Circuits magnétiques

Objectifs : Étudier les circuits magnétiques en régime sinusoïdal. Connaître le modèle linéaire de la bobine à noyau de fer et la signification physique de ses éléments.

I À savoir

• Loi de Lenz-Faraday – Formule de Boucherot – Loi d'Hopkinson

Soit le circuit magnétique typique supposé linéaire, sans perte magnétique et sans fuite de flux, sur lequel est enroulé un conducteur électrique isolé supposé de résistivité nulle (Fig. 9.1).

N: nombre de spires du bobinage.

S (en m²) : section du circuit magnétique. ℓ (en m) : longueur de la ligne moyenne de champ dans le circuit magnétique. μ (en H/m) : perméabilité magnétique du circuit magnétique. Avec nos hypothèses : $B = \mu H$ où μ est supposée constante.

Loi de Lenz-Faraday

Alimenté par une tension u(t) variable, le bobinage est parcouru par un courant variable i(t), source d'un champ B(t) variable dans le circuit magnétique. Le flux $\varphi(t) = B(t) \times S$ de ce champ à travers une section droite du circuit magnétique est donc variable. La variation de ce flux se traduit par l'apparition d'une force électromotrice induite e(t). La figure précédente (Fig. 9.1) montre clairement que u(t) = -e(t). Son expression en instantané, avec u = u(t), e = e(t), $\varphi = \varphi(t)$, $\varphi_{\text{Tot}} = \varphi_{\text{Tot}}(t)$, est donnée par :

$$e = -N \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \frac{-\mathrm{d}\varphi_{\mathrm{Tot}}}{\mathrm{d}t}$$
 ou $u = N \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \frac{\mathrm{d}\varphi_{\mathrm{Tot}}}{\mathrm{d}t}$

où φ (en Wb) est le flux d'induction magnétique à travers une section du circuit magnétique (c'est le flux embrassé par spire), et $\varphi_{Tot} = N\varphi$ (en Wb) est le flux total à travers la surface totale $S_{Tot} = NS$ (c'est-à-dire embrassé par la totalité du bobinage). La relation précédente montre que si la tension *u* est sinusoïdale, le flux φ l'est également. En notation complexe pour le régime sinusoïdal, la loi de Lenz-Faraday s'écrit :

$$\underbrace{\underline{U} = j\omega N \Phi = j\omega \Phi_{Tot}}_{\text{Arg}(\underline{U})} \iff \begin{cases} U = \omega N \Phi \\ \text{Arg}(\underline{U}) = \frac{\pi}{2} + \text{Arg}(\Phi) \end{cases}$$

où $\underline{U}, \underline{\Phi}$ et $\underline{\Phi}_{Tot}$ sont les représentants complexes de u, φ et φ_{Tot} .

Formule de Boucherot

L'induction magnétique B = B(t) (en teslas : T) est reliée au flux d'induction magnétique $\varphi = \varphi(t)$ par $\varphi = BS$, soit en notation complexe pour le régime sinusoïdal :

$$\underline{U} = j\omega NS\underline{B} \iff \begin{cases} U = \omega NSB = \sqrt{2}\pi f NSB_{Ma} \\ Arg(\underline{U}) = \frac{\pi}{2} + Arg(\underline{B}) \end{cases}$$

On obtient alors la formule de Boucherot, valable en régime sinusoïdal, qui relie la valeur efficace de la tension à la valeur maximale de l'induction magnétique :

$$U \approx 4,44 \ Nf SB_{Max}$$

Loi d'Hopkinson

Cette loi (écriture du théorème d'Ampère dans le cas d'un circuit magnétique parfait : $H\ell = Ni$) relie le flux d'induction magnétique $\varphi = \varphi(t)$ au courant électrique i = i(t) par :

$$\varepsilon = Ni = \Re \varphi$$
 avec $\Re = \frac{1}{\mu} \times \frac{\ell}{S}$

où $\varepsilon = Ni$ s'appelle la force magnétomotrice (en A) et \Re la réluctance (en H⁻¹). En notation complexe pour le régime sinusoïdal, la loi d'Hopkinson s'écrit :

 $\underline{\varepsilon} = N\underline{I} = \Re \underline{\Phi}$ où $\underline{\varepsilon}, \underline{I}$ et $\underline{\Phi}$ sont les représentants complexes de ε , i et φ .

Remarque : μ étant constante, \Re est une constante et, en conséquence, *i* est sinusoïdal comme φ .

Inductance

En introduisant l'inductance L (en H), le flux total s'écrit :

$$\varphi_{\text{Tot}} = N\varphi = Li$$
 avec $L = \frac{N^2}{\Re}$

Électricité en 19 fiches : régimes sinusoïdal et non-sinusoïdal

Finalement, en notation complexe pour le régime sinusoïdal, on obtient :

$$\underline{\Phi_{\text{Tot}}} = N\underline{\Phi} = L\underline{I} \Longrightarrow \boxed{\underline{U} = j\omega N\underline{\Phi} = j\omega \underline{\Phi_{\text{Tot}}} = jL\omega \underline{I}}$$

Avec ces hypothèses, résistivité nulle du conducteur électrique et circuit magnétique linéaire sans perte et sans fuite, la bobine est parfaite, d'inductance L. En régime sinusoïdal, la tension est en avance de $\pi/2$ sur le flux et le courant (Fig. 9.2).

Figure 9.2 Représentation de Fresnel

• Modèle linéaire d'une bobine à noyau de fer

O Dunod – La photocopie non autorisée est un délit

Valable en régime sinusoïdal et hors saturation, il permet de prendre en compte les imperfections liées à la construction de la bobine ou à la nature des différents matériaux utilisés. Le schéma équivalent (Fig. 9.3) de ce modèle est composé des éléments ci-dessous :

- La résistance r rend compte de la résistance du conducteur électrique ramenée en dehors du bobinage entraînant des pertes par effet Joule.
- L'inductance magnétisante L_m rend compte du flux magnétisant φ_m (en Wb) qui est le flux d'induction magnétique à travers une section du noyau ferromagnétique.

$$N\varphi_{\rm m} = L_{\rm m}i_{\rm m}$$

- L'inductance de fuite L_f rend compte du flux de fuite φ_f (en Wb) qui est le flux en dehors ou sortant du noyau ferromagnétique.

$$N\varphi_{\rm f} = L_{\rm f}i$$

- La résistance R_f rend compte des pertes magnétiques (pertes par courants de Foucault et pertes par hystérésis) appelées « pertes fer ». La modélisation par une résistance aux bornes de L_m est justifiée car ces pertes sont quasiment proportionnelles au carré de la tension induite par le flux magnétisant φ_m (loi de Lenz-Faraday).

Figure 9.3 Schéma équivalent du modèle linéaire d'une bobine à noyau de fer

II Compléments

La présence d'un milieu ferromagnétique permet d'obtenir des bobines de grande inductance, mais engendre des non-linéarités : le flux dans le circuit magnétique n'est pas une fonction linéaire du courant (la perméabilité magnétique, la réluctance et donc l'inductance ne sont pas constantes). Le flux est saturé à partir d'une certaine valeur du courant, et il diffère selon que le courant croît ou décroît (cycle d'hystérésis). La caractéristique $\varphi = f(i)$ d'un circuit magnétique bobiné sans fuite de flux correspond à celle de B = f(H) du milieu magnétique aux facteurs d'échelle près. En effet, les relations : $\varphi = BS$ (flux à travers la surface S) et $H\ell = Ni$ (théorème d'Ampère) permettent de passer de B à φ d'une part et de H à *i* d'autre part (Fig. 9.4).

Figure 9.4 Cycle d'hystérésis et saturation d'un circuit magnétique

Il est donc clair que, du fait de la saturation, l'inductance $L = N\varphi/i$ est une fonction nettement décroissante de *i*. En conséquence, si on impose une tension sinusoïdale $u = U_{\text{Max}} \cos(\omega t)$ aux bornes de la bobine, alors :

- le flux est sinusoïdal : $Nd\varphi/dt = u$

- l'induction magnétique est sinusoïdale : $B = \varphi/S$
- l'excitation magnétique n'est pas sinusoïdale : $H = f^{-1}(B)$
- le courant n'est pas sinusoïdal : $i = H\ell/N$

Plus on s'éloigne de la zone presque linéaire (H faible) de la caractéristique B = f(H), plus le courant présente des pointes et moins il est sinusoïdal (exemple Fig. 9.5). Attention, en cas de forte saturation, la bobine se comporte pratiquement comme un court-circuit !

Bien que la présence d'un noyau de fer rende l'inductance de la bobine non linéaire et donc le régime non-sinusoïdal en toute rigueur, on utilise tout de même le modèle linéaire d'une bobine à noyau de fer (Fig. 9.3) et on suppose le régime sinusoïdal ; les éléments du modèle doivent être déterminés au fonctionnement nominal (tension, courant) car ils en dépendent.

Figure 9.5 Allure du courant dans une bobine à noyau de fer

III Mesures

Pour le modèle linéaire d'une bobine à noyau de fer, on se contente souvent d'un modèle R-L parallèle que l'on détermine en mesurant la puissance active P, le courant efficace I et la tension efficace U (voir fiche 7).

Bobine en régime sinusoïdal

1. On désire réaliser une inductance en bobinant N spires sur un circuit magnétique (voir Fig. 9.1) de section du fer $S = 26 \text{ cm}^2$ et de longueur de la ligne de champ « moyenne » $\ell = 50$ cm. Le circuit magnétique est supposé non saturé, sans hystérésis et de perméabilité relative $\mu_R = 1000$. La résistance du bobinage et les fuites de flux sont négligeables.

L'alimentation de la bobine s'effectue sous V = 230 V à f = 50 Hz. On désire obtenir une induction maximale $B_{Max} = 1,4$ T dans le fer. On suppose toutes les grandeurs sinusoïdales.

1.1. Calculer le nombre de spires N.

1.2. Montrer que la loi d'Hopkinson peut aussi s'écrire $\varepsilon_{\text{Fer}} = H_{\text{Fer}}\ell$. En déduire l'amplitude (ou valeur maximale) de la force magnétomotrice dans le fer $\varepsilon_{\text{Fer Max}}$.

2. La construction n'est pas parfaite et laisse apparaître des entrefers dont la somme $\sum e \ll \ell$. Ceux-ci sont comptés pour une force magnétomotrice d'amplitude $\varepsilon_{\text{Air Max}} = 250 \text{ A.}$

2.1. En déduire l'amplitude de la force magnétomotrice totale $\varepsilon_{\text{Tot Max}}$, puis les valeurs maximale et efficace du courant magnétisant i_{m} .

2.2. Evaluer la somme des entrefers $\sum e$.

3. Soit le schéma équivalent (Fig. 9.6) de la bobine en régime sinusoïdal. La puissance absorbée mesurée sous tension nominale est P = 47 W.

Figure 9.6 Schéma équivalent de la bobine

3.1. Repérer le courant magnétisant.

3.2. Exprimer et calculer la réactance puis l'inductance de la bobine.

3.3. Que modélise la résistance R? Exprimer et calculer R.

3.4. Exprimer et calculer la valeur efficace I du courant appelé par la bobine.

3.5. Dans le cas d'une réalisation peu soignée, la somme des entrefers est doublée. Comment varie alors l'inductance de la bobine ? Justifier.

4. Parmi les 5 grandeurs suivantes : v, i, φ , B(t) et H(t) dites celles qui sont sinusoïdales et celles qui ne le sont pas dans la réalité. Justifier.

Solution

1.1. Nombre de spires. Par application de la formule de Boucherot, on obtient :

$$N \approx \frac{V}{4,44\,fSB_{\rm Max}} \approx 285$$

1.2. Immédiatement en appliquant le théorème d'Ampère $(H\ell = Ni)$, ou en remplaçant dans la loi d'Hopkinson \Re et φ par leur expression, on obtient :

$$\varepsilon_{\text{Fer}} = \Re_{\text{Fer}} \varphi = \frac{\ell}{\mu S} \times \mu H_{\text{Fer}} S = H_{\text{Fer}} \ell$$

 $\varepsilon_{\text{Max}} = H_{\text{Max}}\ell = B_{\text{Max}}\ell/\mu \approx 557 \text{ A}$

D'où :

2.1. Présence d'entrefers. Les forces magnétomotrices s'ajoutent :

$$\varepsilon_{\text{Tot}} = \varepsilon_{\text{Fer}} + \varepsilon_{\text{Air}} = H_{\text{Fer}}\ell + H_{\text{Air}}\sum e$$
 (c'est toujours le théorème d'Ampère)
D'où : $\varepsilon_{\text{Tot Max}} = \varepsilon_{\text{Fer Max}} + \varepsilon_{\text{Air Max}} \approx 807 \text{ A}$

Les valeurs maximale et efficace du courant magnétisant sont données par la définition de la force magnétomotrice : $\varepsilon_{Tot} = Ni_m$

D'où :
$$I_{\rm m \ Max} = \frac{\varepsilon_{\rm Tot \ Max}}{N} \approx 2,83 \ {\rm A}$$
 et $I_{\rm m} = I_{\rm m \ Eff} = \frac{I_{\rm m \ Max}}{\sqrt{2}} \approx 2 \ {\rm A}$

2.2. Le flux étant conservatif et en supposant la section S constante dans les entrefers $(\sum e \ll \ell)$, on a :

$$\sum e = \frac{\varepsilon_{\text{Air Max}}}{H_{\text{Air Max}}} = \frac{\mu_0 \varepsilon_{\text{Air Max}}}{B_{\text{Max}}} \approx 0,22 \text{ mm}$$

Électricité en 19 fiches : régimes sinusoïdal et non-sinusoïdal

On constate qu'une très faible longueur d'entrefer est responsable d'environ 30 % de l'appel de courant.

3.1. Courant magnétisant. C'est le courant i_1 qui traverse L. D'où :

$$I_1 = I_m \approx 2 \text{ A}$$

3.2. Réactance et inductance de la bobine. On a :

$$X = \frac{V}{I_1} \approx 115 \ \Omega \Longrightarrow L = \frac{X}{\omega} \approx 365 \ \text{mH}$$

On peut aussi calculer l'inductance par la relation :

$$L = \frac{N^2}{\Re_{\text{Tot}}} \approx 365 \text{ mH}$$

avec $\Re_{\text{Tot}} = \Re_{\text{Fer}} + \Re_{\text{Air}} = \frac{\ell}{\mu S} + \frac{e}{\mu_0 S} \approx 2,22 \cdot 10^5 \text{ H}^{-1} \text{ et } N \approx 285$

3.3. Résistance R. Elle modélise les « pertes fer ». C'est le seul élément du schéma équivalent qui absorbe la puissance active, d'où :

$$R = V^2/P \approx 1,13 \text{ k}\Omega$$

3.4. Valeur efficace du courant appelé par la bobine. Les courants i_1 et i_2 sont en quadrature (i_1 est la composante réactive de i et i_2 sa composante active), d'où :

 $I = \sqrt{I_1^2 + I_2^2} \approx 2,02 \text{ A} \text{ avec } I_2 = V/R = P/V \approx 0,2 \text{ A}$

3.5. Si la somme des entrefers $\sum e$ est doublée alors la force magnétomotrice due aux entrefers est aussi doublée ($\varepsilon_{Air Max} \approx 500A$), ce qui augmente la force magnétomotrice totale ($\varepsilon_{Tot Max} \approx 1057A$), le courant magnétisant ($I_1 \approx 2,63 A$), et finalement diminue l'inductance ($L \approx 279 \text{ mH}$).

On peut aussi raisonner sur la réluctance : Si la somme des entrefers $\sum e$ est doublée, alors la réluctance due aux entrefers est aussi doublée ($\Re_{Air} \approx 1,37 \cdot 10^5 \text{ H}^{-1}$), ce qui augmente la réluctance totale ($\Re_{Tot} \approx 2,9 \cdot 10^5 \text{ H}^{-1}$), et finalement diminue l'inductance ($L \approx 279 \text{ mH}$).

- 4. Grandeurs sinusoïdales et non-sinusoïdales.
- La tension v est sinusoïdale car imposée par le réseau.
- Le flux φ est sinusoïdal car $v = N d\varphi/dt$, soit en complexe : $\underline{V} = j\omega N \underline{\Phi}$.
- L'induction magnétique B(t) est sinusoïdale car $\varphi = BS$.
- L'excitation magnétique $H_{\text{Fer}}(t)$ n'est pas sinusoïdale car $B = f(H_{\text{Fer}})$ n'est pas linéaire.
- Le courant *i* n'est pas sinusoïdal car $\varepsilon_{\text{Tot}} = Ni_1 = H_{\text{fer}}\ell + H_{\text{Air}}\sum e$ et $H_{\text{Fer}}(t)$ n'est pas sinusoïdal.

Fonction de transfert – Diagramme de Bode

Objectifs : Analyser le comportement d'un circuit électrique linéaire décrit par sa fonction de transfert ; tracer son module et son déphasage en utilisant des échelles linéairelinéaire ou linéaire-logarithmique (diagramme de Bode).

I À savoir

Soit un circuit électrique linéaire (voir fiche 1) où une grandeur (tension ou courant) désignée comme « sortie » et notée s = s(t) dépend d'une seule autre grandeur (tension ou courant) désignée comme « entrée » et notée e = e(t). Pour connaître son comportement en fréquence, on étudie le circuit en régime sinusoïdal en associant le nombre complexe $\underline{E} = [E; \alpha_E] = Ee^{j\alpha_E}$ à la grandeur sinusoïdale $e(t) = E\sqrt{2}\cos(\omega t + \alpha_E)$ et le nombre complexe $\underline{S} = [S; \alpha_S] = Se^{j\alpha_S}$ à la grandeur sinusoïdale $s(t) = S\sqrt{2}\cos(\omega t + \alpha_S)$ (Fig. 10.1).

Figure 10.1 Circuit linéaire – Fonction de transfert complexe

• Fonction de transfert (F.T.) complexe, ou F.T. isochrone, ou transmittance complexe <u>T</u> (voir Fig. 10.1)

C'est le rapport des représentants complexes de deux grandeurs (tensions et/ou courants en électricité) sinusoïdales synchrones et de même fréquence.

$$\underline{T} = \frac{\underline{S}}{\underline{E}} = \left[\frac{S}{E}; \alpha_S - \alpha_E\right] = \frac{S}{E} e^{j(\alpha_S - \alpha_E)}$$

Module T de la F.T. complexe <u>T</u>

$$T = |\underline{T}| = \frac{S}{E} = \frac{S_{\text{Max}}}{E_{\text{Max}}}$$
 avec $S_{\text{Max}} = S\sqrt{2}$ et $E_{\text{Max}} = E\sqrt{2}$

Électricité en 19 fiches : régimes sinusoïdal et non-sinusoïdal

68

• Déphasage φ de la F.T. complexe <u>T</u>

 φ est le déphasage entre s(t) et e(t), s(t) en avance de phase par rapport à e(t) si φ positif ; il s'exprime en radians (rad) ou degrés (°).

 $\varphi = \operatorname{Arg} \underline{T} = \alpha_S - \alpha_E \quad (\text{modulo } 2\pi)$

avec $-\pi < \varphi \leq \pi$ selon la recommandation de l'I.E.C (voir fiche 2).

• Gain G de la F.T. complexe \underline{T} (lg ou \log_{10} désigne le logarithme décimal)

 $G = 20 \lg |\underline{T}|$ en décibels (dB) tel que 1 B = 10 dB, B étant le symbole du bel **Remarque :** La formule $G = 20 \lg |\underline{T}|$ est valable uniquement pour des grandeurs telles que $P_S/P_E = S^2/E^2$ où P_S et P_E sont respectivement les puissances des signaux s(t) et e(t). Le gain en puissance s'exprime

- par $G_P = 10 \lg T_P$ où $T_P = P_S / P_E$.
- Fréquences de coupures à 3 dB (Fig. 10.2)

Les fréquences de coupures dites à -3 dB sont celles pour lesquelles le gain G est inférieur à sa valeur maximale de pratiquement 3 dB. Plus exactement, les fréquences de coupures dites à -3 dB sont les fréquences pour lesquelles le module T est égal au module maximal divisé par $\sqrt{2}$, ce qui correspond à la puissance maximale du signal divisée par 2.

Figure 10.2 Fréquences de coupures basse $f_{\rm L}$ et haute $f_{\rm H}$ à – 3 dB Bande passante à – 3 dB : $BP = f_{\rm H} - f_{\rm L}$

• Bande passante (voir Fig. 10.2)

On définit généralement la bande passante à -3 dB, comme le domaine des fréquences pour lesquelles le gain reste supérieur au gain maximal moins 3 dB.

Octave – Décade

Une octave (terme musical) est l'intervalle entre deux fréquences f_2 et f_1 tel que $f_2 = 2f_1$, et une décade est l'intervalle entre deux fréquences f_2 et f_1 tel que $f_2 = 10f_1$ (Fig. 10.3).

Figure 10.3 Octaves et décades (échelle log₁₀)

Tracé du comportement en fréquence

On trace :

- le module T (échelle linéaire) de la F.T. complexe en fonction de la fréquence ou de la pulsation (échelle linéaire), et
- le déphasage φ (échelle linéaire) de la F.T. complexe en fonction de la fréquence ou de la pulsation (échelle linéaire).

• Diagramme de Bode

On trace :

- le gain G (échelle linéaire) de la F.T. complexe en fonction du logarithme décimal de la fréquence ou de la pulsation (échelle logarithmique), et
- le déphasage φ (échelle linéaire) de la F.T. complexe en fonction du logarithme décimal de la fréquence ou de la pulsation (échelle logarithmique).

• Pulsation réduite – Fréquence réduite

$$x = \frac{\omega}{\omega_0} = \frac{f}{f_0}$$
 avec $\omega = 2\pi f$

• F.T. d'ordre n

Toute F.T. complexe d'ordre n (degré du dénominateur) peut s'écrire comme le produit de F.T. élémentaires du 1^{er} et/ou 2^e ordre. La F.T. peut se déduire de l'équation différentielle (voir fiche 1).

$$\underline{T} = \frac{b_0 + b_1 j x + b_2 (j x)^2 + \ldots + b_m (j x)^m}{a_0 + a_1 j x + a_2 (j x)^2 + \ldots + a_n (j x)^n}$$

Il est utile de connaître quelques écritures habituelles de F.T. élémentaires du 1^{er} et du 2^{e} ordre, et les diagrammes de Bode correspondants, afin d'identifier rapidement le type : passe-bas (LP : low-pass), passe-haut (HP : high-pass), passe-bande (BP : band-pass) ou coupe-bande (BC : band-cut), l'ordre (qui caractérise la raideur de la coupure) et la ou les fréquences de coupure.

• F.T. élémentaires du 1^{er} ordre F.T. passe-bas du 1^{er} ordre

 $\underline{T_{\text{LP1}}} = \frac{1}{1 + jf/f_0}$

Diagramme de Bode (Fig. 10.4) : $G_{LP1} = -20 \lg \sqrt{1 + (f/f_0)^2}$ $\varphi_{LP1} = -\arctan(f/f_0)$

Fréquence de coupure à -3 dB : f_0

F.T. passe-haut du 1^{er} ordre

$$\underline{T_{\rm HP1}} = \frac{jf/f_0}{1+jf/f_0}$$

Diagramme de Bode (Fig. 10.5) : $G_{\text{HP1}} = 20 \log(f/f_0) - 20 \log \sqrt{1 + (f/f_0)^2}$ $\varphi_{\text{HP1}} = 90^\circ - \arctan(f/f_0)$

Fréquence de coupure à -3 dB : f_0

Figure 10.4 Passe-bas du 1er ordre

Remarque: La F.T. du passe-haut peut s'écrire $\underline{T_{HP1}} = jf/f_0 \times \underline{T_{LP1}}$. D'où : $G_{HP1} = 20lg(f/f_0) + G_{LP1}$ et $\varphi_{HP1} = 90^\circ + \varphi_{LP1}$. car $|jf/f_0| = f/f_0$ et $\arg(jf/f_0) = +90^\circ$

• F.T. élémentaires du 2^e ordre

 f_0 s'appelle la fréquence propre, ω_0 la pulsation propre, m le coefficient d'amortissement, et $Q_0 = 1/(2m)$ le coefficient de surtension.

F.T. passe-bas du 2^e ordre :

$$\overline{\frac{T_{\text{LP2}}}{1 + 2mjf/f_0 + j^2(f/f_0)^2}}$$

Diagramme de Bode (Fig. 10.6) : Équation caractéristique :

$$1 + 2mx + x^2 = 0$$
 avec $x = f/f_0$

On distingue trois cas selon la valeur de l'amortissement m.

1) m > 1. L'équation caractéristique a deux racines réelles :

$$f_{1,2} = f_0(m \pm \sqrt{m^2 - 1}) \text{ et } f_0 = \sqrt{f_1 f_2}$$
$$\frac{T_{\text{LP2}}}{(1 + jf/f_1) \times (1 + jf/f_2)}$$

La F.T. peut être décomposée en un produit de deux F.T. passe-bas du 1^{er} ordre.

2) m = 1. L'équation caractéristique a une racine double : $f_0 = f_1 = f_2$

(dB)
$$G_{LP2} - asymptotes courbes$$

 0 $f_0 < m < \sqrt{2}/2$ f
 $m > \sqrt{2}/2$ f -40 dB/
 $décade$
(°) ϕ_{LP2} f_0 f
 -90 $m > \sqrt{2}/2$

$$\underline{T_{LP2}} = \frac{1}{(1 + jf/f_0)^2}$$

3) m < 1. L'équation caractéristique n'a pas de racine réelle, la F.T. ne peut pas être décomposée en un produit de deux F.T. passe-bas du 1^{er} ordre. On distingue alors à nouveau trois cas :

3.1) $\sqrt{2}/2 < m < 1$. Le gain ne présente pas de maximum et la courbe reste en dessous des asymptotes.

le

3.2) $m = \sqrt{2}/2$. La courbe du gain est la plus plate possible. $G_{\text{Max}} = 20 \lg \frac{1}{2m\sqrt{1-m^2}}$

3.3)
$$m < \sqrt{2}/2$$
. Pour $f = f_0 \sqrt{1 - 2m^2}$

gain présente un maximum :

F.T. passe-haut du 2^e ordre :

$$\underline{T_{\text{HP2}}} = \frac{j^2 (f/f_0)^2}{1 + 2mjf/f_0 + j^2 (f/f_0)^2}$$

Diagramme de Bode (Fig. 10.7) : Il se déduit de celui du passe-bas du 2^e ordre :

- pour le gain, en effectuant une symétrie par rapport à la droite d'équation $f = f_0$, et
- pour la phase, en effectuant une translation $de + 180^\circ$, car :

$$\underline{T_{\rm HP2}} = j^2 (f/f_0)^2 \times \underline{T_{\rm LP2}}$$

Figure 10.7 Passe-haut du 2^e ordre

Électricité en 19 fiches : régimes sinusoïdal et non-sinusoïdal

F.T. passe-bande du 2^e ordre :

$$\frac{T_{\rm BP2}}{I} = \frac{2mjf/f_0}{1+2mjf/f_0+j^2(f/f_0)^2}$$
$$= \frac{1}{1+jQ_0\left(\frac{f}{f_0}-\frac{f_0}{f}\right)}$$

Diagramme de Bode (Fig. 10.8) : Il se déduit de celui du passe-bas du 2^e ordre : - pour le gain, en ajoutant $20lg(2mf/f_0)$ à G_{LP2} , et

- pour la phase, en effectuant une translation de $+90^{\circ}$, car :

$$T_{\rm BP2} = 2m j f / f_0 \times T_{\rm LP2}$$

Bande passante à -3 dB : $BP = 2mf_0 = f_0/Q_0$

II Méthodes

Produit de deux F.T.

