot 19, 135, 140 
peak time 135, 140 
phase margin 153, 170, 189, 202-3, 215 
resonant frequency 172 
rise time 19, 135, 139 
settling time 19, 140 
steady-state error 19, 135-7, 139, 153, 191, 280, 286, 323-4, 

530-2, 552, 605-7, see also tracking system 
subsidence ratio 135, 140, see also quarter decay ratio 
see also robust performance 

performance index (optimal control) 584-90, 597, 603-4, see also 
integral (where various other indices are listed) 

Perron-Frobenius 
eigenvalue 550 
eigenvectors 550-1 
method 549-54 

persistent excitation 569 
phase 

advance, see lead compensator 
crossover 153, 203 
lag, see lag compensator 
lead, see lead compensator 
margin, see performance criteria, phase margin 
phase-plane method, see nonlinear systems, phase-plane method 
phase-plane trajectory 666, see also timescaling 
portrait 666 
shift, see frequency response, phase shift 

PI (optimal control context), see performance index 
PI controller, see three-term controller, PI 
PID controller, see three-term controller, PID 
Plackett's algorithm 565-7, 795-9 

extra practical points 572 
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plant 2 
matrix, see matrix, plant 

PLC, see programmable logic controller 
pneumatic (multivariable) system 501-2 

characteristic locus design 502-4 
comparison of methods 555-6 
diagonalizing precompensator 508-12 
inverse Nyquist array design 541-9 
Perron-Frobenius design 551-3 
Perron-Frobenius eigenvalue 550 
transfer function matrix model 502-4 

polar plots, see Nyquist plot and inverse Nyquist plot 
pole placement control, see closed-loop pole locations; state 

variable feedback; self-tuning control, controller synthesizer 
pole-zero plot 5-87, 126, 132, 155, see also root locus plot 
poles 79, 85-7 

complex conjugate 121-2 
dominant 126-34, 154, 240 
and eigenvalues 125 
ringing 358,404,406,573 
and stability 121-3, 125-6 
z-plane 781 

Popov's method, see nonlinear systems, Popov's method 
Popov plot (locus) 712 
positive definite function 691, see also matrix, positive definite 
positive semi-definite function 691, see also matrix, positive 

semi-definite 
post-compensator 538 
potentiometer, servo 301 
PPT, see phase plane trajectory 
PRBS 415 

autocorrelation 419 
generation 418 
testing 419-20, 426-7, see also correlation testing 

pre-filter 11,302,329,624 
precompensator, see multivariate systems in the frequency 

domain 
pressure control system 

Routh stability test 158 
settling time and overshoot 141 
steady-state error 136 

pressure loops 276 
principal gains, see singular values 
principal of optimality 592 
process 2 

reaction curve 165 
programmable logic controller 371-5, 378 

analog instructions 381-2 
ladder logic 372-5, 381-2 

proper rational polynomials 80 
proportional band, see three-term controller, proportional band 
pseudo-random binary sequence, see PRBS 
pulse input, see input, pulse 

Q 
quadratic form 696, 737 
quantization 654 
quarter decay ratio 166, see also performance criteria, subsidence 

ratio 

R 
ramp input, see input, ramp 
random signals 785-90, see also input, random; PRBS; 

mathematical model, stochastic 
rank 

deficiency 311, 732 
of a matrix 372 
of a system 184 

rate 
feedback, see velocity feedback 
limiting 302, 362, 577 
time, see three-term controller, derivative action time 

real shift theorem, see Laplace 
recording system, steady-state analysis 149-51 
reference value 3 
regulator 4, 320-4, 641 

optimal controller 603 
relative gain array 506 
relay 371 

with deadzone 654 
with deadzone and hysteresis 655 
evaluation of describing function 7 0 3 ^ 
ideal 654 

remote positioning system, see antenna positioning system 
reset time, see three-term controller, integral action time 
residue 745 
resistor 

linear, see mathematical model 
nonlinear 651 

resonant frequency, see performance criteria, resonant frequency 
response 

forced 209 
free 209 
see also discrete-time model step response, frequency response, 

impulse response, transient response, unit step response 
return difference 168, 240-1 
Riccati, see matrix Riccati equation 
ringing pole, see poles, ringing 
rise time, see performance criteria 
robotic arm 561-3, 567-72, 574-6, 576-8 
robust 

control 26, 524-5, 554, 601, 621-13, see also loop integrity 
design method 622 
performance 622, 642-3 
stability 622, 638-40 

robustness analysis 631-3 
roll-off rate, see performance criteria, cut-off rate 
root locus 

construction rules 262-9 
form, see Laplace transfer function 
method 259-75 
optimal 602,618-19 
plot 260 

