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Foreword

This book on the Mathematics of Hysteretic phenomena deals with one of the most
challenging topics in the theory and applications of magnetic materials. Although a number
of important texts on this subject have appeared in recent years, generously referred to here
in this book, the approach adopted by the present author is to develop the subject from a set
of axioms concerning the geometric shape of Hysteretic trajectories governed by the
mathematics of the hyperbolic tangent. Nevertheless his treatment is also shown to be
soundly based on the physical principles, with the connections with Boltzman statistics and
classical electromagnetism firmly established.

Over several introductory chapters the reader is guided through the steps of how the
tangent hyperbolic curve can be transformed to describe saturation effects, hysteresis loops,
and the difficult area of reversal loops. This is followed by such central issues as remanent
magnetism, permeability and susceptibility, magnetic energy and losses and time varying
magnetisation. The later chapters deal with a range of important subjects of practical
importance including transient effects, magnetic recording, magnetic viscosity and
magnetostriction.

It is self evident that hysteresis plays a central role in all physical phenomena; nature is
fundamentally non-linear and hysteretic. Practical applications abound; sometimes the
effects are negative, as with losses in power systems, and other times positive, as with
magnetic recording applications. The process of reaching a good design in either case
requires mathematical, physical and computational modelling. The first stage is that
described in this book and is fundamental but before meaningful and robust computations
can be carried out, verifiable parameters representing the physical behaviour of magnetic
materials have to be obtained by measurement. The results from any software that
optimises a practical device will only be as good as the material modelling data it is given
and it is encouraging that we now have a body of work dealing with these basic modelling
concepts of which this book is an important contribution.

Throughout the text the author has taken great care to set each topic in its historical
context giving extensive literature citation and attribution for each step as it unfolds. I
believe this book adds to our understanding of the subject and will fulfil an important niche
in the tools needed by engineers and educators alike.

Bill Trowbridge
15 May, 2003
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Preface

The idea presented here in this book is not “new”. To explain this understatement I have to
take the reader back in history. Not in world history perhaps only the history of my
professional career. The idea of modeling ferromagnetic phenomena by using the T(x)
function came to me in the late 1950s while working on ferromagnetic projects for a small
research company called Epsylon Research. On the list of projects were, for instance, pulse
data recording, the forerunner of digital data recorders (at the time the word “digital data
recording” had not been invented yet) for the British space programme called Woomera
(after the place where it was based in Australia). Further projects were the first prototype
“black box” for BA, which still makes me shudder every time an aeroplane drops out of the
sky. But the long list would be far from complete without mentioning the pocket tape
recorder, the first ever (it is the first to my knowledge), which became probably the biggest
flop in my professional life. The general view, including that of my fellow professionals,
was at the time, that the bigger recorder was better and nobody yet dreamt of putting a tape
recorder into his pocket or her handbag. Even the thought was extraordinarily absurd and
for all practical purposes ridiculous. The mildest professional opinion was that “there is no
point in wasting money on the patent, for it will never catch on”. The idea was unsellable
and was soon forgotten. The “wheel”, however, has been reinvented a few times in human
history and it took Mr “Walkman” quite a long time, some decades in fact, to reinvent this
wheel.

With the change of times my ferromagnetic notes were shelved and 1 left the field for
other pastures. Without the help of the present computer power at my disposal 1 could not
have taken this problem to the present conclusion. The idea surfaced again decades later,
when I decided to clear out my old desk and in a file marked “Unfinished ” I came across a
folder with “ Magnetic phenomena” written on its front with large red letters.

The rest was easy. It took only a few years to resuscitate my old idea in this form and to
come to the point of publishing it in a book. So, as I said at the beginning, the theory
presented here is not new but certainly novel.

At the start of writing this book I set myself an aim to satisfy the curiosity of those
connoisseurs who out of sheer scientific interest wanted to see a solutions to long-
outstanding problems, the puritans who have no interest in practical applicability. As I
progressed through the first chapter I began to see the importance of this theory not only as
a pure mathematical description of the phenomena but also as a significant tool in physics,
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engineering, and technology, in magnet and magnetic component design as well as in other
fields of natural sciences. The realization of this made me write this book for a large
spectrum of the scientific public not only those involved in physics and engineering but
also others involved in other fields of science where the phenomenon of hysteresis exists.

The Introduction leads the reader through the history of magnetism as a natural physical
phenomenon and its development into one of the important fields of physical sciences.

In Chapter 2 the reader is introduced to the various functions namely the B(x), L(x),
M(x) and T(x) functions, developed in the last hundred years, for the purpose of describing
the saturation phenomenon as a part of the magnetization process. Although the various
approaches resulted in different functions, it has been shown that each of them describes
the relationship between the exciting field and the resulting magnetization very closely.

Chapter 3 describes the T(x) mathematical model of the hysteresis loop in general form
and its variants like the major and minor loops, biased loops and finally it describes the
model developed for the inverse hysteresis at the first time in mathematical form.

In Chapter 4 the model described in Chapter 3 is applied to the anhysteretic phenomena,
namely the process of virgin and the anhysteretic magnetization.

Chapter 5 describes the reversal process in periodic magnetization. Starting with the
first-order reversal it progresses to the mathematical description of the higher-order
reversals and the reversals with changing amplitude. By using the Mayergoyz relationship
it establishes a relationship between the T distribution and the other two distributions,
Gaussian and Lorentzian, used by other mathematical models.

The remanent magnetization is one of the important areas of the magnetization processes
and one of the most difficult phenomena to describe in mathematical form due to the
double nonlinear process. In Chapter 6 a mathematical description is given not only to the
generation of the remanent loop but also to the reversal of the process leading to the
accurate mathematical prediction of the multivalued process. The model of the anhysteretic
remanence is also included in this chapter.

Permeability, susceptibility, shearing, stored magnetic energy, and hysteresis loss are the
important concepts of the practical magnet and magnetic component designer. Graphs,
tabulations and rules backed up by experimental results guide those working in this field
with very little mathematical verification of the design processes used. In Chapters 7 and 8
this missing link is given to the designer including the first mathematical description of
unshearing.

Most of the magnetic components used in electrical or electronic circuitry are subjected
to time-varying magnetization processes, normally periodic excitation. In Chapter 9 the
distortion due to the double nonlinearity is discussed. The approach to the Fourier analysis
of these distortions and the Laplace transform of some of the distorted wave forms are
described by the use of the exponential model. Special attention is paid both in the Fourier
and the Laplace transformations to the Rayleigh region and the mathematical criterion for
the “small”-signal excitation is given. The Fourier analysis and Laplace transform of the
distorted waveform resulted from anhysteretic magnetization process is also described in
this chapter using the same model.

Magnetic transients or accommodation as it is often called in the literature, theoretically
is one of the least explained effects in magnetism. Although this effect is analogous to the
transients in electrical circuits most (if not all) of which is mathematically fully formulated,
in magnetism the modeling of these transients eluded researchers so far. In Chapter 10 a
number of examples are given for the application of the T(x) model to solve the problem of
magnetic transients (accommodation) under different starting conditions.
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Chapter 11 is devoted to the modeling of the process of analogue magnetic recording.

So far all the phenomena modeled were supposed to be static, i.e. not influenced by the
rate of change in the excitation signal. Often, however, the magnetic effects are not
independent of the rate of change, leading to more complicated formulation of the
hysteresis loop as shown in Chapter 12. When two hysteresis loops interact they form a
coupled system as can be seen in the formation of the wasp-waisted and the Perminvar-like
hysteresis loops. The mathematical model of these are also given in this chapter.

In some physical phenomena, showing hysteresis, the response is independent of the
direction of the excitation. A typical example is the effect of magnetostriction. This kind of
hysteresis lead to butterfly-like hysteresis loops. These and similar phenomena showing the
same effect are formulated in Chapter 13.

I had and enjoyed the support and encouragement of a number of people in writing this
book for which I am grateful. I feel I have to single out Amalia Ivanyi for special thanks.
Our long discussions, her comments and suggestions helped me greatly to make this book
more readable and enjoyable to my fellow scientists and students. My gratitude goes to Bill
Trowbridge for introducing this book.

Finally 1 am grateful to my wife Judith, for her patience during the time of writing this
book.

Oxford, March 2003
JT
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1. Introduction

1.1 Introduction

The purpose of this book is not to repeat the well-documented facts about magnetic
phenomena or introduce the reader to the elementary knowledge of magnetism but to
describe a new model, which gives a mathematical formulation to, so far as one can tell,
most known magnetic phenomena. To study the fundamentals there are a number of
excellent text books with long lists of publications, which enable the reader to access the
latest literature on the subject and learn the basics necessary to read, understand and enjoy
the following chapters [1-5].

This book is intended for a wide range of professional people. Some of the chapters are
written with the practical magnet designer in mind, giving analytical solutions to practical
problems. Other chapters may appeal to the theoretician whose interest is to find the
mathematical description of a physical phenomenon. In either case the mathematics is kept
at a relatively simple but professional level. I have tried to make the results more expressive
to the reader by using graphs wherever possible. The shape of most of these curves is well
known to the reader, therefore it will make the judgment easy on the applicability of the
model presented here in this book.

Magnetism is one of the most difficult areas of physical science. The phenomenon of
magnetism itself has been known in antiquity from its familiar property — its power of
attracting iron — since the time of Thales. In China magnets have been used as compasses in
navigation since about 4000 BC. Its name originated from the place named Magnesia in
Asia Minor, where the substance magnetite or lodestone (known for its magnetic
properties) was found in abundance. The Greeks used it as a crude compass as well, before
artificial magnets were employed for that purpose and they also provided probably the first
documentation of the magnetic effect in 800 BC. The first known description, in “modern”
times, of the magnetic behaviour is attributed to Petrus Peregrinus (Peregrinus de
Maricourt) a French military engineer and scientist, who in 1269 described the study of
magnetism in his “Epistola de magnete”. Later, at the turn of the 16th century, William
Gilbert’s “De Magnete” describes the Earth as a large magnet (giant lodestone) of a
spherical shape.

After a humble and slow beginning great scientists like Gilbert (or Gylberde), Oersted,
Gauss, Faraday and Weber, amongst others, contributed to the better understanding of
magnetism. Weber [5] suggested that every magnet was composed of magnetized domains,
little magnets randomly fitted into substances that could be magnetized. These magnetic
particles are now believed to be of molecular dimensions. According to Alfred Ewing’s
theory [6] of mutual interaction between magnetic particles, developed from Weber’s
suggestion, an ordinary piece of magnetisable iron is composed of molecular magnets
arranged in a haphazard fashion so that the vectorial sum of the their magnetic moments
appears to be zero on the macroscopic scale. In this state they neutralize each other and the
specimen appears to be magnetically neutral, i.e. they show no magnetic attraction or
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2 1 Introduction

repulsion on external bodies. Although the atomic moments show some order, even before
magnetization, inside the domains, it is the domains that are randomly oriented in the
demagnetized state. When the magnetically neutral specimen is placed in a magnetic field
however, the disorder disappears and more elementary magnetic particles line up in the
direction of the applied field with their axes parallel to the field. Poles appear at the ends of
the magnet, while the central portions exhibit only weak magnetic powers where equal and
opposite poles neutralize each other's effects. This theory primarily explains the fact that
when a magnetized iron is broken or cut each of the parts show the same magnetic
properties and new free poles are created. This process can be repeated over and over again
with the same effect. Secondly, when all the domains are arranged in order and their axes
all parallel with the applied field and no more domains are left unturned, the magnet
reaches the state of saturation. The magnetic order inside a ferromagnetic substance on the
atomic scale also gives a possible explanation as to why it is that the initial permeability
(before any magnetization) is not zero for most ferromagnetic materials. This is the quantity
represented by the first derivative of the virgin magnetization curve at zero field excitation.
For further explanation and details on this subject see Chapters 4 and 7.

At the beginning of the 20th century, Pierre Weiss [7,8] postulated the existence of the
elementary magnet, called magneton, analogous to the elementary electrical charge the
electron and defined it as the unit of magnetic moment. The idea fitted the Bohr model well
and later the existence of the magneton was experimentally verified by Gerlach and Stern
[9].

Whilst the explanation of the magnetic phenomena progressed steadily with
experimental verification, its mathematical modeling was lagging behind. There was and
still remains the difficult task to model and formulate the double nonlinearity in
mathematical form, characteristic of these magnetic processes. First, over a certain strength
of the applied field the magnetic state of the specimen will not alter, irrespective of how
much the field is increased. That is to say that when all the domains are forced to line up
with the field and no more change can be expected in the magnetic state of the material, the
specimen has reached a state of saturation. Secondly, when the field is reversed, the
magnetized sample will not take up the expected state, which was determined by the
original value of the field, but a different one, showing that the magnetic state of the
specimen is not a single-valued function of the applied magnetic field. The same field,
depending on whether it is increasing or decreasing will produce two magnetic states within
the sample. Up and down cycling with the field will produce repeatable results but each
field will produce two magnetic states exhibiting the phenomenon called hysteresis (Greek:
hysteros = later). The word hysteresis to describe this phenomenon was introduced by
Ewing in 1881 [10,11].

These nonlinearities, the saturation and the hysteresis, are discussed and formulated in
details in Chapters 2 and 3, respectively, by using the model defined and formulated in
Chapters 1 and 2.

Within the confines of a hysteresis loop bordered by the major loop there is a field
whose geometry is governed by laws of tangent hyperbolic nature. Lines, belonging to this
field must be of a specific shape and the movements of points are restricted to trajectories
determined by a set of rules. As in other systems there are the axioms upon which the
geometry is built. These are the general rules of the “game” that all elements of the field
will obey. If we are to study the lines and their behaviour patterns in the field of hysteresis
and to draw conclusions concerning the physical phenomena they represent, then these
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axioms governing the behaviour must be defined before our study begins. The following
axioms are necessary to describe the field within the hysteresis loop.

Axiom 1. The field is confined to the area bordered by the major hysteresis loop.

Axiom 2. Inside the area of a hysteresis loop all lines are of tangent hyperbolic shape.
Axiom 3. Through one point inside a hysteresis loop an infinite number of tangent
hyperbolic curves can be drawn whose individual shape and behaviour is predetermined
by one particular past history.

Axiom 4. On every point, within the confines of a major loop, lies one and only one
unbiased symmetrical minor loop. Therefore, every point can be characterized by one x,,
value representing the crossover point of the up and down going part of that particular
minor loop.

Axiom 5. Within the field, through two points only two tangent hyperbolic curve can be
drawn. One is a member of the ascending the other of the descending family of the lines
forming the field. As a consequence, the two points determine one and only one closed
minor hysteresis loop, which belongs to the field. That is to say that the shortest line
between two points is a tangent hyperbolic curve in the field but the path is direction
dependent (The name “closed loop” above emphasizes the fact that there are “open
loops” as well in the system as we will see in Chapter 5, which conform, to different
rules.) This Axiom is equivalent in other models to the congruency property.

Axiom 6. All upwards going lines mimic parts of the ascending leg of the major
hysteresis loop and similarly all down-going lines mimic the descending leg of the major
loop.

Axiom 7. All “constants” (like the ones marking shifts of lines within the enclosed field)
shall change according to the tangent hyperbolic rule.

The model is not based solely on geometrical axioms. Other rules come from the nature
of magnetism and are confirmed by observations and experiments. These were recognized
long ago and some models incorporated them in order to fit their results to observations and
experimental data. The properties incorporated into this model are the “return-point-
memory” property and the “wiping-out” property [12].

The first of these properties attributed to magnetic materials, the “return-point-memory”
makes the cyclically magnetized sample remember the peak value, positive or negative, of
the magnetization where the process has been previously stopped and/or reversed. Due to
this property combined with Axiom 3, the magnetized sample remembers that symmetric
minor loop the state of magnetization moved to, characterized by a single x,, value before it
was reversed.

The second, “wiping-out” property makes the medium remember the last extreme
(minimum or maximum) where the magnetization stopped or changed direction, whilst all
the others preceding the last maximum or minimum are wiped out from the memory of the
substance.

The recognition and the first description of these effects are attributed to Madelung who
published his paper on his observations as early as 1905 [13]. These attributes formulated
by Madelung make the ferromagnetic hysteresis a Markovien nonlinearity'.

" Markov Andrei Andreyevich (1856—1922). Russian mathematician, formulator of the stochastic
(random) process.
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The model presented in this book is essentially an attempt to describe experimental facts
in general mathematical terms and makes some attempt to explain the physical causes of
either the saturation or the hysteresis. It is not a wholly phenomenological approach [14]
since it has its foundations rooted in the Boltzmann model of magnetic saturation as shown
in Chapter 3.

Although the model illustrated in this book is primarily intended to describe the
hysteretic behaviour of ferromagnetic substances, its basic principle should be applicable to
other fields of science, manifesting effects similar or identical to the hysteretic phenomena
in Magnetics. Hysteresis is observed in other scientific disciplines such as biology, control
engineering, semiconductor physics and superconductivity [15] to name just a few.
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2. Saturation Effect

2.1 L(x), B(x), T(x) and M(x) Functions

A certain characteristic temperature, above which their properties suddenly change, sets the
magnetic behaviour of ferromagnetic materials. This behaviour is governed by Curie’s law
and the critical point on the temperature scale is called the Curie temperature [1]. Above the
Curie point these substances show paramagnetic behaviour but the Curie points of most
materials, particularly those used for practical application are in the range of hundreds of
°C. Below this temperature in the ferromagnetic region, the relationship between applied
field and magnetization is highly nonlinear. When a ferromagnetic substance is subjected to
an increasing magnetic field its magnetic induction only increases to a point above which
its state will not change and it becomes independent of the applied magnetic field. This is
an other way of expressing the physical phenomena, that inside a magnetic specimen, there
are a finite number of mobile elementary magnetic dipoles, called domains, which can line
up in the direction of the field applied. When all the domains are turned with their axes
parallel with the field then the sample runs into magnetic saturation and no further change
will occur in its magnetic state.

In 1905 Langevin [2] produced a theory describing paramagnetism, which was initially
applied by Weiss to [3] ferromagnetic materials as well. Although strictly speaking it is
only applicable to gaseous paramagnetic substances, while solids obey the Curie—~Weiss law
[4], his results eventually culminated in the Langevin function (L(x)), shown in normalized
for in (2.1). This also describes the ferromagnetic saturation effect.

L(x) = C, coth x — Cy/x. @.1)

Brillouin later improved Langevin’s theoretical approach. His mathematical solution to
this phenomenon, the Brillouin function (B(x), see (2.2) [5] describes the effect by using
similar hyperbolic functions. In fact, it is the quantum-mechanical analogue of the
Langevin function. Under some conditions (see below) the two functions approach each
other and become the same. Other theoretical approaches to ferromagnetism, since the
introduction of these theories, have also greatly improved the understanding of the physics
of magnetic behaviour but the shape of the saturation curve is not described any better than
initially done by Langevin,

B(x) = C; coth C; x — Cy coth Cy x. (2.2)

On a large macroscopic scale with the appropriate choice of constants, both functions
describe the saturation effect well. The reader has to be warned, however, that both
functions show singularity around x = O therefore they require extreme caution in
applications.
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6 2 Saturation Effect

When C; = C) and C, — 0 then B(x) — L(x) as a limit.

Let us now consider the case of the single electron, when the atom has only one unpaired
electron similar to Ni. As the spin (s) of the electron can only be * ' the electron moment
as the result of quantization, can have only two possible states. It can only align its moment
parallel (s = + 1/2) or antiparallel (s = —1/2 ) to the direction of the applied field. As a result
the magnetization by using Boltzman statistics, will be [6]

M(x) = Cs tanh Cj x, (2.3)

representing the irreversible magnetization. For further details on this theory refer to
Chapter 3. The Brillouin function will also approach this function in the single electron
case.

The T(x) function, on which the model introduced here is based, is the combination of a
hyperbolic and a linear function as shown in (2.4), where the two terms are well matched to
the reversible and the irreversible components of the magnetic induction, respectively.

" T(x) = Ao x + By tanh Cp x. 2.4)

Unlike the L(x) and B(x), the T(x) function, is only partially based on existing theories.
Nevertheless, it describes the saturation effect as well as the other two functions and makes
the formulation of the hysteresis easier, as we will see in Chapter 3. One has to be aware of
the fact that mathematical solutions to problems in physics are often formulated in different
mathematical expressions, depending often on the intermediate steps taken during
calculation, but describe the physical phenomenon equally well. In fact, I would not be
surprised at all if one day a theoretician produced a full mathematical solution to the
magnetic saturation effect, based on the Boltzmann statistics, in the form of the T(x)
function. Since this approach is not exactly heuristic but based on the Boltzman approach,
when it happens this model may become the sole legitimate noncurve-fitting mathematical
model that formulates not only the saturation and the hysteresis but also other magnetic
phenomena as ‘well on a macroscopic scale.

L(x),B(x)
T(x)
M(x)

L(x),B(),T(x),M(x)
1

0.75}
0.5
0.25}

-10 -5 5 10
-0. *

-4.5
.75}
-1

Figure 2.1: The Langevin L(x), Brillouin B(x), T(x) and M(x) functions
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Figure 2.1 depicts all four functions, L(x), B(x), M(x) and T(x). For the plotting
calculations the following numerical values were used: A, = 0.008, B, = 0.8, Cy = 0.4167,
Ci=C,=1,G;=1.02,C4=0.1,Cs=0.8 and Cs = 0.4167.

The graph shows a good fit of the L(x), B(x) and T(x) functions for all x values including
the deep saturation region. Where the process does not drive the magnetic specimen into
deep saturation as it is in most practical applications, the linear term in T(x) can mostly be
neglected (45~ 0) leaving the always dominant tangent hyperbolic term on its own. The
T(x) function then goes into the M(x) function.

2.2 The T(x) Model

Let us consider a simple model of a solid in equilibrium whose molecules possess magnetic
moment. We will assume, for simplicity that each molecule of the solid is a dipole with the
same magnetic moment m. Let us apply now a uniform magnetic field H to the solid. In
quantum mechanics only discrete energy states are allowed, which in this case is limited to
two possible states. One is when m the magnetic moment is aligned parallel to the magnetic

field representing the energy state of g, = mH and the other is the when the moment is

antiparallel to the field with energy state of &, = —mH. This corresponds to the case in

practice when the dipole has two possible spin values of % 1/2 [7]. Under the influence of
the applied magnetic field some of the dipoles will change their orientations and will point
in the direction of the field. When the field is weak only a small number of the dipoles will
point in this direction. When only half of the total number of dipoles aligns up parallel to
the field, then the effect of the field will be zero on the sample since the other dipoles in
equal number will align antiparallel to the field. In between the minimum and the
maximum energy states the number of dipoles will change following the Boltzmann
distribution [8-10]. When n, number of dipoles has zero energy and » have energy ¢, the
relation between » and ny is determined by the Boltzmann factor in the following form.

o exp(——7€§7—, . (2.5)

n =
Ay

Here £ is the Boltzmann constant and 7' is the absolute temperature.
When the solid is at a temperature of T the occupation numbers », and n, of the two
energy levels £ and & can be written as

& &
m=exp (=) m=exp (—5), 26)

where n; + n, = N the total number of dipoles, then

gl
an exp (— 57
il
N & £
exp (=3p) *exp (=37

, (2.7a)
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exp (——EL
wo= kT . (2.7b)

&, E.
exp (—25) + exp (~12)

The total energy of the system

* *

E=n¢g +tne,, (2.8)
where

& =-mHand ¢, = mH, 2.9

corresponding to the two distinct energy states.
After the substitution of (2.7) and (2.9) into (2.8) we can rewrite the total energy in the
following form

£ £
exp(—}—'T—) exp(~ﬁ)

E=— mH +

£ £ £ £,
exp (=) +exp (- 1% exp (=) texp (- 4%

mH. (2.10)

The total energy, in the equilibrium state, is the product of the total magnetic moment
and the field [11], therefore

_ _MH, @.11)

and the total magnetic moment of the sample M can be written in the form

. mH
E sinh —— mH
M = —=m——/iT17= m tanh —. (2.12)
H cosh mr kT
kT

Here M depends on the average dipole moments. Adding a linear term to (2.12)
representing the reversible magnetization will take us to (2.4) (see T(x) function) [12].

2.3 Other Models

As we can see, the various approaches produced different functions to describe the
saturation effect, which characterizes the ferromagnetic materials. Amongst the best known
models the various Preisach models are the most widely used. A crucial factor in any model
is the mathematical description of the interaction between the magnetic moments and the
applied field in both the interaction and the saturation regions. The statistical distribution of
the magnetic moments or probability density, describing this relationship is a bell-shaped
function, as we know from experience. This function, which for the Preisach model is
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called the Preisach function, is often chosen to be Lorentzian or Gaussian, which is usually
referred to as normal distribution [13] (for more on the Preisach function see Section 5.3).
The choice of the Gaussian function over and above any other is normally justified on two
grounds. The first is that normal distribution is often used to describe probability density in
other natural phenomena. The second is that the integral of a Gaussian function can be
evaluated in closed form. These two attributes however are not unique to the Gaussian
function and other functions can also be selected on these grounds or derived from given
criteria.

J(®)

1 24 3
Figure 2.2: Gaussian distribution function fy(x) for C;=1anda=1
The Gaussian function f,(x) in simple form is given in (2.13) and plotted in Figure 2.2
f,(x) = Cyexp [~ (%)2]. 2.13)

The integral of f,(x) between the limits of 0 and x, is known as error function erf(x), and
defined as

erf (x) = %Zjexp(—xz) d | (2.14)

This function in (2.14) is plotted in Figure 2.3.
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Figure 2.3: The error function erf(x) calculated from (2.14)

This function can be closely matched by the T(x) function by choosing the appropriate
parameters as shown in Figure 2.4.

erf(x),T(x) | T
1
erf(x)
0.5
-3 -2 -1 1 2 x 3
-/.5
-1

Figure 2.4: The erf(x) and the T(x) functions

The description of the saturation effect in mathematical form by using any of the
functions mentioned above is an approximation. The most important factor in choosing the
right function is its closeness to match the physical phenomena of saturation.

As we have seen, the first derivative by x of the distribution function is the distribution
density function, [11] which in the case of the T(x) function (see (2.4)) is

ad—T(x) = B,C, (sech Cy x)* + 4, . (2.15)
X

When A4, = 0 this function shows not only a striking similarity to the Gaussian function
shown in Figure 2.2, but by selecting the constants B, and C, appropriately this function,
shown in Figure 2.5, can be made very close to the so-called normal probability distribution
function.
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dT(x)/dx

2 5 4

Figure 2.5: The probability density of the T(x) function

When the reversible magnetization is not negligible then the probability density function
differs only by the 4, constant from the bell-shaped curve shown in Figure 2.5.
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3.  Hysteretic Phenomena

3.1 Hysteresis

When a ferromagnetic specimen is subjected to a cyclic magnetic field the magnetic state of
the sample will not follow the magnetizing field but it will lag behind it. This phenomenon
was observed and published by Warburg as early as 1881 [1]. This sluggishness of the
induction in the magnetizing process is called hysteresis and the curve it follows, describing
the relationship between the applied field and induction, is referred to as the hysteresis loop,
derived from the Greek word of hysterein, meaning to be behind. The term “hysteresis” was
introduced in magnetism by Ewing also in 1881 [2]. This relationship, between field and
induction, is irreversible everywhere inside the hysteresis loop, except on one specific line
namely the anhysteretic magnetization curve. Although empirical evidence for a long time
pointed to irregularities, dislocations, and impurities in the magnetic material as to the cause
of this effect, the theoretical verification of this hypothesis is still missing and all these
should be regarded as assumptions. It appears, however, that the internal friction due to the
presence of these imperfections in the metal gives rise to hysteresis. Similarly the
anisotropic nature of the crystalline structure of the ferromagnetic substance can lead to
jumps, a form of switching of the magnetic moments, causing lag between the magnetic
state of the substance and the applied field. We can assume, based on this generally
accepted view, that an isotropic magnetic sample void of imperfections would follow a
reversible magnetization curve represented by a single-valued function between induction
and the applied magnetizing field. The process would then be anhysteretic, which, with its
representative curve, will be discussed in Section 4.2 in detail. The presence of lag in the
induction versus field relationship represents the second nonlinearity in the magnetizing
process.