Si
$$\underline{T} = \underline{T_2} \times \underline{T_1}$$
 alors
$$\begin{cases} T = T_2 \times T_1 \\ \varphi = \varphi_2 + \varphi_1 \end{cases}$$
 et $G = G_2 + G_1$

où

 $T = |\underline{T}|, \varphi = \operatorname{Arg} \underline{T}, T_1 = |\underline{T}_1|, \varphi_1 = \operatorname{Arg} \underline{T}_1, T_2 = |\underline{T}_2|, \varphi_2 = \operatorname{Arg} \underline{T}_2,$ $G = 20 \lg T, G_1 = 20 \lg T_1 \text{ et } G_2 = 20 \lg T_2$

• Diagramme de Bode du produit de deux F.T.

Il se trace par l'addition « graphique » des gains d'une part : $G = G_2 + G_1$ et des déphasages d'autre part : $\varphi = \varphi_2 + \varphi_1$.

• Analyse rapide du comportement d'un circuit aux fréquences limites

Aux fréquences limites, on remplace les condensateurs et les bobines soit par un circuit ouvert soit par un court-circuit conformément au tableau (Fig. 10.9). Attention, le raisonnement porte uniquement sur les modules des impédances complexes.

Impédance (module)	$f \longrightarrow 0$	$f \longrightarrow \infty$	
Bobine : $Z_L = L\omega$	$\begin{array}{c} Z_L \longrightarrow 0 \\ \iff \text{court-circuit} \end{array}$	$Z_L \longrightarrow \infty$ $\iff \text{circuit ouvert}$	
Condensateur : $Z_C = \frac{1}{C\omega}$	$\begin{array}{c} Z_{\mathcal{C}} \longrightarrow \infty \\ \Longleftrightarrow \text{ circuit ouvert} \end{array}$	$\begin{array}{c} Z_C \longrightarrow 0 \\ \Longleftrightarrow \text{ court-circuit} \end{array}$	

Figure 10.9 Impédances (modules) aux fréquences limites

III Mesures

Pour relever le comportement en fréquence d'un circuit :

- On attaque le circuit par un signal (une tension le plus souvent) sinusoïdal $e(t) = E\sqrt{2}\cos(2\pi f t + \alpha_E)$ à l'aide d'un générateur qui permet de régler la valeur efficace E ou la valeur maximale $E\sqrt{2}$ et la fréquence f.
- Pour chaque fréquence f souhaitée, d'une part on mesure la valeur efficace S ou la valeur maximale $S\sqrt{2}$ de $s(t) = S\sqrt{2}\cos(2\pi f t + \alpha_S)$ pour en déduire le module T = S/E, et d'autre part on mesure le déphasage $\varphi = \alpha_S \alpha_E$.

Certains multimètres permettent d'effectuer une mesure en dB par rapport à une référence, généralement une tension de 0,775 V (l'unité est alors le dBu) ou de 1 V (l'unité est alors le dBV). On obtient ainsi directement le gain de la F.T. par une simple soustraction :

$$G = 20 \lg \frac{U_{\rm S}}{U_{\rm E}} = 20 \lg U_{\rm S} - 20 \lg U_{\rm E} = L_{U_{\rm S}/U_{\rm Ref}} - L_{U_{\rm E}/U_{\rm Ref}}$$

Où $L_{U_S/U_{Ref}}$ est le niveau (level) de la tension U_S en décibels par rapport à la tension de référence U_{Ref} , et $L_{U_E/U_{Ref}}$ est le niveau (level) de la tension U_E en décibels par rapport à la même tension de référence.

Mise en cascade de deux filtres passe-bas

Soit la mise en cascade de deux filtres passe-bas du 1^{er} ordre (Fig. 10.10).

Figure 10.10 Mise en cascade de deux filtres passe-bas du 1er ordre

Électricité en 19 fiches : régimes sinusoïdal et non-sinusoïdal

1. Exprimer la F.T. complexe, son gain et son déphasage.

2. Tracer les asymptotes de son diagramme de Bode pour $R_1C_1 = 10 R_2C_2$.

Solution

1. F.T. réalisée. Les deux étages sont indépendants. D'où :

$$\underline{T} = \frac{\underline{S}}{\underline{E}} = \frac{\underline{S}}{\underline{E}_2} \times \frac{\underline{S}_1}{\underline{E}} = \underline{T}_2 \times \underline{T}_1$$

D'où :
$$\underline{T} = \underline{T_2} \times \underline{T_1} = \frac{1}{(1 + j\tau_2\omega) \times (1 + j\tau_1\omega)} = \frac{1}{1 + jf/f_2} \times \frac{1}{1 + jf/f_1}$$

avec $f_1 = \frac{1}{2\pi\tau_1}$, $f_2 = \frac{1}{2\pi\tau_2}$ et $\begin{cases} \tau_1 = R_1C_1 = 1/\omega_1 \\ \tau_2 = R_2C_2 = 1/\omega_2 \end{cases}$
 $G = G_2 + G_1 = -10 \log[1 + (\tau_2\omega)^2] - 10 \log[1 + (\tau_1\omega)^2]$
 $\phi = \phi_2 + \phi_1 = -\arctan(\tau_2\omega) - \arctan(\tau_1\omega)$

2. Asymptotes du diagramme de Bode. Les gains et les phases s'ajoutent. En conséquence, on effectue la somme graphique des asymptotes des deux 1^{er} ordre avec $R_1C_1 = 10R_2C_2$, soit $f_2 = 10f_1$ (Fig. 10.11). Sur cette figure, les asymptotes des deux 1^{er} ordre pris séparément (pointillés) sont volontairement décalées vers le haut pour mettre en évidence la construction.

75

Valeurs moyenne et efficace – Facteurs de crête, de forme, d'ondulation

Objectifs : Calculer et mesurer les valeurs moyenne et efficace d'une grandeur en régime périodique permanent.

I À savoir

Régime périodique

Un circuit électrique est en régime périodique quand tensions et courants sont des fonctions périodiques du temps. Le régime périodique est un régime établi (permanent) obtenu quand tensions et courants sont devenus périodiques.

Signal périodique

Un signal périodique (tension ou courant en électricité) se reproduit à l'identique au cours du temps. Son diagramme temporel est une suite de motifs identiques. La période T d'un signal périodique est la plus petite durée entre deux instants où le signal se reproduit à l'identique :

$$\forall t, s(t+kT) = s(t)$$
 avec $k \in \mathbb{Z}$

Fréquence f et pulsation ω :

$$f = \frac{1}{T}$$
 (Unités : 1 Hz = 1 s⁻¹), $\omega = 2\pi f$ (Unités : 1 rad/s = 1 rad × 1 Hz)

Valeur moyenne

76

La valeur moyenne S_{Moy} d'un signal périodique s(t) de période T est :

$$S_{\text{Moy}} = \langle s(t) \rangle = \frac{1}{T} \int_{t_1}^{t_1+T} s(t) dt$$

Remarques:

- La valeur moyenne d'une somme est égale à la somme des valeurs moyennes :
 - $\langle s_1 + s_2 \rangle = \langle s_1 \rangle + \langle s_2 \rangle = S_{1Moy} + S_{2Moy}$ (linéarité de l'intégrale)
- La valeur moyenne d'un courant périodique est égale à la valeur d'un courant continu fictif qui transporterait la même quantité d'électricité (même charge déplacée) pendant une période.

$$\Delta q_{\text{Déplacée}} = \int_0^T i \, \mathrm{d}t \Longrightarrow I_{\text{Moy}} = \frac{\Delta q_{\text{Déplacée}}}{T} = \frac{1}{T} \int_0^T i \, \mathrm{d}t$$

Valeur efficace

La valeur efficace S_{Eff} d'un signal périodique s(t) de période T est donnée par :

$$S_{\text{Eff}}^2 = \langle s^2(t) \rangle = \frac{1}{T} \int_{t_1}^{t_1+T} s^2(t) dt$$

Remarques:

- Attention, la valeur efficace d'une somme est, en général, différente de la somme des valeurs efficaces. On a :

$$\langle (s_1 + s_2)^2 \rangle = \langle s_1^2 \rangle + 2 \langle s_1 s_2 \rangle + \langle s_2^2 \rangle = S_{1\text{Eff}}^2 + 2 \langle s_1 s_2 \rangle + S_{2\text{Eff}}^2$$

- À la place du qualificatif « efficace », on utilise souvent l'abréviation anglo-saxonne « r.m.s. » qui signifie « root mean square » et qui se traduit littéralement par « racine de la moyenne du carré ».
- La valeur efficace d'un courant périodique est égale à la valeur d'un courant continu fictif qui produirait la même quantité de chaleur (même énergie apportée) dans une même résistance et pendant une période.

$$\Delta W_{\text{Apportée}} = \int_0^T Ri^2 dt \implies I_{\text{Eff}}^2 = \frac{\Delta W_{\text{Apportée}}}{RT} = \frac{1}{T} \int_0^T i^2 dt$$
$$\implies P = \frac{\Delta W_{\text{Apportée}}}{T} = RI_{\text{Eff}}^2$$

Signal alternatif

Un signal périodique est dit alternatif si sa valeur moyenne est nulle.

FICHE 11 - Valeurs moyenne et efficace - Facteurs de crête ...

Décomposition d'un signal périodique

Tout signal périodique s(t) peut s'écrire comme la somme d'une composante continue égale à la valeur moyenne S_{Moy} , plus une composante alternative périodique (à valeur moyenne nulle) $s_{Alt}(t)$ parfois appelée ondulation.

$$s(t) = S_{Moy} + s_{Alt}(t)$$

 $\begin{aligned} \text{Remarque : Dans ce cas particulier, on a :} \\ \langle (S_{\text{Moy}} + s_{\text{Alt}})^2 \rangle &= S_{\text{Moy}}^2 + 2S_{\text{Moy}} \langle s_{\text{Alt}} \rangle + \langle s_{\text{Alt}}^2 \rangle \\ &\implies \boxed{S_{\text{Eff}}^2 = S_{\text{Moy}}^2 + S_{\text{Alt} \text{Eff}}^2} \\ \text{Et si } S_{\text{Alt} \text{Eff}}^2 \ll S_{\text{Moy}}^2 \text{ alors } S_{\text{Eff}} \approx |S_{\text{Moy}}| \text{ (cas d'un signal quasi-continu).} \end{aligned}$

• Inégalités entre valeurs moyenne, efficace et maximale

On a : $|S_{Moy}| \leq S_{Eff} \leq |S_{Max}|$

II Compléments

• Facteurs de crête, de forme, d'ondulation et d'ondulation crête à crête (Fig. 11.1)

Ils caractérisent le signal.

78

Facteur de crête	$F_{\rm C} = \frac{ s(t) _{\rm Max}}{S_{\rm Eff}}$		
Facteur de forme	$F = \frac{S_{\text{Eff}}}{ S_{\text{Moy}} }$	$E^2 - 1 + \theta^2$	
Facteur ou taux d'ondulation	$\beta = \frac{S_{\text{Alt Eff}}}{ S_{\text{Moy}} }$	r = i + p	
Facteur d'ondulation crête à crête	$\beta_{\rm CC} = \frac{\Delta S}{ S_{\rm Moy} }$	Ondulation crête à crête : $\Delta S = S_{Max} - S_{Min} = S_{Alt Max} - S_{Alt Min}$	

u	Figure 11.1	Facteurs of	de crête,	de forme	et d'ondulation
----------	-------------	-------------	-----------	----------	-----------------

Remarque: Si le signal est continu, F = 1, $\beta = 0$ et $\beta_{CC} = 0$. En conséquence, plus F se rapproche de 1 (ou β de 0) et plus le signal se rapproche d'un signal continu.

• Dipôles linéaires élémentaires (Fig. 11.2)

III Méthodes

- L'intervalle de temps pris pour le calcul de la valeur moyenne ou efficace doit être un nombre entier de périodes : $[t_1,t_1+kT]$ avec le plus souvent k = 1. Cependant, des raisons de symétrie peuvent amener à diviser cet intervalle par 2 ou davantage. Un choix judicieux de t_1 permet souvent de simplifier le calcul.
- Pour un calcul approché de la valeur moyenne ou pour des signaux simples (rectangulaires, triangles, etc.), on peut remplacer le calcul de l'intégrale par une somme algébrique d'aires comprises entre la courbe et l'axe des temps ; une aire étant comptée positivement si la courbe est au-dessus de l'axe et négativement si elle est en-dessous (Exemple : voir exercice ci-après).
- De même, pour calculer la valeur efficace dans des cas simples, on peut remplacer le calcul de l'intégrale du carré du signal par une somme algébrique d'aires.

IV Mesures

• Valeur moyenne

La valeur moyenne d'une tension (resp. d'un courant) se mesure avec un voltmètre (resp. ampèremètre) du type « D.C. : *Direct Current* » qui signifie « en courant continu ».

Valeur efficace

La valeur efficace d'une tension (resp. d'un courant) se mesure avec un voltmètre (resp. ampèremètre) du type « A.C. : *Alternative Current* » qui signifie « en courant alternatif ».

- Certains appareils mesurent la valeur efficace uniquement pour une tension ou un courant sinusoïdaux.
- D'autres appareils mesurent la valeur efficace de la seule composante alternative de la tension ou du courant. On les dénomme souvent un peu abusivement voltmètres ou ampèremètres « r.m.s. : root mean square ».
- Enfin des appareils mesurent effectivement la valeur efficace de la tension ou du courant. On les dénomme souvent voltmètres ou ampèremètres « efficaces vrais » ou « t.r.m.s. : true r.m.s. » pour les distinguer des précédents.

Avant toute mesure, il faut donc bien lire les notices des appareils utilisés.

Dans le cas d'appareils qui mesurent la valeur efficace de la seule composante alternative, par exemple d'une tension, on effectue la mesure en deux temps :

- mesure de la valeur de la composante continue $U_{DC} = U_{Moy}$ avec un appareil du type « D.C. »,
- mesure de la valeur efficace de la composante alternative $U_{AC\,Eff} = U_{Alt\,Eff}$ avec un appareil du type « A.C. ».

On calcule ensuite la valeur efficace par la relation (voir le paragraphe « À savoir ») :

$$U_{\rm Eff} = \sqrt{U_{\rm DC}^2 + U_{\rm AC\,Eff}^2} \quad \text{car} \quad u(t) = U_{\rm DC} + u_{\rm AC}(t)$$

Remarque : La plupart des appareils utilisés sont des multimètres capables de mesurer différentes grandeurs : tension DC/AC, intensité DC/AC, résistance, fréquence, etc. Les caractéristiques et limites de l'appareil doivent être connues : précision en fonction du calibre, impédance (selon la fonction : voltmètre, ampèremètre, etc.), bande passante (une bande passante limitée par rapport au spectre du signal fausse la mesure de la valeur efficace), facteur de crête, etc.

Grandeurs périodiques

Soient les chronogrammes de grandeurs périodiques (Fig. 11.3). Pour chacune de ces grandeurs :

1. Calculer sa valeur moyenne.

2. Calculer sa valeur efficace.

3. En déduire la valeur efficace de son ondulation (composante alternative).

4. Déterminer son ondulation crête à crête.

5. Calculer son facteur de forme, son taux d'ondulation et son facteur d'ondulation crête à crête.

80

Figure 11.3 Grandeurs périodiques - Chronogrammes

Solution

1. Valeurs moyennes. A partir du graphique, on somme algébriquement les aires :

$$U_{\text{Moy}} = \langle u \rangle = \frac{1}{T} (\alpha T U_{\text{H}} + (1 - \alpha) T U_{\text{B}}) = \alpha U_{\text{H}} + (1 - \alpha) U_{\text{B}}$$
$$= \frac{4}{5} \times 30 - \frac{1}{5} \times 30 = 18 \text{ V}$$
$$I_{\text{Moy}} = \langle i \rangle = \frac{I_{\text{Max}} + I_{\text{Min}}}{2} = 5 \text{ A}$$

2. Valeurs efficaces. La grandeur u^2 étant constante, on a :

$$U_{\rm Eff}^2 = \langle u^2 \rangle = U_{\rm H}^2 \Longrightarrow U_{\rm Eff} = U_{\rm H} = 30 \, {\rm V}$$

Equations du courant i:

i = 500 t + 4 pour $0 \le t \le 4$ ms et i = -2000 t + 14 pour 4 ms $\le t \le 5$ ms D'où :

$$I_{\text{Eff}}^2 = \langle i^2 \rangle = \frac{1}{T} \int_0^T i^2 dt$$

= $\frac{1}{5 \text{ ms}} \int_0^{4 \text{ ms}} (500 t + 4)^2 dt + \frac{1}{5 \text{ ms}} \int_{4 \text{ ms}}^{5 \text{ ms}} (-2000 t + 14)^2 dt$

Tout calcul fait, on obtient :

$$I_{\rm Eff} \approx 5,03$$
 A

3. Valeurs efficaces des ondulations.

$$U_{\text{Alt Eff}} = \sqrt{U_{\text{Eff}}^2 - U_{\text{Moy}}^2} = 24 \text{ V} \text{ et } I_{\text{Alt Eff}} = \sqrt{I_{\text{Eff}}^2 - I_{\text{Moy}}^2} \approx 0,58 \text{ A}$$

4. Ondulations crête à crête.

$$\Delta U = U_{\rm H} - U_{\rm B} = 60 \text{ V} \quad \text{et} \quad \Delta I = I_{\rm Max} - I_{\rm Min} = 2 \text{ A}$$

5. Facteurs de forme, taux d'ondulation et facteurs d'ondulation crête à crête.

$$F_{\rm U} = \frac{U_{\rm Eff}}{|U_{\rm Moy}|} \approx 1.67$$
 $\beta_{\rm U} = \frac{U_{\rm Alt\,Eff}}{|U_{\rm Moy}|} \approx 1.33$ $\beta_{\rm CC,U} = \frac{\Delta U}{|U_{\rm Moy}|} \approx 3.33$

 $F_{\rm I} = rac{I_{\rm Eff}}{|I_{\rm Moy}|} \approx 1,007$ $\beta_{\rm I} = rac{I_{\rm Alt\, Eff}}{|I_{\rm Moy}|} \approx 0,12$ $\beta_{\rm CC, I} = rac{\Delta I}{|I_{\rm Moy}|} \approx 0,4$

Pont de Graetz monophasé Dimensionnement d'une inductance de lissage

Soit le schéma (Fig. 11.4). La tension d'entrée s'écrit : $u_E = U_{EMax}\cos\theta$ où $\theta = \omega_1 t$, $U_{EMax} = 24\sqrt{2}$ V, $\omega_1 = 2\pi f_1$ et $f_1 = 50$ Hz. Les diodes sont supposées parfaites et $R = 10 \Omega$. La tension $u_S(\theta)$ est représentée (Fig.11.5).

Figure 11.4 Redressement double alternance en pont

Électricité en 19 fiches : régimes sinusoïdal et non-sinusoïdal

1. Exprimer et calculer la valeur moyenne de la tension $u_{\rm S}$.

2. Exprimer et calculer la valeur efficace de la tension $u_{\rm S}$.

3. Exprimer et calculer les facteurs de forme F, d'ondulation β , d'ondulation crête à crête β_{CC} et de crête F_C de la tension u_S .

4. Exprimer et calculer la valeur moyenne de la tension u_R .

5. Exprimer et calculer la valeur moyenne du courant $i_{\rm S}$.

En première approximation on admet que la tension u_S s'écrit (début du développement en série de Fourier de u_S):

$$u_{\rm S} = U_{\rm S0} + u_{\rm S1}$$
 avec $U_{\rm S0} = \frac{2U_{\rm S\,Max}}{\pi}$ et $u_{\rm S1} = \frac{4U_{\rm S\,Max}}{3\pi}\cos{(2\theta)}$

Cela permet d'écrire que le courant $i_{\rm S}$ est la somme $i_{\rm S} = I_{\rm S0} + i_{\rm S1}$ conformément au principe de linéarité (Fig. 11.6).

Figure 11.6 Principe de linéarité

Dans ces conditions :

6. Pour la composante continue : Simplifier le schéma équivalent. Que représente I_{S0} ? Montrer qu'on retrouve le calcul précédent.

7. Pour la composante alternative : Quelle est la pulsation de u_{S1} ? Exprimer I_{S1} en fonction de U_{S1} . En déduire l'expression du courant i_{S1} .

8. En déduire l'expression du courant $i_{\rm S}$.

9. Exprimer le taux d'ondulation $\beta_I = I_{\text{SAht Eff}}/I_{\text{S Moy}}$ où $I_{\text{SAht Eff}}$ est la valeur efficace de la composante alternative de i_{S} . Que devient l'expression du taux d'ondulation si $R^2 \ll (2L\omega_1)^2$? En déduire une formule pour choisir l'inductance de lissage. Calculer L pour un taux d'ondulation d'environ 5 %.

10. En déduire les expressions des courants $i_{\rm S}$ et $i_{\rm S1}$ en fonction du taux d'ondulation $\beta_{\rm I}$.

Solution

1. Valeur moyenne de la tension u_s . On travaille avec la variable $\theta = \omega_1 t$ sur une période $[-\pi/2; \pi/2]$:

$$U_{\rm S\,Moy} = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} U_{\rm S\,Max} \cos\theta d\theta = \frac{U_{\rm S\,Max}}{\pi} [\sin\,\theta]_{-\pi/2}^{\pi/2}$$

D'où :

: $U_{\rm S\,Moy} = \frac{2U_{\rm S\,Max}}{\pi} \Longrightarrow U_{\rm S\,Moy} = \frac{2 \times 24 \times \sqrt{2}}{\pi} \approx 21.6 \text{ V}$

2. Valeur efficace de la tension $u_{\rm S}$.

$$U_{\rm S\,Eff}^{2} = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} U_{\rm S\,Max}^{2} \cos^{2}\theta \,d\theta = \frac{U_{\rm S\,Max}^{2}}{2\pi} \int_{-\pi/2}^{\pi/2} (1 + \cos{(2\theta)}) d\theta$$
$$= \frac{U_{\rm S\,Max}^{2}}{2\pi} \left[\theta + \frac{1}{2} \sin{(2\theta)} \right]_{-\pi/2}^{\pi/2}$$
D'où : $U_{\rm S\,Eff} = \frac{U_{\rm S\,Max}}{\sqrt{2}} \Longrightarrow U_{\rm S\,Eff} = \frac{24\sqrt{2}}{\sqrt{2}} = 24 \text{ V}$

Remarque : Les fonctions $|\cos \theta|$ et $\cos \theta$ ont même valeur efficace.

3. Facteurs de forme F, d'ondulation β , d'ondulation crête à crête β_{CC} et de crête F_C de la tension u_S .

$$F = \frac{U_{\text{S Eff}}}{|U_{\text{S Moy}}|} = \frac{\pi}{2\sqrt{2}} \approx 1,11 \Longrightarrow \beta = \sqrt{F^2 - 1} = \sqrt{\frac{\pi^2}{8} - 1} \approx 48,3 \%$$
$$\beta_{\text{CC}} = \frac{U_{\text{S Max}}}{|U_{\text{S Moy}}|} = \frac{\pi}{2} \approx 1,57 \text{ et } F_{\text{C}} = \frac{U_{\text{S Max}}}{U_{\text{S Eff}}} = \sqrt{2} \approx 1,41$$

4. Valeur moyenne de la tension u_R . La loi des mailles permet d'écrire :

 $u_{\rm S} = u_L + u_R \Longrightarrow U_{\rm S\,Moy} = U_{L\,Moy} + U_{R\,Moy}$ (linéarité de l'intégrale) Or, en régime périodique :

$$i_L(t + kT) = i_L(t) \Longrightarrow U_{L \text{ Moy}} = 0$$

D'où :
$$U_{R \text{ Moy}} = U_{S \text{ Moy}} = 2U_{S \text{ Max}}/\pi \approx 21,6 \text{ V}$$

5. Valeur moyenne du courant is. La loi d'Ohm permet d'écrire :

$$i_{\rm S} = \frac{u_R}{R} = \frac{u_{\rm S} - u_L}{R} \Longrightarrow I_{\rm S\,Moy} = \frac{U_{R\,\rm Moy}}{R} = \frac{U_{\rm S\,Moy}}{R}$$

Électricité en 19 fiches : régimes sinusoïdal et non-sinusoïdal

84

D'où :
$$I_{\rm S\,Moy} = \frac{2U_{\rm S\,Max}}{\pi R} \approx 2,16$$
 A

6. Courant I_{S0} . L'inductance se comporte comme un court-circuit pour le continu, d'où :

$$I_{\rm S0} = \frac{U_{\rm S0}}{R} = \frac{2U_{\rm S\,Max}}{\pi R} \approx 2,16 \text{ A} \quad (I_{\rm S0} \text{ est la composante continue de } i_{\rm S})$$

7. I_{S1} en fonction de U_{S1} et expression du courant i_{S1} . La tension u_{S1} étant sinusoïdale de pulsation $2\omega_1$, on peut écrire en notation complexe :

$$\underline{I_{S1}} = \frac{\underline{U_{S1}}}{R + 2jL\omega_1} = \frac{\underline{U_{S1}}}{\sqrt{R^2 + (2L\omega_1)^2}} e^{j\phi} \text{ avec } \phi = -\arctan\frac{2L\omega_1}{R}$$

D'où :
$$i_{S1} = \frac{4U_{S \text{ Max}}}{3\pi\sqrt{R^2 + (2L\omega_1)^2}}\cos(2\theta + \phi)$$

8. Expression du courant i_{s} . On a $i_{s} = I_{s0} + i_{s1}$, d'où :

$$i_{\rm S} = \frac{2U_{\rm S\,Max}}{\pi R} \left(1 + \frac{2R}{3\sqrt{R^2 + (2L\omega_1)^2}} \cos\left(2\theta + \phi\right) \right)$$

9. Taux d'ondulation et choix de L. Par définition, on a :

$$\beta_{\rm I} = \frac{I_{\rm S\,Alt\,Eff}}{I_{\rm S\,Moy}} = \frac{I_{\rm S\,Alt\,Max}}{I_{\rm S\,Moy}\sqrt{2}} = \frac{\sqrt{2}R}{3\sqrt{R^2 + (2L\omega_1)^2}}$$

Si
$$R^2 \ll (2L\omega_1)^2$$
 alors $\beta_1 \approx \frac{R}{3\sqrt{2} \times L\omega_1} \approx \frac{R}{26 \times Lf_1}$

D'où : $L \approx \frac{R}{26 \times \beta_I f_1} \Longrightarrow L \approx 150 \text{ mH}$ pour $\beta_I = 5 \%$

10. Expressions des courants i_{s} et i_{s_1} en fonction du taux d'ondulation.

$$i_{\rm S} = \frac{2U_{\rm S\,Max}}{\pi\,R} \left(1 + \beta_I \sqrt{2}\cos(2\theta + \phi) \right) = I_{\rm S0} + i_{\rm S1}$$

Avec :

$$I_{\rm S0} = \frac{2U_{\rm S\,Max}}{\pi\,R} \text{ et } i_{\rm S1} = \frac{2U_{\rm S\,Max}\beta_I\sqrt{2}}{\pi\,R}\cos\left(2\theta + \phi\right)$$

Les exercices proposés sur les fiches suivantes peuvent également servir d'entraînement pour les points traités ici.