Routh array 157 
Routh criterion 154-64 
row dominance, see diagonal dominance 
row operations 538, 543-6 
running sum 354, 355, 359 

S 
s-plane 85, 122 

lines of constant time constant' 142 
lines of constant damped frequency 143 
lines of constant damping ratio 142 
lines of constant natural frequency 142 
see also z-plane 

safety when implementing controllers 469, 473—4 
sampling 

delay 24 
instant 389 
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interval 213, 347, 360-2, 392, 472-3, 717 
rate 23,472 
see also aliasing 

satellite tracking system, see antenna positioning system 
saturation 646, 652-3 

evaluation of describing function 701-2 
scaling 380 
second-order system 132-7 

equivalent time constant' 141 
frequency response plots 182 
unit step response 133-36 

self-tuning control 563, 564-78 
controller synthesizer (self-tuning PID) 576-8 
controller synthesizer (z-plane pole placement) 573-8 
see also adaptive control 

sensitivity 169, 627, 629 
Bode 169 
Bode, index 625-6 
complementary 169, 627, 629 
differential 169 
input 628 
matrix 316 
output 628 

separation principle 456 
sequential control, see controller, on-off 
servomechanism, see tracking system 
setpoint 3, see also operating point; reference value 
settling time, see performance criteria 
similarity transform 516-17, 739-41 
SIMO, see single-input-multiple-output 
simple lag, see first-order system 
simulation 

diagram 102 
digital computer 210, 340-6, 467-80, 649-50 

see also discrete-time model, step response; first-order system; 
MATLAB and block diagram manipulation; numerical 
integration; SIMULINK 

SIMULINK 213,345-6,769-74 
see also linearization and SIMULINK; MATLAB 

single-degree-of-freedom system 12 
single-input-multiple-output systems 10 
single-input-single-output systems 9 
singular 

points (root locus method) 264 
values 524-5, 629 

sinusoidal input, see input, sinusoidal 
SISO, see single-input-single-output 
slipping clutch 45 
small gain theorem 640 
small signal analysis 9 
Smith predictor 295-8 
software jacketing 575 
spectral decomposition 741 
spool valve 384 
spring 

linear, see mathematical model 
nonlinear 651 

Sputnik 73 
square systems 506 
stability 

asymptotic 15, 123 
asymptotic global 688 
asymptotic local 688 
bounded-input-bounded-output 15, 648 
of digital control systems 23, 392, see also stability in the 

z-plane 
input-dependent 648 
and Laplace transfer function models 120-3 
left-hand rule 250 
of linear systems 14 
Lyapunov 688-9 
marginal 15, 123, 151 
of nonlinear systems 16, 648, see also stability, Lyapunov 
of optimal controllers 601 
and state-space models 123-126, see also eigenvalues 
in the z-plane 781 

see also gain margin; instability; multivariate systems, stability; 
Nyquist criterion; phase margin; robust stability; Routh 
criterion 

stabilizability 316-18, 334 
stable system 13 
standard deviation 786 
state 67 

equation 68, 103 
equation, solution 123 
estimator, see observers. See also Kalman filter 
trajectory 666 
variables 67, see also state variable feedback 
vector 67 

state-space model 9, 66-73 
discrete-time, see discrete-time model, state-space 
general block diagram (SISO) 102 
linearization of nonlinear model, see linearization, multivariate 

systems 
parallel connection of 112 
relationship with transfer function models 96-8, 108-9, 

125-6 
series connection of 111 
using pre-defined states 103 
see also direct programming 

state variable feedback 308,318-34 
design by Lyapunov's method (nonlinear systems) 692-5 
see also observers in closed-loop systems; optimal control 

static 
check (z-transform) 394 
friction, see friction, static 
gain, see d.c. gain 
test (performance) 218-19 

stationary systems, see mathematical model, stationary 
steady-state 

conditions 15 
error, see performance criteria, steady-state error 
gain, see d.c. gain 

step 
input, see input, step 
response, see unit step response 
size (simulation), see sampling interval 
testing 219-26 

stiction, see friction, static 
stiff system 345, 469 
stochastic systems, see mathematical model, stochastic 
strictly proper (rational polynomials) 80 
subsidence ratio, see performance criteria 
superposition in block diagrams 95-6 
superposition principle 8, 646 
supremum 634 
suspension system model 41 
SVF, see state variable feedback 
switching line 680 
Sylvester's expansion theorem 210-11 
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synthesis methods 26, 109, 308-9, 500 
system 

identification 31, 217-32, 427-31, see also correlation testing; 
parameter estimator 

matrix, see matrix, system 
order, see order of a system 
type, see type number 
see also under the kind of system concerned 