The mathematical modeling of the hysteresis loop is one of the classic problems of
magnetism and its history goes back to the early part of the 20th century. During that time a
large number of attempts were made to fit mathematical expressions to magnetic data, often
with some dubious results. In general terms all the different approaches fall into two
categories. One, but not necessarily the first category is theoretically based, as the theory of
micromagnetics of Aharoni [3,4] and Brown [5-8]. The work of others, like Jiles and
Atherton [9] is based on wall movement and domain rotation following Kersten [10,11],
Becker and Doring’s earlier works [12], which also fall into this first category. The results
of these models produced by this approach are overcomplicated and difficult to apply. In
spite of all this and other contributions to this field (like Bertotti [13,14]) it is not very likely
that a general and accurate analytical model is going to emerge in the near future. All the
curve-fitting approaches falls in the second category, which are effectively no more than
mathematical curve-fitting exercises to known magnetic data. A great number of attempts
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© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40401-5



14 3 Hysteretic Phenomena

were made to fit the hysteresis loop with functions, including the simplest approach of
power series by Brauer [15], tan™ function by Karlqvist in 1954 [16], rational polynomials
like Rivas et al. [17] and earlier Fisher and Moser in 1956 [18]. Trutt et al. in 1968 [19]
applied piecewise linear approximation to fit the hysteresis loop and Widger proposed
rational fraction approximation in 1969 [20].

Presently there are a few models left that can be regarded as classical. The names and
numbers are debatable depending on one's preference but on the ground of general
acceptance the following three models can be listed that fall into the first category: Stoner—
Wohlfarth (S—-W) model [21] a theory based on crystalline anisotropy, Jiles—Atherton (J-A)
model [22] based on isotropic polycrystalline structure with domain wall motion and the
Globus model [23-25] postulating ring-shaped polycrystalline structure for the magnetic
substances.

One of the most remarkable contributions to hysteresis modeling was made by Preisach
in 1935 [26]. His model, to my knowledge, is the only survivor of almost seven decades of
scientific scrutiny. Although it is only a complex curve-fitting program, therefore falling
into the second category, it does not give much of an insight into the physical phenomena of
magnetization nor into the magnetic properties of the ferromagnetic substances, though in
the knowledge of the hysteresis data it can give a reasonable prediction of the magnetic
behavior of the substance. In those long years it has been modified, added to and updated by
a number of people [27-29] so now a number of variants exist, for instance, the
accommodation, wiping-out property, vector, moving model, etc. By including certain new
properties into the model or tailoring towards specific applications, particular models have
been developed based on the classical Preisach model. After so long its usefulness and
popularity is still high amongst theoreticians and the practical users alike.

The list of approaches given here to describe the hysteresis loop in mathematical form is
far from complete and only a small number of references, those that I personally regarded as
“milestones” in the history of the development of this subject, are given.

3.2 Major and Minor Hysteresis Loops

The well-known regular shape of the hysteresis loop is the starting point of this model based
on the functions specified below. By using certain functions, mimicking the sigmoid shape
of the hysteresis loop, as it is often called, one can formulate the phenomena of saturation
and hysteresis. We recall here (2.4), which describes the saturation effect in a mathematical
expression in the hysteresis [30]. The reader has to remember that by an appropriate
normalization we can convert the physical quantities like magnetic induction and field into
dimensionless quantities in order to conform to the rules of “pure” mathematics. In the rest
of the book in all calculations, although their physical names are going to be used for
description, the symbols refer to normalized dimensionless concepts. This can be done
without affecting the general validity of the model and the following calculations.

In order to describe the hysteresis with the T(x) function it is necessary to shift it in a
horizontal as well as vertical direction symmetrically as it physically happens in a hysteresis
loop. When T(x) is shifted once in a horizontal direction by a, and in vertical direction by
by, we come to a set of equations describing the ascending and descending part of a loop like
a hysteresis one (see (3.1)). The two curves run between two limits that will be marked as x,,
(positive extremum) and —x,, (negative extremum). At these two points they cross over and
this crossing provides the mathematical criteria for finding the value of 4, as shown in (3.2)
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f. = tanh (x —q,) + A, x + b, forincreasing x values (3.1a)

VA

tanh (x + a,) + 4, x—b, for decreasing x values (3.1b)

At the crossover point when x = x,,, and £+ = f b, can be calculated from (3.1) as

b, = [tanh (x, + a,)—tanh (x, —a,)] /2 3.2)

When 4, is negligibly small, much smaller than unity, the maximum value of the first term,
as in most of the practical cases, the expressions in (3.1) go into (3.3) while &, in (3.2)
remains the same.

Il

7.

tanh (x—q,) + b, for increasing x values (3.32)

I

tanh (x +a,)~b, for decreasing x values. (3.3b)

When the maxima (positive and negative) are increased the hysteresis loop stretches up to
a certain size beyond which it will not change irrespective of the further increase in the
exciting field. The largest loop achieved in this way is by definition, the major hysteresis
loop of the magnetic substance. Inside this major loop an infinite number of minor loops can
exist whose shape and size are determined by the amplitude of the field applied to the
substance.

Figure 3.1 depicts a major loop calculated from (3.3) for qo = 1.5 and x, = 4.
Symmetrical minor loops, members of the set, are also shown for x,;, values of 2 and 1.

The loops calculated from (3.1) when the reversible magnetic induction is not negligible
(in the calculation 4, = 0.05) are shown in Figure 3.2. The other numerical parameter values
used in the calculation are the same as before. As one can see, the loci of the crossover
points of the minor loops lie on the curve running in the middle of the major loop. This
curve is called the anhysteretic induction or magnetization curve f; and its significance and
definition will be discussed in detail in Chapter 4.

At this point we can rightly ask the question, how many free parameters are needed to
fully define the hysteresis loop, which characterizes the properties of a ferromagnetic
material? In other words how many degrees of freedom do we have to describe a regular
sigmoid-like hysteresis loop, encountered in most practical cases.

When considering the symmetrical major hysteresis loops two points seem to be obvious.
One is where the loop cuts the horizontal and the other where it cuts the vertical axis. The
first is called coercivity, which is the value of the field needed to reduce the induction to
zero from saturation. In the T(x) model here this quantity is represented by the symbol aj.
The second is known as the remanence f; and this is the value the induction shrinks to, when
the field of excitation is switched off at or above saturation level. This is a remarkable
feature of the hysteresis that one can get a flux density even in the absence of an external
field. Permanent magnets are based on this phenomenon. Although as one can see this is an
important parameter, but as far as the model is concerned it is more convenient to specify
the point x,, where the up and down going parts of the hysteresis loop intersect. Through the
condition of £.(0) = f; the two parameters are linked as shown in (3.4). Here f.(0) represents
the value of £. at x = 0, which is the remanence, marked f;, by definition.
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Jof-f Xm=4
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Xm=2
0, 5
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Figure 3.1: Major and symmetrical minor hysteresis loops and the anhysteretic induction curve when
the reversible magnetization is negligible (4o = 0) for a, =1.5, x,, = 4, 2, and 1
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Fiure.3.2: Major and minor hysteresis loops and the anhysteretic induction curve when the reversible
magnetization is not negligible (4o = 0. 05) for ap=1.5, x,, =4, 2, and 1

Let us substitute x = 0 into the first expression of (3.1), which leads us to
f. = tanha, - b, . (3.4)

After substituting b, expressed in (3.2) into (3.4) and solving (3.4) for x,, we arrive to. the
following results:

x,, = arcth oA 5
tanh g, [ f, tanh g, - (tanh q,)" + 1]

from the ascending side  (3.5a)

and
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x, = arcth - /,
tanh a, [ f, tanh g, + (tanh a,)* -1]

from the descending side, (3.5b)

where the following condition must be satisfied:

1
tanh a,

f. 2tanh g, -

These expressions in (3.5) show an unambiguous relationship between the maximum
magnetic field x,, and the remanence f; for both the ascending and the descending part of the
hysteresis loop, giving a full justification for using x,, as a free parameter in place of f; in
further calculations. These two parameters are convertible, therefore, they give a free choice
to the reader in practical calculations.

By selecting By and C, scaling factors to match the measured data (see (2.4)) we can
dispense with the third and fourth independent parameters. The third represents the
maximum value of the magnetic induction, induced by the saturation field. The fourth
parameter determines the angle of the hysteresis curve to the horizontal axis at the coercive
point that can also vary independently from the other parameters. This parameter, which
represents the relative permeability at this point and influences the shape of the hysteresis
loop, will be discussed in detail in Chapter 7. In addition to the parameters listed above,
initial permeability (the first derivative of the virgin magnetization curve at x = 0) is also
independent of all the others. This parameter with the virgin magnetization curve and their
significance is discussed in Chapter 4 in detail. When the linear term, i.e. the reversible
magnetization, becomes significant, its slope represented by coefficient 4, becomes an
additional independent parameter that can vary independently of the other five.

As can be seen, for a magnetic material with reversible magnetic property ( 4, # 0) six

parameters will define the hysteresis loop described by this model. When properties of
ferromagnetic substances are given in tabulated form, these are the parameters specified in
order to describe its magnetic properties in practical terms. The only exception is f the
remanent magnetism as we have seen earlier. Instead of the f; remanence as a practical
parameter in the further calculations x,, the saturation excitation field will be used as an
independent parameter. The two parameters, however, are unambiguously related to each
other as shown in (3.5). This choice was made solely on the ground of convenience to ease
the mathematical calculations in the later chapters and has no relevance to the relation of the
model to practical cases.

It is important to remember that in practical calculations of magnetic phenomena the
expressions in (3.3) will take up the following normalized form.

f. =B, tanh [C, (x —a,)] + Ayx + b, for increasing x values (3.6a)
f =B, tanh [C, (x + a,)] + A;x—b, for decreasing x values (3.6b)
and

b, =B, {tanh [C, (x, + a,)]—tanh [C,(x, —a)]} /2 . (3.7)

m
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With the following choice of normalization (3.6) and (3.7) will go into (3.3) and (3.4).

B

H
BO:B—,CO= ul and A4, = A—%,

sat sat max

where B and By, are the amplitude and the saturation values of the induction respectively,
measured in units of kg A™' s H and Hg, are the amplitude of the field and the saturation
field, respectively, in A m™' and A the magnitude of the reversible magnetization whose
dimension is kg m A s,

In the following, in order to simplify the calculations, the normalized expressions shown
in (3.2) and (3.3) are going to be used and we refer back to (3.6) and (3.7) only when it is
absolutely necessary. All quantities plotted in the graphs in this book are also dimensionless
normalized quantities.

3.3 Biased Hysteresis Loops

As often happens in practice, ferromagnetic materials are subjected to a combination of
steady (DC) and varying (AC) magnetic field. The effect of this is a change in the shape of
the hysteresis loop. Depending on the relative direction of the constant field the hysteresis
loops will shift either towards the first (positive bias) or the third (negative bias) quadrant of
the coordinate system.

When the ferromagnetic sample is driven into deep saturation, depending on how deep
the saturation is, the major hysteresis loop may not change at all when DC bias is applied. In
the following we are going to investigate the conditions when the induction is below the
saturation level and it is moving along on one of the minor loops. Minor loops are by
definition those that have at least one of the extrema below the value of the saturation field.

Let us suppose we apply a constant field of d, magnitude to the specimen in the positive
direction. Due to the DC bias the intersections in the first and the third quadrant between the
ascending and the descending part of the hysteresis loop will not be the same as in (3.2) and
(3.3) but it will be shifted to different points. The crossover points of the hysteresis loop up
and down going parts will not sit symmetrically in the first and the third quadrant of the
coordinate system therefore the constant 5, could not be used. Let us call the shift in the first
quadrant b; and the one in the third quadrant b,. With reference to (3.2) we can calculate the
expressions for b; and b, shifting the crossover points x,, and —x,, by the magnitude of the
DC field d, as shown in (3.8) and (3.9).

b, = [tanh (x

+d, +a,)~tanh (v, +d, —a,)}2 (3.8)

m m

and
b, =[tanh (-x,, +d, +a))—tanh (- x,, +d,—qa,)]2 . (3.9)

During one cycle, while the AC field is changing from x,, to —x,, and back, the shifting
constant will change from b; to b, and back again to b3 (see Axiom 7 in Chapter 1).
Applying the rule that every change inside the area of the major hysteresis loop will follow
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the tangent hyperbolic law, the change between b; and b, can be described by (3.10a) for the
ascending and by (3.10b) for the descending part. Here b, represents now the ascending and
by the descending final shifting constants in the process.

tanh (-x, +d,-qa,)
*tanh (-x, +d, -a,)—tanh (x, +d,-a,)

u

tanh (x, +d,-a,)—tanh (x-a,)

" > (3.10a)
tanh (x, +d,-q,)-tanh (-x, +d,-a,)
_ tanh (-x, +d, +a,)—tanh (x + a,)
¢ Ztanh (-x, +d, +a,)—tanh (x, +d, +a,)
tanh (x, +d, +a,)—tanh (x +a,) (3.10b)

“tanh (x, +d, +a,)-tanh (-x, +d, +a,)

As we can see the two expressions will differ depending whether the field is increasing or
decreasing, in other words the b, and b4 “constants” will mimic the corresponding part of
the hysteresis loop and will be different in every point (see Axiom 7 in Chapter 1).

After the replacement of b, in (3.1) by b, and by we can express f. and f describing the
ascending and the descending part of any biased minor hysteresis loop in the following
form.

f, =tanh(x—q,))+b, +4, x (3.11a)
f =tanh(x +a,)-b, + A, x. (3.11b)

First let us take the easier case and assume that the reversible magnetization makes no
significant contribution to the process, i.e. Ao = 0, then (3.11) is reduced to a simpler form as
shown below

/., =tanh (x—a,) + b, (3.12a)
S =tanh (x +a,)-b,. (3.12b)

A set of positively DC biased minor hysteresis loops are depicted in Figure 3.3. The major
loop and the anhysteretic magnetization curve (for details see Chapter 4) are also shown.
We can see that all crossover points, i.e. anhysteretic points, of the minor loops are lying on
the anhysteretic curve as we have seen previously in Chapter 3. The curves were calculated
from (3.11) and the following parameter values were used in the calculation: aq = 1.5, dy =
0.75 and x,, = 5, 3, 2, 1. In Figure 3.4 four hysteresis loops have been plotted with the
following parameters values: a, =1, dy = 0.75 and x,, = 4, 2.5, 2, 1.
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Xm=35

Figure 3.3: Major, minor biased hysteresis loops and the corresponding anhysteretic curve for x,,, = 5,
3,2,and 1, ay=1.5,dy,=0.75, 4= 0

Figure 3.4: Major, minor biased hysteresis loops and anhysteretic curve for x,, =4, 2.5,2, and 1,
Qo= 1, d0=0.75, A():O

f*’f"fs Xm=4
1 .

Figure 3.5: Major and minor biased hysteresis loops for x,=4, 3,2.5,2, 1.5, and 1, ap= 1, dp = 0.75,
A() =0
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In Figure 3.5 a set of curves are shown where the parameters used in the calculation were as
follows: ap =0.75, dy= 0.5 and x;, = 4, 2.5, 2, 1.5, 1, and 0.5.

The differences between the curves in Figures 3.3, 3.4, and 3.5 are indicative of the
hysteresis loop dependence on a, the coercive force and on the magnitude of the DC bias d,.

Jofofs

Figure 3.6: Major, minor biased hysteresis loops, and the corresponding anhysteretic curve with
reversible magnetization for x,, =4, 3, 2, 1, ay = 1.5, dy = 0.5, and 4, = 0.05

Let us take now the slightly more complicated case when A, #0 and the effect of the

reversible magnetization cannot be ignored. It is obvious that the transition between b; and
b4 constants will not be changed by the presence of the reversible magnetization, therefore
(3.10) will apply. By using (3.11) a set of hysteresis loops, major and minor loops included,
were plotted as shown in Figure 3.6. The value of 4, used in the calculation was 0.05 with
the following additional parameter values: a = 1.5, dy = 0.5, and x,, =4, 3,2, 1, and 0.5.

3.4 Inverse Hysteresis

As often happens in industrial applications the field, which is exciting the magnetic
components, is a subject of unexpected distortions due to outside interference. This is quite
normal in cases of periodic excitation. The induction is the monitored quantity normally,
therefore instead of the usual B = f{H) function its inverse H = f{B) is needed to find out the
distortion in the exciting waveform. Since any deviation from the sinusoidal shape, in
harmonic excitation for instance, can have an undesirable effect on the magnetic
components, it is often necessary to find out the distortion in the source. So far the only way
to find the distorted excitation function has been the graphical method. By projecting the
recorded induction waveform backward onto the hysteresis loop one could reconstruct the
shape of the exciting wave [31]. This process is obviously tedious, involves the accurate
knowledge of the hysteresis curve in a graph form and the conversion of a large number of
points for a reasonable accuracy. The T(x) model [30] described here provides an analytical
tool for the calculation of the inverse function to determine the excitation from the recorded
induction waveform. '
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Let us recall (3.2) and (3.3) and express x the normalized excitation as a function of the
induction, in other words let us form the inverse hysteresis. The solution to this task is
shown in (3.13a and b) for the ascending and the descending part of the inverse hysteresis
loop, respectively

x =arcth (f, —=b,)+a, for the ascending part (3.13a)
x=arcth (f +b)—a, forthe descending part, (3.13a)

where b, is defined in (3.2

X

4 Xm=3

o)

- -0f5 4 //6.5 1f+,f-,]§

Figure 3.7: Inverse hysteresis loops for ap=2 and x, = 1, 2, 3, 4, and 5.

A set of reversed hysteresis loops are depicted in Figure 3.7 for a, = 2 and the x,, values of
1, 2,3, 4, and 5. The loops are plotted between the two limits of f;, where

f,=tanh (x, —a,)+b,. (3.14)

In the graph, the inverse of the anhysteretic magnetization curve is also plotted, representing
the loci of the crossover points at f;,. The inverse of the anhysteretic curve x; is formulated
in (3.15)

— [1-(tanh a,)*]++/ [1 - (tanh a,)* T + 42 (tanh a,)*

x, = arctanh 5
2f, (tanh q,)

(3.15)

3.5 The Hysteroid

Hysteresis is not restricted to the field of magnetism and to ferromagnetic materials. These
phenomena are present in the elastic and electromagnetic behavior of materials, in which a
lag occurs between the application and the removal of a force or field and its subsequent
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effect. Similar behavior can be seen in some materials when varying electric fields are
applied (electric hysteresis). Elastic hysteresis occurs when a varying force repeatedly
deforms an elastic material. The deformation produced does not completely disappear when
the force is removed, and this results in energy loss on repeated deformations. When within
a family of hysteresis loops every symmetrical minor loop is given a place on its own, in
three dimensions, they form a closed space called a hysteroid. In this formation parallel with
the field-induction plane lie the minor loops with decreasing x,, values. Figure 3.8 shows a
hysteroid.

Figure 3.8: The hysteroid
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4.  Nonhysteretic Processes

4.1 Virgin Magnetization Curve

Ferromagnetic materials in their virgin state (before magnetization) will contain domains
with strong magnetic moments. Each moment, however, varies in direction from domain to
domain. The overall vectorial result is therefore the cancellation of the magnetic effect, the
material as a whole has no magnetic moment and shows no external magnetic influence.
When, however, an external magnetic field is applied, domains, with moments in the
direction of the applied field, increase their size at the expense of their neighbors and the
internal magnetic field effect increases greatly over that of the external field. When the
external field is removed the domain alignment usually is not wholly returned to the original
random state and a residual or remnant dipole field remains in the macroscopic structure.
The fact that the magnetic moment of the material is different after the field has been
removed and that the magnetic state of the material is a function of its previous magnetic
history, is called hysteresis (see Chapter 3).

A magnetization curve starting from the demagnetized state — that is, zero magnetization
at zero field — and going into saturation is called an initial or virgin magnetizing curve. One
can return a specimen into its “virgin” state by demagnetizing the material. The name virgin
magnetizing curve will be reserved for the curve that starts from the state before
magnetization or when the specimen was demagnetized by applying an AC field, initially
large enough to saturate the material and its amplitude slowly reduced to zero. This
technique of obtaining a demagnetized state is called AC demagnetization (see Chapter 10).

When a specimen is magnetized in its virgin state for the first time, or magnetized for the
first time after a total AC demagnetization, the curve representing the relationship between
induction and applied field (virgin magnetization curve) will be different from the normal
hysteresis curve of the material. At zero fields the initial tangent (i.e. first derivative) of the
virgin curve, in general, can vary and for most ferromagnetic materials this initial slope is
not zero.

Let us recall now the T(x) function from (2.4) in a normalized form and differentiate it
twice by x. By adding the second derivative multiplied by a factor C; to the T(x) function we
can model the virgin magnetization curve. The mathematical expression, which models the
virgin magnetization, is given in (4.1).

f, =tanhx [1-2C; (sechx)? |. @.1n

By using (4.1) a set of curves were calculated and plotted as shown in Figure 4.1 for the
following values C; =0, 0.2, 0.4, and 0.5.
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The first derivative of £, by x represents the differential permeability (see Chapter 7) of
the virgin magnetization curve. Its value at x = 0 is a free parameter whose value is
independent of the other parameters and it changes from one magnetic material to another as
it was pointed out in Chapter 3 without affecting any other properties of the specimen. Its
value is linked to C; in (4.1). After differentiating £, by x and substituting x = 0 into the
equation, we find the following relationship between the initial permeability and the value
of C3.

%fvzyd=l—2C3atx=O. 4.2)

Figure 4.1: The virgin magnetization curves for C; values of 0, 0.2, 0.4, and 0.5 and when the
reversible magnetization is negligible, 4, = 0

As shown before, the first derivative can change between zero and unity therefore the
corresponding C; values, which can be selected independently of the other free parameters,
will be between

C; =% for ¢, =
dx
and
C3=Ofor—c—lf—" = 1.
dx

As we can see these two C; values represent the two limits as shown in Figure 4.1. It also
indicates that the angle of the tangent at zero can only vary between 0 and 45°. The virgin
and initial permeabilities and associated problems will be discussed in detail in Chapter 7.
The definition and a detailed explanation of the concept of permeability are also given in the
same chapter.

Rayleigh observed in 1887 [1] that at low magnetization the character of the-
magnetization curve followed a quadratic character, with good approximation as a function
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of the excitation. In his approximation a linear term represents the reversible while a
quadratic term represents the irreversible magnetization. He has approximated the hysteresis
loop, at low magnetization, with parabolic curves. That approximation found its use in
hysteresis-loss calculations (see Chapter 8) and also for finding the distortion caused by the
hysteresis (see for instance Chapter 9) when ferromagnetic materials were subjected to
periodic magnetization as for instance in a transformer. At higher magnetization, however,
this relationship breaks down. The high field, near saturation behavior was modeled in a
form of an infinite series by Becker and Doring [2], later Bozorth [3].

Figure 4.2: Surface map of the virgin magnetization curves shown in Figure 4.1 £, against
x (-3 <x<3)and (5 (0.05<C; <0.5)

C=0

Figure 4.3: The virgin magnetization curve for C; values of 0, 0.2, 0.4, and 0.5. When the reversible
magnetization is not negligible, 4o = 0.008.

When 4, is not negligible the linear term has to be taken into account and the expression in
(4.1) can be rewritten into the form as in (4.3) below,
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f, =tanhx [1-2C; (sechx)* |+ 4,x . 4.3)

The presence of the reversible component in the magnetization will also change the value of
the initial permeability as shown in (4.4) and it will be greater by 4,

H,=1-2C, +4, atx=0. 4.4)

Figure 4.3 depicts a set of virgin magnetization curves calculated by using the expression in
(4.3) for the same C; and A, values as before. The two sets of curves show marked
differences, which is due to the presence of the reversible magnetization.

4.2  Anhysteretic Magnetization

According to the presently accepted view, a ferromagnetic specimen, without imperfections,
anisotropy or interactions between domain walls, would not show any effect of hysteresis.
The magnetization would follow a single-valued function of the applied field, presumably
the anhysteretic magnetization curve, and the same induction would be produced with the
same exciting field irrespective of whether it has an increasing or decreasing tendency.
Therefore the whole process of magnetization and the curve describing the process would be
reversible and free of hysteresis.

Unfortunately, the elimination of the imperfections and the anisotropy from the
ferromagnetic materials is usually far too difficult; therefore it is not practical, so
anhysteretic magnetization has to be achieved by other means. When a cyclic magnetizing
field is applied so that the magnetization is moving on minor loops and the field extrema are
changed then the loci of the crossover points between the up-going and down-going parts of
the hysteresis loop will describe the anhysteretic magnetization curve (see Chapter 3). The
changes in the magnitude of the field can be intermittent or continuous, both ways we come
to the same result. People were tempted for a long time to describe the magnetization
process with a single-valued function. Similarly, in the same way a number of approaches
have been made to describe the saturation curve, by using power series, hyperbolae like
Frohlich [4], various transcendental functions [5] and Fourier series [6]. Lehman [7] even
suggested that sections of the curve in calculations should be represented by a number of
approximations selected from a large range of functions. A great contribution was made to
the mathematical description of the magnetization curve for field values considerably
greater that the coercivity by Lamont in 1867 (Lamont’s law) [8]. Frohlich and Kenelly
followed his footsteps in the last decade of the nineteenth century [4,9]. Their approaches
still provide a useful tool in magnetic calculations. Needless to say that the anhysteretic
magnetization and the hysteresis free magnetization are not the same process, therefore they
will not produce the same physical effect, their character will be vastly different, and require
distinctly different mathematical modeling. People very often mix up these two entirely
different concepts in magnetism.

For the mathematical modeling of the anhysteretic phenomenon we have to recall again
(3.1) and (3.2). The crossover points between the up- and down-going part of the hysteresis
loop in the first quadrant occur at x = x,, therefore the loci of these points can be calculated
by substituting x = x,, into the first expression of (3.1) as shown below
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- f.(x,) =tanh (x, —a,) + 4,x, +[tanh (x,+a,)—tanh (x, -a,)]/2 4.5)

From this equation we can express the function the anhysteretic magnetization £, in the
following form, by replacing x,, with x:

[, = Agx +[tanh (x +a)) +tanh (x-a,)]/2. (4.6)

When A4, is approaching zero and the linear term is negligible, then the expression in (4.6)
goes into a simpler form

f, =[tanh (x +a,)+tanh (x-aq,)]/2. 4.7
s
1 ao=0
a0=3
0.5
-4 - 2 4 x
-0 /5
|

Figure 4.4: Anhysteretic magnetization curves for 4o =0and a; =0, 1, 2, and 3

f

Figure 4.5: Anhysteretic magnetization curves for 4,=0.05and a,=0, 1, 2, and 3
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Figure 4.6: Surface plot of the anhysteretic magnetization shown in Figure 4.4 as a function of the
field excitation (=5 < x < 5) and coercivity (0 < ay <4)

In both cases (when A4y = 0 and 4, #0) the relationship between the anhysteretic

magnetization curve and a set of corresponding hysteresis loops is unique. Every set of
hysteresis loop has its anhysteretic curve, which belong to one and only one set of loops. In
the knowledge of the major hysteresis loop the anhysteretic behavior of the magnetic
specimen can be determined. The reverse is also true, a given anhysteretic behavior
determines the hysteresis loop of the magnetic material. When the loops are normalized, the
link between the two is ay, the coercivity. Anhysteretic magnetization curves calculated
from (4.7) and (4.6) are plotted in Figures 4.4 and 4.5, respectively for 4o =0 and 4, = 0.05
with g, the coercivity as parameter for the values of 0, 1, 2, and 3.