Séries de Fourier – Analyse spectrale

La théorie des séries de Fourier et l'analyse spectrale qui en résulte sont utilisables lorsque le circuit électrique, linéaire ou pas, fonctionne en régime périodique (voir fiche 11). Les développements en séries de Fourier renseignent sur les allures temporelles et les spectres des tensions, courants et puissances.

Deux cas particuliers sont fréquemment rencontrés :

- Le circuit électrique est linéaire. Le principe de linéarité permet d'étudier le circuit pour chacune des composantes sinusoïdales pour, au final, en déduire la grandeur recherchée (voir le paragraphe « Méthodes »).
- La charge est non-linéaire et alimentée à partir du réseau électrique. On peut alors souvent considérer la tension comme sinusoïdale (voir notamment fiches 14 et 19).

Objectifs : Utiliser le développement en série de Fourier d'un signal réel (tension ou courant en électricité), le régime étant périodique (permanent). Interpréter les représentations d'un signal réel sous différentes formes : temporelle, spectrale et mathématique. Le calcul des coefficients de Fourier et leurs relations sont traités dans la fiche suivante.

I À savoir

86

Théorème fondamental

Un signal périodique s de période T, fonction à valeurs réelles du temps satisfaisant les conditions dites de Dirichlet, est développable en une série de Fourier trigonométrique ou complexe. En particulier, en tout point t où s est continu, s(t) peut s'écrire :

$$s(t) = a_0 + \sum_{n=1}^{\infty} [a_n \cos(n\omega t) + b_n \sin(n\omega t)]$$

= $a_0 + \sum_{n=1}^{\infty} A_n \cos(n\omega t + \alpha_n) = \sum_{n=-\infty}^{+\infty} c_n e^{jn\omega t}$ avec
$$\begin{cases} a_0, a_n, b_n \in \mathbb{R} \\ A_n \in \mathbb{R}^+, \alpha_n \in \mathbb{R} \\ c_n \in \mathbb{C} \end{cases}$$

Cela signifie qu'un signal périodique s(t) développable en série de Fourier est la somme :

- d'une composante « continue » (valeur constante) égale à sa valeur moyenne : $S_0 = a_0$, et
- d'une infinité de composantes sinusoïdales, appelées « harmoniques », de fréquences 1/T, 2/T, ..., n/T, ...: $s_n(t) = A_n \cos(n\omega t + \alpha_n)$ où A_n est l'amplitude et α_n la phase initiale.

La composante de rang $n : s_n(t)$ est appelée « **harmonique de rang** n ». La composante de même fréquence f = 1/T que le signal est appelée « **fondamental** » de préférence à « harmonique 1 ». L'harmonique 2 a une fréquence deux fois plus grande, et l'harmonique n (de rang n) est une composante sinusoïdale de fréquence n fois plus élevée que celle du signal.

$$\omega = 2\pi f$$

$$f = \frac{1}{T}$$
 Unités : 1 Hz = 1 s⁻¹

Remarques:

- Les fréquences négatives : -1/T, -2/T, ..., -n/T, ... apparaissent en plus dans l'écriture en exponentielle complexe.
- Les conditions de Dirichlet, non détaillées ici, portent sur la continuité et la dérivation du signal (fonction réelle) et de sa dérivée. En pratique, ces conditions sont satisfaites pour les signaux rencontrés en électricité.
- Changement de variable

Pour simplifier les expressions, on effectue souvent le changement de variable :

 $\theta = \omega t \implies \omega T = 2\pi$ et $d\theta = \omega dt$

Représentations graphiques d'un signal périodique – spectres

Unités : $1 \text{ rad/s} = 1 \text{ rad} \times 1 \text{ Hz}$

On illustre le propos avec l'exemple d'une tension rectangulaire u(t) de période T = 1 ms, de rapport cyclique $\gamma = 1/5$, de niveaux 0 et 5 V (Fig. 12.1).

1) Représentation temporelle. Le chronogramme, ou diagramme temporel, renseigne sur la valeur instantanée du signal (exemple : voir Fig. 12.1).

Le chronogramme d'un signal périodique, de période T, est constitué d'une suite de motifs identiques de durée T.

2) Représentations fréquentielles. Le spectre d'amplitude et le spectre de phase renseignent sur la répartition du signal en fonction de la fréquence.

Le spectre d'amplitude et le spectre de phase d'un signal périodique, de période T, sont constitués de raies aux fréquences multiples de 1/T.

Spectre d'amplitude unilatéral

Le spectre d'amplitude unilatéral d'un signal réel périodique est la représentation graphique des raies d'amplitudes A_0 de la composante continue (valeur moyenne), et A_n des composantes sinusoïdales aux fréquences nf avec $n \in \mathbb{N}^*$ (exemple : voir Fig. 12.1).

$$A_0 = |a_0| = |c_0|$$
 $A_n = \sqrt{a_n^2 + b_n^2} = 2 \times |c_n|$ $(n \in \mathbb{N}^*)$

Électricité en 19 fiches : régimes sinusoïdal et non-sinusoïdal

88

Remarque : Attention, à la place du spectre d'amplitude, on rencontre aussi le spectre des valeurs efficaces, toutes les raies étant divisées par $\sqrt{2}$ à l'exception de celle de la composante continue. On représente alors :

$$A_0 = |a_0| = |c_0|$$
 $A_n \text{ Eff} = A_n / \sqrt{2}$ $(n \in \mathbb{N}^*)$

Spectre d'amplitude bilatéral

Le spectre d'amplitude bilatéral d'un signal réel périodique est la représentation graphique des raies d'amplitudes $|c_n|$ aux fréquences nf avec $n \in \mathbb{Z}$ (exemple : voir Fig. 12.1).

$$|c_0| = A_0 = |a_0|$$
 $|c_n| = |c_{-n}| = \frac{A_n}{2} = \frac{\sqrt{a_n^2 + b_n^2}}{2}$ $(n \in \mathbb{N}^*)$

Attention, le spectre d'amplitude bilatéral d'un signal réel étant pair, on se contente souvent de représenter la partie relative aux fréquences positives. Il ne faut pas alors le confondre avec le spectre d'amplitude unilatéral.

Spectre de phase

La représentation fréquentielle du signal serait incomplète si les phases initiales de ses composantes n'étaient pas précisées : c'est le rôle de ce diagramme. Le spectre de phase d'un signal réel périodique est la représentation graphique des raies des phases initiales α_n des composantes sinusoïdales aux fréquences nf avec $n \in \mathbb{N}^*$ pour un spectre unilatéral ou $n \in \mathbb{Z}$ pour un spectre bilatéral (exemple : voir Fig. 12.1).

$$\alpha_n = -\alpha_{-n} = \arg(c_n) = -\arg(c_{-n}) \quad \text{ou} \quad \begin{cases} \cos \alpha_n = a_n/A_n \\ \sin \alpha_n = -b_n/A_n \end{cases} \quad (n \in \mathbb{N}^*)$$

Valeur efficace

Pour un signal s(t) développable en série de Fourier, la formule de Bessel-Parseval donne le carré de la valeur efficace du signal (voir aussi fiche 11) :

$$S_{\text{Eff}}^2 = \langle s^2(t) \rangle = a_0^2 + \frac{1}{2} \sum_{n=1}^{+\infty} (a_n^2 + b_n^2) = a_0^2 + \frac{1}{2} \sum_{n=1}^{+\infty} A_n^2 = \sum_{n=-\infty}^{+\infty} |c_n|^2$$

Ainsi, le carré de la valeur efficace du signal s(t) est la somme du carré de sa valeur moyenne et des carrés des valeurs efficaces de tous ses harmoniques. Ce qui s'écrit :

$$S_{\text{Eff}}^2 = A_0^2 + \sum_{n=1}^{+\infty} A_n^2_{\text{Eff}}$$
 où $A_0 = |a_0|$ et $A_n = \frac{A_n}{\sqrt{2}}$

II Compléments

• Facteurs de forme et d'ondulation (voir aussi fiche 11)

On note : $A_0 = |a_0|$

Facteur de forme	Facteur ou taux d'ondulation	Relation	
$F = \frac{S_{\text{Eff}}}{ S_{\text{Moy}} } = \frac{\sqrt{A_0^2 + \sum_{n=1}^{+\infty} A_n^2}}{A_0}$	$\beta = \frac{S_{\text{Alt Eff}}}{ S_{\text{Moy}} } = \frac{\sqrt{\sum_{n=1}^{+\infty} A_n^2} E_n^2}{A_0}$	$F^2 = 1+\beta^2$	

Taux de distorsion harmonique

Noté *THD* (total harmonic distortion), il sert à chiffrer la déformation d'un signal qui devrait être sinusoïdal. Compris entre 0 et l'infini, c'est le rapport de la valeur efficace du signal privé de sa composante continue (valeur moyenne) et de son fondamental sur la valeur efficace du fondamental.

$$THD = \frac{\sqrt{\sum_{n=2}^{+\infty} A_n^2_{\text{Eff}}}}{A_{1 \text{ Eff}}} = \frac{\sqrt{A_2^2_{\text{Eff}} + A_3^2_{\text{Eff}} + \dots + A_n^2_{\text{Eff}} + \dots}}{A_{1 \text{ Eff}}}$$

Ainsi défini, si le signal est sinusoïdal, le THD est nul. On définit aussi le taux de distorsion de l'harmonique n par :

$$d_n = \frac{A_n \text{ Eff}}{A_1 \text{ Eff}} \longrightarrow THD = \sqrt{\sum_{n=2}^{+\infty} d_n^2}$$

Remarques sur les représentations fréquentielles

 Le signal temporel étant une fonction réelle, le signal fréquentiel correspondant possède une partie réelle et un module pairs, une partie imaginaire et une phase impaires. On a alors :

$$c_{-n} = \overline{c_n} \iff \begin{cases} |c_{-n}| = |c_n| \\ \arg(c_{-n}) = -\arg(c_n) \end{cases}$$

- On peut aussi représenter un signal par sa partie réelle et sa partie imaginaire en fonction de la fréquence, mais cette représentation est moins facile à interpréter.

- Un signal est complètement caractérisé par son spectre d'amplitude et son spectre de phase.
- Le spectre d'amplitude est indépendant de l'origine des temps choisie contrairement au spectre de phase.

III Méthodes

Circuit électrique linéaire excité par une grandeur périodique

Dans le cas d'un circuit électrique linéaire, si une grandeur (tension ou courant) désignée comme signal de « sortie » noté s = s(t), dépend d'une seule autre grandeur (tension ou courant) désignée comme signal d'« entrée » noté e = e(t), alors s = s(t)et e = e(t) sont reliés par une équation différentielle à coefficients constants (voir fiche 1).

Une fois le régime périodique établi pour un signal d'entrée e(t) périodique défini par morceaux, le signal de sortie s(t) est composé d'une succession de régimes transitoires déterminés chacun par l'équation différentielle linéaire à coefficients constants pour un morceau donné de e(t).

- Une première méthode consiste bien sûr à résoudre cette équation pour chacun des morceaux de e(t) en reliant les solutions les unes aux autres compte tenu du caractère périodique des signaux.
- Une deuxième méthode consiste à utiliser d'une part le principe de linéarité (voir fiche 1) et d'autre part les possibilités offertes par le calcul sur les nombres complexes en régime sinusoïdal. Cette méthode présente l'avantage de fournir en plus les spectres des signaux, mais elle nécessite souvent la prise en compte de nombreux harmoniques et, en conséquence, le recours à un calculateur.

Résumé de la méthode (Fig. 12.2). Pour un nombre d'harmoniques *M* suffisant à une bonne approximation des signaux :

 Déterminer le développement en série de Fourier du signal d'entrée, somme de sa composante continue et de ses composantes sinusoïdales.

$$e(t) = E_0 + \sum_{n=1}^{M} e_n(t)$$
 où $e_n(t) = E_n \max \cos(n\omega t + \alpha_n)$

2) Étudier la réponse du circuit à chacune des composantes du signal d'entrée.

$$E_0 \xrightarrow{\text{circuit}} S_0 \quad \text{et} \quad e_n(t) \xrightarrow{\text{circuit}} s_n(t) = S_n \max \cos(n\omega t + \beta_n)$$

Pratiquement, on détermine la transmittance complexe $\underline{T} = Te^{j\varphi}$ entre l'entrée et la sortie, puis, pour chacune des composantes, on calcule :

$$\underline{S_n} = \underline{T} \times \underline{E_n} \iff \begin{cases} S_n = T(n\omega) \times E_n \\ \beta_n = \varphi(n\omega) + \alpha_n \end{cases} \text{ avec } \begin{cases} S_n = S_n \max/\sqrt{2} \\ E_n = E_n \max/\sqrt{2} \end{cases}$$

$$\underline{S_n} = [E_n; \alpha_n] = E_n e^{j\alpha_n} \text{ est le nombre complexe associé à } e_n(t),$$

 $\underline{S_n} = [S_n; \beta_n] = S_n e^{j\beta_n}$ est le nombre complexe associé à $s_n(t)$.

3) Ajouter les réponses trouvées au point précédent.

$$s(t) = S_0 + \sum_{n=1}^{M} S_n \max \cos(n\omega t + \beta_n)$$

Figure 12.2 Circuit linéaire excité par un signal d'entrée périodique

Exemples

- Redressement monophasé double alternance en pont avec lissage du courant de sortie (voir fiche 11, exercice « Pont de Graetz monophasé »). On remarquera que le développement en série de Fourier a été limité au premier harmonique, ce qui est suffisant pour déterminer l'inductance de lissage.
- Filtre passe bas du 1^{er} ordre (voir exercice ci-dessous).
- Redresseur non-commandé (voir exercice ci-dessous).

92

IV Mesures

Taux de distorsion harmonique

Le calcul du *THD* s'effectue simplement à partir des mesures de la valeur efficace de la composante alternative $S_{Alt \, Eff}$ du signal s(t) et de la valeur efficace de son fondamental $A_{1 \, Eff}$. En effet, à partir de la définition du *THD* (voir le paragraphe « Compléments ») on peut écrire :

$$THD = \frac{\sqrt{\sum_{n=2}^{+\infty} A_n^2_{\text{Eff}}}}{A_1 \text{ Eff}} = \frac{\sqrt{S_{\text{Eff}}^2 - A_0^2 - A_1^2_{\text{Eff}}}}{A_1 \text{ Eff}} = \frac{\sqrt{S_{\text{Alt} \text{ Eff}}^2 - A_1^2_{\text{Eff}}}}{A_1 \text{ Eff}} = \sqrt{\frac{S_{\text{Alt} \text{ Eff}}^2}{A_1^2_{\text{Eff}}}} = \sqrt{\frac{S_{\text{Alt} \text{ Eff}}^2}{A_1^2_{\text{Eff}}}}} = \sqrt{\frac$$

Analyseur de spectre analogique.

Plusieurs principes sont envisageables pour sélectionner l'amplitude du signal en fonction de la fréquence.

- Une batterie de filtres passe-bande localisés dans la bande de fréquence à explorer (Fig. 12.3). Ce type d'analyseur est utilisé dans le domaine audio et quelques applications spécifiques.
- Un filtre passe-bande dont la fréquence centrale balaie la bande de fréquence à explorer (Fig. 12.4).
- Un déplacement progressif du spectre du signal devant un filtre passe-bande dont la fréquence centrale est fixe (Fig. 12.5). Plutôt que de balayer le spectre du signal par un filtre, on « passe » le spectre devant le filtre fixe. Ce type d'analyseur est utilisé pour les très hautes fréquences jusqu'à plusieurs dizaines de GHz.

Principaux réglages à opérer : fréquence centrale et étendue (span) du spectre à observer, résolution (largeur de la bande passante du filtre), atténuation d'entrée, etc.

Figure 12.3 Batterie de filtres

Figure 12.4 Balayage du spectre

Figure 12.5 Déplacement du spectre

Unités

Les analyseurs de spectres expriment les amplitudes (ou les valeurs efficaces) avec différentes unités en fonction du type de mesure, et offrent parfois le choix à l'utilisateur. Les unités les plus fréquemment rencontrées sont le volt, le dBV, le dBu et le dBm.

- Le niveau de la tension u = u(t), exprimé en décibels par rapport à une tension de référence de 1 V (dBV), est défini par :

$$L_{u/1V} = 20 \lg \frac{|u_{(V)}|}{l_{(V)}} = 20 \lg |u_{(V)}|$$
 (Unité : dBV)

- Le niveau de la tension u = u(t), exprimé en décibels par rapport à une tension de référence de $\sqrt{0.6}$ V ≈ 0.775 V (dBu), est défini par :

$$L_{u/\sqrt{0,6}\,V} = 20 \lg \frac{|u_{(V)}|}{\sqrt{0,6}_{(V)}} \approx 20 \lg \frac{|u_{(V)}|}{0,775_{(V)}} \qquad (\text{Unité}: dBu)$$

Remarque : En téléphonie, l'impédance de référence a été historiquement définie comme étant une résistance pure de 600 Ω en Europe (900 Ω aux USA), qui correspond grossièrement à l'impédance moyenne d'une ligne d'abonné dans la bande de fréquence allant de 300 Hz à 3 400Hz. Pour une puissance de référence de 1 mW, on obtient alors une tension efficace de référence de $\sqrt{0,6}$ V $\approx 0,775$ V ; d'où la définition du dBu.

- Le niveau de la puissance p = p(t), exprimé en décibels par rapport à une puissance de référence de 1 mW (dBm), est défini par :

$$L_{p/1\,\mathrm{mW}} = 10\,\mathrm{lg}\frac{|p_{(\mathrm{W})}|}{10_{(\mathrm{W})}^{-3}} = 10\,\mathrm{lg}\frac{|p_{(\mathrm{mW})}|}{1_{(\mathrm{mW})}} = 10\,\mathrm{lg}|p_{(\mathrm{mW})}|$$

(Unité : dBm)

Remarque: Attention, l'analyseur mesurant une tension, l'affichage en dBm sous-entend qu'il s'agit de la puissance en entrée de l'analyseur compte tenu de sa résistance d'entrée (50 Ω , 75 Ω , 600 Ω , etc.). Cela n'a de signification que pour un domaine particulier : hautes fréquences, téléphonie, etc. où l'impédance de référence est normalisée ; autrement il faut convertir (exemples Fig. 12.6).

					· · · · · · · · · · · · · · · · · · ·
u	L _{υ/1μ} ν	L _{u/1V}	L _{u/√0,6} v	$L_{p/1 \text{ mW}}$ sur $R = 50 \Omega$	$L_{p/1 \text{ mW}}$ sur $R = 600 \Omega$
10 V	140 dBμV	20 dBV	22,22 dBu	33,01 dBm	22,22 dBm
1 V	120 dBµV	0 dBV	2,22 dBu	13,01 dBm	2,22 dBm
100 mV	100 dBµV	– 20 dBV	– 17,78 dBu	– 6,99 dBm	– 17,78 dBm
10 mV	80 dBμV	– 40 dBV	– 37,78 dBu	– 26,99 dBm	– 37,78 dBm
1 mV	60 dBμV	– 60 dBV	– 57,78 dBu	– 46,99 dBm	– 57,78 dBm
1 µV	0 dBμV	– 120 dBV	– 117,78 dBu	– 106,99 dBm	– 117,78 dBm
7,071 V	136,99 dBμV	16,99 dBV	19,21 dBu	30 dBm	19,21 dBm
2,236 V	126,99 dBμV	6,99 dBV	9,21 dBu	20 dBm	9,21 dBm
0,707 V	116,99 dBμV	– 3,01 dBV	– 0,79 dBu	10 dBm	– 0,79 dBm
0,224 V	106,99 dBμV	– 13,01 dBV	– 10,79 dBu	0 dBm	– 10,79 dBm
7,746 V	137,78 dBμV	17,78 dBV	20 dBu	30,79 dBm	20 dBm
2,449 V	127,78 dBμV	7,78 dBV	10 dBu	20,79 dBm	10 dBm
0,775 V	117,79 dBμV	– 2,22 dBV	0 dBu	10,79 dBm	0 dBm
0,245 V	107,78 dBμV	– 12,22 dBV	– 10 dBu	0,79 dBm	– 10 dBm

Figure 12.6 Exemples de correspondances entre unités

- Relation entre dBm et dBV. Soit *u* la tension aux bornes d'une résistance R_0 , la puissance dissipée est $p = u^2/R_0$. D'où :

$$L_{p/1\,\text{mW}} = L_{u/1\,\text{V}} - 10\,\text{lg}\frac{R_0}{1\,000} \implies L_{P_{\text{Moy}}/1\,\text{mW}} = L_{U_{\text{Eff}}/1\,\text{V}} - 10\,\text{lg}\frac{R_0}{1\,000}$$

- $R_0 = 600 \ \Omega \Longrightarrow L_{p/1 \text{ mW}} \approx L_{u/1 \text{ V}} + 2,22$ $R_0 = 50 \ \Omega \Longrightarrow L_{p/1 \text{ mW}} \approx L_{u/1 \text{ V}} + 13,1$
- Relation entre dBm et dBu. Soit *u* la tension aux bornes d'une résistance R_0 , la puissance dissipée est $p = u^2/R_0$. D'où :

$$L_{p/1\,\text{mW}} = L_{u/\sqrt{0.6}\,\text{V}} - 10\,\text{lg}\frac{R_0}{600} \Longrightarrow L_{P_{\text{Moy}}/1\,\text{mW}} = L_{U_{\text{Eff}}/\sqrt{0.6}\,\text{V}} - 10\,\text{lg}\frac{R_0}{600}$$

$$R_0 = 600 \ \Omega \Longrightarrow L_{p/1\,\text{mW}} = L_{u/\sqrt{0.6}\,\text{V}}$$

$$R_0 = 50 \ \Omega \Longrightarrow L_{p/1\,\text{mW}} \approx L_{u/\sqrt{0.6}\,\text{V}} + 10,79$$

- Relation entre dBu et dBV.

$$L_{u/\sqrt{0.6}\,\mathrm{V}}\approx L_{u/1\,\mathrm{V}}+2,22$$

Analyseur de spectre numérique

Dans le domaine des basses et très basses fréquences, la plupart des analyseurs de spectre sont des oscilloscopes numériques ou systèmes d'acquisition munis d'un algorithme de calcul, la transformation de Fourier rapide, en anglais FFT (Fast Fourier Transform).

Mais attention, l'image du spectre présentée par l'analyseur FFT peut être fausse si la fréquence d'échantillonnage est incorrectement choisie. En effet, l'échantillonnage à la fréquence $f_{\rm E} = 1/T_{\rm E}$ d'un signal s(t) « périodise » le spectre du signal échantillonné par l'analyseur. Ainsi, le spectre calculé par l'analyseur est le spectre du signal s(t)(y compris les fréquences négatives) auquel s'ajoutent des répliques de ce dernier décalées de kf_E avec $k \in \mathbb{Z}$ (Cas 1 – Fig. 12.7). Bien sûr l'analyseur est conçu pour ne montrer que la partie correspondant au spectre du signal s(t) d'origine (fenêtre de visualisation), à condition que la fréquence d'échantillonnage soit correctement choisie. Si la fréquence maximale $f_{Max 1}$ du signal est inférieure à la moitié de la fréquence d'échantillonnage $f_E/2$ alors le spectre visualisé est le bon (Cas 1 – Fig. 12.7), mais si $f_{\text{Max 2}}$ est supérieur à $f_{\text{E}}/2$ alors le spectre visualisé n'est plus le bon. Sur l'exemple présenté (Cas 2 – Fig. 12.7), les raies du signal (repère 0+ pour $0f_{\rm E} + f_{\rm Min}$ à $0 f_{\rm E} + f_{\rm Max}$) sont en dehors de la fenêtre de visualisation ; par contre, on y trouve la réplique (1-) sans information pertinente sur les fréquences. Pire, les spectres du signal et d'une réplique peuvent se mélanger (imaginer un cas intermédiaire entre les deux proposés) et brouiller totalement le spectre résultant.

Figure 12.7 Choix de la fréquence d'échantillonnage

Pour éviter des mesures et interprétations incorrectes, il faut respecter le théorème de Shannon suivant.

Électricité en 19 fiches : régimes sinusoïdal et non-sinusoïdal
Théorème de Shannon : Un signal s(t) à spectre borné par f_{Max} (fréquence maximale) peut être reconstruit à partir de son signal échantillonné $s^*(t)$ avec un pas $T_E = 1/f_E$, si la fréquence d'échantillonnage est supérieure à deux fois la fréquence maximale du signal : $f_E > 2f_{Max}$

Remarque: Cette condition théorique suppose une durée infinie d'observation du signal. La durée d'observation pratique étant finie, on choisira un rapport f_E/f_{Max} sensiblement supérieur à 2 pour augmenter le nombre d'échantillons.