T 
r(^)-plane defined 194 
tank, see coupled tanks 
Taylor series 56 
temperature loops 276 
tens-complement (arithmetic) 386 
TFM, see transfer function matrix 
thermal capacity, see mathematical model 
thermal resistance, see mathematical model 
thermal systems 40, 54, 55 
three-term controller 

analog 375-6 
D (derivative) action 20-2, 275, 281-3 
derivative action time 162, 281 
digital 354-64 
I (integral) action 20-2, 275, 280 
integral action time 162, 281 
with interacting terms 281-2 
with non-interacting terms 162-5 
P (proportional) action 20-2, 280 
PD (proportional plus derivative) action 20, 21 
PI (proportional plus integral) action 20 
PID (proportional plus integral plus derivative) action 20-2, 

280-4 
prop proportional band 281 
and root locus plots 272-4 
and the Routh array 162-5 
tuning 162-6, 283-1 
velocity algorithm 358-60 
see also operating point; self-tuning control, controller 

synthesizer 
through variable 33 
time constant 

equivalent for second-order system, see second-order system 
first order system 131 

time delay, see transport lag 
time step (simulation), see sampling interval 
time-domain methods 25, see also state-space; state variable 

feedback 
timer (PLC) 374 
timescaling (phase plane trajectories) 684 
tracking 

errors 172-3 
system 4, 99, 169, 324-30, 624, 641 
system, optimal' controller 603-7 

transducer 11 
transfer function matrix 9, 86, 97, 504-7 

closed-loop 513 
different forms 505-6 
relationship with state-space models 506-7 

transfer function, see Laplace transfer function; z-transfer function 
transient response 120 
transition matrix, see matrix, transition 
transport lag (time delay) 77, 211-13, 222-6, 275, 277, 407-10, 

411, 428-31, 432 
approximation in state-space models 433-4 

see also Padé approximation; Smith predictor 
transpose 728 
Tustin transform, see z-transform, Tustin method. See also three-

term controller, digital 
two-degree-of-freedom system 11 
two-port representation of a system 640 
two-term controller, see three-term controller, PI 
twos-complement (arithmetic) 380-1 
type number 85 

U 
U-D factorization 572 
uncertainty 

input 631 
model (additive and multiplicative) 630 
structured 633 
unstructured 633, 639-40 

undamped natural frequency 132, see also s-plane 
under-damped system 138 
unit circle, see stability of digital control systems; stability in the 

z-plane 
unit impulse, see impulse response, input, unit impulse 
unit step 

input, see input, step 
response 19 

unstable system, see instability 

V 
variable-structure control 580-1 
variance 786, 796 
vector algebra, see matrix algebra 
vector 

basis 521-2 
input, see state-space model 
null 733 
output, see state-space model 
state, see state vector 

vehicle emissions control, see internal combustion engine 
velocity 

algorithm, see three-term controller, velocity algorithm 
feedback 285, 294-5, 308, 682 
lag 224 

W 
washing machine, see control system 
white noise, see Gaussian signal 
wind-up, see integral wind-up 
wordlength 363-4, 473 

Z 
z-domain frequency response 776, see also final value theorem, 

z-domain 
z-plane 392, 781^ 

pole placement, see self-tuning control, controller synthesizer 
z-transfer function 393-7 
z-transform 

simple' method 351 
true' 388-92,775-84 
as a delay operator 349-50 
inverse 777-81 
matched pole-zero method 351-2 
table of transform pairs 777 
Tustin method 351 

Zames' circle criterion, see nonlinear systems, Zames' circle 
criterion 
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zero-order hold 389 z-plane 781 
zeros 79, 85-7, 241-5 Ziegler-Nichols methods, see step testing; three-term controller, 

in multivariable systems 514-15 tuning 
transmission 515 zone of attraction 689 
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