The need for describing this anhysteretic relationship between induction and field in
mathematical form, at least in a quantitative form was always great. Two empirical
approaches that gained general acceptance were worked out independently by Frohlich in
1881 [4] and Kennelly in 1891 [9]. Although they expressed the induction—field relationship
in two different mathematical forms, ultimately the two expressions converged into the
same formula. It can also be shown that, when Frohlich’s formula is expanded into a power
series, it becomes the same as the series used by Weiss [10] to calculate the induction at
saturation point. Recent approaches formulated the full range of this anhysteretic
relationship including the saturation region [11,12].
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5.  Reversal Loops

5.1 First-Order Minor Reversal Loops

When the exciting field is interrupted and reversed during the process of magnetization, the
direction of the induction will also be reversed and, as practical experience shows, it will
move on to a different return path. Assuming that the original amplitude of the excitation
remains the same, it returns eventually to a value set by the extreme of the exciting field.
The shape of the return path, which is the subject of this chapter is one of the classic
problems of magnetism. People recognized the similarity between parts of the return path
and the major hysteresis loop and tried to apply this similarity in modeling as part of the of
the reversal loop. These attempts lead to various approaches. Zirka and Moroz [1,2] used
transplantation of parts of the major hysteresis loop to approximate the return path, with
some dubious results. Some authors introduced differential equations for solving the
problem [3] others turned to numerical refinement for improvement. All these attempts
failed to satisfy the basic requirement of closing the minor loop at reversal and at maximum
induction. In order to improve on this model scaling [4,5], transformation was applied,
however, without success. The rule of congruency proposed by Madelung [6] and
Mayergoyz [7] was also tried with limited results and Preisach’s model was modified to
include congruency for this very purpose.

The recognition of the similarity between parts of the minor and the major hysteresis
loops was a step in the right direction, but to model the return path this recognition on its
own was not enough, other additional rules were needed to complete the mathematical
picture [8]. It will be shown here that the rules introduced at the beginning of this book will
bring this problem to a satisfactory solution.

The rules applied in building up the model for closed minor return loops are going to be
reviewed here briefly to the benefit of the reader. The first two rules come from the
geometry governing the field within the space enclosed by the major hysteresis loop and
state the fact that all lines in the enclosed field mimic either the up- or the down-going
major hysteresis paths. The third rule tells us that all changes in this field will be of tangent
hyperbolic in character and will be described by such a function. The last rule, which is
confirmed by observations and also applied by other models, is the local memory rule. This
rule tells us that the shape of a return path as part of the minor loops is predetermined by the
magnetic history of the sample and in particular the last path and extremum (positive or
negative maximum) of the magnetization. In the following we are going to build up a
mathematical description of these minor reversal loops by recalling the basic equations of
the model and applying the rules above.

Let us assume that the magnetization process is interrupted and reversed at an arbitrary x,
point either on the ascending or the descending part of the hysteresis loop. For the
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formulation we recall (3.12a and b), then the relationship between the induction £, / and
the excitation field x can be described by the following expressions:

f,=tanh (x — q,)+b +c, for increasing x values (5.1a)
f =tanh (x +a))-b +c, for decreasing x values (5.1b)

We must remember that every time a line moved as part of a set, a shifting “constant” that
has a hyperbolic character, facilitates this move. Although the two sets of equations (3.12)
and (5.1) look alike, we can see that they differ in the constants ¢, and c¢4. The u and d
subscripts signify the up- and the down-going characters of the constants, respectively. The
expressions for these new constants will be calculated below giving a step-by-step account
of the calculation.

Let us consider the case when the magnetization is stopped and reversed on the ascending
part of the hysteresis curve, where the horizontal field coordinate is marked with x,. At this
point, in order to maintain the continuity of the process of reversal, the value of the function
describing the return path must be equal to that of the up-going induction function £, given
in (3.1a). The return path will mimic the £~ function, shifted by c,4 as shown on the left side
of (5.2). The subscript 1d signifies the first down-going step in the process. The new loop
will start from x,,; (first reversal) and must end up at —x,, the last negative maximum before
the reversal, according to the rule. From the equality of the two functions we can write

tanh (x+a,)—b, + ¢, =tanh (x—q,)+5, (5.2)
when x = x;; from (5.2) ¢4 can be expressed as shown in (5.3),
¢,y =tanh (x, —q,) — tanh (x, +q,) +2 b, (5.3)

The constant ¢4 in the return path shown in (5.1b) will change between two limits; x, and —
xm obeying the following two cardinal rules. The first is that the new “constant” will change,
point to point, as a tangent hyperbolic function, between the two limits (see Axiom 7 in
Chapter 1). The second is the local memory law, which compels the reverse path to return to
its original value at —x,, representing the last negative extreme. All this is formulated in
(5.4),

c tanh (-x, +qa,)—tanh (x +a,)
'“tanh (-x, +a,)-tanh (x, +a,)

Cqy =

(5.4)

After the substitution of ¢4 into (5.1b) we arrive at an expression describing the return path
of the interrupted and reversed minor loop starting from point x,; and finishing at —x,, in the
following form:

tanh (-x, +a,)—tanh (x +a,)

=tanh (x +a,)—0b +c¢
S (a0 =h+ae (-x, +a,)—tanh (x, +a,)

(5.5)
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Figure 5.2: Surface map of the first-order reversal loops shown in Figure 5.1 f_ against x, (0 <x, <4)
and x (-3 <x < 3)

Based on this formulation a calculated set of first-order return curves is shown in Figure 5.1.
They start at the points of reversal field coordinates of x, =2, 1.5, 1, 0.5, 0, and —0.5.

When the point of reversal is on the descending part of the hysteresis curve, naturally the
model gives a different mathematical expression for the return path. Due to the law of
similarity all changes and lines will now mimic the ascending part of the hysteresis loop.
Taking all this into consideration we can write down the expression for ¢, the shifting
constant as shown in (5.6). By substituting this expression of ¢, into (5.1a) we can formulate
the up-going return path. The full mathematical expression for this process is given in (5.8).
Here, similarly to (5.4) the subscript u signifies the up-going process after reversal and the
subscript 1 signifies the first reversal.
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Figure 5.4: Surface map of the first-order reversal loops shown in Figure 5.3, £, against x, (0 <x, <4)
and x (-3 <x <3).

¢, =tanh (x, +q,)—-tanh (x, - a,)-2b, (5.6)

e tanh (x, - g,) —tanh (x- a,) 5.7)
tanh (x, — a,)—tanh (x, — q,)

/. =tanh (x—a,)+b +c,, tanh (x, —a,)—tanh (x—a,) (5.8)

tanh (x, —qa,)~tanh (x —a,)

Similarly to Figure 5.1 a set of return curves, starting from the descending part of the
hysteresis loop, is shown for the point of reversal field coordinates of x, = 0.5, 0, 0.5, -1, —
1.5, and -2 in Figure 5.3, calculated by using (5.8). Figures 5.2 and 5.4 show the surface
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maps of the return curves starting from the ascending and the descending side of the
hysteresis loop, respectively, using the same data as for Figure 5.1 and Figure 5.2.

5.2 Open Reversal Loops with Monotonically Changing
Amplitude

In practical applications it is often the case that a ferromagnetic substance is subjected to an
AC excitation of changing magnitude. A typical example of this is the process of AC
demagnetization, when the AC field amplitude is gradually reduced to zero in order to
achieve demagnetization, i.e. the condition when induction is zero at zero field values. As it
was described in Chapter 4, this process creates the right state for the anhysteretic
magnetization. Like other problems associated with magnetism this was also the subject of
study and a number of people tried to model it with various mathematical approaches [1,7].
All approaches have found it difficult to satisfy the two basic conditions, which are to close
the loop at the point of reversal and transplant the right shape for the return path as we said
before. As before in the attempt to solve other magnetic problems, transplantation,
differential equations and numerical methods have been the major approaches without much
progress. In the following we will investigate the case when the magnitude of the AC field
is monotonically reduced in time, during magnetization and apply the mathematical model,
presented here, to describe the induction, as a function of the field, resulted from the process
[8]. For the sake of simplicity in the first instant we assumed that the maximum starting
amplitude x,, changes linearly with the field, i.e. it is a first-order function of x. It is not
difficult to see, however, that the model is also applicable when other higher-order functions
or harmonic time functions are assumed or substituted in (5.9). It is worth noting that shape
of the induction path only depends on the end value of the exciting field and independent of
the way in time how it was produced.

When a ferromagnetic specimen is cycled around the hysteresis loop with diminishing
amplitude of excitation, then x,, the maximum excitation field coordinate during one half of
the cycle will change in the following manner:

-x=x,,01-A)+Ax 5.9)

here xn0 is the amplitude of the normalized field at start and A represents the linear
decrement in the amplitude as specified above. This equality will satisfy the conditions that
X = Xmo When 4 is zero and also when x = —x,;,o. The finishing amplitude at the end of every
half-cycle will be the new reversing point and every successive reversal point will be the
new starting point of the starting return curve in the next half-cycle. After the substitution of
X = x into (5.9), the normalized reversing field amplitude can be expressed

m,l

mathematically in a general form as

xn n = —xm n-1 (—:;%) (510)
. » +
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where n represents the number of steps taken (starting from » = 1), x, , is the field

(horizontal) coordinate of the nth reversal point and 4 is the decrement as before. The model
works equally well when the amplitude is incremented i.e. when the value of 4 is negative.
After the substitution of x,, expression in (5.10) into (3.1) and (3.2) we arrive to the

following equations for the first reversed leg

f.=tanh (x—a,)+b + Aox up-going (5.11a)
or

f =tanh (x +a,)—b+Ax  down-going, (5.11b)

where b, after the substitution of expression for x,,, in (5.9) into (3.2), will be as

m, 1
b ={tanh [-x,,(1-A)+Ax+aq,|-tanh [-x,,(1-A)+Ax—q,]}/2. (5.12)

As a first step, the case, when the reversible magnetization is negligible, i.e. 4o = 0, will be
investigated, therefore we can use (3.3) as a starting equation.

When x,,0, the coordinate of the first reversal point is positive and falls into the first
quadrant, the first return curve will mimic the descending major hysteresis path described by
(3.3b). In the second step the next reversal loop will follow the ascending part formulated in
(3.3a). From then on as the coordinates of the reversal points alternate between the upper
and the lower values, the mathematical model will alternate between the two equations
(5.13a) and (5.13b), changing over at every point of reversal. When the starting point is
negative and starts in the third quadrant the process is reversed.

The two equations describing f, and f the up- and down-going paths of the minor

open loop respectively, in full are as follows:

f. =tanh (x—aq,)
+{tanh [—x,,, (1-A)+Ax+a, |- tanh [~x,, ,(1-A)+Ax—a, |}/2 (5.132)

f =tanh (x +a,)
~{tanh [-x,, (1-A)+Ax+a, |-tanh [-x,, (1-4)+Ax-g,]}/2 (5.13b)

So far we have described of the first step in the process. The amplitudes in the following
steps can be calculated by replacing x,, with the coordinate of the first point of reversal

m,

x,., whose value can be calculated from the expression in (5.9). A number of open minor

loops are shown in Figure 5.5 with diminishing amplitude, where 4 the numerical value of
the decrement is 0.1. The value of ay coercivity used in the calculation was 0.7 and the
reversal started in the third quadrant at the value of x, , =-1.

m,0
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It has to be pointed out that here the reversal starts from the anhysteretic magnetization
curve and all points of reversals are located on it, as can be seen from Figure 5.3. The
anhysteretic magnetization is described in detail in Chapter 4. Although the calculation here
was carried out for a constant decrement, the model is also applicable to any set of
piecewise monotonic inputs with both positive (decreasing) and negative (increasing)
change in amplitude. The reader has to be reminded that the reversal points do not depend
on the shape of the path, only their maximum excitation values at the ends of every cycle.
Although in these calculations we assumed a first-order change in amplitude. It is possible
to apply a complicated time function with changing amplitude, but the reversal points can
still be calculated from (5.9) and (510). In most cases the path of magnetization between the
two extrema is set by the magnetic properties of the sample under investigation and makes
no contribution to the solution of the magnetic problem.

Figure 5.5: Open reversal loops with decreasing amplitude. 4o = 0 and the decrement A= 0.1

When the reversible magnetization is not negligible and the linear term has a finite but
significant contribution to make to the induction, then we have to use the full expression of
the induction given in (5.11), which includes the linear term of reversible magnetization.
The inclusion of this term does not affect the value of 5, as we have seen before, therefore
its total effect is limited mathematically to an additional linear term in the expressions of f,

and f . The mathematical formulation of the magnetic induction now is shown below in
(5.14),

f. = A,x +tanh (x—aq,)
+%{tanh [~ (1-A)+Ax+a, |- tanh [-x,, (1-A)+Ax-g, ]}  (5.142)
and

[ =Ax+tanh (x +a,)

_%{tanh [=x,, (1-A)+Ax +a, ] ~tanh [-x,, (1-A)+Ax—a, ]} (5.14b)
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for the ascending and the descending sections, respectively.

The calculation procedure from now on follows the steps as described before.

Figure 5.6 depicts a magnetization curve calculated from (5.14) with the following
numerical values: 4q = 0.05, ao = 2 and the process started in the first quadrant at the field
coordinate of x_, =2.

m,0
Jof

0.75
0.5

/ﬁ m,2
]

Xm,0

Figure 5.6: Open reversal loops with decreasing amplitude for 4o = 0.05 and the decrement 4= 0.1

It has to be emphasized that the solutions given here are unique. As a consequence of the
hyperbolic rules laid down in Chapter 1 there is one and only one hyperbolic line either
ascending or descending that is allowed to go through the given points within a set of
hysteresis loops, defined by a and x,, parameters. The model obeying these rules yields the
only unique solution possible.

5.3 The Preisach Distribution Function

The Preisach model has been so far the most popular model in the field of magnetics for the
description of the hysteretic phenomena in ferromagnetic materials [7,9]. In the classical
scalar Preisach model the hysteresis can be described in the following mathematical
expression:

alp
M@ = [[H@ y.(@p) da dp (5.15)

where M signifies the magnetization, H is the exciting magnetic field,  is the distribution
function of the elementary magnetic parts and « and S are switching values of the
elementary rectangular loops. Mayergoyz showed in 1986 [10,11] that the y» distribution
function can be calculated from two given values M, and M,z of one of the first-order
reversal curves, determined experimentally at points « and S. He formulated his findings in
the following mathematical expressions. When function F is defined as
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Fla,p)=M, -M,, (5.16)
then the y, (a, f) distribution function can be described as

10°F (a, )

T @ P =2

> 5.17)

where M, and M,; are the magnetization values at field coordinates points « and g
respectively measured on the same minor magnetization loop

This formulation looks simple in principle, however, in practice the determination of
function F' (o,f) usually represents a lot of complicated approximations or curve fittings.
Because of this difficulty, in most practical calculations »(a,f) is substituted by either a
Lorentzian #.(a,f) or a Gaussian yg(a,f) distribution function. Although either of these
functions gives a reasonably good approximation, they are only approximations and all
approximations are prone to errors and seldom if ever lead to absolute accuracy. By using
Mayergoyz’ formulation, however, and substituting the mathematical expressions of M, and
Mgy from (3.2, 3,3) and (5.4, 5.5), respectively into (5.17), we can express the y(a,p)
distribution function in an analytical form from the T(x) function. Here x; and x takes the
place of a and f, respectively. There are the two expressions, the first is the ascending
(5.18) and the second is for the descending part (5.19) of the hysteresis loop. First it was
assumed that the return point is on an ascending major loop and the return loop is
descending towards the negative maximum, hence the subscript of the negative sign (),

M, =tanh (x, —a,)+b, (5.18)

M,, =tanh (x, +a,) -0,

tanh (-x_+a,)—tanh (x+a,)
tanh (-x, +a,)—tanh (x,+a,)

+ [tanh (x, —a,)—tanh (x +a,)+ 2b,] (5.19)

After forming F (x,, x) (see (5.16)), and differentiating it by x, and x successively, we can
express tir(x,,x) in an analytical form. The calculation of function F£.(x,, x) starting from the
descending part of the hysteresis loop and following the same steps, will yield similar
expressions to M, and M, in the following form:

M, =tanh (x, +a,)-b, (5.20)

My, =tanh (x, —a,)+b
tanh (x, —a,)—tanh (x~-a,)

5.21
tanh (x ( )

+[tanh (x,+a,)—tanh (x, —a,)+20,]

—-a,)—tanh (x, —qa,)

m

In Figure 5.7 the bell-shaped g4 distribution function calculated from (5.17) is depicted. As
the graphs show, the g distribution gives a nearly perfect fit to the 1 Gaussian distribution
near to the centerline of the curve but the fit is better to the 44 Lorentzian distribution curve
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far from the center line. Figure 5.8 shows the surface map of the distribution functions
Lirs(x,,x) and e (x,,x) as a function of x the excitation and x, the reversal point coordinates.

Hu, M Ha

HMr

_d Ho
-2 2 4 X 6

X \2\\\\(
4

Figure 5.8: The surface map of the distribution function calculated from the T(x) model as a function
of field excitation x (—4 <x < 4) and the coordinates of field interruption x, (-2 <x,<2)

The reader must remember that although the distribution functions are plotted for wide
limits to show the full bell-shaped curves, in reality they only have physical meanings

between the limits of +x,, therefore for |x |>]|x,| w(x.x) =0 and p(x.x) = 0. It also

has to be emphasized that the x, field interruption coordinates can only have physical
meanings while they are sitting on the hysteresis loop.
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S.4 Higher-Order Reversal Loops

Mathematical models of any physical phenomena always represent an approximation of the
process in question. Its goodness or accuracy can be measured by its ability to predict
experimental results. In some case, for instance multiple reversals, the possible deviation
between experiments and the model is cumulative. A small error, which in one step might
be negligible, will be magnified at the end of the process particularly after a large number of
steps. The investigation of the higher-order reversal loops and their comparison with

experimental data could be a good measure of the accuracy of the model and its usefulness
in practical applications [12—15].

f

Xr,0

Xr4
7.

Figure 5.9: Open loops modeled up to six reversals with the field amplitude reduced by Ax = 0.2 after
every reversal for B=2.4 and 4,=0.1

As the first step in this process, a good match has to be found to the major hysteresis loop
from which the characteristic free parameters can be calculated [16,17] (see Chapter 3). To
demonstrate the process up to seven reversals loops have been calculated by using the T(x)
model, assuming that By = 1, Cy = 2.4, and 4, = 0.1 give the best parametric fit in (3.6) and
(3.7). All seven calculated loops (six reversals) are depicted in Figure 5.9.

In Figure 5.10 another set of open loops are shown, modeled by using a different set of
starting parameters (By = 1, Cp = 2.2, and Ay = 0.07). The graph shows five reversals with
six open loops. The decrement in amplitude was A4 = 0.2 after every reversal.

Once the best fit has been found to the experimental data, as was said before, then the
free parameters can be calculated (see Chapter 3). This will lead to a case when we have to
abandon the normalized form of the model and use the full expressions of the model ((3.6)
and (3.7)).

The nth ascending loop is described by the mathematical expression given in (5.22),

fo, =tanh [C) (x—a,)] +b,, +c, + 4, x (5.22)
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Xm,0

Figure 5.10: Calculated high-order (up to five reversals) reversal loops for 4= 0.2, Bo=1, Cu=2.2
and A, = 0.07

Here the ¢, constant can be calculated from the criterion that at the nth and the (»—1)th loop
at reversals f,_; must be equal to f;. This gives the two basic shifting constants ¢, and c,4.
The mathematical transition between the two constants, which is tangent hyperbolic in
nature, is shown in (5.23),

r,n-|

tanh C; (x, ,, —a,)—tanh [C, (x-a,)
C =cC
n nu tanh [Co (xr' . —ao) —tanh [Co (xr,n - (10)
tanh [C, (x, , —a,)—tanh [C, (x-a,)

Coy . (5.23)
“tanh [C, (x,, —q,)—tanh [C| (x, ., —a)
Similarly for the (n+1)th descending loop we get the following expressions
Sfopn =tanh [C) (x—ay)] +b, +c,, T4, x (5.24)
where
tanh [C, (x, , —a,)—tanh [C, (x—q,)
Cont = Cotin :
" " tanh [C, (x,, —a,) - tanh [C, (x, ., —d,)
. tanh [C, (x, .., —a,)—tanh [C; (x-aq,) ' (5.25)
“tanh [C| (x, ., —a))—tanh [C; (x, , —a,)
Here x,,_,, x,, and x ., represent the field coordinates of the (n—1)th, the nth and (n+1)th

reversal points, respectively, and the indices u and d represent the up- or down-going
processes, respectively.
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6. Remanent Magnetism

6.1 The Loop of Remanent Magnetism

One of the riddles of the otherwise difficult subject is the mathematical description of the
loop of remanent magnetism. Although most parts of the puzzle were available the rules to
assemble the whole picture had eluded people. In the following, based on the rules given
and the model described at the beginning in Chapter 1, a full mathematical description will
be given of the process leading to the loop of remanent magnetism.

When the exciting magnetic field is interrupted at x; the value of the normalized field
during the process of magnetization, then the magnetic state of the specimen will not stay
the same but it declines to a value below that determined by the field at the point of
interruption. The shape of the path of decline following the interruption between x = x; and x
= 0 has not been explained and all textbooks normally show an arbitrary line between the
two points representing the excited and the remanent magnetic state. Some authors, realizing
the similarity between the return path and part of the major loop, proposed the
transplantation of part of the major loop [1,2]. Although this is a big step in the right
direction, without applying the correct rules it will not lead to the right result. With this
model, by applying the hyperbolic tangent rule, this return path can be expressed in an exact
mathematical term [3]. Supposing the interruption of the field happened on the ascending
side of the hysteresis loop then the field will decline on a path imaging the descending part
of the loop shifted to the point of interruption. We know from practical experience that
when the substance is brought into saturation and the magnetization is interrupted then the
induction will follow the path of the hysteresis until the field drops to zero and the
magnetization reaches the point of remanence [4]. The same rule applies to any point on the
hysteresis loop, major or minor. By recalling the mathematical expression for the
descending part of the hysteresis loop from (3.3), the return path f _ shifted to the right

position can be described as follows.

fr'_=tanh(x+a)—b,+c4. 6.1)

The ¢, shifting constant can be calculated from the criterion, that the main loop and the
descending minor loop share a common point at the point of interruption. By equating the
expressions of the ascending part of the loop f and f _ above at x = x; we can get the

constant as

¢, =tanh (x;, — a,)—tanh (x, +a,)+2b,. (6.2)
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The constant b, is defined in (3.2) and the f _ function is limited to values between x = x;
and 0. In the case when the magnetization is moving on the descending part of the hysteresis
loop, by using the same logic and arguments, it is easy to see that the ascending return path
will take the following form:

S, =tanh (x—a,) + b +¢; (6.3)

where, similarly to (6.2)
¢s =tanh (x; + a,)—tanh (x, —a,) -2 b,. (6.4)

The full expressions describing both the ascending and the descending return paths are
shown in (6.5).

f;,+ =tanh (x —qa,) + tanh (x; + q,) —tanh (x; — q,) - b, (6.52a)

f_ =tanh (x +a,) +tanh (x, —a,) — tanh (x, +a,) + b, . (6.5b)

All the curves are limited to values between x = x; and 0. Both the ascending and the
descending sets of curves, showing the calculated return path, are depicted in Figure 6.1 for
the interruption field coordinate values of x;= 2, + 1.5, £ 1, and £ 0.5.

Figure 6.1: The ascending and descending return paths after the field excitation is turned off leading
to remanent magnetism for the interruption field coordinates of x;= £ 2, £ 1.5, = I, and £ 0.5

The intersection between the return paths and the vertical axes marks the remanent magnetic
state of the substance, i.e. the value of induction for x = 0. Its value is a function of the point
of interruption x;, the coercive force a, and x,, defining the loop on which the point of
interruption was located.

Looking at Figure 6.1 it is obvious that in every loop there are two possible excitation
field values for every state of remanent magnetism. One is corresponding to an ascending
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and another to a descending return path. This is another way of stating the well-known
multivalued relationship between the exciting field and residual flux. Although the remanent
induction can be determined from the parameters of the hysteresis loop and the coordinates
of the field of interruption, this is not so for the reverse. The knowledge of the remanent
state is not enough to calculate the interrupted field value unambiguously. What is needed
for determining the field values are the values of two parameters a, and x,, and also the
direction of the field (up or down) at the point of interruption. It is possible to calculate both
corresponding field values for a set of ap and x,, values, by equating the normalized field
with zero i.e. x = 0 (no excitation) in (6.1). The remanent induction M, can be described as
the function of x; the field of interruption in the following way

M, =tanh g, +tanh (x, —q,)—tanh (x, +a,)+5,. (6.6)

By solving (6.6) for x; we can calculate x;q the field of interruption values for the set of
descending return paths with the following result

x,, = arctanh tanh a°,— M, -5 - 6.7)
2 tanh a, — (tanh a,)” — (M + b, )(tanh a,)

Similarly, by doing the same mathematical steps to the expression of the ascending paths,

we arrive to the following expression, where M, the remanent magnetism is the same as in
(6.6)

M, =tanh (- a,)+tanh (x,+a,)—tanh (x, —q,)—b,. (6.8)

By solving (6.8) for x; again we can get the expression for the values of the field of
interruption x;, for the ascending paths in the following form

x;, = arctanh tanh d, 2+ M, b, 5 - (6.9)
2 tanh g, - (tanh q,)" + (M, - b))(tanh a,)

We have to remember that M, has the same numerical value in (6.7) as in (6.9).

Although the remanent magnetization curve has been measured and its shape has been
explored experimentally, its mathematical modeling so far has proved very elusive. This
model presented here, however, models the process mathematically as described in the
following [3].

The remanent magnetization loop can be divided into four distinct regions. The first
section in the first quadrant is associated with part of hysteresis curve running between
saturation and zero field on the descending part of the loop. The second region is where the
loop is running through the second and third quadrants into saturation. The third and the
forth regions are the negative equivalents of the first and the second regions, respectively.
Let us start by imagining that we are moving on the descending part of the hysteresis curve
from the point of positive saturation. Any exciting field value between saturation and zero
when interrupted will lead to a reduced remanent induction commonly known as remanence.
The remanent magnetization in this region is independent of the field of magnetization and
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its value is constant. This part of the remanent magnetization curve therefore is going to be
represented by a line running between infinity and zero at the value of M,. The second
region runs from zero to the negative saturation field value. In the third region, similarly to
the first one, the remanent magnetism is constant with the value of —M,. Finally, the fourth
region runs between zero and the positive saturation field value. In mathematical terms the
first and the third region will be described by the f _ =M, and the £, =-M, functions,

respectively. The M, remanent magnetism in the second region is described by the function
in (6.6) and in the fourth region by (6.8).

Xm=3

Am=2

Xm=1

,cm—O }/

-0.5
-0.75

Figure 6.2: Remanent magnetization loops for coercivity of ayo = 2, and the maximum field x,, = 3, 2,
1,and 0.5

A set of remanent magnetization loops constructed in the way as described above is depicted
in Figure 6.2. The numerical values used in the calculation were a, =2 and x,, = 3, 2, 1, and
0.5.

Jof M
1

-3 -2 2 x3

-1

Figure 6.3: A set of curves showing the hysteresis and the corresponding remanent magnetization
loops for ay=0.75, x,, =3, and 4o=0
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In Figure 6.3 a hysteresis and its corresponding remanent magnetization curves are shown
forming a set for the same numerical parameter values and belonging to the same family of
hysteresis loops. At large a, values the two loops approach each other. Although the two
curves, the induction versus field (hysteresis loop) and the remanent magnetization versus
field (remanent magnetization loop), are fairly similar, in fact they represent completely
different information. The full detailed knowledge of the hysteresis loop is necessary to
calculate the loop of remanent magnetization, but the hysteresis loop can not be
reconstructed with the full detailed knowledge of the remanent magnetization loop. A set of
curves, showing the hysteresis and the remanent magnetization loops, depicted in Figure 6.3
calculated by using the numerical values of ay = 0.75, x,, = 3, 4o =0.