Paramètres essentiels :

- Nombre d'échantillons du signal (taille de l'échantillonnage) : N. Il peut être réglable afin de privilégier soit la résolution fréquentielle, soit le temps de calcul.
- Période d'échantillonnage (c'est la résolution temporelle) : $T_{\rm E} = 1/f_{\rm E}$. La période d'échantillonnage dépend automatiquement du calibre de la base de temps ; il faut donc surveiller l'affichage de la fréquence d'échantillonnage.
- Durée d'observation du signal échantillonné : $D = NT_E$
- Étendue du spectre calculé et affiché (Shannon) : $f_E/2$
- Résolution fréquentielle (c'est le plus petit écart de fréquence discernable) : $f_E/N = 1/D$. La résolution fréquentielle est proportionnelle à la fréquence d'échantillonnage et inversement proportionnelle aux nombres d'échantillons. Elle est égale à l'inverse de la durée d'observation.

Conclusion : Bien souvent, seul un nombre important d'échantillons permet de visualiser à la fois toute l'étendue et les détails du spectre ; mais le temps de calcul de la FFT augmente avec le nombre d'échantillons.

Remarques :

- Seule la partie du spectre relative aux fréquences positives est affichée (fenêtre de visualisation) car le spectre d'un signal réel possède une symétrie « hermitique », c'est-à-dire un module pair et une phase impaire (voir le paragraphe « Compléments »).
- Un analyseur de spectre numérique permet aussi de calculer la phase du spectre, ses parties réelle et imaginaire, le spectre de puissance du signal, etc.

Onduleur de secours d'un avion

Un onduleur de secours d'un avion permet de reconstituer un réseau alternatif 115 V/400 Hz monophasé à partir d'une batterie délivrant une tension continue $U_{\rm B}$ (principe d'un onduleur autonome en pont, Fig. 12.8).

Figure 12.8 Principe d'un onduleur autonome en pont

1. Commande « pleine onde » (fonctionnement Fig. 12.9). Dans ce cas, la tension u_{AB} est rectangulaire. Son développement en série de Fourier s'écrit :

$$u_{\rm AB} = \frac{4U_{\rm B}}{\pi} \sum_{p=0}^{+\infty} \frac{1}{2p+1} \sin\left[(2p+1)\omega t\right]$$

Figure 12.9 Commande « pleine onde »

1.1. Exprimer la valeur efficace U_{AB} de u_{AB} .

1.2. Donner l'expression de u_1 , fondamental de u_{AB} . En déduire l'expression de sa valeur efficace U_1 .

1.3. Quelle devrait être la valeur de U_B pour obtenir $U_1 = 115 \text{ V}$?

1.4. Exprimer et calculer le taux de distorsion harmonique (THD) de u_{AB} .

2. Commande « M.L.I. – Onde 3 niveaux » (fonctionnement Fig. 12.10). Dans ce cas, la tension u_{AB} est découpée. Son développement en série de Fourier ne comporte pas d'harmonique pair, et les harmoniques 3, 5, 7, 9 et 11 sont annulés en choisissant $\alpha_1 \approx 18^\circ$, $\alpha_2 \approx 27^\circ$, $\alpha_3 \approx 37^\circ$, $\alpha_4 \approx 53^\circ$ et $\alpha_5 \approx 57^\circ$; il s'écrit alors :

$$u_{AB} = \frac{4U_B}{\pi} \left(0,802 \times \sin(\omega t) - \frac{2,01}{13} \times \sin(13\omega t) - \frac{2,64}{15} \times \sin(15\omega t) + \dots \right)$$

Figure 12.10 Commande « M.L.I. – Onde 3 niveaux »

2.1. Exprimer la valeur efficace U_{AB} de u_{AB} .

2.2. Donner l'expression de u_1 , fondamental de u_{AB} . En déduire l'expression de sa valeur efficace U_1 .

2.3. Calculer le taux de distorsion harmonique (*THD*) de u_{AB} . Conclure.

Solution

1.1. Valeur efficace. On voit sur le graphique que :

$$u_{\rm AB} = \pm U_{\rm B} \Longrightarrow U_{\rm AB} = U_{\rm B}$$

1.2. Fondamental. Il s'écrit (p = 0) :

$$u_1 = \frac{4U_B}{\pi} \sin(\omega t) \Longrightarrow U_1 = \frac{4U_B}{\pi \sqrt{2}} \approx 0.9 \times U_B$$

1.3. Valeur de U_B pour obtenir $U_1 = 115$ V.

$$U_{\rm B}\approx U_1/0.9\approx 127.8~{\rm V}$$

1.4. Taux de distorsion harmonique de u_{AB} .

$$THD = \frac{\sqrt{\sum_{n=2}^{+\infty} U_n^2}}{U_1} = \frac{\sqrt{U_{AB}^2 - \langle u_{AB} \rangle^2 - U_1^2}}{U_1} = \sqrt{\frac{U_{AB}^2}{U_1^2} - 1} \quad \text{car } \langle u_{AB} \rangle = 0$$

bù :
$$THD = \sqrt{\frac{\pi^2}{8} - 1} \approx 0,483$$

D'où :

FICHE 12 - Séries de Fourier - Analyse spectrale

2.1. Valeur efficace. À partir du graphique, on peut écrire :

$$U_{AB}^2 = U_B^2 \times \frac{90^\circ - \alpha_5 + \alpha_4 - \alpha_3 + \alpha_2 - \alpha_1}{90^\circ} \quad (\text{les } \alpha_i \text{ étant en degrés})$$

D'où :
$$U_{AB} \approx \sqrt{\frac{58}{90}} \times U_{B} \approx 0.803 \times U_{B}$$

2.2. Fondamental. Il s'écrit :

$$u_1 = \frac{4U_{\rm B}}{\pi} \times 0.802 \times \sin(\omega t) \approx 1.02 \times U_{\rm B} \times \sin(\omega t) \Longrightarrow U_1 \approx 0.722 \times U_{\rm B}$$

2.3. Taux de distorsion harmonique de u_{AB} . Conclusion.

$$THD = \sqrt{\frac{U_{AB}^2}{U_1^2} - 1} \approx \sqrt{\frac{0.803^2}{0.722^2} - 1} \approx 0.487$$

Les *THD* des commandes « onde pleine » et « M.L.I. – Onde 3 niveaux » sont quasiment égaux. Par contre, la commande « M.L.I. – Onde 3 niveaux » repousse les composantes qui distordent le fondamental sur des harmoniques de rangs plus élevés ce qui facilite (dimensionnement et coût) considérablement le filtrage de ceux-ci, l'objectif étant d'obtenir un courant quasi-sinusoïdal.

Filtre passe bas du 1^{er} ordre

Soit le filtre passif passe-bas du 1^{er} ordre (Fig. 12.11). On applique en entrée la tension rectangulaire e(t) d'amplitude $E_{\text{Max}} = 5$ V, de fréquence $f_1 = 1$ kHz, de rapport cyclique $\gamma = 1/5$ (voir Fig. 12.1); son développement en série de Fourier s'écrit :

$$e(t) = \gamma E_{\text{Max}} \left(1 + 2 \sum_{n=1}^{+\infty} \frac{\sin(n\gamma\pi)}{n\gamma\pi} \cos(2\pi n f_1 t) \right)$$

1. Exprimer la tension s(t) en sortie du circuit.

2. Tracer le spectre d'amplitude unilatéral de s(t) sachant que la fréquence de coupure à -3 dB du filtre RC est $f_C = 2$ kHz.

Électricité en 19 fiches : régimes sinusoïdal et non-sinusoïdal

Solution

1. Tension en sortie du circuit. On est dans le cas d'un circuit électrique linéaire excité par une grandeur périodique (voir le paragraphe « Méthodes »). La fonction de transfert complexe du circuit est :

$$\underline{T} = \frac{\underline{S}}{\underline{E}} = \frac{1}{1 + jf/f_{\rm C}} = \frac{\mathrm{e}^{j\phi}}{\sqrt{1 + (f/f_{\rm C})^2}} \text{ avec } f_{\rm C} = \frac{1}{2\pi RC} \text{ et } \phi = -\arctan(f/f_{\rm C})$$

En régime continu, on a : $E_0 = \gamma E_{\text{Max}} \implies S_0 = E_0 = \gamma E_{\text{max}}$ Pour l'harmonique de rang n, $e_n(t) = E_n \max \cos(2\pi n f_1 t)$, d'où :

$$s_n(t) = \frac{E_{n \text{ Max}}}{\sqrt{1 + (nf_1/f_C)^2}} \cos(2\pi nf_1 t + \phi_n) \text{ avec } \phi_n = -\arctan(nf_1/f_C)$$

Et finalement :

$$s(t) = \gamma E_{\text{Max}} \left(1 + 2 \sum_{n=1}^{+\infty} \frac{\sin\left(n\gamma\pi\right)}{n\gamma\pi\sqrt{1 + (nf_1/f_C)^2}} \cos\left(2\pi nf_1 t + \phi_n\right) \right)$$

Remarque : Le filtre passe-bas modifie l'amplitude et la phase de chaque composante sinusoïdale (fondamental et harmoniques). En conséquence, le signal s(t) est déformé par rapport à e(t). Il subit une distorsion d'amplitude et une distorsion de phase.

2. Spectres d'amplitude unilatéraux (Fig. 12.12). Tout calcul fait on obtient :

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$A_n \det e(t)$	1	1,87	1,51	1,01	0,47	0	0,31	0,43	0,38	0,21	0	0,17	0,25	0,23	0,13	0
An de s(t)	1	1,67	1,07	0,56	0,21	0	0,10	0,12	0,09	0,05	0	0,03	0,04	0,03	0,02	0

Figure 12.12 Spectres d'amplitude unilatéraux de e(t) et s(t)

Redresseur non-commandé

Soit u la tension obtenue en sortie d'un redresseur non-commandé en conduction ininterrompue (Fig.12.13). On note p l'indice de pulsation qui dépend du type de pont et f_1 la fréquence du réseau. La tension u de fréquence pf_1 s'écrit :

$$u(\theta) = U_{\text{Max}} \cos \theta$$
 pour $-\pi/p \le \theta \le \pi/p$ avec $\theta = \omega_1 t = 2\pi f_1 t$

Le développement en série de Fourier de la tension u s'écrit :

$$u(\theta) = U_{Moy} \left(1 + \sum_{n=1}^{+\infty} K_n \cos(np\theta) \right)$$
 avec $K_n = (-1)^{n+1} \times \frac{2}{n^2 p^2 - 1}$

La tension u est appliquée aux bornes d'un circuit composé d'une inductance L en série avec une résistance R et une fém E (Fig. 12.14).

1. Exprimer la tension moyenne U_{Moy} à partir du chronogramme de u(t).

2. Pour un indice de pulsation de 2, 3 et 6, écrire le début du développement en série de Fourier. Conclure.

3. En se limitant au premier harmonique et en supposant $R \ll pL\omega_1$, exprimer le taux d'ondulation β_l du courant *i*.

4. Dans les conditions précédentes et pour un indice de pulsation de 2, 3 et 6, calculer L sachant que $R = 1.5 \Omega$, $I_{Moy} = 20 A$, $U_{Moy} = 200 V$, $f_1 = 50 Hz$, et que l'on veut une ondulation crête à crête du courant d'environ $\Delta I \approx 2 A$. Conclure.

Figure 12.14 Charge R, L et E

Solution

1. Tension moyenne.

$$U_{\text{Moy}} = \langle u \rangle = \frac{p}{2\pi} \int_{-\pi/p}^{\pi/p} U_{\text{Max}} \cos \theta = \frac{p U_{\text{Max}}}{2\pi} [\sin \theta]_{-\pi/p}^{\pi/p} = \frac{p}{\pi} U_{\text{Max}} \sin \frac{\pi}{p}$$

2. Indice de pulsation de 2, 3 et 6. On remarque que plus l'indice de pulsation est élevé, moins il y a d'harmoniques, et plus le signal se rapproche du continu.

p	<i>pf</i> ₁ (Hz)	Туре	<i>u</i> (θ)/ U _{Moy}
2	100	P2, PD2	$\frac{u(\theta)}{U_{Moy}} = 1 + \frac{2}{3}\cos(2\theta) - \frac{2}{15}\cos(4\theta) + \frac{2}{35}\cos(6\theta) - \dots$
3	150	P3	$\frac{u(\theta)}{U_{Moy}} = 1 + \frac{2}{8}\cos(3\theta) - \frac{2}{35}\cos(6\theta) + \frac{2}{80}\cos(9\theta) - \dots$
6	300	P6, PD3, S3	$\frac{u(\theta)}{U_{Moy}} = 1 + \frac{2}{35}\cos(6\theta) - \frac{2}{143}\cos(12\theta) + \frac{2}{323}\cos(18\theta) - \dots$

3. Taux d'ondulation. En se limitant au premier harmonique (n = 1), la tension u s'écrit :

$$u(\theta) \approx U_{\text{Moy}}(1 + K_1 \cos{(p\theta)}) \text{ avec } K_1 = \frac{2}{p^2 - 1}$$

Le principe de linéarité permet de traiter séparément le régime continu d'une part et le régime alternatif (sinusoïdal) d'autre part, le courant résultant *i* étant la somme $i = I_{Moy} + i_1$ (Fig. 12.15).

Figure 12.15 Principe de linéarité

- Régime continu : $I_{Moy} = (U_{Moy} - E)/R$ - Régime sinusoïdal : $I_1 = U_1/Z$ avec $Z = \sqrt{R^2 + (pL\omega_1)^2}$ et $U_1 = K_1 U_{Moy}/\sqrt{2}$ D'où le taux d'ondulation :

$$\beta_I \approx \frac{I_1}{I_{\text{Moy}}} = \frac{K_1}{\sqrt{2}} \times \frac{U_{\text{Moy}}}{ZI_{\text{Moy}}} = \frac{\sqrt{2}}{p^2 - 1} \times \frac{U_{\text{Moy}}}{ZI_{\text{Moy}}}$$

7,2

Si $R^2 \ll (pL\omega_1)^2$ alors $Z \approx pL\omega_1$ et par suite :

$$eta_I pprox rac{\sqrt{2}}{(p^2-1)p} imes rac{U_{
m Moy}}{L\omega_1 I_{
m Moy}}$$

4. Inductance. Elle se déduit de l'expression de β_I :

$$L \approx \frac{\sqrt{2}}{(p^2 - 1)p} \times \frac{U_{\text{Moy}}}{\beta_I \omega_1 I_{\text{Moy}}} = \frac{1}{\pi \sqrt{2}(p^2 - 1)p} \times \frac{U_{\text{Moy}}}{\beta_I f_1 I_{\text{Moy}}}$$

Application numérique. L'ondulation crête à crête du courant $\Delta I \approx 2$ A correspond au taux d'ondulation :

$$\beta_I \approx \frac{I_1}{I_{\text{Moy}}} = \frac{I_{1 \text{ Max}}}{\sqrt{2} \times I_{\text{Moy}}} = \frac{\Delta I}{2\sqrt{2} \times I_{\text{Moy}}} \approx 3.5 \%$$

D'où :

104

р	2	3	6
<i>L</i> (mH)	212	53	6,1

On remarque que plus l'indice de pulsation est élevé et plus l'inductance nécessaire au lissage est petite.

Calcul des coefficients de Fourier

Objectifs : Calculer les coefficients du développement en série de Fourier trigonométrique ou complexe d'un signal réel (tension ou courant en électricité), le régime étant périodique (permanent), et passer d'une écriture à une autre.

I À savoir

• Coefficients du développement en série de Fourier, dits « coefficients de Fourier »

Ils sont donnés par les formules (indépendantes de t_1 et θ_1) :

$$a_{0} = c_{0} = \frac{1}{T} \int_{t_{1}}^{t_{1}+T} s(t) dt = \frac{1}{2\pi} \int_{\theta_{1}}^{\theta_{1}+2\pi} s(\theta) d\theta \qquad b_{0} = 0$$

$$a_{n} = \frac{2}{T} \int_{t_{1}}^{t_{1}+T} s(t) \cos(n\omega t) dt = \frac{1}{\pi} \int_{\theta_{1}}^{\theta_{1}+2\pi} s(\theta) \cos(n\theta) d\theta \qquad (n \in \mathbb{N}^{*})$$

$$b_{n} = \frac{2}{T} \int_{t_{1}}^{t_{1}+T} s(t) \sin(n\omega t) dt = \frac{1}{\pi} \int_{\theta_{1}}^{\theta_{1}+2\pi} s(\theta) \sin(n\theta) d\theta \qquad (n \in \mathbb{N}^{*})$$

$$c_{n} = \frac{1}{T} \int_{t_{1}}^{t_{1}+T} s(t) e^{-jn\omega t} dt = \frac{1}{2\pi} \int_{\theta_{1}}^{\theta_{1}+2\pi} s(\theta) e^{-jn\theta} d\theta \qquad (n \in \mathbb{Z})$$
e.e.
$$\theta = \omega t \Rightarrow \omega T = 2\pi$$

Ave

Limites des coefficients de Fourier

Les coefficients de Fourier tendent vers zéro lorsque le rang n tend vers l'infini. En conséquence, on peut approcher un signal (en dehors des points de discontinuité) par une somme finie de termes du développement en série de Fourier.

10

Remarque : Les coefficients de Fourier de certains signaux ne tendent pas vers zéro lorsque n tend vers l'infini. Par exemple, les coefficients d'un « peigne de Dirac » sont tous égaux à une même constante. De tels signaux ne sont pas des fonctions au sens usuel mais des distributions qui sortent du cadre de cet ouvrage.

On obtient un « peigne de Dirac » à partir de la tension rectangulaire u(t) (voir Fig. 13.4 dans l'exercice ci-après) en faisant tendre le rapport cyclique vers zéro et l'amplitude vers l'infini tout en gardant l'aire de l'impulsion constante.

II Méthodes

• Passage d'une écriture du développement en série de Fourier à une autre

Il s'effectue à partir des relations qui existent entre les différents coefficients de Fourier (Fig. 13.1). Ces relations ne sont pas à retenir mais à établir au cas par cas, si elles ne sont pas données, car des variantes de ces écritures sont aussi utilisées. Pour établir ces relations, il suffit d'écrire l'égalité des écritures pour l'harmonique de rang n, et se souvenir des formules d'Euler et de Moivre.

$e^{jx} = \cos x + j\sin x$	$\cos x = \frac{e^{jx} + e^{-jx}}{2}$	$\sin x = \frac{e^{jx} - e^{-jx}}{2j}$
$(a_n, b_n) \longrightarrow (A_n, \alpha_n)$	$(a_n, b_n) \longrightarrow (c_n, c_{-n})$	$(c_n, c_{-n}) \longrightarrow (A_n, \alpha_n)$
$A_n = \sqrt{a_n^2 + b_n^2}$ $\cos \alpha_n = a_n / A_n$ $\sin \alpha_n = -b_n / A_n$	$c_n = \frac{a_n - jb_n}{2}$ $c_{-n} = \overline{c_n}$	$A_n = 2 c_n = 2\sqrt{c_n c_{-n}}$ $\alpha_n = \arg(c_n) = -\arg(c_{-n})$
$(A_n,\alpha_n)\longrightarrow (a_n,b_n)$	$(c_n, c_{-n}) \longrightarrow (a_n, b_n)$	$(A_n, \alpha_n) \longrightarrow (c_n, c_{-n})$
$a_n = A_n \cos \alpha_n$ $b_n = -A_n \sin \alpha_n$	$a_n = c_n + c_{-n}$ $b_n = j(c_n - c_{-n})$	$2c_n = A_n e^{j\alpha_n}$ $2c_{-n} = A_n e^{-j\alpha_n}$

Figure 13.1 Relations entre les coefficients de Fourier

Exemple : Voir exercice ci-après.

• Choix de l'intervalle

Le calcul des coefficients est indépendant de l'intervalle $[t_1, t_1 + T]$ ou $[\theta_1, \theta_1 + 2\pi]$ choisi. En conséquence, un choix judicieux de t_1 ou θ_1 permet souvent de simplifier les calculs.

• Signal périodique pair (Exemple Fig. 13.2)

Si s, développable en série de Fourier, est pair alors s est développable en série de cosinus.

$$\forall t, s(t) = s(-t) \Longrightarrow b_n = 0 \Longrightarrow s(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega t)$$

en tout point t où s est continu. Les coefficients peuvent alors être calculés sur une demi-période (attention aux bornes d'intégration : $t_1 = 0$) :

$$a_0 = \frac{2}{T} \int_0^{T/2} s(t) dt$$
 et $a_n = \frac{4}{T} \int_0^{T/2} s(t) \cos(n\omega t) dt$ $(n \in \mathbb{N}^*)$

• Signal périodique impair (Exemple Fig. 13.2)

Si s, développable en série de Fourier, est impair alors s est développable en série de sinus.

$$\forall t, s(t) = -s(-t) \Longrightarrow a_0 = 0 \text{ et } a_n = 0 \Longrightarrow s(t) = \sum_{n=1}^{\infty} b_n \sin(n\omega t)$$

en tout point t où s est continu. Les coefficients peuvent alors être calculés sur une demi-période (attention aux bornes d'intégration : $t_1 = 0$) :

$$b_n = \frac{4}{T} \int_0^{T/2} s(t) \sin(n\omega t) dt \quad (n \in \mathbb{N}^*)$$

107

Symétrie de « glissement »

Si s possède une symétrie de « glissement » alors le terme constant et les termes de rang pair sont nuls.

$$\forall t, s(t + T/2) = -s(t) \Longrightarrow$$

$$\begin{cases} a_0 = 0 \\ a_{2p} = 0 \\ b_{2p} = 0 \end{cases} \text{ et } \begin{cases} a_{2p+1} = \frac{4}{T} \int_{t_0}^{t_0 + T/2} s(t) \cos\left[(2p+1)\omega t\right] dt \\ b_{2p+1} = \frac{4}{T} \int_{t_0}^{t_0 + T/2} s(t) \sin\left[(2p+1)\omega t\right] dt \end{cases} (p \in \mathbb{N})$$

Graphiquement, en faisant « glisser » (Exemple Fig. 13.3) d'une demi-période la partie du signal compris entre t_0 et $t_0 + T/2$, on observe une symétrie par rapport à l'axe des temps.

Figure 13.3 Exemple d'une symétrie de « glissement »

Signal décalé temporellement

Si le signal s(t) est développable en série de Fourier, alors le développement en série de Fourier du signal décalé $s(t - \tau)$ s'obtient en décalant chacun des termes de s(t).

$$s(t) = a_0 + \sum_{n=1}^{\infty} A_n \cos(n\omega t + \alpha_n) = \sum_{n=-\infty}^{+\infty} c_n e^{jn\omega t} \Longrightarrow$$
$$s(t - \tau) = a_0 + \sum_{n=1}^{\infty} A_n \cos(n\omega (t - \tau) + \alpha_n)$$
$$= a_0 + \sum_{n=1}^{\infty} A_n \cos(n\omega t + \alpha_n - 2\pi n\tau/T)$$

Ou bien :

 $s(t-\tau) = \sum_{n=-\infty}^{+\infty} c_n e^{jn\omega(t-\tau)} = \sum_{n=-\infty}^{+\infty} c_n e^{jn\omega t} e^{-j2\pi n\tau/T}$ En conséquence, le spectre d'amplitude est indépendant de l'origine des temps choisie contrairement au spectre de phase qui en dépend. Cette remarque peut être mise à profit pour :

Électricité en 19 fiches : régimes sinusoïdal et non-sinusoïdal

1) Déduire le spectre de phase du signal décalé $s(t - \tau)$ à partir de celui de s(t) en ajoutant $-2\pi n\tau/T$ à α_n pour chaque terme.

2) Simplifier le calcul des coefficients en suivant la procédure suivante :

- Décaler arbitrairement le signal s(t) de τ pour faire apparaître une symétrie afin de simplifier les calculs.
- Déterminer le développement en série de Fourier du signal décalé $s(t \tau)$.
- En déduire le développement en série de Fourier du signal s(t) à partir de celui de $s(t \tau)$ sachant que s(t) et $s(t \tau)$ ont même spectre d'amplitude et que le spectre de phase de s(t) s'obtient en ajoutant $+2\pi n\tau/T$ à chaque terme de phase de $s(t \tau)$.

Remarque: Si on ne s'intéresse qu'au spectre d'amplitude, il suffit de décaler arbitrairement le signal s(t) de τ pour faire apparaître une symétrie, puis de déterminer le développement en série de Fourier du signal décalé $s(t - \tau)$.

Dérivation

Si le signal s et sa dérivée s' sont développables en série de Fourier, alors le développement en série de Fourier de s' s'obtient en dérivant terme à terme celui de s.

$$s(t) = \sum_{n=-\infty}^{+\infty} c_n e^{jn\omega t} \Longrightarrow s'(t) = \frac{ds(t)}{dt} = \sum_{n=-\infty}^{+\infty} jn\omega \times c_n e^{jn\omega t}$$

Intégration

Si le signal s est développable en série de Fourier et que sa valeur moyenne est nulle $(S_{Moy} = 0 \Rightarrow a_0 = c_0 = 0)$, alors le développement en série de Fourier de $\int s(t)dt$ s'obtient en intégrant terme à terme celui de s et en ajoutant la valeur moyenne de $\int s(t)dt$.

$$s(t) = \sum_{\substack{n = -\infty \\ n \neq 0}}^{+\infty} c_n e^{jn\omega t} \\ \Longrightarrow \int s(t) dt = \sum_{\substack{n = -\infty \\ n \neq 0}}^{+\infty} \frac{c_n}{jn\omega} e^{jn\omega t} + \left\langle \int s(t) dt \right\rangle$$

Relations entre coefficients

Établir les relations permettant de passer de l'écriture trigonométrique avec un seul cosinus à l'écriture complexe.

Solution

On établit immédiatement que $c_0 = a_0$ et on écrit l'égalité pour le rang n :

$$A_n \cos (n\omega t + \alpha_n) = c_n e^{jn\omega t} + c_{-n} e^{-jn\omega}$$

En remplaçant le cosinus par des exponentielles complexes, on obtient :

$$\frac{A_n}{2} \left(e^{j(n\omega t + \alpha_n)} + e^{-j(n\omega t + \alpha_n)} \right) = c_n e^{jn\omega t} + c_{-n} e^{-jn\omega t}$$
$$\iff \left(c_n - \frac{A_n}{2} e^{j\alpha_n} \right) e^{jn\omega t} + \left(c_{-n} - \frac{A_n}{2} e^{-j\alpha_n} \right) e^{-jn\omega t} = 0$$

D'où l'on déduit :

$$c_n = \frac{A_n}{2} e^{j\alpha_n}$$
 et $c_{-n} = \frac{A_n}{2} e^{-j\alpha_n}$ $(\Longrightarrow c_{-n} = \overline{c_n})$

 $c_n \times c_{-n} = \frac{A_n^2}{4}$, $\arg(c_n) = \alpha_n$ et $\arg(c_{-n}) = -\alpha_n$

Puis :

Signal rectangulaire

Soit la tension rectangulaire u(t) de période T = 1 ms, de rapport cyclique $\gamma = 1/5$, de niveaux 0 et $U_{\text{Max}} = 5$ V (Fig. 13.4).