When the reversible magnetization can not be neglected then the equations shown in
(6.10) should be used for the calculations. The expressions for the return paths only differs
from (6.5) by an additional linear term,

f . =tanh (x—aq,)+tanh (x+q,)—tanh (x; —a,)— b, + 4,x (6.10a)
J _ =tanh (x+a,)+tanh (x—qg,)—tanh (x,+a,)+b + A4,x. (6.10b)

The equations for the remanent magnetization are the same as (6.6) and (6.8) for the
descending and the ascending part, respectively.

Jofs M

Figure 6.4: A set of curves showing the hysteresis loop with and without the reversible magnetization
and the corresponding remanent magnetization loops for the parameter values of ao = 0.75, x,, = 3,
Ao =10 and 0.05

In Figure 6.4 the set, formed by the hysteresis and remanent magnetization loops, is shown
for the case when the relative magnitude of the reversible magnetization is 4o = 0.05, with
other parameter values same as before. The set also includes the hysteresis loop without the
reversible magnetization (4, = 0). It is obvious that the two cases with and without the
reversible magnetization lead to an identical remanent magnetization loop.
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6.2 Biased Remanence Curves

It is often necessary in practical applications to combine two exciting fields, normally a
slow changing or DC and a faster acting AC field as discussed in Chapter 3. When under
these circumstances the AC exciting field is stopped, the resulting pattern of remanent
magnetism will differ from the case shown in Section 6.1 due to the presence of the DC
field component. In order to model these conditions (3.12), for the biased hysteresis loops,
needs to be used as the starting equation of our modeling. Let us recall (3.12)

f. =tanh (x—a,)+b, (3.12a)
[ =tanh (x+a,)—-b,. (3.12b)

It has to be remembered that every remanent magnetism loop is composed of four distinct
regions as described in Section 6.1. The first region extends from 0 to x,, and the return path
can be described in mathematical form as

f =tanh (x+a,)-b +c, 0<x<yx (6.11)

m

where b, is given in (3.2).

Similarly to the shifting constant in Chapter 3, here c; can be calculated from the criteria,
that the value of the down-going path in (3.12a) and the upward-going return path in (6.13)
must be equal at the point of reversal. Therefore when x = x;

¢; =tanh (x, — a,)—tanh (x,+q,)+b +b, (6.12)
The second region, which also extends between the same two limits, can be described as

f.=tanh (x+ a,)-b +d, 0<x<x,. (6.13)
By using the same logic as before here d; can be calculated from (6.13) and (6.12b) as

dy = tanh (x, + a,)—tanh (x, —a,)+ b, - b,. (6.14)

The other two regions, the third and forth, running between —x,, and 0, follow the same
rules. Therefore the equation, describing the descending return path, will be

f.=tanh (x—a,)+b +¢, 0=>x>-x_. (6.15)

m

The expression in (6.16) below gives the ¢, shifting constant at x = —x;,
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¢, =tanh(-x, + a;) - tanh(-x, - q,)-b, -, . (6.16)
Finally, the ascending return path in the forth quadrant can be described as
f.=tanh (x-a,))+b +d, 02x2-x, (6.17)
where d; can be expressed as

d, =tanh (-x, —a,)—tanh (-x, —a,)— b+ b, . (6.18)

Figure 6.5: Biased remanent magnetization loops for a, = 2, d, = 0.5, and as a parameter x,, = 0.5, 1,
1.5,2,2.5,and 3

In order to complete the set of expressions, the formulae for b;, by, b,, and by are also listed
here from Chapter 3 for the benefit of the reader

b, =[tanh (x_ + d,+a,)—tanh (x_ +d,—q,)]/2 (3.8)
b, =[tanh (-x,+ d, +a,)—tanh (—x + d, —a,)]/2 (3.9)
and

tanh (-x, +d,—q,)
“tanh (-x, +d, —a,)—tanh (x

u

+do _ao)

m

tanh (x, +d,—a,)—tanh (x —q,)
“tanh (x,, +d, —a,)-tanh (-x, +d, —a,)

(3.10a)

m

tanh (-x, +d, +a,)—tanh (x + q,)
*tanh (-x, +d, +a,)—tanh (x,, +d, +a,)

d

m
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tanh (x, +d, +a,)—tanh (x +a,)
“tanh (x, +d, +a,)-tanh (-x, +d, +a,)

(3.10b)

In Figure 6.5 a set of curves are shown representing the remanent magnetization curves with
DC bias, calculated from (6.11), (6.13), (6.15), and (6.17). The numerical parameter values
used for the calculation were: ay = 2, dy = 0.5, for the maximum field values of x,, = 0.5, 1,
1.5,2.5, and 3.

M

Figure 6.6: Biased remanent magnetization loops for dy = 1, x,, = 3, and as a parameter a; = 0.5, 1,
1.5,2,and 3

Figures 6.6 and 6.7 depict the remanent magnetization loops dependence on the two other
parameters namely a, (coercivity) and the DC bias d,.

Figure 6.7: Biased remanent magnetization loops for x,, = 3, ao = 2, and as a parameter dy = 0.5, 1,
1.5,2,2.5,3,and 3.5

The parameter values used for the calculations were for Figure 6.6 dy =1, x,, = 3, and ap =
0.5, 1, 1.5, 2, and 3, for Figure 6.7 were x,, =3, ap =2, and dy = 0.5, 1, 1.5, 2, 3, and 3.5.
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In the case when A #0 i.e. the reversible magnetization is not zero, the remanent
magnetization loops will be unaltered, identical to the cases discussed above.

6.3 Anhysteretic Magnetization and Anhysteretic
Remanence

As was pointed out in Chapter 4, anhysteretic magnetization by definition free of hysteretic
effects so the relationship between exciting field and induction can be described by a single-
valued function. Since this is the property of a perfect flawless material, it is difficult to
achieve in practice. It leaves the second alternative to achieve the anhysteretic
magnetization, namely the cyclic magnetization where the extremes of the minor loops, both
positive and negative, will move on the anhysteretic curve. Section 4.2 is dedicated to the
full explanation and the mathematical treatment of the anhysteretic magnetization and its
representative curve. This single-valued function of the field-induction relationship is an
important feature of the magnetization process and it has great practical significance. The
reader must remember the difference between the hysteresis-free material and the
anhysteretic magnetization process. While (2.4) describes the hysteresis free magnetization
(4.6) formulates the anhysteretic process in a mathematical form. When, during this
combined AC-DC magnetization the process is interrupted, the specimen is left in an
anhysteretically magnetized state that will revert into a remanent state. In the following the
mathematical description of the remanent magnetization resulting from the anhysteretic
process will be given. A glance at the set of remanent magnetization loops shown in Figure
6.5 can convince the reader that the crossover points again form a continuous line between
the positive and negative saturation. This, which that we will call anhysteretic remanent
curve, is analogous to the anhysteretic magnetization curve. Its relation to the remanent
magnetization and the hysteresis loop will be explained in this section. The procedure is
similar to that of the hysteretic remanent magnetization described in detail in Section 6.1.
The expression for the anhysteretic magnetization curve f; is given in (4.7) as

/. =[tanh (x+ a;)—tanh (x-q,)]/2. @.7)

For the description of the anhysteretic remanent magnetization we have to follow the logical
steps described for the hysteretic remanent magnetization in Section 6.1. Let us suppose that
the magnetizing field is decreasing from positive saturation and the process follows the
anhysteretic curve. When the field is abruptly removed then the induction will decline until
the return curve intersects the vertical axis where x = 0. We have seen in Chapter 3 that the
extrema of all symmetric minor loops are located on the anhysteretic curve. Any point on
the anhysteretic curve used as a point of interruption belong to one and only one minor loop
whose extremum is the point of interruption. From this it will follow that the remanent
magnetism will be determined by the intersections of the minor loops whose extrema lie on
the anhysteretic magnetization curve with the vertical axis.

Since the return path for the point of interruption x; will be a minor loop with the
extremum of x, = x, by substituting x, for x_ in (3.2) we can formulate the return path in

this form,
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f =tanh (x+a,)-[tanh (x, + a,)—tanh (x, —q,)]/2 (6.20a)
/., =tanh (x—a,) +[tanh (x, + g,)—tanh (x;, —q,)]/2. (6.20b)

By substituting x = 0 into (6.20) we can formulate the function of the points of intersections
with the vertical axis as the function of x, representing the remanent magnetic state in the
following form,

f . =tanh g, —[tanh (x; + a,)-tanh (x; —q,)]/2 for 02x, (6.21a)
f.. =tanh (-a,) +[tanh (x; + q))—tanh (x; —q,)]/2 for 0<x. (6.21b)

Jof-fs Mo Me
1
S /T

s M:

Figure 6.8: A set of curves showing the major hysteresis loop and the anhysteretic curve with the
corresponding hysteretic remanent magnetization loop and its anhysteretic curve

Figure 6.8 shows a major hysteresis loop and the anhysteretic magnetization curve
superimposed on the corresponding loop of remanent magnetism with the anhysteretic
remanent magnetization curve.

In the knowledge of the remanent magnetization loop the anhysteretic remanent
magnetization can also be determined. By applying the definition of the anhysteretic
magnetization process, described in Section 4.2 and by using (6.20) we can express the
function describing the positive-going part of the anhysteretic remanent magnetization curve
in the first quadrant in the following form

/. =[M, +tanh (—q,)+tanh (x, +a,)—tanh (x, —a,)—5]/2
for x 2x >0, (6.22)

m 1

and similarly in the third quadrant

f.=[-M, +tanh q, +tanh (x, —a,)—tanh (x,+ q,)+6,]/2
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for -x, 6 <x <0 (6.23)

We must remember that the remanent magnetism is constant for descending field values
between zero and the positive maximum with the value of M, . The same is true for the
remanent magnetism for ascending field values between —x,, and zero. Here the value of the
remanence is —M,.

At first sight the two approaches formulated in (6.21), (6.23), and (6.20) produced two
different results. However, considering that

M, =tanh(-a,)+b,
therefore
-M_ =tanh(a,)-b,. (6.24)

After substitution of M, and —M, into (6.22) and (6.23) we arrive at an expression identical
to (6.21). We can conclude that both approaches will lead to the same result.

As we expected the anhysteretic magnetization and the anhysteretic remanent
magnetization are both single-valued functions of the normalized field, therefore in the
knowledge of one the other can be calculated unambiguously.
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7.  Permeability and Shearing

7.1  Permeability and Susceptibility

So far we have talked about field excitation, induction and magnetization by using
conventional notation H, B, and M, respectively. Now we are going to introduce two new
closely related concepts, permeability and susceptibility. The relationship between these
quantities above is usually written in the following form

B=pu,(H+M) (7.1a)
or
B=u,(H+yH)= ppu H (7.1b)

where susceptibility is defined as the ratio of magnetization to field

X = (7.2)

T|x

In physics and material science people like to use susceptibility, while in engineering
particularly where magnetic materials are involved, permeability is preferred [1]. For most
nonferrous materials permeability and susceptibility are independent of the field therefore
they are both relatively small and constant, which makes an easy linear relationship between
field, induction, and magnetization. Ferromagnetic materials are different, because their
permeability and susceptibility are both large and field dependent, which makes the
relationship between magnetic field and the other two quantities, induction and
magnetization of a highly nonlinear nature.

One can often come across the term of relative permeability denoted by . This is
defined as

/UI = — (7.3)
Hy

here 14 represents the permeability of free space whose magnitude is g = 47107 Hm™.
The relative permeability of free space is unity. There is an easy relationship between
relative permeability and susceptibility, which can be seen from (7.1b)
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Ho=1+y (7.4)

Throughout this book we are going to use the preferred engineering term and concentrate on
permeability.
There are a number of different kinds of permeabilities defined in practice:

o The static permeability g is the ratio between induction and field this is often referred
to as normal permeability.
The incremental permeability.

o The differential permeability py, which is the limit of the incremental permeability,
when the change in field approaches zero, is also referred to as reversible permeability.
It is defined as the first derivative of the virgin or the hysteresis curve (see also in
Chapter 10, superimposed minor hysteresis loops.)

o The initial permeability y is defined as the tangent to the virgin magnetization curve
when the field is approaching zero.

By recalling the relationship between the normalized field and induction we can formulate
the various permeabilities as shown below. The simplest, the static or normal permeability
H, , which belongs to the virgin magnetization curve, with reference to the definition above,

can be calculated by simply dividing £; in (4.1) by x thus

p _ /. _ (tanh x)[1 -4C;(sech x)’]
st X -

(7.5)
X

For the calculation of the differential permeability we have to take the first derivative of f;
expression in (4.1) by x as shown in (7.6)

Ly = %{;— = (sech x)* —4C, (sech x)* +8C, (sech x)* (tanh x)’ (7.6)

Ha 1s the magnitude of the incremental permeability, i.e. the change in permeability when,
for instance, the ferromagnetic material is subjected to a small AC magnetization force,
normally superimposed onto a larger DC magnetization. It is the so-called reversible
permeability because at the end of each cycle it returns repeatedly to the same value. In
some applications magnetic substances are only used with low excitation field, therefore the
initial permeability s often plays an important role (at x ~ 0) in these applications. This

permeability is represented by the first derivative or the tangent in the first quadrant of the
virgin magnetization curve in the zero-field region. Its numerical value can be calculated
from (7.6) by substituting x = 0. As we know for most ferromagnetic material z; is not zero

at zero magnetic field. Its value is related to the constant C;, which determines the shape of
the virgin magnetization curve, as shown in (4.2). The static and the differential
permeabilities, as defined in (7.5) and (7.6), are plotted in Figure 7.1 for C; = 0.15 and also
for the two limiting values of C; = 0 and 0.25 (see Chapter 4).
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So far we have formulated and plotted the permeabilities related to the virgin
magnetization curve. When the magnetization process is moving on the hysteresis curve a
different mathematical expression should be used for calculating their value, due to the fact
that in the hysteresis loop the relationship between field and induction is formulated in a
different form. For this, we can recall (3.3) and divide it by x to get the static permeability at
any point of the hysteresis loop.

tanh (x—a,)+b,
My, = fanh (x=a,)+b for increasing x values (7.7a)
X

My = tanh (x+dy) =5 for decreasing x values, (7.79)
X

where b, is specified in (3.2).

Hsty /s
C3=0.25

1
0.8

C3:0 J5 Hy

Ha
0.5 1 1.5 2 2.5 x3

Figure 7.1: The static and differential permeabilities related to virgin magnetization for C; =0, 0.15,
and 0.25

Figure 7.2: Static permeability of the hysteresis loop versus field, aq as parameter
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The differential permeability can be calculated for the hysteresis loop by taking the first
derivative of the expressions in (3.3) by x,

. = L= fsech (v-a,)]

2

for increasing x values (7.8a)

My = % =[sech (x + a,)]’ for decreasing x values. (7.8b)

A set of static permeability curves of the hysteresis loop, calculated from (7.7) is shown in
Figure 7.2. The static permeability goes to infinity as the field approaches zero because of
the finite value of the induction at zero field.

The differential permeability calculated from (7.8) is depicted in Figure 7.3 for the
coercivity as a parameter for the values of g, =0, 1.5, and 3.

Figure 7.3: Differential permeability of hysteresis loops versus field for a, =0, 1.5, and 3

It should be noted that each of the differential permeability curves will reach its maximum
where the exciting field equals the value of coercivity, i.e. x = a.

When the linear term, representing the reversible magnetization, in (3.1) is not negligible
both the static and the differential permeability will be different by the constant 4,. By using
the same definitions as before and (3.1) for the case of A # 0 the static permeability can be
formulated in the following form

_tanh (x—a,)+b, .

st+

A, for increasing x values (7.9a)
X

_tanh (x+a,)-b .

st—

A,  for decreasing x values. (7.9b)
X

Similarly the differential permeability is defined as
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d . .

Uy = df; =[sech (x—a,)" + 4,  for increasing x values (7.10a)
a7 2 .

My = el [sech (x+a,)]" + 4,  for decreasing x values. (7.10b)

It can be seen that (7.9) and (7.10) only differ from (7.7) and (7.8) by a constant, therefore
the shapes of permeability curves are the same in both cases and only subjected to a shift in
the vertical direction by the additional constant term, represented by the amplitude of the
reversible magnetization.

7.2 Shearing and Unshearing

In practical magnetic circuit design it is often necessary to combine ferromagnetic material
and an air gap. Chokes and transformers often work with DC current passing through their
windings. The inductance of the component is a strong function of the DC bias, which is a
highly undesirable feature of DC-biased magnetic components. The presence of an air gap
in the circuit, however, reduces the magnetic excitation, which shows up in the reduced
dependence of the equivalent permeability of the circuit on bias. A suitably chosen gap in
the magnetic circuit has a very significant linearizing effect on the effective permeability,
therefore makes the inductance of the component less dependent on the amplitude of the DC
bias. The mathematical equivalent of this process is the addition of a linear function to the
hysteresis loop, whose parameter is dependent on the induction and proportional to the
relative length of the air gap and the magnetic path. The effective result is that the hysteresis
loop is stretched along the horizontal axis in opposite directions and the process is refereed
to as “shearing”. The mathematical description of the process of shearing is as follows.

In a closed magnetic circuit ¥, the total magnetic potential (using conventional
notations) can be written as the sum of the potential drop on the magnetic path and the air
gap (the gap assumed to be small to other dimensions)

Vo=HI+HL =Hl+51 (7.11a)
Hy
H =H, _BL (7.11b)
Ho l;

where H; is the magnetic field in the magnetic material, H, is the field in the gap and Hj, is
the field in the circuit with no gap. The symbols / and /, represent the ferromagnetic path
length and the gap, respectively.

Let us return to our notation and call the new running coordinate (the new normalized
field) of the sheared loop x,. The relationship between the original coordinate x and x;
according to the rules of coordinate transformation, can be described as follows
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Bl
x,iaozxiao—y ; =(xia0)(1—/1m~113—) (7.12)

0 i

Here, according to the definition of the process of shearing above, we added a term that is
dependent on B the normalized induction and the ratio between the path lengths / and /.

The other parameters g, and u, ~ u, are the permeability of air and that of the ferrous

material, respectively, for small changes (see Section 7.1 for reversible permeability). By
expressing the term xz*a, from (7.12) and substituting into (7.11) we can write the

induction in the sheared magnetic circuit as a function of the new normalized field x, as

fi(x) = tanh——%_ 4 p, (7.13a)
T+ ae

/{(xl)ztanhi—i%l——bj. (7.13b)
1—/uac I_a

The b5 constant can be calculated from the conditions same as the one set for b, in Chapter 3
and its expression is given in (7.14). For simplicity we assumed in the calculation that
dy =0, i.e. no DC bias, but the same mathematical process applies to the biased case as well.

+ —
b, =| tanh——%_ _ tanh “(} /2. (7.14)
l—-u * T+
/L“‘l Hae /

i i

Here x,, represents the extreme of the new normalized field. Figure 7.4 depicts an
unsheared and a sheared hysteresis loop calculated from (3.3) and (7.13) for the values of

Hy, [/—' =0.9, ay =1 and x,,,= 4.73.

The virgin induction curve can be sheared in the same way as the hysteresis loop for
virgin or demagnetized circuit with an air gap. The expression for the sheared virgin
magnetization is shown in (7.15) after the substitution of x expression from (7.12) into (4.1)

2

£(x)=| tanh—— [l 1-4C,| sech—2— | |. (1.15)

1+ 2 1+ a
#ac l. #u l

i i
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Jof
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unsheared Sheared

Figure 7.4: Sheared and unsheared major hysteresis loops

The unsheared and sheared virgin magnetization curves are depicted in Figure 7.5. The
linear shearing function, represented by the additional term in expression (7.12) is also

plotted. The C; value used in the calculation was 0.11 and the other parameters were the
same as before.
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Figure 7.5: Sheared and unsheared virgin induction curves with the shearing line

In practice, it is often desirable to reconstruct the unsheared magnetization curves from the
sheared loop. When in a magnetic specimen, for instance, the demagnetization factor is not
negligible then its measured hysteresis loop requires correction or unshearing. So far this
operation could only be done by graphically shifting the loop point by point by the amount
indicated by the linear shearing function. The other alternative is the use of numerical
methods. A modified version of the Preisach model has been developed [2,3] for the
shearing and unshearing of hysteresis loops, however, this often produces spurious results
and instabilities in the iterative computation. The model described here, with the knowledge
of the linear shearing function, by the conversion from (7.13) to (3.3) and vice versa, gives,
for the first time, the unique analytical method of shearing and unshearing hysteresis loops.
The same applies to the virgin induction curves when (4.1) is used as a starting point.
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The inductance of magnetic components, like a choke for instance, is linearly
proportional to the . permeability of the magnetic core material used. When DC current is

passing through its winding creating DC field in the ferrous material, the permeability will
be dependent on the DC bias and drops rapidly with increasing DC field. Although the
introduction of an appropriate air gap in the magnetic circuit, i.e. shearing the hysteresis
loop, reduces the average value of the effective permeability, it also greatly reduces its
dependence on the DC bias, hence linearizes the inductance within the design range of the
DC field. By using the definitions of permeabilities in Section 7.1 we can express the static
permeability of the sheared loop in the following form,

M, =| tanh T b, |/x, for increasing x values (7.16a)
1+
ac /l
x,ta .
M =|tanh-———2- — p |/x  for decreasing x values. (7.16b)
T+, =
ac l

Similarly we can express the differential permeability for the sheared loop after
differentiating (7.13) by x, that comes to the following expression

2

M, = UACHI. sech—1—% ! for increasing x (7.17a)
dx T+p, 2| T+p,
1 ]
d + .
Hy = —fa(;—') =| sech——% ! for decreasing x. (7.17b)
l+,uacli ]+ﬂacl"a

The sheared and the unsheared differential permeabilities 4. and 24 calculated from (7.17)
are plotted in Figure 7.6 for the values of x,, = 3, a;, = 1 and the shearing factor of

/
+ =0.9.
Hae /

The same permeabilities can also be calculated for the virgin magnetization curve as we
have seen before. After the substitution of x from (7.12) into (7.5) we will come to x4 the
static permeability



Shearing and Unshearing 67

us=f5(x')= tanh__x._l_ 1-4C,| sech— —| | X, -~ (7.18)
x
l+u = 1+ = T+p, =
Iuac li :uac [i 'uacll
JTAT

1
unsheared

sheared

Figure 7.6: Sheared and unsheared differential permeabilities
One can also calculate an expression for the differential permeability by substituting

S (7.19)

X =

[
I+p, *
/lacl_

into (7.6), which yields the following expression for £

2 4
Hy = LGS sech———x’—l -2C, sech——ﬁ—l
dx L a L a . (720)

i

The sheared and
unsheared virgin permeability curves calculated from (7.6) and (7.20) are depicted in Figure

7.7 for C5=0.11 and g, i—“ =0.9.
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Figure 7.7: Differential permeabilities of the virgin magnetization curve. for C; =0.11 and shearing
factors of sf =0, 0.5, and 0.9

When the reversible magnetization is not negligible i.e. 4, # 0, by using (7.13) the starting
equations can be written in the following form

X

f4(x,) = tanh N 4, +b, for increasing x (7.21a)
T+ p = T+,
#Z\C Il ‘L ac ll

f.(x,) =tanh al +a01 + 4, al T b,  for decreasing . (7.21b)
]+,uac—l‘1 1+,uac7a

The differential permeability can be obtained after the differentiation of (7.21) by x,. The
plots of the sheared hysteresis loop calculated from (7.21) and the corresponding
permeability curve are shown in Figure 7.8 for x,, = 3, ap = 1, 49 = 0.04 and

!
= =09
Hae

Similarly, the virgin magnetization with the reversible magnetization included can be
expressed in the following mathematical form

2

£.(x))=| tanh -—x'—/ 1- 4C,| sech—— | [+ 4, —1— (7.22)
l+yacli ]+#“CT T+p, =
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Figure 7.8: The virgin magnetization curve and the corresponding differential permeability for

The differential permeability, same as before, is given by the first derivative of fi(x;) in
(7.22) by x,. The two functions, the virgin magnetization and the corresponding differential
permeability are depicted together in Figure 7.9. The shapes will be very similar to those
shown in Figure 7.3.
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Figure 7.9: The virgin magnetization curve and the corresponding differential permeability for
Ao =0.04

It is often important to know the differential permeability of the hysteresis loop where it
intersects the vertical axis. This is represented by the first derivative of the hysteresis curve,

df,

ie. e in the second or d?f; in the forth quadrant. By differentiating (3.3a) we can see that

the slopes of the hysteresis loops at x = 0 are independent of the value of the maximum
magnetization and only depend on the coercivity value of @, as shown in (7.23),

%‘ = (sech a, ). (7.23)
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This slope or differential permeability is always the same as the slope of the initial
anhysteretic curve at the point of origin. By taking the first derivative of the expression of f;
by x we arrive the following expression:

%fx"— = {(sech a,)* +[sech( —a,)]’} /2 (7.24)
which leads to the same expression as in (7.23).

Hy

0.5 17715 T2 25 4,3

Figure 7.10: The differential permeability of the hysteresis loop at the point of intersection and the
initial permeability of the anhysteretic magnetization curve as the function of coercivity

The differential permeability at the point of intersection is plotted in Figure 7.10 as a
function of ay.

References

[1] D. liles, Magnetism and Magnetic Materials (Chapman and Hall, N.Y., 1991).

[2] LD.Mayergoyz, Dynamic Preisach model of hysteresis. IEEE Trans. on Magn. 24, 2925-2927
(1988).

[3]1 LD. Mayergoyz, Mathematical Models of Hysteresis (Springer-Verlag, N.Y., 1991).



8.  Magnetic Energy

8.1 Stored Magnetic Energy

For a practical magnet designer there is an important parameter that governs the shape and
the size of the design. This is the energy per unit volume that the magnet can store. This is
vitally important for permanent magnets and it deserves special consideration. For a
permanent magnet the integral of the field — induction product for the whole space must be
zero as there is no external energy is added to the closed system [1]. The system is in an
equilibrium state. This total energy can be divided to the energy inside the volume of the
magnet v and the energy outside the boundaries of the magnet. It is self-explanatory from
(8.1) that the two energies inside and outside of the magnet must be equal,

space inside outside

HB dv = HB dv + HB dv=0. 8.1
] J J

Since outside of the magnet B = 14 H we can write the following equation

inside outside

j uH? dv = j HB dv . (8.2)

That is to say that the total energy of the field H outside the magnet is equal to the AB
product inside the magnet integrated over the whole volume of the magnet. The physical
boundaries of the magnet are normally well defined, therefore, it is enough to calculate the
energy stored in a unity volume of the magnet. This energy density w stored in a medium
permeated by a magnetic field can be expressed as

B H
W= deB:HB—deH. (8.3)
0 0

Let us differentiate the expression of the induction £ in (3.3b) and substitute it into (8.3) and
then replace A with the normalized excitation x. The stored energy per unit volume can be
expressed in the following mathematical form

w= jx [sech(x + a,)]* dx. (8.4)

A simple but representative quantity for this energy, often used in practice, is the product of
the magnetic induction and the magnetic field per unity volume. The larger the (HB)nax
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product for a magnetic material the better are its magnetic properties. By taking f; from
(3.3b) and expressing x from it, the energy product HB (the equivalent of the fix product)
can be described as

HB = f,x = f larctanh (f, +b,)—a,] (8.5)

as a function of the magnetic induction f£..