Figure 13.4 Tension rectangulaire de niveaux 0 et 5 V et $\gamma = 1/5$

1. Déterminer la forme trigonométrique du développement en série de Fourier de la tension rectangulaire u(t).

2. Déterminer la forme complexe du développement en série de Fourier de u(t).

3. Vérifier les spectres de u(t) donnés en exemple fig. 12.1, fiche 12 précédente. 4. En déduire la forme trigonométrique du développement en série de Fourier de

 $u(t - \gamma T/2)$ ainsi que ses spectres.

Solution

7.3

111

1. Forme trigonométrique. Étant paire, la tension u(t) est développable en série de cosinus $(b_n = 0)$.

$$a_{0} = \frac{1}{T} \int_{t_{1}}^{t_{1}+T} u(t) = \frac{2U_{\text{Max}}}{T} \int_{0}^{\gamma T/2} dt = \frac{2U_{\text{Max}}}{T} [t]_{0}^{\gamma T/2} = \gamma U_{\text{Max}}$$

$$\implies U_{\text{Moy}} = a_{0} = 1 \text{ V}$$

$$a_{n} = \frac{4}{T} \int_{0}^{T/2} u(t) \cos(n\omega t) dt = \frac{4U_{\text{Max}}}{T} \int_{0}^{\gamma T/2} \cos(n\omega t) dt$$

$$= \frac{4U_{\text{Max}}}{T} \left[\frac{\sin(n\omega t)}{n\omega} \right]_{0}^{\gamma T/2}$$

$$\implies a_{n} = \frac{4U_{\text{Max}} \sin(n\omega \gamma T/2)}{n\omega T} = \frac{2U_{\text{Max}}}{n\pi} \sin(n\gamma \pi)$$
D'où :
$$\frac{u(t)}{U_{\text{Max}}} = \gamma + 2 \sum_{n=1}^{+\infty} \frac{\sin(n\gamma \pi)}{n\pi} \cos(n\omega t)$$

Soit:
$$\frac{u(t)}{U_{\text{Max}}} = \gamma + 2 \times \left[\frac{\sin(\gamma \pi)}{\pi} \cos(\omega t) + \frac{\sin(2\gamma \pi)}{2\pi} \cos(2\omega t) + \dots \right]$$

2. Forme complexe.

$$c_0 = a_0 = \gamma U_{\text{Max}} \Longrightarrow U_{\text{Moy}} = c_0 = 1 \text{ V}$$

$$c_{n} = \frac{1}{T} \int_{t_{1}}^{t_{1}+T} u(t) e^{-jn\omega t} dt = \frac{U_{Max}}{T} \int_{-\gamma T/2}^{\gamma T/2} e^{-jn\omega t} dt = \frac{U_{Max}}{-jn\omega T} \left[e^{-jn\omega t} \right]_{-\gamma T/2}^{\gamma T/2}$$
$$\implies c_{n} = \frac{-U_{Max}}{jn\omega T} \left(e^{-jn\omega \gamma T/2} - e^{jn\omega \gamma T/2} \right) = \frac{-U_{Max}}{jn2\pi} \left(e^{-jn\gamma \pi} - e^{jn\gamma \pi} \right)$$
$$\implies c_{n} = \frac{U_{Max}}{n\pi} \sin(n\gamma \pi) \qquad (c_{n} = a_{n}/2 \operatorname{car} b_{n} = 0)$$
$$D'où: \quad \frac{u(t)}{U_{Max}} = \frac{1}{\pi} \sum_{n=-\infty}^{+\infty} \frac{\sin(n\gamma \pi)}{n} e^{jn\omega t}$$

3. Spectres. Le spectre d'amplitude unilatéral est la représentation graphique des raies $A_0 = |a_0| = |c_0|$ et $A_n = |a_n| = 2 \times |c_n|$ car $b_n = 0$. Le spectre d'amplitude bilatéral est la représentation graphique des raies $|c_0|$ et $|c_n|$. Le spectre de phase est la représentation graphique des raies des phases initiales α_n définies par :

$$\begin{cases} \cos \alpha_n = a_n/|a_n| \\ \sin \alpha_n = 0 \end{cases} \quad \text{ou} \quad \alpha_n = -\alpha_{-n} = \arg(c_n)$$

Par suite, pour n > 0, $\alpha_n = 0^\circ$ si $\cos \alpha_n = +1$, c'est-à-dire si :

 $\sin(n\pi/5) > 0 \Longleftrightarrow 0 + 2k\pi < n\pi/5 < \pi + 2k\pi \iff 0 + 10k < n < 5 + 10k$

Et $\alpha_n = 180^\circ$ si $\cos \alpha_n = -1$, c'est-à-dire si : 5 + 10k < n < 10 + 10kPour n = 5 + 10k, sin $(n\pi/5) = 0$ et α_n ne peut être défini ; on fixe $\alpha_n = 0^\circ$. Tout calcul fait on obtient (A_n et $|c_n|$ en volts, α_n en degrés) :

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A _n	1	1,87	1,51	1,01	0,47	0	0,31	0,43	0,38	0,21	0	0,17	0,25	0,23	0,13	0
lc _n l	1	0,94	0,76	0,50	0,23	0	0,16	0,22	0,19	0,10	0	0,08	0,13	0,12	0,07	0
αη	0	0	0	0	0	0	180	180	180	180	0	0	0	0	0	0
a _n - n×36	0	-36	-72	-108	-144	0	-36	- 72	-108	-144	0	-36	-72	-108	-144	0

4. Tension décalée $u(t - \gamma T/2)$. On a :

$$\frac{u(t-\gamma T/2)}{U_{\text{Max}}} = \gamma + 2\sum_{n=1}^{+\infty} \frac{\sin(n\gamma \pi)}{n\pi} \cos(n\omega(t-\gamma T/2))$$

 $= \gamma + 2\sum_{n=1}^{+\infty} \frac{\sin(n\gamma\pi)}{n\pi} \cos(n\omega t - n\gamma\pi)$

avec $n\gamma\pi = n\pi/5$

Les spectres d'amplitude sont inchangés par décalage. Le spectre de phase du signal décalé $u(t - \gamma T/2)$ est obtenu à partir de celui de u(t) en ajoutant $-n\pi/5$ rad, soit $-n \times 36^{\circ}$, à α_n pour chaque terme (voir le tableau de la question précédente et Fig. 13.5).

Figure 13.5 Spectre de phase de la tension décalée $u(t - \gamma T/2)$ avec $\gamma = 1/5$

112 Électricité en 19 fiches : régimes sinusoïdal et non-sinusoïdal

Signal triangulaire

Soit le signal triangulaire pair (voir Fig. 13.2) de période T_1 . Son développement en série de Fourier est :

$$\frac{s(t)}{S_{\text{Max}}} = \frac{1}{2} - \sum_{n=1}^{+\infty} \left(\frac{\sin(n\pi/2)}{n\pi/2}\right)^2 \cos(n\omega_1 t) = \frac{1}{2} - \frac{4}{\pi^2} \sum_{p=0}^{+\infty} \frac{\cos\left[(2p+1)\omega_1 t\right]}{(2p+1)^2}$$

1. Tracer le signal s'(t), dérivée de s(t).

2. Déduire le développement en série de Fourier de s'(t) de celui de s(t).

Solution

1. Chronogrammes (Fig. 13.6).

Figure 13.6 Signaux s(t) et s'(t)

2. Développement en série de Fourier.

$$\frac{s'(t)}{S_{\text{Max}}} = \frac{d}{dt} \left(\frac{s(t)}{S_{\text{Max}}} \right) = \frac{d}{dt} \left(\frac{1}{2} - \sum_{n=1}^{+\infty} \left(\frac{\sin(n\pi/2)}{n\pi/2} \right)^2 \cos(n\omega_1 t) \right)$$

$$=\sum_{n=1}^{+\infty} n\omega_1 \left(\frac{\sin(n\pi/2)}{n\pi/2}\right)^2 \sin(n\omega_1 t) = \frac{8}{\pi T_1} \sum_{n=1}^{+\infty} \frac{\sin^2(n\pi/2)}{n} \sin(n\omega_1 t)$$

Ou bien :

$$\frac{s'(t)}{S_{\text{Max}}} = \frac{d}{dt} \left(\frac{s(t)}{S_{\text{Max}}} \right) = \frac{d}{dt} \left(\frac{1}{2} - \frac{4}{\pi^2} \sum_{p=0}^{+\infty} \frac{\cos\left[(2p+1)\omega_1 t\right]}{(2p+1)^2} \right)$$

$$=\frac{4\omega_1}{\pi^2}\sum_{p=0}^{+\infty}\frac{\sin\left[(2p+1)\omega_1t\right]}{2p+1}=\frac{8}{\pi T_1}\sum_{p=0}^{+\infty}\frac{\sin\left[(2p+1)\omega_1t\right]}{2p+1}$$

1

Puissances

Objectifs : Calculer et mesurer les différentes puissances d'un circuit électrique en régime périodique permanent.

I À savoir

14

• Puissances et facteur de puissance dans le cas général où la tension et le courant sont périodiques (Fig. 14.1)

La tension u = u(t) et le courant i = i(t) sont périodiques et développables en série de Fourier. Notations :

$$u(t) = U_0 \sum_{n=1}^{\infty} U_n \sqrt{2} \cos(n\omega t + \alpha_{U_n}) \quad \text{où } U_0 = \langle u(t) \rangle \text{ et } U_n = U_{n\text{Eff}}$$

 $i(t) = i_0 \sum_{n=1}^{\infty} I_n \sqrt{2} \cos(n\omega t + \alpha_{I_n})$ où $I_0 = \langle i(t) \rangle$ et $I_n = I_{n\text{Eff}}$

	Unité	Définition et relations
Puissance instantanée	watt (W)	$p(t) = u(t) \times i(t)$
Puissance active ou moyenne	watt (W)	$P = P_{Moy} = \langle p(t) \rangle = U_0 I_0 + \sum_{n=1}^{\infty} U_n I_n \cos \varphi_n$
Puissance apparente	volt-ampère (VA)	$S = UI = \sqrt{\left(U_0^2 + \sum_{n=1}^{+\infty} U_n^2\right) \times \left(I_0^2 + \sum_{n=1}^{+\infty} I_n^2\right)}$
Puissance non-active	volt-ampère (VA)	$N = \sqrt{S^2 - P^2}$
Facteur de puissance		$f_{\rm P} = \frac{P}{S}$

Figure 14.1 Puissances – Facteur de puissance (convention récepteur) Tension u = u(t) et courant i = i(t) périodiques $\varphi_n = \alpha_{Un} - \alpha_{In}$ est le déphasage entre $u_n(t) = U_n \sqrt{2} \cos(n\omega t + \alpha_{Un})$ et $i_n(t) = I_n \sqrt{2} \cos(n\omega t + \alpha_{In})$; u_n est en avance de phase par rapport à i_n si φ_n est positif.

$$U = U_{\text{Eff}} = \sqrt{\langle u^2(t) \rangle} = \sqrt{U_0^2 + \sum_{n=1}^{+\infty} U_n^2} \text{ et } I = I_{\text{Eff}} = \sqrt{\langle i^2(t) \rangle} = \sqrt{I_0^2 + \sum_{n=1}^{+\infty} I_n^2}$$

Puissances et facteur de puissance dans le cas où la tension et le courant sont périodiques alternatifs

Les définitions et relations du cas général ci-dessus restent valables. La particularité de l'alternatif se traduit par : $U_0 = 0$ et $I_0 = 0$.

 Puissances et facteur de puissance dans le cas où la tension est sinusoïdale et le courant périodique alternatif (Fig. 14.2)

La tension u = u(t) est sinusoïdale et le courant i = i(t) périodique alternatif $(I_0 = 0)$ et développable en série de Fourier. Notations particulières :

$$u(t) = U\sqrt{2}\cos(\omega t + \alpha_U) \quad \text{où} \quad U = U_{\text{Eff}}$$
$$i(t) = \sum_{n=1}^{+\infty} I_n \sqrt{2}\cos(n\omega t + \alpha_{In}) \quad \text{où} \quad I_n = I_{n\text{Eff}}$$

 $\varphi_1 = \alpha_U - \alpha_{I1}$ est le déphasage entre u(t) et le fondamental $i_1(t)$

	Unité	Définition et relations
Puissance active ou moyenne	watt (W)	$P = P_{Moy} = \langle p(t) \rangle = UI_1 \cos \varphi_1$
Puissance apparente	volt-ampère (VA)	$S = UI = U \sqrt{\sum_{n=1}^{+\infty} l_n^2}$
Puissance réactive	volt-ampère-réactif (var)	$Q = UI_1 \sin \varphi_1 = P \tan \varphi_1$
Puissance déformante	volt-ampère -déformant (vad)	$D = \sqrt{S^2 - P^2 - Q^2} = U \sqrt{\sum_{n=2}^{+\infty} l_n^2}$
Facteur de puissance		$f_{\rm P} = \frac{P}{S} = \frac{I_1 \cos\varphi_1}{I}$
Facteur de déphasage		$\frac{P}{Ul_1} = \cos \varphi_1$

Figure 14.2 Puissances – Facteur de puissance (convention récepteur) Tension u = u(t) sinusoïdale et courant i = i(t) périodique alternatif

11,5

 $^\prime$ Remarques (tension sinusoïdale et courant alternatif) :

- La puissance active est transportée uniquement par le fondamental du courant.
- La définition de la puissance réactive conduit à la relation :

$$U^2 I_1^2 = P^2 + Q^2$$

- La définition de la puissance déformante correspond simplement à la

clôture de :

$$S^2 = P^2 + Q^2 + D^2$$

- Dans le cas où c'est le courant qui est sinusoïdal et la tension périodique alternative, il suffit d'intervertir les rôles de u et de i dans les formules.
- L'unité de D n'est pas consensuelle. Selon les auteurs, on rencontre VA, vad ou pas d'unité. Le choix ici adopté consiste à insister sur le caractère particulier de cette « puissance ».

II Compléments

• Puissance active

Seule la puissance active, moyenne de la puissance instantanée, correspond à une véritable puissance, transformée en puissance mécanique, thermique, chimique, etc.

Puissance apparente

C'est l'élément essentiel du dimensionnement de la ligne et du générateur car un circuit nécessite un courant efficace (sous une tension donnée) pour son alimentation, alors que seule la puissance active est transformée sous une autre forme d'énergie. Plus la puissance apparente est grande par rapport à la puissance active, plus les pertes en ligne seront importantes et plus le générateur devra être surdimensionné.

Puissance non-active

- En régime sinusoïdal (tensions et courants sont tous sinusoïdaux), la puissance réactive caractérise les échanges d'énergie entre le générateur et le récepteur dus à la présence d'éléments réactifs (bobines et condensateurs) stockant et restituant de l'énergie sous forme électromagnétique ou électrostatique.
- En régime périodique non-sinusoïdal, l'interprétation de la puissance réactive et la frontière entre puissances réactive et déformante ne font pas consensus dans la communauté scientifique. On a choisi d'introduire ici, dans le seul cas particulier d'une tension sinusoïdale et d'un courant périodique alternatif (charge nonlinéaire sur un réseau délivrant une tension alternative sinusoïdale), la définition la plus rencontrée (Q et D) afin que le lecteur en soit averti ; malgré l'impossi-

bilité de donner des significations physiques claires à Q et D (voir l'exercice ciaprès, « Gradateur sur charge résistive »). Il ne faut cependant pas ignorer qu'il existe aujourd'hui plusieurs définitions de la puissance réactive pour le régime périodique.

III Mesures

Les appareils doivent être capables de mesurer les valeurs efficaces de grandeurs périodiques contenant des harmoniques. En conséquence, leur bande passante doit être suffisante. Par exemple, la mesure du taux de distorsion harmonique (*THD*) nécessite la prise en compte des harmoniques jusqu'au rang 40 pour être conforme aux normes.

• Analyseur de réseau électrique

Ils permettent les mesures des puissances active, réactive, et apparente, du facteur de puissance, des tension et courant efficaces, des harmoniques, du *THD*, etc. Il faut cependant bien connaître les limites et les principes de calcul décrits dans la notice technique d'un tel appareil pour éviter les erreurs d'interprétation. Enfin, il ne faut pas oublier qu'il existe plusieurs définitions de la puissance réactive en régime périodique (voir le paragraphe « Compléments »).

Appareils élémentaires

- La puissance active se mesure à l'aide d'un wattmètre qui indique la valeur moyenne de la puissance instantanée p = ui (Fig. 14.3; voir aussi fiche 6, paragraphe « Mesures »);
- La puissance apparente se calcule à partir des valeurs efficaces de la tension et du courant mesurées par un voltmètre et un ampèremètre (voir fiche 2, paragraphe « Mesures ») : S = UI.
- La puissance non-active se calcule alors par : $N = \sqrt{S^2 P^2}$.
- La mesure de la puissance réactive définie par $Q = UI_1 \sin \varphi_1$ (cas où la tension est sinusoïdale et le courant périodique alternatif) s'effectue avec un wattmètre monté en varmètre, c'est-à-dire dont le circuit tension est branché sur une tension en quadrature avec u car $Q = UI_1 \sin \varphi_1 = UI_1 \cos (\varphi_1 - \pi/2)$.
- Enfin, la puissance déformante se déduit des mesures précédentes par : $D = \sqrt{S^2 - P^2 - Q^2}$.

Exemple

Soit à mesurer les puissances actives et réactives d'une charge alimentée par une tension simple, les autres phases étant accessibles et le système de tensions étant triphasé équilibré et direct.

FICHE 14 - Puissances

- Le schéma (Fig. 14.3) permet la mesure de la puissance active P :

$$V_1 I_1 \cos \varphi_1 = P$$

- Le schéma (Fig. 14.4) permet la mesure la puissance réactive Q:

$$U_{23}I_{1}\cos\left(\overrightarrow{I_{1}},\overrightarrow{U_{23}}\right) = \sqrt{3}V_{1}I_{1}\cos\left(\left(\overrightarrow{I_{1}},\overrightarrow{V_{1}}\right) + \left(\overrightarrow{V_{1}},\overrightarrow{U_{23}}\right)\right)$$
$$= \sqrt{3}V_{1}I_{1}\cos\left(\varphi_{1} - \pi/2\right)$$
$$= \sqrt{3}V_{1}I_{1}\sin\varphi_{1} = Q\sqrt{3}$$

La puissance réactive Q est donc égale à la puissance lue divisée par $\sqrt{3}$.

Redresseur à pont tous thyristors

Soit le schéma de principe (Fig. 14.5) d'un redresseur à pont tous thyristors. Le pont est alimenté par le réseau qui fournit une tension sinusoïdale de valeur efficace U = 400 V et de fréquence f = 50 Hz. Les thyristors sont considérés comme parfaits : T_1 et T_3 d'une part, T_2 et T_4 d'autre part, sont commandés de manière complémentaire avec un angle d'amorçage noté α . L'inductance est de valeur suffisante pour qu'on puisse admettre que le courant i_S est parfaitement continu : $i_S = I_S$. On obtient alors les allures (Fig. 14.6) de u_S et *i*, et le développement en série de Fourier du courant d'entrée de l'installation *i*:

$$i(\theta) = \frac{4I_{\rm S}}{\pi} \sum_{p=0}^{+\infty} \frac{1}{2p+1} \sin[(2p+1)(\theta-\alpha)]$$

- **1.** Exprimer la valeur moyenne de la tension à la sortie du pont $u_{\rm S}$.
- 2. En déduire la valeur moyenne de la tension aux bornes du moteur $u_{\rm M}$.
- 3. Exprimer la puissance moyenne absorbée par le moteur.
- 4. Exprimer la puissance active absorbée par l'installation.

5. Sans utiliser le développement en série de Fourier donné ci-dessus, dessiner l'allure du fondamental du courant *i*. Vérifier alors l'expression du premier terme du développement en série de Fourier donné ci-dessus.

6. Exprimer la puissance apparente absorbée par l'installation.

7. Exprimer le facteur de puissance de l'installation.

8. Exprimer les puissances réactive, déformante et non-active absorbées par l'installation.

9. Application numérique. Calculer les expressions précédentes pour $\alpha = \pi/3$ rad, puis $\alpha = 2\pi/3$ rad, et $I_S = 50$ A. Commenter les résultats.

Figure 14.5 Redresseur à pont tout thyristors - Schéma

Figure 14.6 Redresseur à pont tout thyristors - Chronogrammes

Solution

1. Valeur moyenne de $u_{\rm S}$. Par définition :

$$U_{\rm S\,Moy} = \langle u_{\rm S} \rangle = \frac{1}{\pi} \int_{\alpha}^{\alpha+\pi} U\sqrt{2} \sin\theta d\theta = \frac{U\sqrt{2}}{\pi} [-\cos\theta]_{\alpha}^{\alpha+\pi}$$

D'où :

$$U_{\rm S\,Moy} = \frac{2U\sqrt{2}}{\pi}\cos\alpha$$

2. Valeur moyenne de $u_{\rm M}$. Loi des mailles :

 $u_{\rm S} = u_L + u_{\rm M} \Longrightarrow U_{\rm S\,Moy} = U_{L\,{
m Moy}} + U_{
m M\,{
m Moy}}$

D'où :

$$\dot{u}: \qquad \qquad U_{M Moy} = U_{S Moy} \quad \text{car} \quad U_{L Moy} = 0$$

 $P_{\rm M\,Moy} = \frac{2U\sqrt{2} \times I_S}{\pi} \cos \alpha$

3. Puissance moyenne absorbée par le moteur. En considérant le courant $i_{S} = I_{S}$ constant, on a :

$$P_{MMoy} = \langle u_M i_S \rangle = \langle u_M \rangle I_S = \langle u_S \rangle I_S = U_{SMoy} I_S$$

D'où :

4. Puissance active absorbée par l'installation. Plusieurs raisonnements sont possibles.

- On remarque que la puissance absorbée par l'installation est égale à la puissance moyenne absorbée par le moteur car tous les autres éléments sont supposés parfaits. D'où : $P = P_{MMov}$
- On applique la définition : $P = P_{Moy} = \langle p(t) \rangle = \langle u(t) \times i(t) \rangle$. Comme $i = +I_S$ pour $\alpha < \theta < \alpha + \pi$, P s'écrit :

$$P = \frac{I_{\rm S}}{\pi} \int_{\alpha}^{\alpha + \pi} U \sqrt{2} \sin \theta \, \mathrm{d}\theta = U_{\rm S\,Moy} I_{\rm S} \qquad \text{D'où} : P = P_{\rm M\,Moy}$$

5. Par définition, le fondamental i_1 du courant i s'écrit : $i_1(\theta) = I_{1 \text{ Max}} \sin(\theta - \varphi_1)$. C'est une grandeur sinusoïdale de fréquence 50 Hz (celle du réseau). Les symétries de $i(\theta)$ conduisent à la représentation (Fig. 14.7) de son fondamental. On en déduit que $\varphi_1 = \alpha$

Figure 14.7 Allure du fondamental i,

Électricité en 19 fiches : régimes sinusoïdal et non-sinusoïdal

On applique alors la formule obtenue lorsque la tension est sinusoïdale et le courant périodique alternatif (voir Fig. 14.2) :

$$P = UI_1 \cos \varphi_1 = UI_1 \cos \alpha = \frac{2U\sqrt{2} \times I_S}{\pi} \cos \alpha$$

$$\implies I_1 = \frac{2\sqrt{2} \times I_S}{\pi} \qquad \text{et} \quad I_1 \text{ }_{\text{Max}} = \frac{4I_S}{\pi}$$

Le fondamental du courant s'écrit :

 $i_1(\theta) = \frac{4I_S}{\pi} \sin(\theta - \alpha)$ ce qui vérifie bien l'expression donnée.

6. Puissance apparente absorbée par l'installation. Par définition :

$$S = UI = UI_{\rm S}$$
 car $I = \sqrt{\langle i^2 \rangle} = I_{\rm S}$

7. Facteur de puissance de l'installation. Par définition :

$$f_{\rm P} = \frac{P}{S} = \frac{2\sqrt{2}}{\pi} \cos \alpha$$

8. Puissance réactive, déformante et non-active. Par application des définitions :

$$Q = UI_1 \sin \varphi_1 \Longrightarrow Q = \frac{2U\sqrt{2} \times I_S}{\pi} \sin \alpha$$
$$D = \sqrt{S^2 - P^2 - Q^2} = UI_S \sqrt{1 - \frac{8}{\pi^2}} \approx 0.435 \times UI_S$$
$$N = \sqrt{S^2 - P^2} = UI_S \sqrt{1 - \frac{8}{\pi^2} \cos^2 \alpha}$$

9. Application numérique : $\alpha = \pi/3$ rad, puis $\alpha = 2\pi/3$ rad, et $I_{\rm S} = 50$ A.

α (°)	U _{Moy} (V)	P (W)	S (VA)	f _P	I ₁ (A)	Q (var)	D (vad)	N (VA)
60	180	9000	20 000	0,45	45	15 590	8700	17 860
120	- 180	- 9000	20 000	- 0,45	45	15 590	8700	17 860

Un facteur de puissance négatif correspond à une puissance active négative reçue par le pont. Pour $\alpha > 90^{\circ}$, le redresseur fonctionne en onduleur assisté, la MCC est génératrice et fournit de l'énergie électrique au réseau. La forme du courant i_1 ne dépend pas de l'angle α ; ceci explique que I_1 , D et S soient constants (voir fiche 13, « Méthodes », paragraphe « Signal décalé temporellement »).