M. S

.8
0.6 J’sz(HB)m
0.4
0.2}
~ao i/
X -1.5 -1 ~-0.5 0.5 w

Figure 8.1:The “demagnetization” curve and the magnetic energy versus induction

The energy density w or energy product, as it is often called, is depicted in Figure 8.1, in the
first quadrant, as a function of magnetic induction f; as calculated from (8.5). In the second
quadrant the demagnetization curve, part of the hysteresis loop is shown. This is
representative of the total hysteresis loss, and it is proportional to the area enclosed under
the demagnetization curve. This is the work needed to totally demagnetize the magnet. The
maximum energy stored in the magnet W, = (HB)n.x is marked by the point where the
straight line, defined by the (a,, 0) and (0, B,) coordinates and the demagnetization curve
intersect. This is an important quantity in the optimization of the magnetic component
design, particularly for permanent magnets and represents an upper limit [2—4] in magnet
design. Basically this is the maximum amount of work the magnet can do outside its own
boundaries. This limit characterizes a particular ferromagnetic medium and according to
Hoselitz’s findings [5] it can not be altered by any physical or chemical means.

As we said before the energy maximum is marked by the intersection of the straight line
with the f demagnetization curve as shown in Figure 8.1. The slope of the line is set by the
two points defined by the intersections between the demagnetization curve and the
horizontal and the vertical axes, i.e. where x = 0 and where f = 0. The calculation of the
maximum energy requires the solution of the following equation for the normalized field x:

tanh (x+a,)—-b, .

tanh (x+a,)-b, = arctanh b, — g
| 0

(8.6)
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The solution of this equation for x normally requires graphical methods or iterative
numerical calculation on a computer, however, for the solutions of this kind of
transcendental equations computer routines are available as part of readily obtainable
mathematical packages.

8.2 Hysteretic Loss

Energy loss occurs in magnetic components due to the phenomenon of hysteresis, which in
the literature is referred to as hysteretic energy loss. In practice, various losses are present in
all electromagnetic power devices and the hysteretic loss forms a major part of these core
losses. The reduction of these losses including the hysteretic loss plays an important role in
the design and optimization of magnetic components. Because of this, the accurate
prediction of these losses forms an important part of the general theory and design
procedure of magnetic devices. These losses turn into heat and this often leads to
undesirable temperature changes in magnetic components. This problem in general terms is
still unsolved. A solution to the problem of calculating the hysteretic loss for periodic input
functions in magnetic devices is given by Steinmetz [6]. His empirical solution shows that
the loss due to the hysteretic phenomenon is equal to the area of the hysteresis loop formed
by the periodic input variation. As was pointed out in the Introduction, given two points
within the area confined by the major hysteresis loop, there are only two curves that can
pass through those points and satisfy the conditions of mimicking the major loops. One
belongs to the ascending set of curves and mimics the ascending saturation curve, the other
is part of the descending family of curves and follow the shape of the descending saturation
curve. The model does not allow any other solutions. These two curves form a closed loop
and are described basically by tangent hyperbolic functions, T(x).

As the magnetic state of the medium changes around the loop, the work required to
magnetize or demagnetize the medium can be expressed mathematically as the product of
the magnetizing field and the change in the magnetization. This is described in detail in
Section 8.1. Equations (8.7a) and (8.7b) describe the elementary energy density obtained by
the magnetic substance for an elementary change in its state of magnetization (df.) and
demagnetization (df'),

dw, =xdf,  for magnetization (8.7a)

and

dw_=xdf.  for demagnetization. (8.7b)

After differentiating the expressions of fi and £ by x in (3.12) and substituting them into
(8.7) we can put the expressions for the elementary change into the following forms

dw, = x [sech (x —a,)]’ dx (8.82)

and
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dw_=x [sech (x +a,)’ dx (8.8b)

The integration of dw. and dw in (8.8), between the limits of x; and x,, the two extreme
values of the magnetic field, will give us the areas under the up- and down-going parts of
the loop. The area inside the loop, i.e. the difference between w._and w., represents the work
per unit volume needed to magnetize and demagnetize the sample in one cycle. This is the
energy lost or converted into heat during the cycle. According to Steinmetz’s rule [6] w, the
total energy loss density can be calculated as

w, =w, —w_=[xtanh (x—a,)+In ch (x—-a)I’
~[xtanh (x+a,)—In ch (x+a,)]5. (8.9)

It is obvious from the expression that wy is only dependent on the two limits between which
the excitation is oscillating and totally independent of the path the excitation is moving
between the two specified limits. Sinusoidal or triangular excitation waveforms produce the
same energy loss.

8.3 Hysteretic Loss in a Transformer

In electrical engineering practice the transformer is one of the fundamental components
used. As a current/voltage converter, it handles virtually all electrical power used in industry
and households the world over. Because of its importance it was a subject of research and
investigation in order to improve its performance and efficiency. The loss due to the cyclic
magnetization and demagnetization, which the transformer core is subjected to, was
recognized from early days and its reduction was regarded as vital in all applications. This
power is not only lost, therefore the useful output from the transformer is less than its input,
but it turns into unwanted heat, which may increase the temperature of the magnetic core.
The increase in the temperature can alter the magnetic properties of the core, therefore the
performance of the transformer. At very low magnetization the subject of transformer loss is
well covered by the work of Rayleigh [7], Steimetz [6], and Hoselitz [5]. At medium fields
and at fields approaching saturation, approximations worked out by Lamont [8], which led
to the Frohlich-Kennelly relation [9,10] and later modeled by Becker and Doring [11] and
Bozorth [8]. So far there has been no overall analytical approach produced covering the
losses in all three regions of magnetization. In the following, by using the T(x) model,
calculations of hysteretic losses in transformers will be given, covering the whole range of
magnetization from zero to saturation level.

When the magnetic core of a transformer is subjected to a cyclic excitation, the
magnetization will follow a set of symmetrical hysteresis loops whose return points form the
anhysteretic magnetization curve. In the following calculation it is assumed that there is no
DC excitation applied to the magnetic core and there is no reversible magnetization either.
The presence of either the DC bias or the reversible magnetization or the presence of both
makes the calculations here slightly more complicated, nevertheless, the model described
here still applicable to the calculation of the hysteresis loss.
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Let us assume that the excitation is changing cyclically between the two extreme values
of x,, and —x,, then the substitution of these values for the integration limits x; and x, shown
in (8.9) will give us the energy loss per unit volume per cycle. This is given in (8.10),

w, =2 [In cosh (x,,+ a,) —In cosh (x,, —a,) -2 bx,]. (8.10)

m

Taking (8.3) into consideration, the use of dw;, = f, dx for starting equations would have

yielded identical result. Up to now the only way to measure the energy loss was the
graphical integration of the area within the hysteresis loop. This, although applicable in
some cases, often proves difficult in practice. The T(x) model offers a purely analytical
approach to the solution of this problem.

dWI 2 ao =4

a
dwi. ao=1 av=2
0.08
0.06
0.04 a=3
0.02
a=4
0.2 0.4 0.6 0.8 x1 b

Figure 8.2: Hysteresis loss against (a) large peak excitation values; (b) Small peak excitation values
for the coercivity values of ap =1, 2, 3, and 4

In practical applications where the magnetic material is subjected to cyclic magnetization,
like in a power-transformer design, one of the important factors could be the power lost in
the volume of the transformer due to the hysteresis. Its measure p is the power per unity
volume or power density. This is related to the energy so that the power density is the time
derivative of the energy density, as shown below
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Py = @.11)

Figure 8.3: Surface map of the hysteretic losses as a function of the excitation field (0 <x <5) and the
coercivity (0 <aq <3)

As we have seen, neither wy nor p, depend on the time behavior of the periodic excitation
only on the positive and negative maxima. We are at liberty therefore to write p, in the
following form

W,
po==f W, (8.12)

where T is the duration of one period of the time function and f is the frequency. This
expression shows the power loss to be proportional to the frequency of the periodic
excitation. Steimetz [6] has formulated an expression for the hysteretic-loss density, based
on observations, which is applicable for a wide range of magnetization and has been used
for loss calculations,

Po=kf By . (8.13)

Here £ is the Steinmetz constant, which only differs in a multiplier factor from the coercivity
of the magnetic material, f is the frequency and B, is the maximum magnetization in the
cycle. He assumed a linear dependency of the hysteretic losses on the coercive force in a
wide range of magnetization as shown in Figure 8.4, where the hysteretic-loss density is
plotted for a fixed maximum magnetization for one cycle against a, calculated from (8.10).
It shows that, particularly at large magnetization the hysteresis-loss density is linearly
dependent on the coercive force value of the magnetic material when the maximum
magnetization is kept constant, for a very wide range of coercivity values, providing the
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following condition is satisfied x,, >> aq. The curves are plotted with x,, as parameter, where
X is ranging between 1 and 6 on the normalized scale.

dw/dr

Xm=3

15:
12.5
10
7.5

xm=4
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Figure 8.4: Hysteretic loss density versus coercivity in normalized units for the x,, values of 1, 2, 3, 4,
5,and 6

In Figure 8.5 two graphs are depicted, p, the power density for one cycle, as a function of x,,
the maximum magnetization value, calculated from (8.10) and also from the Steinmetz
formula, given in (8.13). In the calculation it was assumed that the relationship between
maximum magnetization and excitation follows the anhysteretic magnetization curve (for
definitions and other details see Chapter 4). The parameters were selected from the middle
of the linear range and taken as a, = 2 for the coercivity and £ = 8 for the normalized
Steinmetz constant.

Ppo
4

T(x) Steinmetz

1 2 3 4 5 xm 6

Figure 8.5: Power-loss density p, versus maximum magnetization x,, for ap=2 and k=8 in
normalized units

The graph shows the good agreement between the Steinmetz approximation and the T(x)
model in the middle of the magnetization range. Figure 8.6 shows that the deviation between
the two approaches is within 2.5%. At low and high magnetization the Steimetz
approximation will produce increasingly large errors in the calculation. For good agreement
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the normalized coercivity range is 0.5 <a, <4 with the corresponding Steinmetz constant of
2<k<l6.

0.1
.08
.06
.04
.02

1 2 3 4y,
.02

o O O O

Apo
%

Figure 8.6: The difference between the two power-density figures calculated from the T(x) model and
the Steinmetz approximation as the percentage of maximum magnetization
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9. Time Functions and Magnetization

9.1 Introduction

Ferromagnetic materials are often subjected to periodically varying field excitation in
practical applications. Power and audio transformers, magnetic storage devices for digital or
analogue information, video and audio recorders, etc., are all affected by the nonlinear
behavior of the ferromagnetic elements in the system. This effect is very much of a practical
problem and it has been a subject of investigation since the introduction of transformers in
electrical circuits [1]. In the following we are going to investigate analytically what happens
when the excitation field, which the ferromagnetic medium is subjected to, varies with time,
i.e. x(f) is a periodic time function with @ frequency as described in (9.1). In the following
we assumed that the frequency of the excitation is so slow as not to cause magnetic viscosity
or any other aftereffects, phenomena that are going to be discussed in later chapters.

x(t) =D, sin ot . 9.1

Here x(¢) signifies the normalized magnetic excitation of D, amplitude to which the
specimen is subjected. We have to recall (3.2) and (3.3) and substitute (9.1) for x. The new
expression for the magnetization waveform as a time function driven around the hysteresis
loop in one cycle between ¢ = 0 and 2nw will be

0<wt<n/2
=tanh (D,sinwf—a,)+b T 2
f. =tanh (D,sinw t—a,)+, Or{3;;/2£cot$27t ( )

[ =tanh (D,sinot+a,)—-b  forn/2<wt<3n/2. (9.2b)

In the case of a periodic function with a constant periodicity this pattern will be repeated ad
infinitum in every 2nw period.

When an alternating current is applied to an inductive circuit component with an iron
core then the waveforms of secondary parameters will not follow that of the primary input.
This is due to two factors, one being the hysteresis, and the other the nonlinear relationship
between field and magnetization, as described in mathematical form in (3.3). The secondary
response in general terms follows Faraday’s law, therefore the shape of the response will
follow the shape of the first derivative by ¢ of the magnetic induction. After taking the first
derivative of (9.2) by ¢ we arrive at the expressions representative of the secondary response
of the component (assuming Dy = 1).
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df, . ) 0<tw<n/2
—~=@cos wtsech(sinwt+ q,)° for (9.3a)
dr 37/2<t w<2n
% =wcos ot sech (sinw t—a,)’  for n/2<t<3m/2. (9.3b)

As we can see from (9.3) the amplitude of the first derivative will be linearly proportional to
the frequency and their phase will be shifted by 90° relative to that of the input signal. The
secant hyperbolic multiplier in both expressions represents the deviation from the pure
simple harmonic. In Figure 9.1 a sinusoidal input x(f) waveform is plotted with the

Y. g &

waveform of the df, ,df induction functions and their first derivatives and I . In the

calculation the following parameter values were used: x,, = 0.75, o= 1, w=1, and Dy = 1.

x(0) o fo dfv/de df/dt

Lt dfs/de ()
0.5
. 1
-0.5
-1

Figure 9.1: Waveforms of the input signal, the induction, and its first derivative

With increasing input signal amplitude the dominating even harmonics in the magnetization
waveform will rapidly increase, as shown in Figure 9.2, with its shape approaching the
square wave. The waveforms are plotted for the same numerical parameter values as before.
In Figure 16.3 the first derivatives of the same waveforms are shown. They show the rapid
increase of the odd harmonics as the amplitude of the input current increases.

As is often the case in practical applications the magnetic device is subjected to DC and
AC fields at the same time. A typical example is a choke when DC and AC currents
simultaneously pass through its winding. Further to this, the reversible magnetization is
often not negligible, i.e. A4, # 0. This case is described by (3.11). After the substitution of

(9.1) into (3.11) we arrive at the time-dependent expression of the biased hysteresis in the
following form, which also includes the reversible magnetization,

0<tw<mn/2
=tanh (D,sinwt—a)+b + A4 for 9.4a
S, Dy )+ b, + Aox {3;:/23; w<2m (0-42)
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J.=tanh (Dysinw t+ a))-b,+ Ax for n/2<t @ <3m/2, (9.4b)

where b, and b4 are defined in (3.10).

SO
1

Do=3

Figure 9.2: The waveform of the magnetization in normalized units for the input excitation amplitudes
of Dy =0.5, 1, 2, and 3.

df+(z)/de, df-(¢)/de
3t A Do=3

Figure 9.3: The first time derivative of the magnetization waveform for input amplitudes of D, = 0.5,
1,2, and 3.

In Figure 9.4 three magnetization curves are shown. One is depicting the case without DC
bias and reversible magnetization. The second is a biased case with the DC amplitude of 0.4
and Ao = 0. The third curve shows the case of AC magnetization with DC bias of 0.4
amplitude added and with a reversible magnetization amplitude of 4, = 0.05.

The curves show the changes in the waveforms of the magnetization relative to the
simplest case, due to DC bias and in the presence of the reversible magnetization. In Figure
9.5 the first derivatives of the same waveforms are shown correspondingly with AC input
signal combined with DC bias (d, #0) and also with reversible magnetization included

(4,#0).
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Figure 9.4: Magnetization waveforms for (a) dy =0, 4o = 0; (b) dy=0.4, 4= 0; (c) dp = 0.4, 4o =0.05
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Figure 9.5: The waveform of the first derivative of the magnetization for input excitation amplitude of
(@) dy=0,40=0; (b) dy= 0.4, A4g=0; (c) dp = 0.4, Ao =0.05

9.2 Distortion Caused by the Magnetic Nonlinearities to
Periodic Magnetization

It has been shown in Section 9.1 that the increasing amplitude of the excitation rapidly
increases the distortion in the induction and in its first derivative. In practical applications it
is important to limit the distortion of the signal going through the system. It is primarily
important therefore to be able to calculate the effect of each circuit component on the signal
including the ferromagnetic elements. The two nonlinearities, the hysteresis and the
saturation effect, both change the frequency content of the output signal by introducing
different higher harmonics. The distortion they cause can be separated in the mathematical
treatment. One of the most important parts of the magnetization is the low-field
magnetization region of the initial magnetization curve. Rayleigh [2] observed that the
change in permeability at low field is a linear function of the field in very good
approximation and this leads to a quadratic dependence between induction and field. He
suggested that a parabola could represent the initial part of the magnetization curve. This
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made the calculation of the higher harmonics relatively easy at low excitation. At higher
amplitudes, however, the harmonic analysis had to be done in the past by numerical
methods.

As As
As
0.25
0.2
0.15
0.1 43
0.05
1 2 3 Do 4

Figure 9.6: The amplitude of the 3rd and the 5th harmonics in the waveform of the magnetization
versus the amplitude of the harmonic excitation for the normalized coercivity of ap = 0.5

Equations (9.2) and (9.3) describe the waveform of the induction and its first derivative.
From Figures 9.1 and 9.2 one can see that both waveforms suffer amplitude as well as phase
distortion relative to the input waveform. The phase distortion is strongly dependent on the
value of a, (coercivity). For “fatter” hysteresis loops (large coercivity) the phase shift is
larger, indicating an increasing presence of out-of-phase components in the Fourier
spectrum. The saturation effect flattens the top and bottom of the waveform increasing the
higher harmonics as the excitation drives the magnetic substance nearer to saturation. As its
shape approaches the square wave its Fourier spectrum will get richer in the odd harmonics
and its Fourier spectrum gets nearer to that of the square wave whose spectrum is composed
entirely of odd harmonic components.

In Figures 9.6 and 9.7 45 and 45, the amplitudes of the 3rd and the 5th harmonics of the
first derivative, are depicted as the function of x,, the excitation amplitude for a, = 0.5 and
ap = 1, respectively. The two graphs show a remarkable similarity in character, while
doubling the coercivity increased the higher harmonics by approximately three-fold.

The curves in both graphs indicate the rapid increase of the higher harmonics with the
magnitude of the excitation field. In applications where the distortion of the waveform is to
be kept low, the amplitude of the excitation should not exceed the normalized amplitude of
X, = 0.5. This is normally a vital consideration in the design of audio and other analogue
applications of magnetic components. '

In Figure 9.8 the effect of a, the coercive force is shown on the distortion of the
magnetization waveform. It can be seen that the waveform of the magnetization is seriously
affected by ay over the normalized value of 1. Between the value of gy = 1 and 2 the
amplitude of the third harmonics can double.

Time-dependent excitation functions applied to systems with hysteretic properties form
an important part of the investigations of hysteretic phenomena. Models, like for instance
the one developed by Chua [3,4], are based on time-dependent properties of the hysteretic
media and are known as dynamic models. One of the parameters that are closely related to
the hysteresis coefficient of the dynamic characteristic of a hysteretic medium is the first
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time derivative of the magnetization as shown before. This is normally represented as the
function of the excitation field as shown in Figure 9.9 calculated for sinusoidal excitation
for a, varying between 0 and 2.

As As

0.7 As
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Figure 9.7: The amplitude of the 3rd and the Sth harmonics in the waveform of the first derivative of
the magnetization versus the amplitude of the harmonic excitation for the normalized coercivity of
ag=1
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Figure 9.8: The amplitude of the third harmonics in the waveform of the magnetization as a
function of g, coercivity.

A great deal of effort has been spent on research correlating the hysteretic properties of
magnetic components, like transformers, and to the Fourier spectrum of their output when
they are subjected to harmonic excitation. It is in the general practical interest to be able to
calculate the distortion caused by the double nonlinearity of the magnetic components in a
circuit [5]. In 1983 Willcock and Tanner [6] worked out a method for the harmonic
expansion of the hysteresis loop. Other people suggested the reconstruction of the hysteresis
loop from the distortion suffered by the magnetization waveform due to the magnetic
distortions [7].



Distortion Caused by the Magnetic Nonlinearities to Periodic Magnetization 85

df(t)/de, df()/dt

ao=0.25

Figure 9.9: The first time derivative of magnetization versus exciting field for the coercive force
values of ay = 0, 0.25, 0.5, 1, and 2, at sinusoidal excitation when w= 1

9.3 Fourier Analysis of Hysteretic Distortions

9.3.1 The Exponential Model for Fourier Analysis

When a waveform is described by the function of &) = A&+ 2L) with the periodicity of 2L
the Fourier series corresponding to f{£ ) periodic function is defined to be

%y e Ly sin 7
f(§)—2+2(a”cos i +b, sin L) 9.5)

n=1

where the Fourier coefficients & a, and b, are defined as

a, =%1Jf ($)dg (9.6a)

a =%J £() cos -”—”Lﬁ d& (9.6b)
17 . nré _

bn=z_{f(g)sm—[-d§ n=12,... (9.6¢)

It is obvious that these coefficients can only be calculated in a closed form when the
integrals in (9.6) can be evaluated without expanding f{£ ) into infinite sequence.

There are a number of models presently in use to deal with effects associated with the
double nonlinearity of the hysteresis, none of the functions, however, describing these
models, including the T(x) model, fulfil the criteria for closed integration in (9.6). In 1973
Macfadyen et al. [8] suggested the use of exponential functions for modeling the hysteresis
loop. This idea was used by Teape et al. [9] and later by Hwang [10] and also by Hodgdon
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[11] for solving practical problems. Although this approach looked promising at the time,
soon it was taken over in popularity by other models. Nowadays, the exponential model is
hardly used although its potential to use it, for instance, for Fourier analysis has never been
fully explored.

There is an important group of periodic functions that allows us to carry out the Fourier
analysis in closed form by using the exponential model [12]. This group contains all the
periodic functions that can be constructed by using straight lines, such as the various
triangular waveforms, the trapezoid and the square wave.

Let us review briefly the exponential model of the hysteresis loop. For the modeling of
the loop, it should be divided into four regions between the positive x,, and negative maxima

—x,, and zero magnetization represented by the coercivity on the horizontal axis a, and —ay,
respectively.

1-exp[—q(x—a,)]+b, for a,<x<x

1-exp[-q(x+a,)]-b, for x,2x2-q,
J.(x) = 0.7
—{1-exp[q(x+a,)]}-b, for -a,zx2-x,

—{l—exp[q(x—ao)]}+bn for —x <x<a,

where ¢ is an exponent governing the shape of the magnetization functions fi(x) and b, is
defined as

b, = {exp[—q(x—ao)]—exp[—q(x+a0):|}/2. 9.8

A major hysteresis loop as described by the exponential model is shown in Figure 9.10 and

the four expressions describing function f;(x) running between the limits above are given in
9.7).

Jx)

1 Xm
0.5
-ao ao
6 -4 2 4 y 6
-0.5
1

~Xm

Figure 9.10: The hysteresis loop modeled with exponential functions showing the four regions
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Figure 9.11: Typical hysteresis loops modeled by (1) T(x) model; (2) exponential model

Two typical hysteresis loops are depicted in Figure 9.11 modeled by using the exponential
and the T(x) model. It shows that the deviation in the shape of the loops modeled by the two
different models is small and in some practical applications this difference is small enough
to use the exponential model for the Fourier analysis. For higher accuracy additional
exponential terms can be used with different exponents. The process may take more steps
but it is not going to be more complicated. Depending on the number of exponential terms
used the error can be reduced beyond a specified limit.

So far we assumed no reversible magnetization in the process (4 = 0). When the
reversible magnetization is not negligible the expressions in (9.7) will have an extra term
Aox linearly dependent on the excitation time function x(¢) (for detailed explanation the
reader is referred to Chapter 3). The integration of this term, however, for the waveforms
listed above (all linear functions of time) is trivial, therefore in the following the reversible
magnetization will be assumed to be negligible.

9.3.2 Triangular Excitation

A single period of x(#) triangular waveform of unity amplitude, symmetrical around the
horizontal axis with periodicity of 27 is shown in Figure 9.12. This waveform is formulated
in the expressions in (9.9). The corresponding magnetization waveform f.(¢) calculated from
(9.7) is also shown.

The starting points of the waves are shown at the positive maximum for the sake of
simplicity and to ease the calculation. In the analysis, triangular waves stretching between
negative and positive infinity are assumed, therefore we are at liberty to choose the starting
point arbitrarily anywhere without affecting the validity of the following calculations. Two
corresponding points are equally well defined for all hysteretic loops. These are the two
magnetization values at the positive and negative maxima of the excitation

—-2FAI+A for 0<¢t<T

x (1) = 9.9)

gﬁ(t—é—yi) for T<t<2T
T 2
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Figure 9.12: Triangular excitation function x(¢) and the corresponding magnetization function fo(¢)
calculated by using the exponential model

The substitution of the expressions of x(¢) from (9.9) into (9.7) results in the formulation of
the magnetization time function, which is now a piecewise-continuous waveform distorted
by the hysteretic process. The integration, leading to the Fourier components of the
frequency spectrum of the distorted waveform can be carried out according to (9.6). The
calculation will lead to the following expressions for the Fourier coefficients:

=0 (9.10a)

T T
a, :—z—(sin nol sin n—T~—cos no cos nZ)(l-—cos nT)
nT 24 2

2q 24 exp (—gA) cosh ga,
+ r (1-cos nT)

T [ +(q27A)2]

. T . T
2n (sin n sin nz—cos n%"? cos n%)(l—cos nT) (9.10b)

ZA)Z]

T [n* + (g ==
[ (qT

2 a,T T aT T
b =-—-[sin n—=— sin n— —cos n—— cos n— —exp (-qa,)](1-cos nT

2n .al . T a,T
[sin n—— sin n— —cos n—— cos n—
24, 24 2

T[n2+(q7:)]

—exp (—qa,)](1—cos nT). (9.10¢)
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9.3.3 Triangular Excitation and the Anhysteretic Process

Periodic magnetization often follows the anhysteretic process. It is appropriate therefore to
apply the triangular excitation to the anhysteretic curve and calculate the Fourier
components of the magnetization waveform. Since the shape of the curve is different from
the normal hysteresis loop the Fourier components introduced by the process will also be
different from the general case described in Section 9.3.1.

The anhysteretic magnetization process is defined in Chapter 4 and its characteristic
curve is formulated in (4.7). With the combination of (4.7) and (9.7) the three regions of the
anhysteretic magnetization curve f; can be formulated in the following expressions.

(fu + f.,)/2=1-cosh ga, exp (—gx) for x,2x2aq,

fo=1(fiy + £.4) 12 = {exp(—qa,)lexp gx—exp (—gx)]}/2 for a, 2x2-q,

(f; + f.0)/2=~1+cosh qa, exp gx for —a,z2x2x,
9.11)

where the indexes of the f, functions refer to the line numbers in (9.7).

After the substitution of the expressions of the triangular-wave excitation in (9.9) into
(9.11) and the subsequent integration of the resulting time function as described in (9.6), a,
a,, and b,, the Fourier coefficients of the magnetization waveform will come to the
following expressions,

a, =0 (9.12a)

T
a, -2 sin nZ cos nt (1—cos nT)
nT 2 24

2
2q 24 exp (—qA) cosh qa,
4 T

(1-cos nT) (9.12b)
T+ (g ~2Tﬁ>2]

b, =——2—cos r/—aﬂZ cos nI—(l —cos nT). (9.12¢)
nT 24 2

9.3.4 The Rayleigh Region

In 1887 Rayleigh [2] approximated the low-field region of the hysteresis loop with quadratic
parabolic curves. This approximation holds well in the region where the hysteresis loop has
low distortion in the vicinity of its crossover point with the horizontal axis. It has been used
for calculating the Fourier components of the magnetization waveform with good results.
Rayleigh’s model, however, breaks down at medium- and high-level excitation. To
overcome this shortcoming of his model, Lamont [13] followed by Becker and Doring [14]
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and later Bozorth [13] have suggested another approximation near to saturation. This is,
however, in the form of infinite series that requires a large amount of inconvenient
calculations.

Rayleigh parabolic approximation of the hysteresis loop can be expressed, by using the
original notations, in the form shown in (9.13). The choice of symbols seems
unconventional and they are only used for historical authenticity. Here B is the
magnetization as a function of H, the exciting field 4 represents the reversible permeability
(not the permeability of free space) and H,, is the amplitude of the field applied. The
positive and negative signs relate to the ascending and the descending part of the hysteresis
loop, respectively,

B=(u,+2aH,) H+a (H>: - H") 9.13)

The constant multiplier a in the second term governs the shape of the parabolic curve.