Gradateur sur charge résistive

Soit le schéma de principe (Fig. 14.8) d'un gradateur à commande de découpage des phases. Il est alimenté par le réseau qui fournit une tension sinusoïdale $u = U_{\text{Max}} \sin(\omega t)$ avec $U_{\text{Eff}} = 230$ V. L'interrupteur électronique, supposé parfait, est fermé à un instant fixé par l'angle d'amorçage α et ouvert lorsque le courant *i* s'annule. Pour une charge résistive $R = 26,5 \Omega$, on obtient les chronogrammes (Fig. 14.9), et le développement en série de Fourier du courant d'entrée de l'installation *i*:

$$i(\theta) = a_1 \cos \theta + b_1 \sin \theta + \sum_{p=1}^{+\infty} i_{2p+1}(\theta)$$

Avec: $a_1 = \frac{U_{\text{Max}}}{2\pi R} (-1 + \cos(2\alpha))$ et $b_1 = \frac{U_{\text{Max}}}{2\pi R} (2(\pi - \alpha) + \sin(2\alpha))$

1. Exprimer la valeur efficace de la tension u_S aux bornes de la charge. En déduire la valeur efficace du courant *i* dans la charge.

2. Exprimer la puissance active absorbée par l'installation.

3. Exprimer la puissance apparente de la source.

4. Exprimer le facteur de puissance de l'installation.

5. Calculer $U_{\rm S} = U_{\rm S\,Eff}$, $I = I_{\rm Eff}$, P, S et $f_{\rm P}$ pour $\alpha = 0^{\circ}$, puis $\alpha = 90^{\circ}$. Commenter.

6. Ecrire l'expression du fondamental i_1 du courant *i* absorbé par l'installation. Puis exprimer la valeur efficace I_1 du fondamental.

7. Exprimer les puissances réactive, déformante et non-active absorbées par l'installation. Les calculer pour $\alpha = 0^{\circ}$, puis $\alpha = 90^{\circ}$. Commenter.

Figure 14.8 Interrupteur électronique AC

Solution

1. Valeur efficace de la tension aux bornes de la charge. Par définition :

$$U_{\rm S\,Eff}^2 = \frac{1}{\pi} \int_{\alpha}^{\pi} U_{\rm Max}^2 \sin^2\theta \,\mathrm{d}\theta = \frac{U_{\rm Max}^2}{2\pi} \int_{\alpha}^{\pi} (1 - \cos\left(2\theta\right)) \mathrm{d}\theta$$
$$= \frac{U_{\rm Max}^2}{2\pi} \left[\theta - \frac{1}{2}\sin\left(2\theta\right)\right]_{\alpha}^{\pi}$$
$$U_{\rm S} = U_{\rm S\,Eff} = \frac{U_{\rm Max}}{\sqrt{2}} \sqrt{1 - \frac{\alpha}{\pi} + \frac{\sin\left(2\alpha\right)}{2\pi}} = U \sqrt{1 - \frac{\alpha}{\pi} + \frac{\sin\left(2\alpha\right)}{2\pi}}$$

Valeur efficace du courant dans la charge. La loi d'Ohm permet d'écrire :

$$I = \frac{U_{\rm S}}{R} = \frac{U}{R} \sqrt{1 - \frac{\alpha}{\pi} + \frac{\sin{(2\alpha)}}{2\pi}}$$

2. Puissance active absorbée par l'installation. Elle est égale à la puissance moyenne absorbée par la résistance car l'interrupteur électronique est supposé parfait. D'où :

$$P = \frac{U_{\rm S}^2}{R} = RI^2 = \frac{U^2}{R} \left(1 - \frac{\alpha}{\pi} + \frac{\sin(2\alpha)}{2\pi} \right)$$

3. Puissance apparente de la source. Par définition :

$$S = UI = \frac{U^2}{R} \sqrt{1 - \frac{\alpha}{\pi} + \frac{\sin(2\alpha)}{2\pi}}$$

4. Facteur de puissance de l'installation. Par définition :

$$f_{\rm P} = \frac{P}{S} = \sqrt{1 - \frac{\alpha}{\pi} + \frac{\sin{(2\alpha)}}{2\pi}}$$

5. Application numérique. Pour $\alpha = 0^{\circ}$, l'interrupteur électronique est constamment fermé ; la puissance active est maximale et le facteur de puissance vaut 1. Pour $\alpha = 90^{\circ}$, l'interrupteur électronique est fermé la moitié du temps de chaque période ; la puissance active est divisée par 2 tandis que la valeur efficace du courant est divisée par $\sqrt{2}$; le facteur de puissance vaut $1/\sqrt{2}$; cela résulte du fait que le courant n'est pas sinusoïdal.

α (°)	U _S (V)	/(A)	P (W)	S (VA)	f _P
0	230	8,68	2000	2000	1
90	163	6,14	1000	1414	0,707

D'où :

FICHE 14 - Puissances

6. Fondamental du courant absorbé par l'installation. Il s'écrit :

 $i_1(\theta) = a_1 \cos \theta + b_1 \sin \theta$ avec a_1 et b_1 définis ci-dessus.

Valeur efficace du fondamental. On a :

$$I_{1 \text{ Max}} = \sqrt{a_1^2 + b_1^2} \Longrightarrow I_1 = I_{1 \text{ Eff}} = \sqrt{(a_1^2 + b_1^2)/2}$$

7. Puissances réactive, déformante et non-active absorbées par l'installation. La tension étant sinusoïdale et le courant périodique alternatif, on a :

$$U^2 I_1^2 = P^2 + Q^2 \Longrightarrow Q = \sqrt{U^2 I_1^2 - P^2}$$

Tout calcul fait on obtient :

$$Q = \frac{U^2}{R} \times \frac{1 - \cos(2\alpha)}{2\pi} = \frac{U^2}{R} \times \frac{\sin^2(\alpha)}{\pi}$$

Par suite :

$$D = \sqrt{S^2 - P^2 - Q^2}$$
 et $N = \sqrt{S^2 - P^2}$

Application numérique.

α (°)	I ₁ (A)	Q (var)	D (vad)	N (VA)
0	8,68	0	0	0
90	5,16	637	771	1000

Remarque: Ici, il n'est pas facile de donner une interprétation physique à Q dite puissance réactive ; aucune énergie n'est stockée dans une inductance ou une capacité puisqu'il n'y en a pas dans le schéma étudié. Q ne correspond donc pas à un échange d'énergie, mais représente le saut de la puissance instantanée à la fermeture de l'interrupteur électronique $(\theta = \alpha)$. En effet :

$$p(\theta) = \frac{u^2(\theta)}{R} = \frac{2U^2}{R} \sin^2\theta$$

lorsque l'interrupteur électronique est fermé)

$$\implies p(\alpha^+) = 2\pi Q$$
 et $p(\alpha^-) = 0$

Systèmes triphasés en régime sinusoïdal

Objectifs : Savoir ce qu'est un système triphasé équilibré ou déséquilibré, direct ou inverse en régime sinusoïdal permanent triphasé. Représenter un système triphasé temporellement, sous forme vectorielle et en notation complexe.

I À savoir

Système triphasé équilibré – Système triphasé déséquilibré

Trois grandeurs (tensions ou courants) sinusoïdales de même fréquence forment un système triphasé équilibré si elles ont même valeur efficace et sont déphasées entre elles de $2\pi/3$ rad soit 120°. Autrement, elles forment un système triphasé déséquilibré.

Système direct – Système inverse

Le système triphasé (g_1, g_2, g_3) est dit direct si g_3 est en retard de phase de $2\pi/3$ rad sur g_2 qui est en retard de phase de $2\pi/3$ rad sur g_1 . Autrement, le système est dit inverse.

• Représentation temporelle d'un système triphasé équilibré direct (Fig. 15.1)

$$g_1(t) = G_{\text{Max}} \cos(\omega t), g_2(t) = G_{\text{Max}} \cos\left(\omega t - \frac{2\pi}{3}\right), g_3(t) = G_{\text{Max}} \cos\left(\omega t - \frac{4\pi}{3}\right)$$

• Représentation vectorielle d'un système triphasé équilibré direct (Fig. 15.2)

Le module est égal à la valeur efficace G (voir fiche 3).

$$\overrightarrow{G}_1 = [G; 0], \ \overrightarrow{G}_2 = \left[G; -\frac{2\pi}{3}\right], \ \overrightarrow{G}_3 = \left[G; -\frac{4\pi}{3}\right] \text{ avec } G = \frac{G_{\text{Max}}}{\sqrt{2}}$$

Représentation complexe d'un système triphasé équilibré direct

Le module est égal à la valeur efficace G (voir fiche 4).

$$\underline{G_1} = [G; 0] = G, \, \underline{G_2} = \left[G; -\frac{2\pi}{3}\right] = Ge^{-j\frac{2\pi}{3}}, \, \underline{G_3} = \left[G; -\frac{4\pi}{3}\right] = Ge^{-j\frac{4\pi}{3}}$$

Figure 15.1 Représentation temporelle d'un système triphasé équilibré direct

Figure 15.2 Représentation vectorielle d'un système triphasé équilibré direct

Propriété

126

La somme des trois composantes d'un système triphasé équilibré (g_1, g_2, g_3) est nulle à tout instant.

$$\forall t, g_1 + g_2 + g_3 = 0 \iff \overrightarrow{G_1} + \overrightarrow{G_2} + \overrightarrow{G_3} = \overrightarrow{0} \iff \underline{G_1} + \underline{G_2} + \underline{G_3} = 0$$

II Compléments

Pour simplifier écritures et calculs, on note <u>a</u> l'opérateur de rotation de $+120^{\circ}$. On a les propriétés suivantes :

Électricité en 19 fiches : régimes sinusoïdal et non-sinusoïdal

$\underline{a} = e^{j\frac{2\pi}{3}} = e^{-j\frac{4\pi}{3}}$	$\underline{a}^2 = \overline{\underline{a}} =$	$\frac{1}{\underline{a}} = e^{-j\frac{2\pi}{3}}$	$\underline{a}^3 = 1$	
$1 + \underline{a} + \underline{a}^2 =$	0	$\underline{a} - \underline{a}^2 = +j\sqrt{3}$		
$1 - \underline{a} = \sqrt{3} e^{-\frac{1}{2}}$	-j ^π	1 -	$-\underline{a}^2 = \sqrt{3} e^{j\frac{\pi}{6}}$	

D'où : $\underline{a} = e^{j\frac{2\pi}{3}} = \left[1; \frac{2\pi}{3}\right]$

$$\underline{aG_1} = \left[1; \frac{2\pi}{3}\right] \times \left[G; 0\right] = \left[G; \frac{2\pi}{3}\right] = \left[G; \frac{-4\pi}{3}\right] = \underline{G_3}$$
$$\underline{a^2G_1} = \left[1; \frac{4\pi}{3}\right] \times \left[G; 0\right] = \left[G; \frac{4\pi}{3}\right] = \left[G; \frac{-2\pi}{3}\right] = \underline{G_2}$$

Ainsi, en notation complexe, un système triphasé équilibré $(\underline{G_1}, \underline{G_2}, \underline{G_3})$ s'écrit $(\underline{G_1}, \underline{a^2}, \underline{G_1}, \underline{aG_1})$ s'il est direct, et $(\underline{G_1}, \underline{aG_1}, \underline{a^2}, \underline{G_1})$ s'il est inverse.

III Mesures

Un circuit élémentaire de repérage des phases a été présenté en exercices, fiche 3 par la représentation de Fresnel, et fiche 4 par les nombres complexes.

Principe de détection d'inversion de phases

Soit le système triphasé équilibré direct $(\underline{G_1}, \underline{G_2}, \underline{G_3})$ tel que :

$$G_1 = G$$
, $G_2 = Ge^{-j\frac{2\pi}{3}}$ et $G_3 = Ge^{-j\frac{4\pi}{3}} = Ge^{j\frac{2\pi}{3}}$ avec $G = \frac{G_{\text{Max}}}{\sqrt{2}}$

Le principe de la détection d'inversion de phases est donné (Fig. 15.3). L'étude vise à établir les expressions prises par la sortie <u>S</u> pour les 6 branchements possibles de $\underline{G_p}$, $\underline{G_q}$ et $\underline{G_r}$ sur les 3 phases $\underline{G_1}$, $\underline{G_2}$ et $\underline{G_3}$. 1. Exprimer la sortie <u>S</u> en fonction de $\underline{G_p}$, $\underline{G_q}$ et $\underline{G_r}$.

127

2. Exprimer la sortie \underline{S} pour p = 1, q = 2 et r = 3.

3. Exprimer la sortie \underline{S} pour p = 1, q = 3 et r = 2.

4. Récapituler dans un tableau les 6 cas possibles en fonction p, q et r. Conclure.

Solution

1. Sortie \underline{S} en fonction de $\underline{G_p}$, $\underline{G_q}$ et $\underline{G_r}$.

$$\underline{S} = \underline{G_p} - \underline{G_q} e^{-j\frac{\pi}{3}} - \underline{G_r} e^{+j\frac{\pi}{3}}$$

2. Sortie \underline{S} pour p = 1, q = 2 et r = 3.

$$\underline{S} = \underline{G}_1 - \underline{G}_2 e^{-j\frac{\pi}{3}} - \underline{G}_3 e^{+j\frac{\pi}{3}} = G\left(1 - e^{-j\frac{2\pi}{3}}e^{-j\frac{\pi}{3}} - e^{+j\frac{2\pi}{3}}e^{+j\frac{\pi}{3}}\right)$$
$$= G(1 - e^{-j\pi} - e^{+j\pi}) = 3G$$

3. Sortie \underline{S} pour p = 1, q = 3 et r = 2.

$$\underline{S} = \underline{G_1} - \underline{G_3} e^{-j\frac{\pi}{3}} - \underline{G_2} e^{+j\frac{\pi}{3}} = G\left(1 - e^{+j\frac{2\pi}{3}} e^{-j\frac{\pi}{3}} - e^{-j\frac{2\pi}{3}} e^{+j\frac{\pi}{3}}\right)$$
$$= G(1 - e^{j\frac{\pi}{3}} - e^{-j\frac{\pi}{3}}) = 0$$

4. Le tableau (Fig. 15.4) récapitule les 6 cas possibles, les cas non encore traités pouvant se déduire des deux traités précédemment. En conclusion, si S = 3G alors le système est direct, et si S = 0 alors le système est inverse.

p	q	r	Sortie <u>S</u>	Système
1	2	3	<u>S</u> = 3G	Direct
3	1	2	$\underline{S} = 3Ge^{j\frac{2\pi}{3}}$	Direct
2	3	1	$\underline{S} = 3Ge^{-j\frac{2\pi}{3}}$	Direct
1	3	2	<u>S</u> = 0	Inverse
2	1	3	<u>S</u> = 0	Inverse
3	2	1	<u>S</u> = 0	Inverse

Figure 15.4 Les 6 cas possibles.

16

Installations triphasées en régime sinusoïdal

Objectifs : Connaître les propriétés des installations triphasées et les possibles couplages, étoile ou triangle, d'un récepteur linéaire. Étudier le cas d'un récepteur triphasé linéaire déséquilibré en courant. On suppose ici que le régime est sinusoïdal permanent triphasé et, en conséquence, que les charges sont linéaires.

I À savoir

• Réseau triphasé (Fig. 16.1)

Un réseau triphasé comporte trois fils de phases et, éventuellement, un fil de neutre.

Tensions simples ou étoilées – Tensions composées

Les tensions simples (ou étoilées) v_1 , v_2 , v_3 sont respectivement prises entre les phases 1, 2, 3 et le neutre N, tandis que les tensions composées $u_{12} = v_1 - v_2$, $u_{23} = v_2 - v_3$, $u_{31} = v_3 - v_1$ sont prises entre deux phases (voir Fig. 16.1).

En l'absence de défaut, on peut généralement considérer que (v_1, v_2, v_3) et (u_{12}, u_{23}, u_{31}) sont des systèmes de tensions triphasés équilibrés directs. En choisissant v_1 comme origine des phases, on obtient alors les expressions rassemblées (Fig. 16.2) sachant que les valeurs maximales et efficaces des tensions simples et composées sont reliées par :

$$U_{\text{Max}} = V_{\text{Max}}\sqrt{3} \quad \text{et} \quad U = V\sqrt{3} \quad \text{avec} \quad \begin{cases} V_{\text{Max}} = V\sqrt{2} \\ U_{\text{Max}} = U\sqrt{2} \end{cases}$$

129

Pour l'écriture des expressions des tensions composées : voir les exercices des fiches 3 et 4.

	Expressions temporelles	Expressions complexes	Système direct
Tensions simples	$\begin{cases} v_1 = V_{\text{Max}} \cos(\omega t) \\ v_2 = V_{\text{Max}} \cos\left(\omega t - \frac{2\pi}{3}\right) \\ v_3 = V_{\text{Max}} \cos\left(\omega t - \frac{4\pi}{3}\right) \end{cases}$	$\begin{cases} \frac{V_1}{V_2} = V \\ \frac{V_2}{V_3} = V e^{-j\frac{2\pi}{3}} = \underline{a}^2 V \\ \frac{V_3}{V_3} = V e^{-j\frac{4\pi}{3}} = \underline{a} V \end{cases}$	$(\underline{V_1}, \underline{V_2}, \underline{V_3}) = (V, \underline{a}^2 V, \underline{a} V)$
Tensions composées	$\begin{cases} u_{12} = U_{\text{Max}} \cos\left(\omega t + \frac{\pi}{6}\right) \\ u_{23} = U_{\text{Max}} \cos\left(\omega t - \frac{\pi}{2}\right) \\ u_{31} = U_{\text{Max}} \cos\left(\omega t - \frac{7\pi}{6}\right) \end{cases}$	$\begin{cases} \frac{U_{12}}{U_{23}} = Ue^{j\frac{\pi}{6}} \\ \frac{U_{23}}{U_{23}} = Ue^{-j\frac{\pi}{2}} = \underline{a}^2 U_{12} \\ \frac{U_{31}}{U_{31}} = Ue^{-j\frac{7\pi}{6}} = \underline{a} U_{12} \end{cases}$	$(\underline{U_{12}}, \underline{U_{23}}, \underline{U_{31}}) =$ $(\underline{U_{12}}, \underline{a}^2 \underline{U_{12}}, \underline{a} \underline{U_{12}})$

Figure 16.2 Systèmes de tensions triphasés équilibrés directs

• Représentation vectorielle des tensions simples et composées pour des systèmes triphasés équilibrés directs (Fig. 16.3)

Les tensions composées u_{12} , u_{23} et u_{31} sont respectivement **en avance** de 30° sur les tensions simples v_1 , v_2 et v_3 .

Figure 16.3 Tensions simples et composées - Systèmes triphasés équilibrés directs

Électricité en 19 fiches : régimes sinusoïdal et non-sinusoïdal

Dans la suite du chapitre, les systèmes des tensions (v_1, v_2, v_3) et (u_{12}, u_{23}, u_{31}) sont supposés équilibrés et directs.

• Système triphasé de courants

Les courants de ligne i_1 , i_2 et i_3 (voir Fig. 16.1) constituent le système triphasé (i_1, i_2, i_3) qui peut être équilibré ou pas en fonction de l'installation.

• Installation triphasée équilibrée / déséquilibrée

Alimentée par un système de tensions triphasé équilibré direct, une installation triphasée (ensemble de récepteurs triphasés et monophasés) est dite équilibrée si les courants de ligne constituent un système triphasé équilibré direct ; sinon, elle est dite déséquilibrée.

Courant dans le neutre

Si les courants de ligne constituent un système triphasé équilibré alors le courant dans le neutre est nul $(i_N = 0)$. En conséquence, la présence d'un courant dans le neutre indique un déséquilibre de l'installation. Mais attention, en présence de plusieurs récepteurs couplés en étoile pour certains et en triangle pour les autres sur une même ligne triphasée, l'absence de courant dans le neutre ne garantit pas que l'installation soit équilibrée car le neutre n'est pas utilisé dans le cas d'un couplage en triangle d'un récepteur triphasé (voir paragraphe « Méthodes »).

II Méthodes

En régime sinusoïdal permanent triphasé, un récepteur triphasé peut être vu comme l'association de trois dipôles monophasés.

• Couplage étoile d'un récepteur triphasé sur le réseau (Fig. 16.4)

Chaque dipôle est relié entre une phase et le neutre. Soumis à une tension simple, il est traversé par un courant de ligne. La loi des nœuds permet d'écrire :

$$i_{\rm N} = i_1 + i_2 + i_3$$

Récepteur triphasé représenté par trois impédances en étoile

Chaque dipôle D_k est constitué d'une impédance Z_k . On a :

$$\underline{I_N} = \underline{I_1} + \underline{I_2} + \underline{I_3}$$
 avec $\underline{I_1} = \frac{\underline{V_1}}{\underline{Z_1}}$, $\underline{I_2} = \frac{\underline{V_2}}{\underline{Z_2}}$ et $\underline{I_3} = \frac{\underline{V_3}}{\underline{Z_3}}$

Figure 16.4 Couplage étoile d'un récepteur triphasé

Dans le cas où $\underline{Z_1} = \underline{Z_2} = \underline{Z_3}$, on a :

$$\underline{I_1} = \frac{\underline{V_1}}{\underline{Z_1}} \quad , \ \underline{I_2} = \frac{\underline{a}^2 \underline{V_1}}{\underline{Z_2}} = \underline{a}^2 \underline{I_1} \quad \text{et} \ \underline{I_3} = \frac{\underline{a} \underline{V_1}}{\underline{Z_3}} = \underline{a} \underline{I_1}$$

En conséquence, le système triphasé de courants (i_1, i_2, i_3) est équilibré direct, et on dit qu'un tel récepteur est équilibré. Le courant dans le neutre est bien sûr nul :

$$\underline{I_{\mathrm{N}}} = \underline{I_1} + \underline{I_2} + \underline{I_3} = \underline{I_1}(1 + \underline{a}^2 + \underline{a}) = 0$$

Récepteur triphasé représenté par trois modèles de Thévenin en étoile

Chaque dipôle D_k est constitué d'une impédance $\underline{Z_k}$ et d'une source de tension $\underline{E_k}$ en série. On a :

$$I_{N} = I_{1} + I_{2} + I_{3}$$
 avec $I_{1} = \frac{V_{1} - E_{1}}{Z_{1}}$, $I_{2} = \frac{V_{2} - E_{2}}{Z_{2}}$ et $I_{3} = \frac{V_{3} - E_{3}}{Z_{3}}$

Dans le cas où $\underline{Z_1} = \underline{Z_2} = \underline{Z_3}$, $\underline{E_2} = \underline{a}^2 \underline{E_1}$, $\underline{E_3} = \underline{a} \underline{E_1}$, on a :

$$\underline{I_1} = \frac{\underline{V_1} - \underline{E_1}}{\underline{Z_1}} , \ \underline{I_2} = \frac{\underline{a}^2(\underline{V_1} - \underline{E_1})}{\underline{Z_2}} = \underline{a}^2 \underline{I_1} \ \text{et} \ \underline{I_3} = \frac{\underline{a}(\underline{V_1} - \underline{E_1})}{\underline{Z_3}} = \underline{a} \underline{I_1}$$

En conséquence, le système triphasé de courants (i_1, i_2, i_3) est équilibré direct, et on dit aussi qu'un tel récepteur est équilibré. Le courant dans le neutre est bien sûr nul :

$$\underline{I_{N}} = \underline{I_{1}} + \underline{I_{2}} + \underline{I_{3}} = \underline{I_{1}}(1 + \underline{a}^{2} + \underline{a}) = 0$$

132 Électricité en 19 fiches : régimes sinusoïdal et non-sinusoïdal
• Couplage triangle d'un récepteur triphasé sur le réseau (Fig. 16.5)

Chaque dipôle est relié entre deux phases du réseau. Les tensions appliquées aux bornes des dipôles sont les tensions composées du réseau, et les courants de ligne sont différents des courants de branche (ou de phase) dans les récepteurs. La loi des nœuds permet d'écrire :

6

Figure 16.5 Couplage triangle d'un récepteur triphasé

Récepteur triphasé représenté par trois impédances en triangle

Chaque dipôle D_k est constitué d'une impédance Z_k . On a :

$$\underline{J_1} = \frac{\underline{U_{12}}}{\underline{Z_1}} \quad , \ \underline{J_2} = \frac{\underline{U_{23}}}{\underline{Z_2}} \quad \text{et} \ \underline{J_3} = \frac{\underline{U_{31}}}{\underline{Z_3}}$$

Dans le cas où $\underline{Z_1} = \underline{Z_2} = \underline{Z_3}$, on a :

$$\underline{J_1} = \frac{\underline{U_{12}}}{\underline{Z_1}} \quad , \ \underline{J_2} = \frac{\underline{a}^2 \underline{U_{12}}}{\underline{Z_2}} = \underline{a}^2 \underline{J_1} \quad \text{et} \quad \underline{J_3} = \frac{\underline{a} \underline{U_{12}}}{\underline{Z_3}} = \underline{a} \underline{J_1}$$

Le système triphasé de courants (j_1, j_2, j_3) est donc équilibré direct. D'où :

$$\underline{I_1} = \underline{J_1} - \underline{J_3} = (1 - \underline{a})\underline{J_1} \text{ qui s'écrit aussi } \underline{I_1} = \underline{J_1}\sqrt{3}e^{-j\pi/6}$$

$$\underline{I_2} = \underline{J_2} - \underline{J_1} = (\underline{a}^2 - 1)\underline{J_1} = \underline{a}^2(1 - \underline{a})\underline{J_1} = \underline{a}^2\underline{I_1}$$

$$\underline{I_3} = \underline{J_3} - \underline{J_2} = (\underline{a} - \underline{a}^2)\underline{J_1} = \underline{a}(1 - \underline{a})\underline{J_1} = \underline{a}\underline{I_1}$$
avec (tout calcul fait) $\underline{I_1} = (1 - \underline{a})\underline{U_{12}}/\underline{Z_1} = 3\underline{V_1}/\underline{Z_1}$

En conséquence, le système triphasé de courants (i_1, i_2, i_3) est équilibré direct, et on dit qu'un tel récepteur est équilibré. Les courants de ligne i_1 , i_2 et i_3 sont respectivement **en retard** de 30° sur les courants de phase j_1 , j_2 et j_3 , et les valeurs maximales et efficaces sont reliées par :

$$I_{\text{Max}} = J_{\text{Max}}\sqrt{3}$$
 et $I = J\sqrt{3}$ avec
$$\begin{cases} I_{\text{Max}} = I\sqrt{2} \\ J_{\text{Max}} = J\sqrt{2} \end{cases}$$

Récepteur triphasé représenté par trois modèles de Thévenin en triangle

Chaque dipôle D_k est constitué d'une impédance $\underline{Z_k}$ et d'une source de tension $\underline{E_k}$ en série. On montre similairement que, dans le cas où $\underline{Z_1} = \underline{Z_2} = \underline{Z_3}$, $\underline{E_2} = \underline{a}^2 \underline{E_1}$ et $\underline{E_3} = \underline{a}\underline{E_1}$, le récepteur est équilibré.

• Diagrammes de Fresnel pour une charge triphasée équilibrée (Fig. 16.6)

Figure 16.6 Diagrammes de Fresnel – Charge triphasée équilibrée

Schéma monophasé équivalent

Dans le cas d'une installation triphasée linéaire équilibrée en tensions et en courants, on peut se ramener à un schéma équivalent monophasé (Fig. 16.7) entre phase et neutre. Ceci est valable quel que soit le (les) couplage(s) de la (les) charge(s) constituant l'installation.

[<]Remarques :

- Avec le schéma monophasé équivalent, les schémas sont plus simples. Les grandeurs \underline{V} et \underline{I} sont toujours accessibles et mesurables (voir fiche 17, « neutre artificiel »). Attention à ne pas oublier les multiplications par 3 pour les puissances.

- La détermination des éléments du schéma équivalent s'effectue généralement par des essais triphasés (à vide, en court-circuit, rotor bloqué, etc.). Il faut donc faire attention au passage de l'essai en triphasé au modèle monophasé.
- Pour une installation équilibrée (tensions et courants), le schéma triphasé en étoile, d'impédance \underline{Z} entre phase et neutre, est équivalent au schéma triphasé en triangle d'impédance $3 \times \underline{Z}$ entre phases. En effet, pour un récepteur couplé en triangle (voir ci-dessus), $\underline{I_1}$ peut aussi s'écrire :

$$\begin{array}{c} Schéma triphasé en étoile \\ \hline l_1 & 1 & \hline L_2 & \hline V_1 & \hline V_2 & \hline V_2 & \hline V_2 & \hline V_3 & \hline V_2 & \hline V_3 & \hline V_3$$

$$\underline{I_1} = (1 - \underline{a})\underline{U_{12}}/\underline{Z_1} = 3\underline{V_1}/\underline{Z_1} = \underline{V_1}/(\underline{Z_1}/3)$$

Figure 16.7 Schémas équivalents pour une installation triphasée linéaire équilibrée en tensions et en courants

135

Récepteur triphasé

On alimente par le réseau triphasé équilibré 230/400 V, 50 Hz, neutre sorti, un récepteur triphasé constitué de trois dipôles couplés en étoile (voir Fig. 16.4).

1. Les trois dipôles sont des résistances égales à $R = 150 \Omega$.

1.1. Calculer les valeurs efficaces des courants de ligne I_1 , I_2 , I_3 et celle du courant dans le neutre I_N .

1.2. En supposant le neutre coupé, recalculer les valeurs efficaces des courants I_1 , I_2 , I_3 et I_N .

2. Les dipôles D_1 et D_2 sont des résistances égales à $R = 150 \Omega$ et le dipôle D_3 est un condensateur C tel que $Z_C = R$ à 50 Hz.

2.1. Calculer les valeurs efficaces des courants de ligne I_1 , I_2 , I_3 et celle du courant dans le neutre I_N .

2.2. En supposant le neutre coupé, recalculer les valeurs efficaces des courants I_1 , I_2 , I_3 et I_N , ainsi que les tensions aux bornes des dipôles. Conclure.

Solution

1. Les trois dipôles sont des résistances égales à $R = 150 \Omega$.

1.1. Le système triphasé de tensions (v_1, v_2, v_3) étant équilibré direct, le système triphasé de courants (i_1, i_2, i_3) est aussi équilibré direct car les trois résistances sont égales (voir paragraphe « Méthodes »). En conséquence, les courants de ligne ont même valeur efficace et le courant dans le neutre est nul.

$$I_1 = I_2 = I_3 = I = \frac{V}{R} \approx 1,53 \text{ A et } I_N = 0 \text{ A}$$

1.2. Puisque $I_N = 0$ A, que le neutre soit coupé ou non ne change en rien les valeurs efficaces des courants de ligne.

2. Les dipôles D_1 et D_2 sont des résistances égales à $R = 150 \Omega$ et le dipôle D_3 est un condensateur C tel que $Z_C = R$ à 50 Hz (Fig. 16.8).

Figure 16.8 Schéma avec neutre relié

Électricité en 19 fiches : régimes sinusoïdal et non-sinusoïdal

136

2.1. Les courants de ligne ont la même valeur efficace puisque les éléments ont la même impédance $Z_C = R = 150 \Omega$ et sont soumis à la même tension efficace V = 230 V. D'où :

$$I_1 = I_2 = I_3 = I = \frac{V}{R} \approx 1,53 \text{ A}$$

En prenant la tension $v_1(t)$ pour origine des phases et en appliquant la loi d'Ohm aux bornes de chaque élément, on a :

$$\underline{I_1} = \frac{V_1}{R} = \frac{V}{R} = I, \ \underline{I_2} = \frac{V_2}{R} = \frac{\underline{a}^2 V_1}{R} = \underline{a}^2 I \text{ et } \underline{I_3} = \frac{V_3}{\underline{Z_C}} = \frac{\underline{a} V_1}{Z_C e^{-j\frac{\pi}{2}}} = j\underline{a} \frac{V}{R} = j\underline{a} I$$

En appliquant la loi des nœuds en N, on peut écrire :

$$\underline{I_{N}} = \underline{I_{1}} + \underline{I_{2}} + \underline{I_{3}} = (1 + \underline{a}^{2} + \underline{ja})I$$

La Fig. 16.9 montre la représentation de Fresnel. Une mesure sur ce diagramme ou l'utilisation de la calculette donnent : $I_N \approx 2,17$ A et $Arg(I_N) \approx -105^\circ$.

Calcul littéral. Comme $1 + \underline{a} + \underline{a}^2 = 0$, I_N peut aussi s'écrire :

$$\underline{I_{N}} = -\underline{a}(1-j)I = -e^{j\frac{2\pi}{3}} \times \sqrt{2} \times \left(\frac{1}{\sqrt{2}} - \frac{j}{\sqrt{2}}\right) \times I$$
$$= \sqrt{2} \times e^{-j\pi} \times e^{j\frac{2\pi}{3}} \times e^{-j\frac{\pi}{4}} \times I$$

Soit finalement :

$$I_{\underline{N}} = \sqrt{2} \times e^{-j\frac{7\pi}{12}} \times I \Longrightarrow \begin{cases} I_{N} = \sqrt{2} \times I = \sqrt{2} \times V/R \approx 2,17 \text{ A} \\ \text{Arg}(\underline{I_{N}}) = -7\pi/12 \text{ rad} = -105^{\circ} \end{cases}$$

Figure 16.9 Diagramme de Fresnel

FICHE 16 – Installations triphasées en régime sinusoïdal 137

2.2. Si le neutre est coupé, la loi des nœuds s'écrit :

 $\underline{I_1} + \underline{I_2} + \underline{I_3} = 0$

avec $\underline{I_1} = \frac{\underline{V_1} - \underline{V_{ON}}}{R}$, $\underline{I_2} = \frac{\underline{V_2} - \underline{V_{ON}}}{R}$ et $\underline{I_3} = \frac{\underline{V_3} - \underline{V_{ON}}}{\underline{Z_C}}$ où $\underline{Z_C} = -jR$ D'où :

$$\underline{V_1} + \underline{V_2} - 2\underline{V_{\text{ON}}} + j(\underline{V_3} - \underline{V_{\text{ON}}}) = 0$$

Comme $\underline{V_2} = \underline{a}^2 \underline{V_1}$ et $\underline{V_3} = \underline{a} \underline{V_1}$, on obtient :

$$\underline{V_1}(1 + \underline{a}^2 + \underline{j}\underline{a}) = \underline{V_{ON}}(2 + \underline{j})$$

Et finalement :

$$\underline{V_{\text{ON}}} = \underline{V_1} \frac{1 + \underline{a}^2 + j\underline{a}}{2 + j}$$

L'utilisation de la calculette donne : $V_{\rm ON} \approx 145,5$ V et Arg $(V_{\rm ON}) \approx -131,6^{\circ}$

Calcul littéral. VON peut aussi s'écrire :

$$\frac{V_{\rm ON}}{V_{\rm ON}} = -a \frac{V_1}{2+j} \frac{1-j}{2+j} = \sqrt{\frac{2}{5}} e^{j\left(-\pi + \frac{2\pi}{3} - \frac{\pi}{4} - \arctan\frac{1}{2}\right)} \times \frac{V_1}{V_1}$$
$$\implies \left\{ \frac{V_{\rm ON}}{\operatorname{Arg}(\frac{V_{\rm ON}}{N})} \approx -2.3 \operatorname{rad} \approx -131.6^{\circ} \right\}$$

La tension entre O et N n'est donc pas nulle ! On en déduit alors les courants de ligne :

$$\begin{cases} \underline{I_1} = \frac{\underline{V_1} - \underline{V_{\text{ON}}}}{R} = (2,18 + 0,73 \,\text{j}) \,\text{A} = [2,29 \,\text{A}\,;\,0,32 \,\text{rad}] \\\\ \underline{I_2} = \frac{\underline{V_2} - \underline{V_{\text{ON}}}}{R} = (-0,12 - 0,60 \,\text{j}) \,\text{A} = [0,61 \,\text{A}\,;\,-1,77 \,\text{rad}] \\\\ \underline{I_3} = \frac{\underline{V_3} - \underline{V_{\text{ON}}}}{-\text{j}R} = (-2,05 - 0,12 \,\text{j}) \,\text{A} = [2,06 \,\text{A}\,;\,-3,08 \,\text{rad}] \end{cases}$$

Tensions aux bornes des dipôles :

$$\begin{cases} R \times \underline{I_1} = \underline{V_1} - \underline{V_{ON}} = (326, 5 + 108, 8 \text{ j}) \text{ V} = [344, 2 \text{ V}; 0, 32 \text{ rad}] \\ R \times \underline{I_2} = \underline{V_2} - \underline{V_{ON}} = (-18, 5 - 90, 3 \text{ j}) \text{ V} = [92, 2 \text{ V}; -1, 77 \text{ rad}] \\ \underline{Z_C} \times \underline{I_3} = \underline{V_3} - \underline{V_{ON}} = (-18, 5 + 308 \text{ j}) \text{ V} = [308, 6 \text{ V}; 1, 63 \text{ rad}] \end{cases}$$

En conclusion, les dipôles dans chaque phase ne fonctionnent plus sous leur tension nominale.

Système déséquilibré par un incident

On alimente par le réseau triphasé équilibré 230/400 V, 50 Hz, avec neutre, trois dipôles identiques couplés en étoile (voir Fig. 16.4), chaque dipôle étant constitué d'une résistance $R = 33 \Omega$ en série avec une inductance L = 200 mH.

1. Exprimer et calculer le courant complexe I_1 de ligne.

2. Exprimer et calculer le courant complexe $\underline{I_N}$ dans le neutre si, à la suite d'un incident, l'inductance d'un des dipôles est court-circuitée.

Solution

On prend la tension simple V_1 comme référence des phases.

1. Courant complexe I_1

$$\underline{Z} = R + jL\omega = Ze^{j\varphi} = [Z; \varphi] \Longrightarrow \begin{cases} Z = \sqrt{R^2 + (L\omega)^2} \approx 71\Omega\\ \varphi = \arctan(L\omega/R) \approx 1,09 \text{ rad} \approx 62,3^\circ \end{cases}$$

Soit :

$$\underline{Z} \approx (33 + 62,83 \,\mathrm{j})\,\Omega \approx [71\Omega; 1,09 \,\mathrm{rad}]$$

D'où :

$$\underline{I_1} = \frac{\underline{V_1}}{\underline{Z}} \Longrightarrow \underline{I_1} = \frac{V}{Ze^{j\varphi}} = \left[\frac{V}{Z}; -\varphi\right] \approx [3, 24 \text{ A}; -1, 09 \text{ rad}]$$

2. Si une inductance est court-circuitée, le récepteur est déséquilibré et le courant dans le neutre n'est plus nul. On suppose l'inductance du dipôle branché entre la phase l et le neutre court-circuitée.

Loi d'Ohm :

$$\underline{I_1} = \frac{\underline{V_1}}{\underline{R}} = \frac{\underline{V}}{R} , \ \underline{I_2} = \frac{\underline{V_2}}{\underline{Z}} = \underline{a}^2 \frac{\underline{V}}{Ze^{j\varphi}} \text{ et } \underline{I_3} = \frac{\underline{V_3}}{\underline{Z}} = \underline{a} \frac{\underline{V}}{Ze^{j\varphi}}$$

Loi des nœuds :

$$\underline{I_{\mathrm{N}}} = \underline{I_1} + \underline{I_2} + \underline{I_3} = \frac{V}{R} + \frac{V}{Z \mathrm{e}^{\mathrm{j}\varphi}}(\underline{\mathbf{a}}^2 + \underline{\mathbf{a}}) = \frac{V}{R} - \frac{V}{Z} \mathrm{e}^{-\mathrm{j}\varphi}$$

Tout calcul fait, on obtient :

$$I_{\rm N} \approx (5,46 + 2,87\,{\rm j}) \,{\rm A} \approx [6,17\,{\rm A}\,;\,0,48\,{\rm rad}]$$

Puissances en régime sinusoïdal triphasé

Objectifs : Calculer et mesurer la puissance absorbée par un circuit électrique linéaire en régime sinusoïdal permanent triphasé.

On se reportera à la fiche 6 pour la définition des puissances et le théorème de Boucherot, et aux fiches 15 et 16 pour les principes des systèmes triphasés et les schémas des couplages étoile et triangle d'un récepteur.

I À savoir

Le théorème de Boucherot est applicable. En conséquence, les puissances actives d'une part, et réactives d'autre part, consommées par les dipôles s'ajoutent ou, dit autrement, les puissances apparentes complexes consommées par les dipôles s'ajoutent.

II Méthodes

• Si le récepteur triphasé n'est pas équilibré ou n'est pas alimenté sous un système de tensions équilibré, seules les formules générales sont applicables (Cas général Fig. 17.1). On note respectivement :

 $\varphi_1 = \alpha_{v1} - \alpha_{i1}, \varphi_2 = \alpha_{v2} - \alpha_{i2}, \varphi_3 = \alpha_{v3} - \alpha_{i3}$ les déphasages entre les tensions simples v_1, v_2, v_3 et les courants de ligne i_1, i_2, i_3 ;

 $\Psi_1 = \alpha_{u12} - \alpha_{j1}, \Psi_2 = \alpha_{u23} - \alpha_{j2}, \Psi_3 = \alpha_{u31} - \alpha_{j3}$ les déphasages entre les tensions composées u_{12}, u_{23}, u_{31} et les courants de phase j_1, j_2, j_3 .

Si le récepteur triphasé est équilibré et alimenté sous un système de tensions équilibré (
 système de courants équilibré) alors les formules se simplifient (Cas équilibré Fig. 17.1). On a :

 $V = V_1 = V_2 = V_3 \qquad U = U_{12} = U_{23} = U_{31}$ $I = I_1 = I_2 = I_3 \qquad J = J_1 = J_2 = J_3$ $\varphi = \varphi_1 = \varphi_2 = \varphi_3 \qquad \Psi = \Psi_1 = \Psi_2 = \Psi_3 \qquad (et \ \varphi = \Psi)$ $U = V\sqrt{3} \qquad J = I\sqrt{3}$

	Cas	Récepteur couplé en étoile Récepteur couplé en triang		
		$\underline{S} = \underline{S_1} + \underline{S_2} + \underline{S_3} = P + j Q \text{ avec}$		
Puissance apparente complexe <u>S</u> en volt-ampères (VA)	général	$\begin{cases} \frac{S_1}{S_2} = \frac{V_1}{V_2} \times \overline{\underline{I_1}} \\ \frac{S_2}{S_3} = \frac{V_2}{V_3} \times \overline{\underline{I_3}} \end{cases}$	$\begin{cases} \underline{S_1} = \underline{U_{12}} \times \overline{\underline{J_1}} \\ \underline{S_2} = \underline{U_{23}} \times \overline{\underline{J_2}} \\ \underline{S_3} = \underline{U_{31}} \times \overline{\underline{J_3}} \end{cases}$	
	équilibré	<u>S</u> = 3Vle ^{j φ}	<u>S</u> = 3 <i>U</i> je ^{jψ}	
		$P = P_{\text{Moy}} = P_1 + P_2$	$+P_3 = \operatorname{Re}(\underline{S})$ avec	
Puissance active ou moyenne <i>P</i> en watts (W)	général	$\begin{cases} P_1 = V_1 l_1 \cos \varphi_1 \\ P_2 = V_2 l_2 \cos \varphi_2 \\ P_3 = V_3 l_3 \cos \varphi_3 \end{cases}$	$\begin{cases} P_1 = U_{12}J_1 \cos \Psi_1 \\ P_2 = U_{23}J_2 \cos \Psi_2 \\ P_3 = U_{31}J_3 \cos \Psi_3 \end{cases}$	
	équilibré	$P = 3V l \cos \varphi$ $= \sqrt{3} U l \cos \varphi$	$P = 3UJ\cos\Psi$ $= \sqrt{3}UI\cos\Psi$	
	général	$Q = Q_1 + Q_2 + Q_3 = \text{Im}(S)$ avec		
Puissance réactive <i>Q</i> en volt-ampère-réactifs		$\begin{cases} Q_1 = V_1 I_1 \sin\varphi_1 \\ Q_2 = V_2 I_2 \sin\varphi_2 \\ Q_3 = V_3 I_3 \sin\varphi_3 \end{cases}$	$\begin{cases} Q_1 = U_{12}J_1\sin\Psi_1 \\ Q_2 = U_{23}J_2\sin\Psi_2 \\ Q_3 = U_{31}J_3\sin\Psi_3 \end{cases}$	
	équilibré	$Q = 3V/\sin\varphi$	$Q = 3UJ \sin \Psi$	
		= $\sqrt{3}UI\sin\varphi$	$=\sqrt{3}U/\sin\Psi$	
Puissance apparente S	général	$S = \sqrt{P^2 + Q^2} = S $ (Attention ! $S \neq S_1 + S_2 + S_3$)		
en volt-ampères (VA)	équilibré	S = 3VI	S = 3UJ	
		$=\sqrt{3}UI$	$=\sqrt{3}UI$	
Facteur de puissance	général	$f_{\rm P} = \frac{P}{S}$		
-	équilibré	$f_{P} = \cos \varphi$	$f_{P} = \cos \Psi$	

Figure 17.1 Puissances en régime sinusoïdal triphasé (convention récepteur)

III Compléments

Si le système est équilibré en tension et en courant, la puissance instantanée pour un couplage étoile $p = v_1i_1 + v_2i_2 + v_3i_3$ est égale à $p = 3VI \cos \varphi$ qui est la puissance

active. De même, $p = u_{12}j_1 + u_{23}j_2 + u_{31}j_3$ est égale à $p = 3UJ \cos \Psi$ pour un couplage triangle. Autrement dit, la puissance fluctuante (voir fiche 6) est nulle ce qui constitue un avantage important pour les machines triphasées : ces dernières fourniront ou absorberont un couple constant (pas de couple fluctuant alternativement freinant puis entraînant), d'où pas de vibrations ou résonances mécaniques.

IV Mesures

• Création d'un neutre artificiel

Si on dispose d'une ligne à trois fils (sans neutre), on peut toujours créer un point neutre artificiel en connectant en étoile trois résistances égales de grande valeur – typiquement 100 k Ω – (Fig. 17.2). Ainsi, le point neutre d'une installation triphasée est toujours accessible à la mesure. Certains wattmètres intègrent ce montage.

Figure 17.2 Création d'un neutre artificiel

• Utilisation d'appareils triphasés

Puissancemètre numérique triphasé

Ce type d'appareil intègre un grand nombre de fonctions : puissances active, réactive, et apparente, facteur de puissance, tension et courant efficaces, fréquence, etc. (voir fiche 6). Selon l'appareil, la mesure peut se faire sur un système équilibré ou pas.

Utilisation de wattmètres monophasés

On montre que la puissance apparente complexe évaluée sur la ligne d'alimentation s'écrit :

$$\underline{S_{\text{Ligne}}} = \underline{S_{\text{Charge}}} = \underline{V_1} \times \overline{I_1} + \underline{V_2} \times \overline{I_2} + \underline{V_3} \times \overline{I_3}$$

D'où :

$$P_{\text{Ligne}} = P_{\text{Charge}} = V_1 I_1 \cos \varphi_1 + V_2 I_2 \cos \varphi_2 + V_3 I_3 \cos \varphi_3$$
$$Q_{\text{Ligne}} = Q_{\text{Charge}} = V_1 I_1 \sin \varphi_1 + V_2 I_2 \sin \varphi_2 + V_3 I_3 \sin \varphi_3$$

En conséquence, on mesure les puissances absorbées par l'installation sur la ligne d'alimentation.

Mesure de la puissance active (Fig. 17.3)

 P_1 , P_2 et P_3 sont respectivement les valeurs indiquées par les wattmètres W_1 , W_2 et W_3 . On suppose le système des tensions (v_1, v_2, v_3) équilibré direct.

	Schéma	Puissance active	Conditions de validité
Montage à trois wattmètres	Charge triphasée	$P = P_1 + P_2 + P_3$	Charge équilibrée (*) ou pas. Ligne à 4 fils.
Montage à deux wattmètres	Charge	P = P ₁ + P ₂	Charge équilibrée (*) ou pas. Ligne à 3 fils ou courant nul dans le neutre.
Montage à un wattmètres	Charge triphasée	P = 3P ₁	Charge équilibrée (*) seulement. Ligne à 3 ou 4 fils.

(*) Charge équilibrée signifie que le système de courants est équilibré, le système de tensionS étant supposé équilibré.

Figure 17.3 Mesure de la puissance active

Mesure de la puissance réactive (Fig. 17.4)

 P_1 , P_2 et P_3 sont respectivement les valeurs indiquées par les wattmètres W_1 , W_2 et W_3 . On suppose le système des tensions (v_1, v_2, v_3) équilibré direct.

Mesure du facteur de puissance

Si on ne dispose pas d'une pince multi-métrique, on détermine le facteur de puissance à partir des mesures des puissances par : $f_P = P/S = P/\sqrt{P^2 + Q^2}$.

	Schéma	Puissance réactive	Conditions de validité
Montage à trois wattmètres	Charge triphasée	$Q = \frac{P_1 + P_2 + P_3}{\sqrt{3}}$	Charge équilibrée (*) ou pas.
Montage à deux wattmètres	Charge	$Q=\sqrt{3}(P_1-P_2)$	Charge équilibrée (*) seulement.
Montage à un wattmètre (monté en varmètre)	Charge triphasée	Q = √3P1	Charge équilibrée (*) seulement.

(*) Charge équilibrée signifie que le système de courants est équilibré, le système de tensions étant supposé équilibré.

Système déséquilibré par un incident

On alimente par le réseau triphasé équilibré 230/400 V, 50 Hz, avec neutre, trois dipôles inductifs identiques de résistance $R = 33 \Omega$ et d'inductance L = 200 mH, couplés en étoile (voir fiche 16, deuxième exercice).

1. Calculer les puissances active et réactive consommées par le récepteur.

2. On réalise un montage à 2 wattmètres. Calculer les indications des deux appareils.

3. Calculer les puissances active et réactive consommées par le récepteur si, à la suite d'un incident, l'inductance d'un des dipôles est court-circuitée.

4. A-t-on le droit d'utiliser la méthode des 2 wattmètres pour mesurer ces puissances ?

5. On veut relever le facteur de puissance du récepteur (équilibré) à $\cos \varphi' = 0.93$ en connectant trois condensateurs identiques entre phases. Calculer leur capacité.

Solution

1. On applique le théorème de Boucherot :

$$P = P_1 + P_2 + P_3 = 3RI^2$$
 et $Q = Q_1 + Q_2 + Q_3 = 3L\omega I^2$

Si $I \approx 3,24$ A (voir fiche 16, solution du deuxième exercice), on a :

 $P \approx 1040$ W et $Q \approx 1980$ var.

Remarque : Si on donnait la résistance *r* entre deux phases (et celle-ci est toujours mesurable en pratique), la puissance active serait donnée par : $P = \frac{3}{2}rI^2$. Cette formule est valable quel que soit le couplage du récepteur triphasé équilibré.

2. Les puissances actives mesurées avec la méthode des deux wattmètres sont :

$$P_1 = U_{13}I_1\cos\left(\overrightarrow{I_1},\overrightarrow{U_{13}}\right)$$
 et $P_2 = U_{23}I_2\cos\left(\overrightarrow{I_2},\overrightarrow{U_{23}}\right)$ (voir Fig. 17.3)

avec : $U_{13} = U_{23}$, $I_1 = I_2$, $(\overrightarrow{I_1}, \overrightarrow{U_{13}}) = (\overrightarrow{I_1}, \overrightarrow{V_1}) + (\overrightarrow{V_1}, \overrightarrow{U_{13}}) = \varphi - \pi/6 \approx 32,3^\circ$ et $(\overrightarrow{I_2}, \overrightarrow{U_{23}}) = (\overrightarrow{I_2}, \overrightarrow{V_2}) + (\overrightarrow{V_2}, \overrightarrow{U_{23}}) = \varphi + \pi/6 \approx 92,3^\circ$

D'où : $P_1 \approx 1091$ W et $P_2 \approx -51$ W.

La puissance active P_2 est négative car le facteur de puissance de la charge inductive est inférieur à 0,5.

Autre solution utilisant les relations de la méthode des deux wattmètres. On a :

$$\begin{cases} P = P_1 + P_2 \\ Q = \sqrt{3}(P_1 - P_2) \end{cases} \implies \begin{cases} P_1 = \frac{1}{2}(P + Q/\sqrt{3}) \approx 1\,091 \text{ W} \\ P_2 = \frac{1}{2}(P - Q/\sqrt{3}) \approx -51 \text{ W} \end{cases}$$

3. Si une inductance est court-circuitée, le récepteur est déséquilibré. On suppose l'inductance du dipôle branché entre la phase 1 et le neutre court-circuitée. On applique le théorème de Boucherot :

$$P = P_1 + P_2 + P_3 = R(I_1^2 + 2I^2)$$
 et $Q = Q_2 + Q_3 = 2L\omega I^2$

avec $I_1 = \frac{V}{R}$ courant dans la phase 1, et $I = \frac{V}{Z}$ courant dans les phases 2 et 3. Si $I_1 \approx 6,97$ A et $I \approx 3,24$ A (voir fiche 16, solution du deuxième exercice), on a :

$$P \approx 2296$$
 W et $Q \approx 1319$ var.

4. On ne peut utiliser la méthode des 2 wattmètres, ni pour mesurer la puissance active car le courant dans le neutre n'est pas nul, ni pour mesurer la puissance réactive car la charge n'est pas équilibrée.