The exponential model as formulated in (9.7) describes the hysteresis loop in the
Rayleigh region and in the medium and saturation field region as well. The expressions in
(9.7), however, in the low-field region can be simplified further. When the Rayleigh
criterion, 4 <a, i.e. the amplitude of the excitation is below the value of the coercivity, is
satisfied, then two regions of the hysteresis loop will shrink to zero and the number of

expressions in the characteristic equation will be reduced to two. This new set of
expressions for the low field Rayleigh region is given in (9.14),

fu=1-exp [-q (x+ a))]-b, forthe descending part (9.14a)

f,=—[1-exp q (x-a,)]+ b, forthe ascending part, (9.14b)
where

b, =1-exp (—qa,) coshgx, . (9.15)

The Rayleigh model works reasonably well but only in a confined region of the hysteresis
loop, for low excitation. The exponential model at the same time is applicable in the full
excitation range, including the saturation region. By using the T(x) model as a reference the
possible error was calculated between the reference T(x) and the two hysteresis loops
modeled by using the Rayleigh parabolic approximation and the exponential model by using
the same parameters in all cases. The point-by-point difference between the Rayleigh and
the T(x) model was formed and plotted in Figure 9.13, using (9.13) and (3.3). This shows a
5% deviation from the reference within the specified limits of Rayleigh range (A4 <q,).

Outside this range the Rayleigh model deviates from the reference very rapidly leading to
large errors and to the loss of applicability for calculations. Against this, the difference
between the exponential model and T(x) shows an error of 4% within the Rayleigh region as
depicted in Figure 9.14. This is a maximum error and this will not be exceeded outside the
Rayleigh region up to the maximum limit into the deep saturation excitation. This possible
error can be further reduced and minimized below a specified limit by adding further
exponential terms as discussed before.
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AR%

\ﬂ_
Figure 9.13: The error (4R) of the Rayleigh model (R) relative to the T(x) model as a function
excitation

Figure 9.14: The error (4f;) of the exponential model relative to the T(x) model in the
Rayleigh region as a function of excitation

9.3.4.1 Hysteretic process

Let us assume that triangular excitation is applied in a hysteretic process and the input
fulfills the Rayleigh criterion. The magnetization in this condition can be calculated by
substituting x(f) expression from (9.9) into (9.14) choosing again 27 for the periodicity in
time. This will lead us to the following expression for the magnetization function as a time
function f;(f) with the hysteretic distortion.

1-exp [—q(z?At+A+ao)]—blz for 0<t<T
NOE 9.15)
—{l—-exp q [%(t—%)—ao]}+ b, for T<t<2T
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For the calculation of the Fourier coefficients f,(f) has to be substituted into (9.6) and the
integration to be carried out. This will yield the expressions shown in (9.16) for &, a,, and
b, coefficients,

a, =0 (9.16a)

4q£’i exp ( —qa,) cosh g4
g =—=7T oy (1- cos nT) (9.16b)
TI7 + (355)°]
T

b, = —2?[1 —exp (—qga,) cosh g4] (1- cos nT) (9.16¢)
n

9.3.4.2 Anhysteretic Process

In the case of the anhysteretic process the regions of the loop again reduced to two,
therefore we only need two characteristic equations to describe the process. Assuming the
same triangular excitation, the magnetization as a time function will come in the following
form,

exp (~q4;) 24, T
S exp (gl = (=)

_&(2__‘_]_@ exp{—q[—%(l—g)]} O<t=<T

1,@) = (9.17)
exp (-99) _24 3T
5 exp {gl -~ (==}

_exp (—ga,) 24
2

eXp{—q[—7(t—%)]} T <t<2T

After the substitution of (9.17) into (9.6) the integration can be carried out, which will
produce the following expressions for the Fourier coefficients,

a, =0 (9.18a)

q% exp (—qa,) cosh g4
a, = T 7 (1=cos nT) (9.18b)
T [n'+ (g=)']

w
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b, =0 (9.18¢)

In ferromagnetic component design and also in circuit calculations the waveform of prime
interest is not that of the magnetization but usually the secondary output parameters such as
the current or the voltage developed across the circuit element. These quantities are
generally proportional to the first derivative by time of the magnetization function. By
applying this law to the Fourier components, the frequency spectrum of the required output
waveform of a ferromagnetic component (transformer, choke, etc.) can be calculated by
taking the first time derivative of the Fourier components of the magnetization waveform.

9.4 Laplace Transform of Waveforms with Hysteretic
Distortion

9.4.1 General Remarks

Ferromagnetic components are normally used in conjunction with other components
forming a circuit. Circuits or systems are designed to perform a task specified by the
designer. It is an indispensable part of the design process to study and understand the
dynamic behavior of the system. Although most of the time we will talk about electrical
quantities such as voltages and currents, the principles described here are also applicable to
other fields where a variety of other quantities are involved in the design process such as
forces, displacements, flow rates, temperatures and so forth. Although the techniques for
system design by use of a limited number of components, which performs in a prescribed
manner, might be quite different in different fields, the analytical tool used in the design is
based on the same general principles.

A system or a circuit is a collection of interconnected components with one set of
dynamic variables called inputs or excitations and another one called outputs or responses.
The objective of the system analysis is to predict how the collection of components
responds, when a specified input excitation is applied. The analysis starts with the known
characters of the individual components described by their mathematical models. These are
combined in order to characterize the system by which its response to certain excitation
might be calculated.

In the early part of the 20th century Laplace transformation or operational calculus as it
often called became an indispensable tool for the system designers. The first step in an
analogue system design is to transform the components and combine them into a system in
the Laplace domain. Most circuit components have their standard transforms, which makes
it an easy task to build them into a circuit. When the excitation is applied to the circuit input
in a transformed form, the response in the Laplace domain might be calculated by using
only the four basic arithmetic operations.

One group of circuit components, however, does not fit into these neat categories. A
simple model in the circuit cannot replace magnetic components such as chokes and
transformers characterized by the double nonlinearity. So far they have been represented by
their so-called equivalent circuits composed of linear elements. These equivalent circuits
give relatively good approximations in the region of low signal level and when the effect of
the hysteresis is negligible. When the coercivity of the ferromagnetic core is large or when
the excitation level takes the substance nearer to saturation in the nonlinear region, these
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equivalents become unworkable. The time response of the system to the input cannot be
calculated in the described fashion.

The Laplace transform of an f{r) time function is defined by the following integral in
9.19)

L{SO) = Fls)= {70 exp (s1) dt. (9.19)

Here F(s) is the Laplace transform of the f{¢) time function and s is the Laplace operator.
The difficulty to describe mathematically the time response of these components due to two
reasons; the first is the lack of a suitable model to describe the double nonlinearity and the
second is the difficulty to carry out the integration in (9.19) in closed form. Out of the
presently known models so far, only the exponential model fulfills the criterion for closed-
form integration and only for a limited number of waveforms [15], as for the Fourier series
(see Section 9.3.1).

9.4.2 Triangular Waveform with Hysteretic Distortion

The triangular waveform of the excitation function is shown in Figure 9.12 and formulated
in the expressions in (9.9). The substitution of this periodic time function in (9.9) into the
mathematical expression of the model in (9.7) will yield the expression of the magnetization
as a piecewise-continuous time function in the following form

24 T T
1-exp {“q["?(t"‘:‘z‘)*“ao]}"blz OStSE_'_to
— I+exp {q[——27714(1‘—§)+610]}”b,2 -72;+t0§t$T
Hh@)= (9.20)
24 3T 3T
-—|+exp {q [7(t—7)—a0]}+ blZ TS[S——z~+tO
24 3T 3T
l—exp {—g¢q [70—7) - al}+b, ——2—+ t, <t <2T
where
tO=a°T
24
and

b, =exp (—qA)sinh qq, . 9.21)
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When fi(f) is substituted into (9.19) the transforming integral can be executed in a closed

form and Fy(s) the Laplace transform of the waveform distorted by the hysteretic process
can be calculated.

exp (—sﬂ)

F(s)=1p- —-%A— —exp (—gA) sinh ga, tanh S%]

cosh s—

. T
exp (—qd) [qzésmh (sE—qao)

cosh (sg -qa,)

24, . T T
—) —s cosh s—
(g T ) S5

a,T
X — —_—
s exp ( S2A 1
24,
— s° cosh s—
(qT)

+5

]

T
cosh s—

(9.22)

9.4.3 Triangular Waveform with Anhysteretic Distortion

When the process in hand is anhysteretic then x(¢) in (9.9) should be substituted into the
characteristic equation of the anhysteretic process in expression (9.11). This will yield the
magnetization as a function of time of the anhysteretic process produced by a triangular

excitation

f.@) =

1-cosh ga, exp {—q[—z?A(t—g)]}
22 C %) fexp g1 - 20~ 2)]
-exp—q[—%(t—%T-)]}
—1+cosh ga, exp {—q[—%(!—%)]}

24 3T
—1+cosh ga, exp {—q[~7(t—7)]}

exp (—qa,) 24 3T
- {exp q( T G 5 )]

—exp—q[~%<t—§>]}

24

1-cosh ga, exp {—q[—?(t—%)]}

_, StS§1+to
2 2
%%—to <1<

(9.23)
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The substitution of f(¢) function into (9.19) and the subsequent integration will lead to the
F(s) Laplace transform of the magnetization waveform.

a,T
cosh s —
Fi(s)=—(1— 24, cosh "‘;Ae"p( 94 424 tanh(~—s)+s]
§ cosh —s (q——) T
2
cosh s —
_ exp(-g4) (cosh qa, +sinh qa, ) . 9.24)

T

[(6]_) -] cosh 5

9.4.4 The Rayleigh Region

9.4.4.1 Hysteretic Process

It has been shown in Section 9.3.4.1 that the small-signal region the number of characteristic
equations is reduced to two as shown in (9.14) and by substituting the triangular time
function from (9.9) into (9.14) the magnetization function resulted from hysteretic
magnetization can be derived in the following form

l—exp{—qv[—géi(t—g)+ao]}—b,2 0<t<T
INOE (9.25)
—{l—exp61[—2—;—1(t—%)—ao]}+b12 T<t<2T

and
b, =1-exp (~qga,) cosh gA4.

The substitution of f(#) into (9.19) and the execution of the integration will yield the
Laplace transform of hysteretic magnetization waveform due to triangular field excitation.

T
tanh s —
F(s)= q—eXp (—ga,) cosh g4
s (617—5)

_exp (—gaq,) sinh g4

@2 -5)

(9.26)
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9.4.4.2 Anhysteretic Process

When the process of magnetization is anhysteretic, then the magnetization becomes a
single-valued function of the excitation. By assuming a triangular excitation again f(¢) the

magnetization as a function of time can be described by the following mathematical
expressions

exp(—qao)sinh[—qz—;i(t—-g)] 0<t<T
1= (9.27)
exp (- g a,) sinh [q%(t—%)] T<t<2T

The substitution of these expressions into (9.19) and the subsequent integration will result in
the Laplace transform of the distorted magnetization waveform in the Rayleigh region.

F(s)= w(q% cosh g4 tanh sz —s sinh g4) . (9.28)
24, L, T 2
(C]7) +s

The formulation of the Laplace transforms of these waveforms enables the designer to
regard circuit elements with ferromagnetic properties as same as other components for the
waveforms specified here. From the circuit response, the higher harmonics generated by the
hysteretic process can be calculated directly by using the mathematical relationship between
the Laplace and the Fourier transformation [16,17].

When the required quantity is the output voltage or the output current, a multiplication of
the calculated Laplace transforms with the Laplace operator s in each case will lead to the
required results. This is equivalent of differentiation by ¢ in the time domain.

9.4.4.3 Application

The picture would not be complete without the demonstration of the power of the method
described in the previous section.

Let us see what happens when a magnetic field changes slowly between two values
linearly in a periodic manner and the field is monitored with a search coil. In order to
increase sensitivity a high permeability ferrous material is used in its core. The e.m.f.
developed across the search coil can be calculated in the following form by applying
Faraday’s law of electromagnetic induction,

Vit) = N4, Z—B (9.29)
t
where V is the voltage developed on the coil, N is the number of turns on the coil and B is

the induction. B has the following relationship to the ® flux linking the coil,

®=BA, (9.30)

where A, represents the cross-sectional area of the coil. Assuming that the coil is operating
in the Rayleigh region (maximum value of the field is smaller than the coercivity) then the
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Laplace transform of the induction will be proportional to the expression in (9.26).
Assuming also that we are only interested in the waveform of the monitored signal long
after it started, we can lump all constants into K and say that the Laplace transform of the
induced e.m.f. V(s) due to the periodically changing field, is proportional to the term
representing the periodic part of the process in (9.26)

1 tanhsT—
Vs)=K, s - YRE (9.31)
(S‘(IT) S(S—q?)

The expression inside the square bracket represents the Laplace transform of the induction
and the s operator outside the bracket implies the first derivative of the bracketed expression
by time. The expression in (9.31) can be rewritten in the following form:

T
tanh SE 24
Vi) =K, s [--——=](1tq—). (9.32)
) s sT

It is now obvious that the first term is the Laplace transform of a triangular waveform with
2T periodicity, having the value of +1 at ¢ = 0. The second term is the integral of the same
expression by ¢. The voltage developed on the coil will be the first derivative of the sum of
these two expressions as shown. The predicted waveforms of the voltage and the induction
are plotted in Figure 9.15.

B(2), V(1)

Figure 9.15: The waveforms of the induction and the voltage developed on the search coil at the
hysteretic process

Due the difficulties in calculations, caused by the double nonlinearity people often assume
anhysteretic magnetization in place of the hysteretic process. When this is the case the
voltage developed across the coil will be proportional to the expression given in (9.28) as
given in (9.33) following the steps outlined before,
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tanh s T

24
Vi(s)=K, s {;—-—s2—2[1+(q

sT

Y1} (9-33)

Now the first term in the bracket represents a triangular wave and the second term is the
second integral of the same expression. The sum of the two terms represents the induction
time function and its first derivative as before gives the voltage on the search coil. The
waveform calculated from (9.33) is depicted in Figure 9.16.

B, 10
1

0.5
B(?) /
0. 2\% y/ 0.8 ;1
-0.5 /\
-1
Figure 9.16: The waveforms of the induction and the voltage developed on the search coil at the
anhysteretic process

140)

It is obvious from the two graphs that the two processes produce two vastly different results
even in the low-amplitude excitation (Rayleigh) region. It should be a fair warning to be
very circumspect when equivalents are used in design or calculations.

The transformation of these Laplace transforms back to the time domain has some
similarity to the Laplace operations to lossy systems. However, there are subtle differences
between the two cases and caution is needed in carrying out the transformation to the time
domain. In most cases the time function is recognizable for the user experienced in
transformations from its standard form. The transform that has no standard form in the time
domain, can be transformed into an infinite series of periodic trigonometric time functions
by a method, known since 1953 [16], based on Cauchy’s theorem. Some of these infinite
series are listed in the handbooks for Laplace transforms. The ways of finding the time
functions from the Laplace transforms will cover most if not all the functions resulting from
the transformations associated with magnetic phenomena.

It is worth noting that due to the close relationship between the two transformations,
Laplace and the Fourier, the method described here is also suitable for the calculation of the
Fourier components of signals waveforms, distorted by hysteretic processes, in exponential
as well as in trigonometric form [16,17].
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10. Magnetic Transient or Accommodation

10.1 General Remarks

Observations, supported by experiments, show that when a ferromagnetic substance is
subjected to repetitive minor loops, starting from another state of magnetization the new
final state will not take effect instantaneously. It will change around for a while converging
to a steady equilibrium loop. This process is normally referred to as an applied field
accommodation process and this associated phenomenon is a stabilization process, which is
in fact a transient, called accommodation or reptation in the literature. This transient often
takes some time to settle at steady state and may take a number of cycles to reach the stable
minor loop. Similarly to other transient phenomena, it is important to describe it with a
mathematical model to provide an analytical tool for the investigation of the behavioral
pattern of the substance, which reflects on its internal structure. The magnetic transient has
been the subject of intensive research [1-5]. It has to be emphasized again that the processes
described here are independent of the rate of change and are not to be confused with other
rate-dependent changes or aftereffects, like for instance, the effect of viscosity (see Chapter
12), where change can occur at constant field or even after the field has been removed. This
phenomenon is viewed here separately without the combination with other effects.

10.2 Transient Starting from Remanence

When a sample is magnetized to the point of x,0 on the hysteresis loop and then the
magnetizing field is removed, the magnetic state of the sample declines to the point of
remanence where the hysteresis loop crosses the vertical axis of magnetization. This state of
the sample will stay until it is subjected to a magnetizing field again. The change in the
magnetic state now will be dependent on two factors, firstly on the remanence of the sample
and secondly on the applied magnetic field. Let us assume that a linearly changing field is
applied to the sample, which is periodically reversed, changing symmetrically between its
positive and negative maxima. Although here we consider this simple triangular waveform
the end result will be applicable to any waveform of the applied field. Now the field will
cycle between the two reversal points x, and —x,. Let us also assume that at the beginning the
cyclic magnetization will start moving in the positive direction. This choice is completely
arbitrary and does not affect the end result of this analysis. By recalling the rule of return-
point-memory the sample will remember the maximum field of the loop where
magnetization was interrupted and the magnetization at the first instance will move on a line
leading to x,,0. The line of approach will be the same as that described in Chapter 5 and the
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curve will follow the path of the first order minor reversal loop. In mathematical terms the
function of magnetization in the first step will be as described in (10.1).

f,, =tanh (x—a,) b, +¢, (10.1)

where
b, =[tanh (x,,+a,)—tanh (x ,—a,)]/2 (10.2)

and ¢, can be calculated from the condition that at x = 0 , at the starting point, £;,(0) will be
equal to the value of the initial hysteresis loop £.(0), where £ is defined in (3.3a) as

f =tanh (x+aqa,)-b. (3.3a)

On the approach to x,0, however, the magnetizing path is going to be interrupted and
reversed at x,, the peak value of the cyclic magnetization. This point belongs to one and only
one hysteresis loop, which is characterized by its maximum x,,; For the descending branch
of the hysteresis loop the numerical value of this maximum can be calculated as

f.,(x,)—tanh (x, +a,)+tanh q,
[f..(x,)—tanh (x, +a,)](tanh a,)’ +tanh a,

(10.3)

ml

x_. = arctanh \/

For the calculation of this formula see (10.13) and (10.14). When the interruption is at x, = 0
the formula in (10.3) goes into expression (3.5).

When the magnetizing field is reversed at a positive x, in the second leg of the process,
the magnetizing path will follow another minor loop, which this time will approach —x,, in
the manner described in Chapter 5. The process will be interrupted again and reversed at the
negative maximum of the magnetizing field —x,. The repeated reversals of the field at x = x,
will produce open loops f, | and f.,, where »n represents the number of reversals. This
transient process converges to a stable closed loop characterized by the value of x,. The final
loop forms part of the same family of loops as the initial loop and its maxima f,, (-x,) and
fA(x;) will be located on the loci of all maxima of the same family, the anhysteretic
magnetization curve. The ascending paths of the process can be described in mathematical
terms in the following way

f., =tanh (x—a,)-b, +c, (10.4)
where # is the number of reversals

b, =[tanh (x,,,,*a,)—tanh (x,., —a)]/2 (10.5)

m(n-1)

¢ =, tanh (x,,,, —a,) —tanh (x—a,) (10.6)
tanh (x,., —a,) —tanh (-x, —q,)

and fi,,, equals £, at x = x,.
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A process calculated from the equations above is depicted in Figure 10.1. In the
calculations the following parameters were used: ag =3, X0 = 1.5, and x, =+ 1.

ff-fofo

X, =1

Figure 10.1: Magnetic transient loops starting from a state of remanent magnetization, leading to a
steady-state loop

When the amplitude of the cycling magnetizing field is large (as in the example) a small
number of reversals are enough to bring the process into a state of equilibrium. With smaller
amplitude the number of reversals will rapidly increase and, as is often the case in practice,
the sample going through such a magnetization process, needs an appreciable time to reach
a steady-state condition. In Figure 10.2 transient loops are depicted when the cycling
amplitude is reduced toand x, =+ 1/2.

FooFuf
‘ 1 _x=0.5

=05 ="
x =

Figure 10.2: Magnetic transient minor loops with smaller amplitude starting from the point of
remanent magnetization
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10.3 Transient Starting from a Point of Magnetization with
DC Field

10.3.1 Inside the Hysteresis Loop

Small-amplitude cycling magnetization can occur on either the ascending or the descending
part of the hysteresis loop. Since the two processes require different mathematical
formulation they are going to be treated here separately.

10.3.1.1 Ascending Side

Let us consider the case when starting from a constant DC magnetized state the sample is
subjected to a small cycling magnetic field of a constant magnitude superimposed on the DC
field. We assume that the magnetic state of the sample was previously moved slowly around
a hysteresis loop (magnetized) and stopped at a field of interruption marked by x, on the
ascending part of the hysteresis loop as shown in Figure 10.3. The choice of the interruption
again is arbitrary and it does not affect the end result. The mathematical expressions
describing the hysteresis loop at the start are given in Chapter 3 in (3.2) and (3.3) and b, is
specified above in (10.2).

For the sake of simplification we assumed again that the linear term is negligible
therefore 4o = 0. Let us consider the state of the sample before the cyclic magnetization
starts. By recalling the rule of return-point-memory we can say that the sample remembers
only two reference points. First is the point of interruption x,, the second point is x.o the
extremum of the hysteresis loop described in (3.2). The subscript 0 signifies again the
beginning of the process and describes the positive field maximum of the loop, which is the
locus of the point of interruption x, before the cyclic variation started. All other values of
maxima have been wiped out from the memory. By recalling the geometric axiom No. 4 one
can say that through these points — the point of interruption and the negative maximum x,,0 —
there are only two lines allowed to be drawn. Out of the two, the descending curve is the
only one that can describe the path that the first descending leg of the cyclic magnetization
will follow. Similarly to the reversal loops discussed in Chapter 5, the path will copy the
descending part of the major loop and follow the path of a first-order minor reversal loop. It
will pass through the two fixed points, namely the point of interruption x, and the negative
extremum —Xyo.

£, =tanh (x-a,)-b +b, (10.10)

where b, is defined in (10.2) and by, in (5.4).

This path of the magnetization will, however, never reach the maximum but it is going to
be interrupted, stopped, and reversed at a field value of x = x, — Ax, where Ax is the peak-to-
peak amplitude of the periodic AC field excitation. At this point the induction can be
calculated from (10.11) by substituting x, — Ax for x. thus fi;(x, — 4x). This induction value,
however, belongs to one and only one minor loop (see Axiom 5 in Introduction), which is
characterized by its maximum excitation field value x,;. At this point the descending part of
the minor loop is equal to the ascending path, therefore x,, can be calculated from this
equality. In mathematical terms
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at x =x, —Ax
[ (x, —Ax) =tanh (x, - Ax—a,)+b, (10.11)
where
b, =[tanh (x ,+a,)—tanh (x,, —a,)]/2. (10.12)
By using the following identities
tanh (x,,+ a,) = —20 Xy + tanh d, (10.13a)
I+tanh x,_, tanh g,
1 —_
tanh (x,, - a,) = 200 X ~tanh d, (10.13b)
I-tanh x_, tanh g,
(10.13) can be solved for x,,;, with the following result
x.. = arctanh | f.,(x— Ax) — tanh (x — Ax — a,) — tanh q, (10.14)

\I[fﬂ(x — Ax) - tanh (x — Ax — a,)](tanh @,)* —tanh a, '

This maximum will overwrite all negative values of maxima in the memory of the magnetic
substance and all other values will be wiped out, in accordance with the “wiping-out”
property.

The following path f., will start from the point defined by the (x, — Ax, f,(x, — 4x))
coordinates and end up at the point defined by (x,, f,(x;)). On the grounds of Axiom 5, only
one ascending path can be drawn through these two fixed points. These two points already
determine the descending path of the AC magnetization. The return leg will mimic the
ascending part of the hysteresis loop and will be shifted to meet the conditions above. The
function £, (second step) describing the ascending half of the first minor AC loop will take
the following form

f,=tanh (x—a,)+b, +¢,. (10.15)

Here ¢, is the shifting constant that will change between x = x; and at x = x, — Ax following
Axiom 7 and needs to be calculated in (10.15). There are two conditions to be satisfied,
therefore at the first instance two constants have to be determined. First, the descending and
the ascending paths will cross over at x = x, therefore the two functions will be equal at this
point thus

¢, =/f,—tanh (x—qa,)-b, for x=x,. (10.16)

Secondly, the two paths will cross over again when x = x,, — Ax therefore another constant
can be calculated from this condition.
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cs = f,—tanh (x —q,) - b, for x=x,6 —Ax. (10.17)

Finally, the transition between c¢s and ¢, will be, according to Axiom 7, which yields the
following expression for c,

c tanh (x, — Ax - a,) - tanh (x - a,)
® tanh (x, —Ax —a,)—tanh (x, — q,)
tanh (x, —a,) —tanh (x — q,)
> tanh (x, — a,) - tanh (x, —Ax—a,)

Cy =

(10.18)

With the substitution of (10.28) into (10.15) we will satisfy the necessary conditions to close
the loop at x = x, representing the positive peak and at x = x,, — Ax representing the negative
peak of the cyclic excitation and covering a full excursion of a cycle.

The calculation of the following cycles will follow a similar pattern. In the next step,
however, x,;,0 will be replaced by x,,; and x,,; by x,,2, and so on in succession held in the
sample memory. In the successive loop calculations each sequence will have its own
maximum, indexed by the sequence number (n for the nth loop) and calculated as shown,
from (10.14). The loops in every step change their size and after a number of cycles
approach an equilibrium state till they finally settle down to a steady state. From then on the
shape of the loop will not change and the process will follow the same up and down path.
As an illustration, Figure 10.3 depicts a set of converging transient loops with the steady-
state loop at the end of it, for the following parameters: x,0 = 2.5, ap = 1.5, x, = 1.5, and Ax =
0.5.

fonfr

0.48

x=1.5

0.475

.5x
0.465

Figure 10.3: Transient minor loops starting from a DC magnetic state. No part of the major hysteresis
loop is depicted

After the first large step the transient state approaches equilibrium in small steps and the
state of magnetization reaches the steady equilibrium after seven completed cycles. Figure
10.3 does not show the part of the major loop where the process started from and where x,
the starting point is.
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10.3.1.2 Descending Side

In this section we consider a case similar to that of Section 10.3.1.1 except this time the
slow magnetizing process is stopped at one point on the descending part of the hysteresis
loop and the superimposed cyclic small variation will start in the direction opposite to the
main field of magnetization. The small-field magnetization will traverse in some fashion
between the point of interruption and that set by the maximum amplitude of the cycling field
Ax. By using the logic and the rules explained in Chapter 5 the first leg of the process will
follow the path of the first-order reversal loop towards the positive maximum x,,0. This can
be formulated in the following expression

f,=tanh (x—a,)+ b + b, (10.29)

where £, signifies the first leg mimicking the ascending part of the hysteresis loop and b,
and b, are specified in expressions (10.2) and (5.6), respectively. This process will stop and
reverse at the point of x = x, + Ax where the traversing magnetization field reaches its
maximum value. The corresponding induction f; ( x, + Ax ) at this point will mark a
maximum x,, value corresponding to a loop to which this point belongs on the hysteretic
plane. With the use of the expressions in (10.13), x,;,; can be calculated as before

f.(x+ Ax) — tanh (x + Ax + a,) — tanh q,
[f,,(x — Ax) —tanh (x + Ax + g,)](tanh @, )*+ tanh a,

x,, = arctanh \/ (10.20)

This is the maximum, which the next leg is going to approach after having all positive
maxima wiped out from its memory. The return path has to go through the two points
specified by (x,, f) and (x , + Ax, £ ,(x, + 4x)) coordinates. The equation describing the only
descending line that satisfies the conditions will be

f,=tanh (x+a,)-b,+ ¢, . (10.21)

Here b, is the constant that will change between b, at x = x, and b;, at x = x, + 4x following
Axiom 7 and specified in (10.12). Similarly to the shifting constant before, ¢, can be
calculated from the two conditions above coming to the following expression

tanh (x, + Ax + a,) — tanh (x + a,)
® tanh (x, + Ax + a,) — tanh (x,+ a,)

Co =

c tanh (x.+ a,) — tanh (x + a,)
* tanh (x,+ a,) — tanh (x, + Ax + a,)

(10.22)

where ¢s and ¢ constants satisfy the above criteria.

The process follows a pattern similar to that described in Section 10.3.1.1. After a
number of cycles the process arrives at an equilibrium state. From then on the induction will
cycle around the same small loop while the exciting field traverses between x, and x, — Ax. A
change in the dynamic state of this equilibrium will only be triggered by a change in the
ongoing conditions of the field excitation.
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Loops calculated from these equations, starting on the descending leg of the hysteresis
loop, are depicted in Figure 10.4. The numerical values of the parameters used in the
calculation were as follows: x,0 = 3, x, = —0.75, 4x = 0.5, and g, = 1. The transient reached
the equilibrium state after six cycles.

oS
0.26
0.25

0.24

0.23

xr=-0.75
-0.7-0.6-0.5-0.4-0.3-0.2 x

Figure 10.4a: Transient loops starting from a DC magnetic state on the descending leg of the
hysteresis loop. No part of the major hysteresis loop is shown
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Figure 10.4b: The same transient loops starting from a DC magnetic state on the descending leg of the
hysteresis loop also showing a part of the major loop

10.3.2 Transient outside the Hysteresis Loop

In the previous sections the cycling magnetization started going up in the opposite direction
to that of the main magnetizing field. On the ascending part of the hysteresis loop the first
leg of the cycle reduced the induction whilst on the descending part it increased the
induction before returning to its original state. As a result of this the transient loops all fell
inside of the major loop where the small loops have started. This, however, is not
necessarily the case. The cycling magnetization in practice can start in either direction and
the choice is not always up to the experimenter to decide. When the magnetizing process
stops on the ascending side of the hysteresis loop and the cyclic exciting field starts up in
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the same direction then the initial conditions will differ from that described in Section
10.3.1.1. At the start of the cycling process, since it is outside of the hysteresis loop, the
sample has no memory of any return maximum. Due to this lack of first direction it can only
select the second possible choice, the saturation point, from which any further increase in
the exciting field will not produce any change in the magnetic state of the sample. This field
value is not usually excessively large and on the normalized scale it falls between 3 and 5.

The first leg of the cycle must go over two fixed points set by the coordinates of the point
of interruption x, and the saturation point x,,,. The process moves from a loop characterized
by x,,0. With

b, =[tanh (x,, + a,) - tanh (x, , — a,)]/2 (10.22)

at x = x, and zero at the saturation point the function describing the first leg can be put in the
following mathematical form:

/., =tanh (x —q,) + b, (10.23)
where b, can be calculated from the conditions set above as

b —p tanh @, —a)-tanh (x-a,) (10.24)

> "'tanh (x,, —a,) - tanh (x, - a,)

ml

The return path will follow the tangent hyperbolic line through two points. The two
crossovers at x, and x, + Ax will set the conditions for calculating the two shifting constants

¢, = f,—tanh (x + a,) + b, forx=x, + Ax (10.25)
where

b, =[tanh (x,,+ a,) —tanh (x,,, —q,)]/2 (10.26)
and

¢, = f,—tanh (x+ q,)+b, forx=x, (10.27)

.ﬁ’f&ﬁ"’.f;n xmo=1.5
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Figure 10.5: Small loops outside of the host hysteresis loop. The graph shows part of the hysteresis
loop to which the starting point belongs
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With the final shift of c¢y,, whose expression formally is identical to (10.22), the
mathematical formulation of the return path will be as follows

f.,=tanh (x+ a,)-b, +¢, (10.28)

By using the formulation above for the successive cycles and upgrading the index of x,, by
one, the model will describe the iterative process that approaches the steady-state condition
beyond which there will be no further change to the shape and size of the small cycle.

Xm
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¥ ¢ 8 0cycles
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Figure 10.6: The characteristic x,, values as function of number of cycles

Calculated from (10.23) and (10.28) a set of small loops are plotted in Figure 10.5. The
numerical parameter values used in the calculation were as follows: ay = 1.5, xp0 = 1.5, x, =
1, and 4x = 0.5. The saturation excitation value was 5 but the actual numerical value does
not influence the result of the calculation. The equilibrium state was reached after ten cycles
and the intermediate states oscillate around the final loop. The characteristic x,, values for
each step are plotted in Figure 10.6.

The process shows a perfect analogy to the damped oscillatory conditions of electronic
circuits.
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11. Magnetic Recording

11.1 Analogue Recording with AC Bias
11.1.1 Historical Background

Poulsen demonstrated successful recording of acoustic information on magnetic media for
the first time in 1898 [1] by recording human voice on ferromagnetic wire on a device called
the “telegraphone”. Magnetic tapes have been used as storing media for analogue
information successfully since Carlson’s patent in 1927 [2] long after the AC bias was
devised. Although the benefit of the currently exclusively used AC bias in the analogue
recording process has been recognized, in the early days of magnetic tape-recording, its full
and satisfactory explanation eluded scientists. To describe this rather seemingly simple
process in words is not easy, but putting this into mathematical terms until now has proven
far too difficult. Various theories and models have been offered to explain the role of the
AC bias in the last half century. Those that survived the scientific scrutiny provide
explanations for some or most of the associated problems, but the full coherent picture is
still unresolved. These models, due to their limitations, often produce contradicting results.
Although now the underlying phenomena are reasonably well understood and the various
models help us to understand the process, some of those involved in magnetic recording still
approach the problem with an open mind looking for a theoretical explanation.

It would be very difficult, if not impossible, to list all contributions published on this
subject during those years, because every decade produced its own model with its unique
explanation. Toomin and Wildfeuer [3], Holmes and Clarke [4], Wetzel [5], Camras [6] and
others put forward their ideas in the 1940s. The 1950s were marked by the contributions of
Bedford [7], Westmijze [8], Greiner [9], Axon [10], Woodward and Della Torre [11]. The
1960s and 1970s brought new approaches and new models like those of Mee [12,13],
Eldridge and Daniel [14], Herbert and Patterson [15] and Bertram [16], some of which are
accepted now in text books as standard models. One idea, however, put forward by
Sebestyén and Takécs in 1961 [17] failed to attract much attention. This model was based
on the assumption that the analogue information is recorded on the tape as a modulation on
the “carrier” in the changing shape of the bias waveform. The shape of the recorded wave
might change due to the nonlinear nature of the medium but the information is still
contained in the Fourier spectrum of the recorded signal. Not surprisingly, that was one of
those models, which, due to the lack of computing facilities at the time, was impossible to
prove let alone put it into a computable mathematical form.

In the following analytical approach, ideal conditions are assumed and for the sake of
presenting the mathematical model everything associated with the recording and
reproducing process will be taken as ideal. Naturally the various limitations and losses such
as gap loss, separation, losses due to the finite thickness of the medium and mistracking
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would apply in practical cases. These, however, are well-understood phenomena and well
documented in the literature. No particular orientation of recording, horizontal, vertical or
both, will be assumed in the analysis, but at playback it will be assumed that all recordings
are played back faithfully irrespective of their orientation.

11.1.2 The Recording Process

Nowadays, as a general practice, all linear analogue recording systems, sound and
instrumentation likewise, apply AC biasing at recording. In this form of recording the low-
frequency information is combined with, in fact linearly added to, a high-frequency signal
and the sum of the two current applied to the winding of the recording head. The magnetic
tape, moving at a speed in the field created in the gap of the recording head, is exposed to
the field. During the passage of the medium in the rapidly changing field, the field cycles
the magnetic particles round the hysteresis loop a number of times. As we have seen in
Chapter 4 when the field is the combination of an AC and a DC then the medium is exposed
to an anhysteretic magnetization process and we know from experience that the replayed
information is a single-valued function of the recorded signal [18,19]. This process is
characterized by the anhysteretic magnetization curve shown in Figures 4.1 and 4.2 and also
described by the expression in (4.7). By the substitution of

x=AcosQt+Bsinwt (11.1)
into (4.7), the induction in the magnetic media due to the alternating field can be calculated.

Here 4 and B represent the normalized dimensionless amplitudes of the low-frequency
information and the AC bias, respectively, while

==
T

is the frequency of the recorded information and

is the frequency of the bias. The combined field (11.1) projected on the anhysteretic curve
(4.2) will result in an expression for the magnetization shown in (11.2),

£ =[tanh (4 cos ET’i t+Bsin 2t +a)
T

+tanh (4 cosz?ﬂtwLBsin g—zt—ao)]/Z. (11.2)
T

The waveforms of the combined low-frequency information and the bias field as described
in (11.1) and the resulting induction are depicted in Figure 11.1 between 0 and 47 for the
o to L2 ratio of 40. The same induction waveform for 7= 407 is shown in Figure 11.2.
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The tape moves in the front of the recording head with constant linear velocity v. When
the tape leaves the field created in the gap of the recording head, the state of the magnetic
particles will decay from the state of anhysteretic induction to a state remanence, determined
by the anhysteretic remanent magnetization curve of the magnetic substance on tape. The
process is described in Chapter 6. The combined bias and signal, resulted from the high- and
low-frequency field, will stay remanent on the magnetic tape, reference to (6.20), described
by (11.3). We shall see that due to the anhysteretic recording process the recorded signal on
the tape, and consequently the reproduced information, will also be a single-valued function
of the recording signal as supported by experimental results,

f.. =tanh a, —[tanh (4 cos %g—cf + B sin —Zfd; +a,)

- s 0<E<A/4
tanh (4 cos ==& + Bsin —=£-a)]/2  fi 11.3a
+tanh (4 cos Af sin n é-a,)) or {3/1/4553,1 ( )

f_=tanh (—-ay)+[tanh (4 cos %”g + B sin —zlﬁg + a,)

—tanh (4 cos —2/—\75§+Bsin %’55—%)]/2 for A/4<x<31/4 (11.3b)
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Figure 11.1: The combined field (x) and induction (f;) waveforms shown for two bias wavelengths
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Figure 11.2: The waveform of the induction for 40 bias wavelengths (one signal wavelength)
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Figure 11.3: The waveform of the remanent magnetization recorded in the magnetic medium for five
bias wavelengths in normalized units

The combined remanent waveform, recorded in the magnetic medium, calculated from
(11.3) is shown in Figure 11.3. for a period of 51 (five bias wavelengths). As we can see,
the movement of the tape converted the magnetization time function into a linear space
remanence function, where & the new independent variable, is the linear position in the
length of the tape. The recording frequency in this new space domain becomes the recorded
wavelength. In this transformation A and A represent the recorded wavelengths of the
information and the bias, respectively, related to the recording frequencies in the following
way:

A=£[-v and /1=2£v (11.4)
Q w

where v the velocity vector points in the direction of £and v = |v| .

11.1.3 The Process of Replay

To read the information recorded in the magnetic medium, the recording process has to be
reversed. The recording medium is moved in front of the reproducing head normally, with
the same constant linear velocity and the information is read back from the tape by the
reading head. Let us see the mathematics of this process. In order to find E the replayed
voltage, developed across the winding of the reproducing head, one has to apply Faraday’s
law in this form

po_yd®__dM, (11.5)
dt det

where N is the number of turns on the reading head, @ is the flux engaged with the head
during replay. M, the remanent magnetism is linked to the flux @ by the following relation



Analogue Recording with AC Bias 115

M, =

o))

R (11.6)
and A is the engagement area between head and tape. Its magnitude is determined by the
physical attributes, design, and geometry of the head.

Under ideal conditions, with an infinitely narrow replay gap, it would not be difficult to
replay the whole recorded information in its entirety as shown in Figure 11.3 or rather its
derivative as can be seen from (11.5). In practice, however, primarily due to the gap loss
(this is due to the finite width of the gap in the replay head) the bias signal will not be or
will only partially be replayed. One has to create special conditions to satisfy the criteria of
A> g (where g is the width of the replay gap) to be able to detect the bias wavelength 4 on
the tape. The presence of the bias at replay, however, is a well-known phenomenon
especially in wide-band recording, and is classified as bias noise. The recording of the bias
forms no part of the presently accepted standard models of magnetic recording, therefore
this “phenomena” is regarded as a troublesome side effect in the process of magnetic
recording. People have long worked on the reduction or the total elimination of the “noise”
caused by the “leakage” (as it is often referred to) of the bias without perhaps realizing that
this forms the foundation of AC bias recording.

During the process of replaying the signal, recorded in the form formulated in (11.3), will
be reverted into a time function in the way opposite to the process at recording by running
the linearly stored information in front of a head, which is basically the same as the head at
recording. After transforming the information into the time domain, in the following
calculations €2 and @ will replace A and A, respectively, and ¢ will take the place of £ the
independent variable in (11.3) as described in (11.4).

We have seen that the information is coded into the shape of the “carrier” (bias) at
recording in the manner, which in fact is unique and not even similar to the well-known
amplitude modulation. By applying Faraday’s law to the remanent signal, reverted into a
time function by the moving tape and taking the first derivative of £; by ¢, we can calculate
the replayed signal as a function of time. The output voltage from the replay head will then
be proportional to the first derivative of f; by ¢ as shown below in (11.7)

ﬁ;:%*—=%{[sech(ao+/1 cos Q t+ Bsinw 1)] (Bw cos w t+ AQ sin Q £)
—[sech (a,— A cos Qt~Bsinw )} (-Bwcos @ ¢
0<t<n/2
+ AQ sin Q ¢)} for (11.7a)
3n/2<t<2rm
- df 1 . 2 .
f,.,=—c—i'—=——2—{[sech(a0+Acoth+B sin w )] (Bw cos w t — AQ sin Q ¢)
t

— [sech (a, — 4 cos Q t — B sin @ 1))’ (- Bw cos @ ¢

+ AQ sin Q £)} for n/2 <t < 3m/2. (11.7b)
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Figure 11.4 shows the plot of the expression £ as a function of time. The effect of the low-
frequency “modulation” is clearly visible on the replayed “carrier” waveform.

P

: rrrn

-0.25
-0.5
-0.75

Figure 11.4: The ideal replayed signal including the low frequency and the bias for five bias
wavelengths

It is obvious to the reader that the expression in (11.7) can be split into bias and signal
components represented by the cos €2¢ and the sinw ¢ multiplying terms, respectively. The
coefficient of the low-frequency information Cg, which is the replayed amplitude of the
recorded information (sin £2£) from expression (11.7) is as follows:

C,, = —_?{— [sech (a, + A cos Q ¢ + B sin @ ¢)]’

+ [sech (a, — 4 cos Q ¢t - B sin @ 1)’} (11.8a)

C, =—/128{ [sech (a, + A cos Q t + B sin @ 1))

— [sech (a, — A cos Q t — B sin @ 1)’} . (11.8b)

As one can see from (11.8) the two coefficients Cp. and Cy, above are identical and they
are the functions of the recorded signal and bias amplitudes 4, B, the low and the bias
frequencies (2 and , respectively, and also g, the coercivity of the recording substance. In
Figure 11.5 the full retrieved low-frequency information is shown, on its own, under ideal
conditions, without the bias spectrum.

In an ideal world and with an infinitely narrow replay head gap, all frequencies forming
part of the “low” frequency term recorded on the tape, shown in Figure 11.5 would be
replayed. Due to the frequency limitation, however, imposed by the finite gap, acting as a
low-pass filter or integrator, only the long wavelength, the low-frequency content will be
reproduced as an output. In a wide-band system the bias is partially replayed, particularly
when gap wavelength ratio approaches the second peak on the gap-loss curve. This
phenomenon is well documented and fully explained in the literature [18-21].
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Figure 11.5: The low-frequency component of the spectrum includes high-frequency components
from the bias
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Figure 11.6: The replayed monochromatic information recorded on a magnetic tape (bias amplitude is
not optimized) in normalized units

The final waveform of the replayed information f;, after a perfect integrating effect of the
head has been taken into consideration, is formulated in (11.9) and plotted in Figure 11.6,

_—AQ cos Q¢

fo= [sech (a, — 4 cos Q t - B)}

— [sech (a,+A4 cos Q ¢+ B)J*. (11.9)

11.1.4 Record, Replay Characteristics

Expressions (11.7a) and (11.7b) show that the amplitude of the reproduced information is
dependent on the coercivity of the recording material, both amplitudes of the bias and
recording signal as well as on bias and signal frequencies at recording. In this section the
interdependence of the various parameters will be calculated with their effect on the
reproduced information. First, Cy, is plotted as a function of the bias amplitude B for various
monochromatic recordings. Figure 11.7 shows the normalized amplitudes of three replayed
frequencies of 2 = 1/80, 1/40, 1/20, and 1/10 with 2 values normalized to the bias
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frequency w and for the recorded relative amplitude value of 4 = 0.5. One can see the linear
increase in amplitude with the recorded frequency. In practice the rate of change is limited
by the gap loss for recorded wavelengths comparable with g the width of the gap of the
replay head. The peak represents the bias amplitude for the maximum output. Below this is
the underbiased and above it is the overbiased region.

Cn
0.025

02=1/10

0.02
0.015
0.01
0.005

Figure 11.7: Replayed signal amplitude versus bias amplitude, signal frequency as parameter

In order to show the replayed amplitude dependence on the bias frequency, in Figure 11.8
the amplitude of a single frequency is plotted against B the bias amplitude, with the bias
frequency as parameter for w=0.75, 1, 1.5, and 1.75 values. The plot shows that around the
unity @ value the curves run near to each other and the optimum only shifts for large
changes in the bias frequency. In this calculation the parameter values were the same as
before.

0%
.006
.005
.004
.003
.002
.001

w=1.75

O O o O O o

Figure 11.8: Replayed signal amplitude versus bias amplitude, bias frequency as parameter

For most practical cases the selected bias frequency falls into the region where a small
frequency change will not cause a noticeable change in the optimum bias conditions (i.e.
curves between w=0.7-1).
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Figure 11.9: Replayed signal amplitude versus bias amplitude recording, signal amplitude as
parameter

Figure 11.9 depicts the dependence of the output on A4, the low-frequency amplitude. It
shows that while the output grows linearly with 4, the optimum bias conditions will shift
towards the lower bias amplitude with increasing 4.

In Figure 11.10 the output amplitude is plotted against B the bias amplitude with the
coercivity a, as the parameter. The curves show a very strong dependence of the bias on the
coercivity. The higher the coercivity the higher the AC bias amplitude required for the same
low-frequency output.
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.004
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.002

Figure 11.10: Replayed signal amplitude versus bias amplitude, the coercivity as parameter

11.1.5 Distortion

The fidelity of the replayed information from the recorded medium is the measure of the
quality of the recording media and the recording process. The deviation from the original
signal, called distortion, is the result of the nonlinear nature of the recording process. In the
signal output the distortion manifests itself in the frequency spectrum, which is different
from that of the input signal. The difference between the two spectra is the measure of the
distortion. For a faithful reproduction this difference between the two spectra should be
minimized. In the case of the AC recording the correct bias setting plays a vital part in the
fidelity of the recording process. At recording there is only one bias setting that will produce
minimum distortion to the output. Assuming monochromatic harmonic information is
recorded on the magnetic medium Figure 19.11 depicts three output signals recorded with
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low-level bias (underbiased), high-level bias (overbiased) and the correct biasing. The two
signals recorded with nonoptimized bias visibly differ from the monochromatic sinusoidal
waveform recorded with the optimum bias amplitude.

The distortion d of a monochromatic signal is defined as

J2a
d=+" (11.10)

9

where a, is the amplitude of the nth harmonics in the Fourier spectrum of the signal
replayed from the magnetic medium and ay is the amplitude of the fundamental frequency or
the first harmonic. The distortion suffered by the signal during recording can be studied by
Fourier analysis of the waveform of the replayed signal under varying conditions. By
varying B the bias amplitude the Fourier analysis shows a strong minimum in the distortion
as a function of B. Due to under- or overbiasing the distortion of the signal rapidly increases
with the dominant second harmonics (2£2) in the spectrum. The 3rd and 4th harmonics can
be significant but the other higher harmonics make insignificant contribution to the
distortion of the recorded signal at playback. The distortion as a function of the bias
amplitude B is plotted in Figure 11.12. The noted numerical parameters were used in the
calculation. In calculating the distortion, up to the 4th harmonics were taken into
consideration.

Jo
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0.004
0.002
50 100 50 200 Ot
-0.002
-0.004
-0.006

Figure 11.11: Replayed monochromatic signal waveforms recorded with the following recording
conditions, underbiased, overbiased, and optimum biased

For general reading on the subject of magnetic recording the reader is referred to the
literature [21-23].
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Figure 11.12: Distortion versus recording bias amplitude for a, = 2 and 3

11.2 Analogue Recording with DC Bias

Although the use of DC bias, for recording information on magnetic tape, is only of
historical interest, I felt that for the sake of completeness the model has to be applied to this
problem as well, in order to investigate and prove its general applicability. Fundamentally
by the application of DC bias at recording the signal to be recorded is shifted to the more
linear section of the curve of remanent magnetization, thus avoiding the highly nonlinear
part of the remanent magnetization curve around zero and the saturation region. The bias B
now becomes a constant and the expression for the field excitation will be as follows

x=AcosQt+B. (11.11)

The substitution of x in (11.11) into the expression of the anhysteretic remanent
magnetization (see (6.20)) will yield the following expression for the magnetic information
on the recording medium:

f., =tanh (—q,)+ [tanh (4 cosQ ¢+ B +q,)

—tanh (4 cos Q¢+ B—aq,)]/2 positive going (11.12a)
/.. =tanh g, —[tanh (4 cos Q¢+ B +a,)

—tanh (Acos Qt+B—a,)]/2 negative going. (11.12b)

Although these expressions are similar to (11.3) they are left in the form of time functions in
order to simplify the procedure. In fact, at recording they are converted to a function of £ on
the tape and reverted again at replay in the same way as in the case of the AC bias. The
significant difference is, however, that the bias here is no longer a sinusoidal time function
as in the AC case, but represented by a time-independent “constant”. The field and the
magnetization of a single frequency produced with DC bias are shown in Figure 11.13 over
two periods of the recorded waveform.
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Figure 11.13: The excitation x(¢) and the magnetization f(f) waveforms with DC bias as functions of

time.

After the application of Faraday’s law (described in (11.5) to (11.11)) the recorded
information can be reproduced. After differentiating f, and f_ in (11.12) by ¢ as in the

case of AC bias, the output can be formulated as in (11.13) below,

df, AQsinQr

fi= = =———~——2~——{[sech (AcosQt+B+a))
— [sech (= A cos Q¢ - B +a,)I'} for the positive part
f= _Y. =-—M{[sech (AcosQt+B+a))
dr 2
+[sech (- 4 cos Q t- B +a,)I’} for the negative part.
St
0.8
0.6 Ir
0.4
0.2
200 3Q0-200 500 ¢

(11.13a)

(11.13b)

Figure 11.14: The remanent and the replayed signal waveforms with the recorded signal reverted into
a time function for simplicity

In the DC biased case, assuming positive bias, all actions are going to take place in the first
quadrant, therefore only the positive remanence curve f. and its replay function f; . are
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going to play a part in the recording process. The waveform of the signal reproduced from a
monochromatic recording is plotted in Figure 11.4 with remanent recorded waveform.

ﬁ’ A=0.75
.008
.006
.004

o o O o

.002

Figure 11.15: Replayed signal amplitude versus bias amplitude, recording signal amplitude as
parameter 4 = 0.25, 0.5, and 0.75

The amplitude of the replayed signal Cy,, as can be see from (11.13) is the function of B
the magnitude of the DC bias, the coercivity ag, the frequency (2 and the amplitude 4 of the
recorded signal. Its dependence on B is plotted in Figure 11.15 with 4 as the parameter for
the values of 4 = 0.25, 0.5, and 0.75.

fiy=Cqcos Qt= _;Q {[sech (4 cos Q t+ B + a,)
+[sech (- A cosQt-B+a,))}cos Q1. (11.14)

B=2
0. 2B=15 B=2.5
0.1
B=1
1 2 3 5 ¢
-0.1}
-0.2}

Figure 11.16: Replayed signal waveforms for bias amplitudes B= 1, 1.5, 2, and 2.5 (B=2 is optimum)

The optimum bias where the signal replayed with the minimum distortion is at the inflection
point where the concave and convex sections of the remanent magnetism curve meet. In
Figure 11.16 four outputs of monochromatic sinusoidal recorded signals are plotted, with
under biased (B = 1, 1.5), optimum biased (B = 2) and over biased (B = 2.5) biasing
conditions. The waveforms recorded with non optimum bias show visible distortion. In
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Figure 11.17 C, is plotted against B and qy is being used as parameter for g, = 1.5, 2, and
2.5, which also marks the horizontal coordinate of the inflection point on the anhysteretic
remanance curve. With increasing coercivity of the recording material the bias increases for
the same signal output but the magnitude of the peak intensity remains the same. By
selecting recording material with different coercivity it will not change the magnitude of the
replayed information.

O O O O O O

VA
-0.001 B

Figure 11 17: Replayed signal amplitude versus bias amplitude coercivity as parameter a, = 1.5, 2,
and 2.5

Figures 11.15, 11.16, and 11.17 are analogous to Figures 11.7, 11.11, and 11.10 and have
similar characters.

11.3 Saturation Pulse Recording in Magnetic Media

As is often the case the information in the magnetic media is recorded not in the analogue
form like the AC and DC recording described in Sections 11.1 and 11.2, but coded in a train
of pulses. Although there are cases when the information is carried in the form of
modulation for instance in pulse position, phase or pulse length, most cases nowadays fall
into the category of digital recording. In all cases of pulse recordings, however, the medium
is completely saturated during the pulse duration into one or the other direction. This is the
so-called nonreturn-to-zero recording or NRZ for short. The problems associated with this
kind of recording are quite distinct from that of the nonsaturating recording. There is no
need, for instance, to erase previously recorded information from the tape prior to recording.
Saturation recording will wipe out any recordings left in the medium. Normally the medium
for digital recording is saturated in one direction for “1” and in the other direction for “0”.
At replay, following Faraday’s law (see (11.5)) the coded information is recovered from the
first derivative of the recorded signal. In an ideal case the presence or absence of these
pulses would be enough to extract the original information from the recording. The faithful
reproduction of the information from the medium is, however, a function of a number of
factors, like the design of the recording and the reading head, the properties of the magnetic
recording medium, etc. In the following we concentrate on the mathematical description of
the process taking place in the medium and will regard all other factors like heads,
recording, and replay conditions as ideal. The shape of the replayed signal has a limiting
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effect on vital factors like recording density defined as the number of pulses deposited on
the tape per unit length.

Under ideal conditions the pulses to be recorded are perfect with infinitely short rise time
at the beginning and infinitely fast changeover at the changeover point. In practice,
however, it is impossible to achieve pulses of such short rise time, therefore the pulses to be
recorded here will have finite rise and changeover periods like practical pulses. Figure 11.18
depicts pulses changing from positive-going to negative-going half, representing a “1” and a
“0” on the binary scale.

Let us take a single period of a train of pulses to be recorded that has a duration of 27 and
its rise time from O to maximum value is T as shown in Figure 11.18. The function fp
formulating the pulse for 27 period is shown in (11.14).

Zn for 0<t<r<t
T
X, for t<t<T-7
f,={-2(-T) for T-r<t<T+7 . (11.14)
T
-x, for T+7<t<2T-t
Zw (¢ - 27) for 27 -7 <t<2T
T
S
41X
2
. r 27T
1 2 3\ 4 5 &y
-2
-4 ~Xm

Figure 11.18: The shape of pulse to be recorded on magnetic media

The maximum field excitation is x,, = 4 on an arbitrary scale.
The induction produced by the above excitation is
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tanh (t—);i“-+a0)-bl 0<r<rt
tanh (x, +a,)—b t<t<T-r
£ ={tanh [-%ﬂ—ao]w, T-r<t<T+r (11.15)
tanh (-x, —a,)+5 T+7<t<2T-z
tanh [%mo]—b, 2T —7<t<2T

where b, is specified in (3.2).

The waveform of the induction function is plotted in Figure 11.19 for x,, values of 3, 4, 5,
6, and ao = 3 . During calculation the slope of the pulse, i.e. the ratio between 7z and x,, was
kept constant. The waveform of the pulses recorded in the magnetic medium as remanent
magnetism can be calculated by projecting the original input waveform to the recording
head onto the loop of remanent magnetism as described (6.6) and (6.8) and depicted in
Figure 6.2. The mathematical formulation of the recorded remanent pulse is shown in
(11.17) and its waveform is shown in Figure 11.20. The reader has to be warned that in
reality the recorded information on the tape is no longer a time function. Due to the motion
of the tape it is converted to a function of £ as before. At replay, however, it reverts again to
a time function as we have seen in section 11.2. Leaving these two linear conversions out of
the calculations does not affect the final results.

tanh (—ay)+tanh ("2 4 4,)
T

“tanh (A gy, for 0<i(<z
T

tanh a, - b, for t<t<T-1

tanh g, + tanh [—(t—_—T—)—xﬂ- —-a,]

f = ¢ . (11.16)

—tanh[——(t————z)—fﬂ+ao]+b, for T-7v<t<T+r
T
tanh (—a,) + b, for T+r<t<2T-7t
tanh (—a,) + tanh [—(t——zT)—x'“—+ao]
T

—tanh [ for 27 -7<t<2T

t—-T)x
)
T
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Xn=3,6

In=4

Figure 11.19: The induction waveform of a recorded pulse for x,, = 3, 4, 5, and 6

At replay we apply Faraday’s law as described in expression (11.5) and in doing so we
produce the first derivative by time of f; the remanent magnetism described in (11.16). This
first derivative is shown in (11.17). This expression carries all the information about the
recorded input signal and it is proportional to the total replayed information. It contains all
the time-dependent elements necessary to recreate the original recorded information.

The remanent waveform of the pulse recorded on the tape is shown in Figure 11.20 with
the waveform of the replayed information, i.e. its first derivative.
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Figure 11.20: The waveform of the pulse remanent in the recording medium and the first derivative
representing the replayed signal
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12. Other Hysteretic Phenomena

12.1 Magnetic Viscosity or Creep

So far all the magnetic phenomena described here were regarded as independent of the rate
of change. This does not mean that all phenomena associated with magnetism are
independent of time. Some of the effects will not stop with the removal of the exciting field
and the magnetic state of the material will continue to change some time after the excitation
has ceased. Others will not have an instantaneous effect on the material and the new
equilibrium state is only reached after a certain delay. These time-dependent phenomena
have been categorized in the literature as aftereffects [1,2]. There are a number of
aftereffects recognized and observed experimentally, however, not all of them are fully
explained to date by using physical principles. Some are irreversible, like aging but unlike
those above, aging does not fall into the category of aftereffects that are restricted to those
that permit the return to the original state by magnetic means. People have studied a number
of aftereffects [3—5]. One of these we are going to consider here is the phenomenon called
“viscosity” in the literature [6-10]. Ewing [11] observed as long ago as 1885 that when a
magnetic excitation was applied to a magnetic specimen, often a long time is needed for the
magnetic state to reach its final value. The duration of the change observed was longer than
it was expected from known causes like eddy current and in many cases the eddy current
explanation for the lag was not applicable anyway. Jordan [12] suggested in 1924 that this
form of lag is due to something analogous to viscosity and often referred to as Jordan lag.
An analogous lag was also observed during elastic mechanical deformation [13]. Ever since
Ewing’s observation this phenomenon has been an object of investigation [14].

Let us consider the case when in the excitation field an instant step is applied to the
material. The experimental observations show that the magnetic state or magnetization of
the specimen will change in two stages. There will be an instant x#H, change at the time
when the step function steps in and that will be followed by a gradual change that eventually
will reach an H, value added to the first step. In a simple case this second stage can be
described by an exponential function in time, so the whole magnetization process can be
described mathematically by expression (12.1) below,

M:;{H,#—Hz(l—exp iﬂ (12.1)
T

where M is the magnetization, # is the permeability and 7 is the time constant of the change.
By denoting the ratio of H, /H, = £ (12.1) can be rewritten in the following form
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M = uH, {Hﬂ(] —exp iﬂ . (12.2)
T

This equation is well known in electronics as the step response of an equivalent electrical
circuit, made up from a resistor R, and a lossy capacitor C in series, with a parallel loss
resistance of R, as shown in Figure 12.1. Its impedance Z is given in (12.3)

(12.3)

where = R,/R; and 7= R,C is the time constant of the circuit.

o

o O

Figure 12.1: Equivalent electrical circuit to explain the time dependency in (12.2)

Magnetic materials are often subjected to AC magnetization therefore it is appropriate to
investigate this delay effect when harmonic excitation is applied. Let us assume sinusoidal
current excitation stepping in at ¢+ = 0 in the form of i(f) = /lssinex and use Laplace
transformation to solve the problem. The Laplace transform of a sinusoidally changing time
function of w frequency is shown in (12.5),

L I[sin 0t] =1, T (12.5)

After using (12.4) and (12.5), Vy(s) the transformed voltage developing across the output
terminals due to the sinusoidal current of /, amplitude, as shown in Figure 12.1, can be
calculated in the following form

V,=1,0R 2‘ +£ ! (12.6)
(s+ )(a) +s)

o +s’

After the transformation of (12.6) from the Laplace to the time domain the time response of
the system to a sinusoidal input will be as follows
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L7 ()] = v, (6) = R, {sin ot + ﬂ“’f [exp (—4)
l+o't T

1.
—Ccos wt +—sin wt]}. (12.7)
T

The exponential term represents the transient due to the fact that the harmonic function steps
in at £ = 0 and the function is zero for ¢ < 0. The application of the above calculation to
(12.2), after having neglected the transient term, will give us the time response of the
magnetic specimen for AC excitation. It shows that its response is the same as to the
response of a harmonic field excitation shown in (12.8),

M H, @)= H {sin ot +—L2T 1~ cos wt+-sin o]} (12.8)
y7, 1+ wrt

2.2
T

For convenience we used the same symbol f§ for the resistor and the field ratio, the same
symbol 7was used also for the electrical and magnetic time constant.

It is customary to define the loss angle & as the ratio between the amplitude of the out-of-
phase and the in-phase components which, by using (12.8) leads us to the expression of

tan & =— P97 __ (12.9)
(I+p)+w't
tan ¢ is often referred to as the loss factor [8].

So far we have neglected the saturation effect and the hysteresis when AC excitation is
applied to the magnetic substance. In order to determine the hysteretic time behavior of the
magnetic substance the above results has to be applied to the mathematical expressions
describing the phenomena of saturation and hysteresis as described in Chapter 3. By
substituting expression (12.8) for x, the normalized excitation field, into (3.3), replacing ),
by the amplitude x, and neglecting the transient term, we arrive at the expressions
describing both the time-dependent aftereffect and the hysteretic phenomenon in the
following form

f. =tanh {x_[sin a)t+i—-/—3w—:7(—cos cot+——l—sin wt)]— a,}+b,
+w't T
for increasing ¢ values (12.10a)
. Pot |
f =tanh {x_[sin w1+ﬁ(—cos wt +—sin wt)]+ a,} - b,
T T
for decreasing ¢ values, (12.10b)
where b, as per definition
b, = {tanh [x (1+—[i——)+a]—tanh [x (1+—'8——)—a]}/2 (12.11)
[ m 2 2 0 m 2 2 0 . .
1+w't l+w’t
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The effect of this magnetic viscosity on the hysteresis loop has also been observed [15]. The
shape of the measured hysteresis loop depends on the speed of taking the measurement and
when harmonic excitation is being used the hysteresis loop measured becomes dependent on
the frequency used. In order to show the effect on the hysteresis loop let us substitute

y=sin wt in (12.10) and then by wusing the trigonometric identity of

cos wt =+1—sin’ wt the expressions of . and £ can be transformed into the following
form

1+w’t* +
f, =tanh [xm——z—z—ﬂ— y—(a,
I+o'r
+xm~—£%\/1 —-y*}]+b,  for increasing y (12.12a)
1+ w'r
2.2
/- =tanh [xmI—WL—C()—Z;Z——‘;_—ﬂy+(a0
I+w't
- x, Tﬁ—“’f—ﬂh -y*}]-b,  for decreasing y, (12.12b)
+o’t

while ¢ is running between 7/2 and 37/2y will change from -1 to I, and the excitation

between x,, to —x,, , therefore the rate dependence can be investigated by plotting £+ and f as
a function of y.

Jof

w=3() w=]
-0.6 -0 0.2 0.2 Ofiry 0.6

Figure 12.2: Hysteresis loops showing the dependency on the cycling frequency for the normalized
frequency values of w=1, 2.5, 5, 10, 20, and 30

A set of hysteresis loops calculated from (12.13) are depicted in Figure 12.2 showing the
general effect of the rate of change in the field excitation on the induction. The presence of
the “viscosity” shifts the hysteresis loop towards the first quadrant as the cycling frequency,
or as sweep rate increases. This effect, however, is more pronounced on the descending part
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of the loop, as can be seen on the loops in Figure 12.3. The experimental results are
presented here with the permission of O’Grady et al. [15].
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~~~~~ v 005088
0.0025 e 002508
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-0.0030

-0.0035 —1

Figure 12.3: Experimental results showing the effect of the change of rate in the sweeping excitation
field on the hysteresis loop (courtesy of O’Grady et al.)

For the calculations the following normalized parameters were used: x,, = 4, ao =1.5, 7= 1,
£=02,Co=6,and = 1,2.5,5, 10, 20, and 30. This effect and the behavior of the loop
against the rate of change has been verified experimentally as shown in Figure 12.3.

12.2 Hysteresis Loop of Coupled Systems

Although the hysteresis manifests itself most of the time in a sigmoid shape there are
instances when the shape differs from the “classical” character. One of the differing shapes
has been reported by Williams and Goertz in 1952 and Taniguchi in 1956 [16,17]. The alloy
of Fe-Co-Ni called Pernivar showed a wasp-waisted hysteresis loop. Since then this shape
has been referred to in the literature as “wasp-waisted” or “Pernivar-like” hysteresis loops
for obvious reasons. This is not the only alloy that shows this deviation from the normal
hysteresis but other alloys have also been found showing similar character. These
constricted loops, as recently has been found, also occur when a soft ferromagnetic layer is
coupled to an antiferromagnet [18]. The same constricted hysteresis loop can also occur
when Permalloy is baked at 425° C for 24 h [19]. While alloys have symmetrical wasp-
waisted hysteresis loops the coupled layers can display displacement of the loop along the
field axis. First this phenomenon was regarded as a scientific curiosity [20] but later, in a
different form, it was used in the fast-developing thin-film and multilayer technology. It
seems that the modeling and the characterization of the phenomenon with practical
parameters is forming a vital part of the multilayer research. The physical explanation
behind this phenomenon can and certainly does differ, from case to case, and there is no
intention here to go into the various explanations and theories of this effect. For this, the
reader is referred to the literature [19,21].
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In all this seemingly different characters created by this effect, there is one common
factor, that is the effect of the hysteresis. This book is devoted to the various hysteresis
loops and the geometrical descriptions of hysteretic phenomena. In the following a
mathematical model, based on the T(x) function, will be given with parameters controlling
the shape of the loop that can be linked to the physical parameters of the multilayer devices.
This in turn will facilitate the control the character of the device at will.

Let us assume that we start with two magnetic substances, one ferromagnetic and the
other antiferromagnetic. For simplicity we make them differ only in their coercive force and
by recalling (3.2) and (3.3) we can characterize them in normalized form as shown in
(12.13), (12.14), (12.15), and (12.16).

The first ferromagnetic substance characteristic equations are

S, =tanh [x—(1+d) aq,]+b  for increasing x (12.13a)

f,, =tanh [x +(1+d) a,]- b,
for decreasing x (12.13b)
Ayx — b,

where

b, ={tanh [x, +(1+d) a,]-tanh [x, —(1+d) a,]}/2 (12.14)

m m

The antiferrromagnetic character of the second substance can be formulated in the following
mathematical expressions

fo. =tanh [x+(1-d)a,]-b  forincreasing x (12.15.2)

/>, =tanh [x —(1-d) a,]+ b, for decreasing x (12.15b)
and

b, ={tanh [x +(1-d)q,]-tanh [x —-(1-d)q)]}/2. (12.16)

Here d is a dummy variable and for d = 0 (12.15) and (12.16) convert to (3.3) and (3.4),
respectively. The constants b, and b, follow the definition in Chapter 3.

Let us assume that the ensemble is a simple linear combination of the two magnetic
substances and the interaction in between them can be mathematically described as the
summation of the two characteristic equations as shown in (12.17) where f,, represents a
cross-coupled wasp-waisted characteristic function.

f., ={tanh [x—(1+d) a,]+tanh [x+(1-d)a,]}/2+b, (12.17a)

f._ ={tanh [x+(1+d) a,]+tanh [x—(1—d)a,]}/2+b, (12.17b)
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where

b, ={tanh [x, —(1+d) a,]+tanh [x, +(1—d)a,]}/4

m

+ {tanh [x, +(1+d) g)]+tanh [x —-(1-d)q,]}/4. (12.18)
Here, as before, the + and — subscripts signify the ascending and the descending legs of the
hysteresis loop, respectively.

The function £, is plotted for the parameter values of x,, = 5, ay = 2, and d = 0.1, 0.5, and
0.75 in Figure 12.4 showing a wasp-waisted character calculated from (12.17) and (12.18)
in the simplest case under the control of a single parameter.

ﬁw, -W

Figure 12.4: Typical wasp-waisted hysteresis loops for the normalized values of ¢ = 0.1, 0.5, and 0.75

For more complicated ensembles the number of free parameters can be increased to cover
various shapes of hysteresis curves. By extending the variability to all parameters we come
to the following characteristic equations in canonical form.

f.. ={tanh [ax-y—-(1+d)a,]+tanh [ax—-y+(1-d)a,]}/2+b, (12.19a)
f.,.={tanh [ax+y+(1+d)q,]+tanh [ax+y—-(1-d)a,]}/2-b, (12.19b)
b, ={tanh [ax, +y+(1+d) q,]+tanh [ax, +y—-(1-d) a)]}/4

— {tanh [ax_ -y —-(1+d) a)]+tanh [ax, —y+(1-d)a,]}/4 (12.20)

The number of free parameters has been increased from one, from the simplest case, to four.
These free parameters are not to be mistaken for the free parameters of the hysteresis loop
discussed in Chapter 3. To demonstrate the effects of the newly introduced parameters on
the character of the hysteresis loop a few hysteresis loops of various shapes are plotted in
Figures 12.5, 12.6, and 12.7 using «, S, and y as parameters, respectively.
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So far all wasp-waisted hysteresis loops analyzed here had point symmetry. In other
words a 180° rotation of the positive part of the loop in the first quadrant will take it to the
negative part of the loop in the third quadrants shown in Figures 12.4, 12.5, and 12.6.
Experience shows, however, that this kind of symmetry is not a prerequisite for a wasp-
waisted character although “Perminvar-like” alloys tend to follow this rule.

foul
1

Figure 12.6: Wasp-waisted hysteresis loops with 3 as parameter for the normalized values of = 0.5,
1, 1.5, and 2

In a thin-film ensemble when a soft ferromagnetic layer is coupled to an antiferromagnet the
magnetization process will not follow the same process, therefore the character of the
magnetization loop will be different. These materials are of critical importance as they form
the basis of the spin-valve sensors and in their development the characterization of the
material parameters and their effects play vital roles. In order to break away from symmetry
and introduce more freedom we have to introduce more independent parameters by
separating the characteristic hysteresis loops of the two layers by splitting the existing
parameters. By splitting up &, S, d, b, and c to o, s, B\, B, dy, da, by, by, and ¢y, ¢, with the
maximum number of free parameters we can write the generalized characteristic equations
in the following form.
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f.. ={B tanh [a,x —c, - (1+d,) a,]

+ B, tanh [Bix—c,+(1-d,) a,]}/2+b, (12.21a)
f.=1{Btanh [ x—c, - (1+d)) a,]

+ B, tanh [Bx+c,-(1-d,) a)]}/2-b, (12.21b)

b, = {B, tanh [a,x, +¢c, +(1+4d,) a,]

+ B, tanh [Bx,, +¢, —(I-d,) a,]}/4 — {B, tanh [a,x, —c,~(1+d) a,]

m

+ B, tanh [Bx, —c, +(1~d,) a,]}/4. (12.22)

Figure 12.7 depicts a hysteresis loop for a typical spin-valve structure [15] calculated from
(12.21) and (12.22) for the normalized parameter values tabulated below:

Xm = S,dl =0.8,C| =2, a, = 15,ﬂ| =2.5,B| =1

ao:2, d2=0.2, 6'2:-1, a2=2.5,ﬂ2= 15, B2= 1.

0.5 x

Figure 12.7: Hysteresis loop of a spin-valve structure

With the number of free parameters in hand a large variety of shapes can be produced to
describe even exotic hysteresis loops. In other field of sciences hysteretic loops will not
copy necessarily the sigmoid shape well known in magnetism. The freedom, however, given
by these formulae will enable people to describe hysteresis loops manifesting themselves in
shapes other than the sigmoid.

The model formulated here is also applicable to the case when the reversible
magnetization is not negligible and 4, has a finite value. The characteristic equations shown
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in (12.23) can be derived from (12.19) and (12.20) by adding the linear term Agx
representing the reversible magnetization to it.

f, ={tanh [ax -y —(1+d) g,]+tanh [ax-y +(1-d) a,]}/2
+ Ayx + b, (12.23a)
f,_={tanh [ax+y+(1+d)a,]+tanh [ax+y-(1-d)q,]}/2

+ Ayx — b, (12.23b)

The constant b5 is defined in (12.29).

ol

2

x 10

Figure 12.8: Wasp-waisted hysteresis loops with reversible magnetization.

A typical hysteresis loop representing a melt-spun specimen of SmyoFeqoTij after heat
treatment [22] is depicted in Figure 12.8 calculated from (12.23) for the following numerical
parameter values: x,, = 10, ap=3, f=2,d=0.3,4,=0.05, =1, a= 1.
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13. Unidirectional Hysteretic Effects

13.1 Magnetostriction and Magnetoresistance

Experience shows that the magnetization of a ferromagnetic material specimen in all cases
is accompanied by dimensional changes. The dimension increases in the direction of
magnetization and contracts at right angles to it. The existence of this effect, called
magnetostriction, was first discovered and reported by Joule in 1842 [1,2]. When the
material cools and passes through the Curie point it becomes ferromagnetic and goes
through a realigning process called the spontaneous magnetostriction. The randomly aligned
magnetic moments at this temperature go through a process of alignment and form large
clusters or domains. Whilst the moments form an order inside the domains the material still
retains its magnetically neutral state. It is called the “ordered but unaligned” state. When a
magnetic field is applied, the domains become ordered and aligned and turn parallel to the
field causing dimensional changes and stress in the magnetic material. The field-induced
magnetostriction arises when the magnetic domains are reoriented and lined up under the
influence of the applied magnetic field by rotating into the direction of the field. This
rotation is opposed by the binder holding the material together. This dimensional change or
magnetostriction is defined as the fractional change in the length of the specimen and
symbolised as A = Al/l, where A is the fractional change, / is the length of the specimen and
Al is the change in length. The effect at right angles to the magnetic field is called the
transverse magnetostriction. This particular hysteretic process is not direction sensitive and
is only affected by the magnitude of the applied field. It is often called strain hysteresis in
the literature. In an isotropic material the expected changes in the dimension of the
specimen are the same as in a magnetic field whose vector points to the right or to the left.
The material reaches its maximum or saturation magnetostriction state when all domains
turned parallel to the magnetic field vector. Magnetostrictive materials exhibit hysteresis
both for magnetization and for stress as functions of the applied magnetic field [3,4].
Similarly to magnetization we can distinguish between reversible and irreversible
magnetostriction. A typical magnetostrictive material investigated in the recent past is
Terfenol-D [5-7], its stress versus magnetic field character is similar to that depicted in
Figure 13.1. For further explanation on the subject of magnetostriction the reader may go to
the literature [8].

Magnetostriction is not the only hysteretic phenomena that manifests itself in this
manner. The electrical resistivity of magnetic materials also changes when subjected to a
magnetic field (MR). Normally there is an increase in the resistivity when the electric
current is parallel or antiparallel to the field vector and a decrease when the current and the
field are orthogonal [9]. This phenomenon forms an important part in the magnetic
multilayer technology directed towards sensor developments.
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Let us recall the general characteristic equations of the hysteresis loop from Chapter 3
and make them independent of the field direction by taking the absolute value of the
magnetization. After taking the absolute value of £ and f in (3.3) we arrive at a new set of
characteristic expressions shown in (13.1) formulating a new type of hysteresis loop,

f.|=|tanh (x—a,)+5)] (13.1a)

|f|=|tanh (x+a,)-b)] (13.1b)
and

b, =|tanh (x+a,)—tanh (x—a,)|/2. (13.2)

Figure 13.1 depicts a typical magnetostrictive hysteresis loop plotted by using (13.1) and
(13.2) for the values of @y = 0.1 and x,, = 3.

LA LA
1

Figure 13.1: Typical magnetostrictive hysteresis loop

Here, the change in physical dimension in the case of magnetostriction and the change in
electrical resistance are plotted against magnetic field. As shown in Figure 13.1 this type of
hysteresis shows properties different from the “normal” magnetic hysteresis loop in two
ways. One is that the strain is always positive (unidirectional) and symmetrical to the
vertical axis. The other is that the transition curves in this hysteresis group, unlike in a
magnetic hysteresis loop are not necessarily enclosed by the major hysteresis loop (see
Chapter 5).

In Figure 13.2 a plot is shown of the magnetostriction as a function of magnetic field
under compressive mechanical stress in Terfenol-D. The model also includes the effect of
the irreversible magnetostriction as shown in the plot. Plot a depicts the high-stress shape of
the A(H) function and plot b shows the zero-stress case [10,11].

Figure 13.3 depicts a typical magnetoresistive hysteresis loop showed by Au/Co ultrathin
multilayers at antiparallel magnetization.
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Figure 13.2: Calculated magnetostriction versus magnetic field curves for Terfenol-D (a) under
mechanical compressive stress; (b) no mechanical stress.
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Figure 13.3: Typical magnetoresistive hysteresis loop of ultra thin multilayers of Au/Co at antiparallel
magnetization in normalized units
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13.2 Butterfly Hysteresis Loops

All these magnetic effects have something in common and that is the hysteretic nature of the
process. These hysteretic processes combined with their insensitivity to the field direction
form a sub group in the family of hysteretic processes with their own character of hysteresis,
different from the “normal” hysteresis loop. This loop, because of its shape, is called the
“butterfly” hysteresis loop. As we have seen in the previous section, taking the absolute
value of the function of the magnetization led us to the mathematical formulation of the
simple magnetostriction. This will take us a step closer to developing the general
formulation of the “butterfly” hysteresis loop.

Butterfly hysteresis loops do not necessary fall into the subgroup of the hysteretic
phenomena described by (13.1) and look like that shown in Figure 13.1. Shapes reported in
the literature vary from a round-bottomed part above the zero line to sharp-pointed bottom
parts and narrow “wings”, etc. Since all the variants are possible in practice it appears that
there is a need for a general model, incorporating not all but at least most of the possible
shapes. The way to reach this solution is to apply Axiom 5, which says that through two
fixed points only two lines can be drawn inside a major hysteresis loop. It is known that the

|f+ and ]f_] functions must go through the points marked by the (x,,, f, ) and (-x,,, f...)
coordinates where
f;m = tanh (xm _a0)+bl (1333)
S =tanh (x, +a,) = by. (13.3b)

By applying the tangent hyperbolic rule the equations for the two lines between the two
points above can be written in the following form.

tanh (-x_ —a,)—tanh (x—q,)

Lo =|f+|

tanh (-x, —a,)—tanh (x,, —a,)

tanh (x
tanh (x

m

—-a,)—tanh (x—aqa,)

m

-a,)—tanh (-x,, —a,)

+£] for the ascending part (13.4a)

tanh (-x_ +a,)—tanh (x +a,)
tanh (-x,+ a,) — tanh (x,+ a,)

S = /.

m

tanh (x
tanh (x

w1 ) —tanh (x+a,)
+a,)—tanh (-x_+a,)

+/]

for the descending part. (13.4b)

m

The two functions f;, and f, are plotted in Figure 13.2 showing the characteristic behavior
of magnetostrictive material with (a) and without mechanical stress (b) for the normalised
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values of ay= 0.1 and x,, - 3. Figure 13.3 depicts a typical magnetostrictive hysteresis loop
of ultra thin multilayers of Au/Co at antiparallel magnetization.

Figure 13.4: Butterfly hysteresis loops for the normalized x,, values of 1, 2, 3 and 4.

Fonfor

Figure 13.5: Butterfly hysteresis loop dependence on coercivity in normalized units of ao =1, 1.25,
1.5and 1.75, x,, = 2.

As we can see (13.4) gives the characteristic butterfly hysteresis of a general mathematical
formulation in a normalized form. In order to make a fit to a specific case one has to use the
available parameters such as the coercivity ap and the maximum magnetization value x,,. In
Figure 13.4 the depicted loops show the dependence of the shapes on the value of maximum
magnetization for x,, = 1, 2, 3 and 4 at gy = 1. The loops shown in Figure 13.5 show the
same dependence on the value of the coercivity a, for the normalized values of 1, 1.25, 1.5
and 1.75 when the maximum magnetization is kept constant at x,, = 2.

A similar hysteresis loop has been detected in the microwave absorption in
superconductive powders [12].
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Letészem a lantot. Nyugodjék
Tdlem ne vérjon senki ...
J. Arany

Epilogue

“...difficile est saturam non scribere,.” said Juvenal. ’sed difficilior est saturam scribere”
is my conclusion.
If it is true for satire it is even truer for magnetism. Volumes of books have been written
about the subject in the last century. Some are good some are not so good. Some explore
the mystical theory of the magnetic effects others concentrate on the physics and the
practicalities behind the phenomena. No doubt they all contribute piecemeal to the general
knowledge of this rather difficult subject.

This book is my contribution, as a single building brick, to the Library of Knowledge
on Magnetism.

I feel obliged to give the translations of the two quotations used in this book at the
beginning and at the end. Although a large percentage of the readership would understand
and enjoy these quotations in the original language, nevertheless I could not take away the
enjoyment from the rest of the scientific community, not so familiar with this strange
tongue. The translated passages show, no doubt in my mind, the epitome of my poetical
flair and although I might not get the full approval of Arany for the translations, as a
modern verse monger, I feel I am not very far from the correct, modern interpretation of
the original passages, in English.

Egy kis fiiggetlen nyugalmat I’ve longed for independence, peace
Melyben a dal megfoganhat, For making book writing at ease.
Kértem kérve That was denied for years and years
S & halaszta évriil-évre. Forty odd ones to be “précis”.
J. Arany
Letészem a lantot. Nyugodjék. 1 put my biro down to rest
Tdlem ne varjon senki ... I’ve stopped here! Now do your best.
J. Arany
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