5. Le facteur de puissance du récepteur est $f_P = P/S = P/\sqrt{P^2 + Q^2} \approx 0.46$. On applique le théorème de Boucherot :

$$\begin{cases} P' = P + P_C \\ Q' = Q + Q_C \end{cases} \text{ avec } P_C = 0, \ Q = P \tan \varphi \text{ et } Q_C = -3C\omega U^2 \end{cases}$$

D'où : $C = \frac{P(\tan \varphi - \tan \varphi')}{3\omega U^2} \approx 10^{-5}$ F soit $C \approx 10 \,\mu$ F

Installation déséquilibrée élémentaire

Une installation de chauffage est constituée selon le schéma (Fig. 17.5) où $R = 143 \Omega$. On n'a représenté qu'un tiers du montage de mesure.

1. Calculer la valeur efficace des courants, les puissances dissipées dans les résistances et la puissance totale dissipée dans la charge.

2. Construire le diagramme de Fresnel.

3. Calculer les puissances actives et réactives mesurées sur la ligne par les appareils. Conclure.

Figure 17.5. Installation

Solution

1. $I_1 = I_2 = I = \frac{U}{R} \approx 2,78 \text{ A}$ et $P_{R1} = P_{R2} = RI^2 \approx 1110 \text{ W}$ Puissance totale dissipée dans la charge : $P = 2P_{R1} \approx 2220 \text{ W}$

$$\underline{I_3} = \frac{1}{R}(-\underline{U_{13}} - \underline{U_{23}})$$

avec
$$\underline{U_{13}} = \left[U; -\frac{\pi}{6}\right] = \frac{U}{2}(\sqrt{3} - j)$$
 et $\underline{U_{23}} = \left[U; -\frac{\pi}{2}\right] = -jU$
D'où : $\underline{I_3} = \frac{U}{2R}(-\sqrt{3} + 3j) = \left[\frac{U\sqrt{3}}{R}; \frac{2\pi}{3}\right]$ soit $I_3 \approx 4,82$ A

2. Diagramme de Fresnel (Fig. 17.6).

Figure 17.6 Diagramme de Fresnel

3. Puissances actives.

 $P_1 = VI \cos \varphi_1 \text{ avec } \varphi_1 = \pi/6 \text{ rad soit } P_1 \approx 555 \text{ W}$ $P_2 = VI \cos \varphi_2 \text{ avec } \varphi_2 = -\pi/6 \text{ rad soit } P_2 \approx 555 \text{ W}$ $P_3 = VI_3 \cos \varphi_3 \text{ avec } \varphi_3 = 0 \text{ soit } P_3 \approx 1110 \text{ W}$

Au total, $P_1 + P_2 + P_3 = 2220 \text{ W} = P$ Puissances réactives. Le wattmètre W_2 mesure le produit scalaire :

$$\overrightarrow{U_{12}} \cdot \overrightarrow{I_1} = U_{12}I_1 \cos(-\varphi_1 + \pi/2) = \sqrt{3} \times VI_1 \sin(\varphi_1) = \sqrt{3} \times Q_1$$

On a: $Q_1 = VI \sin \varphi_1 = 332$ var
 $Q_2 = VI \sin \varphi_2 = -332$ var
 $Q_3 = VI_3 \sin \varphi_3 = 0$ var

Au total, $Q_1 + Q_2 + Q_3 = 0$ var

13

Champs tournants

Objectifs : Connaître les procédés de création d'un champ magnétique tournant en régime sinusoïdal triphasé équilibré. Comprendre le principe de fonctionnement des machines alternatives triphasées synchrones et asynchrones.

I À savoir

Création d'un champ tournant

Il existe deux procédés :

- la mise en rotation d'une « roue polaire », c'est-à-dire d'un aimant permanent ou d'un bobinage alimenté en courant continu, et
- l'alimentation d'un bobinage triphasé fixe par un système triphasé sinusoïdal équilibré (voir théorème de Ferraris ci-dessous).

• Théorème de Ferraris

Soient trois bobinages, dont les axes Ox_1 , Ox_2 et Ox_3 sont décalés entre eux de $2\pi/3$ rad (Fig. 18.1), alimentés par un système triphasé équilibré de courants :

$$\begin{cases} i_1(t) = I_{\text{Max}} \cos(\omega t) \\ i_2(t) = I_{\text{Max}} \cos(\omega t - 2\pi/3) \\ i_3(t) = I_{\text{Max}} \cos(\omega t - 4\pi/3) \end{cases}$$

Chaque bobinage crée dans la direction de son axe un champ magnétique :

$$\begin{cases} \overrightarrow{H_1(t)} = H_{\text{Max}} \cos(\omega t) \times \overrightarrow{u_{x1}} \\ \overrightarrow{H_2(t)} = H_{\text{Max}} \cos(\omega t - 2\pi/3) \times \overrightarrow{u_{x2}} \\ \overrightarrow{H_3(t)} = H_{\text{Max}} \cos(\omega t - 4\pi/3) \times \overrightarrow{u_{x3}} \end{cases}$$

où $\overrightarrow{u_{x1}}$, $\overrightarrow{u_{x2}}$ et $\overrightarrow{u_{x3}}$ désignent respectivement les vecteurs unitaires sur les axes Ox_1 , Ox_2 et Ox_3 .

On montre alors que le champ résultant $\overrightarrow{H(t)} = \overrightarrow{H_1(t)} + \overrightarrow{H_2(t)} + \overrightarrow{H_3(t)}$, de module constant $3H_{\text{Max}}/2$, tourne à la vitesse angulaire dite vitesse de synchronisme $\Omega_{\text{S}} = \omega$ dans le sens inverse.

Figure 18.1 Bobinage triphasé

Généralisation : Dans le cas d'un bobinage triphasé *multipolaire* (p paires de pôles) alimenté par un système triphasé sinusoïdal équilibré, le champ tourne à la vitesse de synchronisme $\Omega_{\rm S} = \omega/p$.

Remarques :

- En permutant deux phases, par exemple les phases 2 et 3, on inverse le sens de rotation du champ.
- En pratique, le bobinage, réparti autour du stator, permet d'obtenir une répartition sinusoïdale du champ dans l'entrefer. Ce champ est radial et prépondérant sur le champ dans les parties ferromagnétiques $(\mu_{Air} \ll \mu_{Fer})$.

• Fém induite

Un champ 2p-polaire tournant à la vitesse Ω devant un bobinage fixe monophasé y induit une force électromotrice e(t) (loi de Lenz-Faraday) alternative sinusoïdale de pulsation $\omega = p\Omega$ (ou de fréquence $f = \omega/2\pi$). La valeur efficace de cette tension est : $E = KNf \Phi_{Max}$ où N est le nombre de conducteurs actifs du bobinage, f la fréquence (en Hz), Φ_{Max} le flux maximal sous un pôle (en Wb), et K un coefficient voisin de 2 qui dépend de la machine. Pour un ensemble de 3 bobines identiques (on passe de l'une à l'autre par rotation successive de $2\pi/3p$), c'est un système de trois tensions alternatives sinusoïdales triphasées équilibrées qui est induit.

Transfert d'énergie dans l'entrefer de la machine

On considère un champ tournant $H_{\rm R}$, 2p-polaire, à répartition sinusoïdale tournant à la vitesse Ω , et un bobinage triphasé, tel que défini ci-dessus, alimenté par un système triphasé équilibré de courants (i_1, i_2, i_3) de pulsation ω .

Cet enroulement crée un champ tournant H_B à la vitesse ω/p ; il est le siège d'un système triphasé équilibré de fém (e_1, e_2, e_3) induites par le champ tournant H_R , et donc d'une puissance électromagnétique instantanée $p(t) = e_1i_1 + e_2i_2 + e_3i_3$.

La valeur moyenne de cette puissance (et donc du couple électromagnétique correspondant) est non-nulle à condition que $\Omega = \omega/p$; pour qu'il y ait transfert de puissance électromagnétique entre le champ tournant et le bobinage, il faut que les deux champs tournants $H_{\rm R}$ et $H_{\rm B}$ soient synchrones.

II Compléments : principes des machines alternatives

Les machines synchrones ou asynchrones assurent une transformation réversible entre énergie mécanique et énergie électrique.

• Machine synchrone triphasée

L'inducteur, situé généralement au rotor, est un aimant (petites machines), ou un bobinage alimenté en courant continu : il crée un champ tournant 2p polaire.

- Fonctionnement en générateur : la roue polaire, entraînée à la vitesse Ω (turbine, moteur thermique), induit des fém dans le bobinage triphasé statorique. Celui-ci étant fermé sur une impédance triphasée, des courants induits de pulsation $\omega = p\Omega$ circulent et créent (Ferraris) un champ tournant statorique à la pulsation $\Omega_{\rm S} = \omega/p = \Omega$: les deux champs sont bien synchrones. La puissance mécanique d'entraînement est transférée au stator sous forme électrique ; le couple électromagnétique est résistant et s'oppose à l'emballement du dispositif d'entraînement.
- Fonctionnement en moteur : le stator, alimenté par un système triphasé équilibré de tensions à la pulsation ω , crée un champ tournant à la vitesse $\Omega_S = \omega/p$. Si le rotor tourne à la vitesse $\Omega = \Omega_S$, alors il y a échange d'énergie. La puissance électrique reçue du réseau d'alimentation est transférée au système mécanique entraîné par le rotor. Le moteur est dit synchrone car sa vitesse est constante et ne dépend pas du couple résistant opposé par le système entraîné. Le couple électromagnétique est moteur. Le transfert de puissance ne pouvant se faire qu'à la vitesse de synchronisme, ce moteur ne peut démarrer spontanément. Il faut donc, par exemple, lui adjoindre un variateur de fréquence qui permettra aussi de faire varier sa vitesse.

• Machine asynchrone triphasée

Le stator (inducteur), constitué d'un bobinage triphasé est alimenté par un système triphasé équilibré de tensions à la pulsation ω et crée (Ferraris) un champ tournant au synchronisme $\Omega_S = \omega/p$. Le rotor, bobinage triphasé en court-circuit (rotor bobiné), est donc le siège de courants induits qui s'opposent à la cause qui leur donne naissance : la variation de flux du champ statorique au travers des bobinages rotoriques. Un couple est ainsi engendré et le rotor tourne dans le sens du champ tournant (pour minimiser la variation de flux) à une vitesse Ω (par rapport au stator) inférieure à Ω_S . Le glissement, défini ci-dessous, ne peut pas être nul pour qu'il y ait échange d'énergie entre le stator et le rotor.

$$g = \frac{\Omega_{\rm S} - \Omega}{\Omega_{\rm S}}$$

Le rotor voit défiler le champ statorique à la vitesse relative (par rapport à lui-même) $\Omega_{\text{Re}\,I} = \Omega_{\text{S}} - \Omega = g\Omega_{\text{S}}$. Des courants de pulsation $\omega_{\text{Re}\,I} = p\Omega_{\text{Re}\,I} = gp\Omega_{\text{S}} = g\omega$, y sont induits. Un champ tournant à la vitesse $\Omega_{\text{Re}\,I} = \omega_{\text{Re}\,I}/p$ par rapport au rotor est créé (Ferraris). Par rapport au stator, ce champ glisse donc à la vitesse (composition des vitesses) :

$$\Omega_{\rm Re\,1} + \Omega = (\Omega_{\rm S} - \Omega) + \Omega = \Omega_{\rm S}$$

Les champs statorique et rotorique sont bien synchrones : il peut donc bien y avoir transfert d'énergie dans l'entrefer. Le couple électromagnétique est moteur.

Le moteur à cage se comporte comme le moteur à rotor bobiné. Il est le plus répandu car il est robuste, peu coûteux et démarre spontanément. Sa vitesse se règle avec un variateur de fréquence.

En génératrice, cette machine est de plus en plus utilisée (éoliennes) mais elle a besoin d'énergie réactive pour fonctionner.

Principales vitesses de synchronisme

Calculer les 5 premières vitesses de synchronisme en tr/s et en tr/min pour une fréquence de 50 Hz.

$\Omega_{ m S}$	$\Omega_{\rm S} = \frac{\omega}{p}$ en rad/s $\Longrightarrow n_{\rm S} = \frac{f}{p}$ en tr/s				
p	1	2	3	4	5
n _S (en tr/s)	50	25	16,7	12,5	10
n _S (en tr/min)	3 000	1 500	1 000	750	600

Solution

.

Machines synchrone et asynchrone

1. Soit une machine synchrone utilisée en alternateur. On veut f = 50 Hz. Calculer la vitesse de rotation de la turbine pour p = 1 ou p = 2 (turbo alternateur de centrale thermique conventionnel ou nucléaire) ou p = 28 (groupe hydraulique).

2. Pour un moteur asynchrone, on a mesuré n = 720 tr/min au fonctionnement nominal à f = 50 Hz.

2.1. Calculer le nombre de paires de pôles et le glissement.

2.2. Dans le cas d'un pilotage scalaire (U/f = cste), le glissement ne dépend que du couple résistant. Calculer la vitesse de rotation pour f = 20 Hz, 40 Hz, 60 Hz au couple nominal.

Solution

1. On applique $n_S = f/p$ en tr/s

p	1	2	28
n _S (en tr/s)	50	25	1,78
n _S (en tr/min)	3 000	1 500	107

2.1. D'après l'exercice 1, la vitesse de synchronisme immédiatement supérieure à n = 720 tr/min pour f = 50 Hz est $n_S = 750$ tr/min, ce qui correspond à p = 4. Le glissement est égal à $g = \frac{n_S - n}{n_S} = 0,04$ soit 4 %.

2.2. On a $n = n_S(1 - g)$ avec g = 0,04 au couple nominal.

f (en Hz)	20	40	60
n _S (en tr/min)	300	600	900
n (en tr/min)	288	576	864

19

Régime non-sinusoïdal triphasé – Puissances

Objectifs : Calculer et mesurer les différentes puissances d'un circuit électrique en régime périodique triphasé et connaître les problèmes liés à la présence de charges nonlinéaires (voir fiche 1). On se reportera aux fiches 6, 14 et 17 pour la définition des puissances, les mesures et le théorème de Boucherot, et à la fiche 12 pour le développement en série de Fourier d'un signal périodique.

l À savoir

• Puissances dans le cas général où les tensions et les courants sont périodiques, les systèmes de tensions et de courants étant équilibrés ou pas (Fig. 19.1)

Notations :

 v_1 , v_2 et v_3 sont les tensions simples

	Unité	Définition
Puissance instantanée	watt (W)	$p = v_1 i_1 + v_2 i_2 + v_3 i_3$
Puissance active ou moyenne	watt (W)	$P = P_{\rm Moy} = \langle p \rangle$

 i_1 , i_2 et i_3 sont les courants de lignes

Figure 19.1 Puissances (convention récepteur) - Cas général

• Puissances et facteur de puissance dans le cas fréquent où les tensions sont sinusoïdales et les courants périodiques alternatifs, les systèmes de tensions et de courants étant équilibrés (Fig. 19.2)

Notations :

V est la valeur efficace des tensions simples v_1 , v_2 , v_3

$$v_q = V\sqrt{2}\cos\left[(\omega t - 2(q-1)\pi/3) + \alpha_{V_1}\right]$$
 pour $q = 1,2,3$

I est la valeur efficace des courants de lignes i_1 , i_2 , i_3

$$i_q = \sum_{n=1}^{\infty} I_{\text{H}n} \sqrt{2} \cos \left[n(\omega t - 2(q-1)\pi/3) + \alpha_{11\text{H}n} \right] \text{ pour } q = 1,2,3$$

$$I = \sqrt{\langle i_q^2 \rangle} = \sqrt{\sum_{n=1}^{+\infty} I_{\text{H}n}^2}$$
 (courant périodique alternatif)

 $I_{\rm H1}$ est la valeur efficace du fondamental (harmonique 1) de i_1 , i_2 , i_3 $\varphi_{\rm H1} = \alpha_{V1} - \alpha_{I1\rm H1}$ est le déphasage entre v_1 (resp. v_2 , v_3) et le fondamental de i_1 (resp. i_2 , i_3)

	Unité	Définition et relations
Puissance active ou moyenne	watt (W)	$P = 3VI_{\rm H1}\cos(\varphi_{\rm H1})$
Puissance apparente	volt-ampère (VA)	S = 3V/
Facteur de puissance		$f_{\rm P}=\frac{P}{S}$
Puissance réactive	volt-ampère-réactif (var)	$Q = 3V_{\rm H1}\sin(\varphi_{\rm H1})$
Puissance déformante	volt-ampère -déformant (vad)	$D=\sqrt{S^2-(P^2+Q^2)}$
Facteur de déphasage		$\cos(\varphi_{\rm H1}) = \frac{P}{3Vl_{\rm H1}}$

Figure 19.2 Cas où les tensions sont sinusoïdales et les courants alternatifs

Remarque : La puissance active est transportée uniquement par le fondamental du courant.

II Compléments

• Origines des problèmes

Les harmoniques des courants sont générés par la multiplication des appareils de faibles puissances tels que les ordinateurs, l'éclairage (lampes à décharges, tubes fluorescents), les gradateurs de lumière, les téléviseurs, etc., mais aussi les variateurs de vitesse des machines à courant continu ou alternatif, les alimentations à découpage, les fours à arc, etc...

Conséquences des harmoniques des courants

- Ils provoquent un échauffement des transformateurs, des machines tournantes, des batteries de condensateurs. Le phénomène peut être aggravé, voire destructeur, si certains harmoniques coïncident avec des fréquences de résonance du circuit.
- Ils perturbent le fonctionnement des circuits de contrôle-commande (courants faibles). La cohabitation des câbles « courants forts » et « courants faibles » doit être particulièrement étudiée.
- Ils engendrent des vibrations dans les matériaux (machines tournantes, transformateurs), les usant plus rapidement.
- Ils créent un échauffement supplémentaire des câbles. Le conducteur neutre peut également être le siège d'un courant élevé (voir l'exercice ci-dessous) et peut se révéler sous-dimensionné, surtout si des charges absorbent des courants contenant l'harmonique 3.

Solutions

Les solutions dépendent évidemment de la nature des problèmes, mais globalement les courants harmoniques peuvent être atténués par filtrage, sachant que celui-ci est d'autant plus délicat que le rang des harmoniques est faible. Or beaucoup de charges génèrent l'harmonique 3, qui est source de nombreux problèmes. Comme solutions, on peut citer :

- Commande des convertisseurs favorisant les harmoniques de rang élevé (comme par exemple la commande MLI des onduleurs) pour un filtrage plus aisé.
- Couplage adéquat des transformateurs permettant de supprimer les harmoniques
 3 car pas de neutre côté réseau : triangle / étoile ou triangle / zig-zag.
- Filtrage passif des harmoniques.
- Augmentation du diamètre du fil de neutre : sa section doit être adaptée. Par exemple, si $TDHI_3 > 33 \%$ (rangs 3 et multiples de 3) alors sa section doit être supérieure à 1,45 fois la section d'un fil de phase ; cas fréquent d'une charge redresseur-condensateur (alimentation à découpage, variateur de vitesse, etc.).
- Utilisation d'un fil de neutre pour chaque phase.
- Filtrage actif : On intercale sur le réseau au plus près de l'équipement pollueur un équipement « compensateur d'harmoniques ».
- Conception de l'équipement : L'équipement est conçu pour ne plus polluer le réseau. Par exemple, un redresseur à absorption sinusoïdale (le courant réseau est sinusoïdal et en phase avec la tension).
- D'une manière générale, à partir de 10 kVA, on préfère utiliser un réseau triphasé à un réseau monophasé car, en régime équilibré, les harmoniques 3 des courants triphasés sont en phase : il n'y a donc pas de courant contenant l'harmonique 3 qui circule entre deux phases. Mais attention à la section du neutre car les harmoniques 3 des courants s'ajoutent dans le neutre.

III Mesures

Les méthodes de mesures vues dans la fiche 17 restent applicables à condition que les appareils puissent mesurer les valeurs efficaces des grandeurs non sinusoïdales, donc contenant des harmoniques. Leur bande passante doit être suffisamment élevée.

 Cas où la charge est équilibrée, le système de tensions sinusoïdales étant équilibré direct et les courants périodiques alternatifs (Fig. 19.3)

On calcule la puissance apparente S à partir de la mesure du courant en ligne I faite avec un ampèremètre TRMS et la mesure de la tension simple V faite avec un voltmètre. La puissance active P se calcule à partir de la mesure faite avec un wattmètre W_1 . La puissance réactive Q se calcule à partir de la mesure faite avec un wattmètre W_2 monté en varmètre. On en déduit alors la puissance déformante D (voir fiche 14).

Figure 19.3 Montage de mesure – Charge équilibrée

Charge triphasée non linéaire

Une charge triphasée équilibrée non linéaire, type salle informatique, est alimentée par un système de tensions équilibré (Fig. 19.4). On donne une approximation du chronogramme du courant $i_1(t)$ sur la phase 1 de valeur maximale I = 24,5 A, et celui de la tension simple $v_1(t)$ de valeur efficace $V_1 = 230$ V (Fig. 19.5). La série de Fourier du courant $i_1(t)$ est :

$$i_1(t) = \frac{4I}{\pi} \left(\sin\left(\frac{\pi}{12}\right) \cos\left(\omega t\right) + \frac{1}{3} \sin\left(\frac{3\pi}{12}\right) \cos\left(3\omega t\right) + \frac{1}{5} \sin\left(\frac{5\pi}{12}\right) \cos\left(5\omega t\right) + \dots \right)$$

1. Calculer la valeur efficace I_1 du courant dans la phase 1.

2. Déterminer le chronogramme du courant i_N dans le neutre. Déterminer sa fréquence et sa valeur efficace I_N . En déduire le rapport des valeurs efficaces I_N/I_1 . Conclure.

3. Donner l'expression temporelle du fondamental i_{1H1} du courant dans la phase 1. Calculer sa valeur efficace I_{1H1} .

4. En déduire le taux de distorsion harmonique du courant i_1 .

5. Calculer $i_{NH1} = i_{1H1} + i_{2H1} + i_{3H1}$ et la valeur efficace correspondante.

6. Calculer les puissances active, réactive, apparente, déformante et le facteur de puissance pour la phase 1.

7. En déduire les mêmes grandeurs relatives pour l'ensemble de l'installation triphasée.

8. Proposer un montage de mesure. (Rappel : les trois phases sont équilibrées). Indiquer les valeurs lues sur les appareils.

9. Donner l'expression temporelle des 3 harmoniques de courant de rang 3 : i_{1H3} , i_{2H3} , i_{3H3} puis de $i_{NH3} = i_{1H3} + i_{2H3} + i_{3H3}$ et la valeur efficace correspondante. Conclure.

10. Donner l'expression temporelle des 3 harmoniques de courant de rang 5 : i_{1H5} , i_{2H5} , i_{3H5} puis de $i_{NH5} = i_{1H5} + i_{2H5} + i_{3H5}$ et la valeur efficace correspondante.

11. Généraliser : Quels sont les rangs des premiers harmoniques du courant i_N ? Tracer le spectre d'un courant de phase et de i_N .

Figure 19.4 Charge triphasée non linéaire

Figure 19.5 Chronogrammes

Solution

1. Valeur efficace du courant dans la phase 1 :

$$I_1 = \sqrt{\frac{2}{\pi} \int_0^{\pi/12} i_1^2(\theta) d\theta} = \sqrt{\frac{2I^2}{\pi} \int_0^{\pi/12} d\theta} = \sqrt{\frac{2I^2}{\pi} \times \frac{\pi}{12}} = \frac{I}{\sqrt{6}} \approx 10 \text{ A}$$

2. Les chronogrammes des courants sur les phases 2 et 3 ont la même allure que celui de $i_1(t)$, mais ils sont décalés respectivement de $-2\pi/3 = -120^\circ$ et de $-4\pi/3 = -240^\circ$ par rapport à $i_1(t)$. Le courant dans le neutre est : $i_N = i_1 + i_2 + i_3$ d'où le graphique (Fig. 19.6).

Figure 19.6 Chronogramme du courant dans le neutre

On voit que la période $T_N = T/3$, d'où : $f_N = 3f = 150$ Hz. La valeur efficace est :

$$I_{\rm N} = \sqrt{\frac{6I^2}{\pi} \int_0^{\pi/12} \mathrm{d}\theta} = \sqrt{\frac{6I^2}{\pi} \times \frac{\pi}{12}} = \frac{I}{\sqrt{2}} \approx 17.3 \text{ A}$$

Le rapport des valeurs efficaces est : $\frac{I_{\rm N}}{I_1} = \frac{\sqrt{6}}{\sqrt{2}} = \sqrt{3}$

Alors que les systèmes de tensions et de courants sont équilibrés, le courant dans le neutre n'est pas nul, il est même plus élevé que le courant en ligne ! D'où un risque de fusion du neutre et d'incendie, si le neutre n'est pas dimensionné en conséquence.

3. Fondamental et valeur efficace de i_{1H1} .

$$i_{1\text{H}1} = \frac{4I}{\pi} \sin\left(\frac{\pi}{12}\right) \cos(\omega t) \approx 8,07 \cos(\omega t)$$
 et $I_{1\text{H}1} = \frac{4I}{\pi\sqrt{2}} \sin\left(\frac{\pi}{12}\right) \approx 5,7$ A

4. Taux de distorsion harmonique du courant i_1 .

$$THD = \sqrt{\frac{I_1^2}{I_{1H1}^2} - 1} \approx 1,44 \text{ soit } 144\%$$

5. On a :

 $i_{1H1} = I_{1H1} \cos(\omega t), i_{2H1} = I_{2H1} \cos(\omega t - 2\pi/3)$ et $i_{3H1} = I_{3H1} \cos(\omega t + 2\pi/3)$ avec $I_{1H1} = I_{2H1} = I_{3H1}$. D'où :

$$i_{\rm NH1} = i_{1\rm H1} + i_{2\rm H1} + i_{3\rm H1} = 0 \implies I_{\rm NH1} = 0$$

6. Puissances et facteur de puissance pour la phase 1. Le développement en série de Fourier du courant i_{H1} montre que : $\varphi_{1H1} = \left(\overrightarrow{I_{1H1}}, \overrightarrow{V_1}\right) = 0$, d'où : $P_1 = V_1 I_{1H1} \cos (\varphi_{1H1}) = V_1 I_{1H1} \approx 1311 \text{ W}$ $Q_1 = V_1 I_{1H1} \sin (\varphi_{1H1}) = 0 \text{ var}$ $S_1 = V_1 I_1 \approx 2300 \text{ VA}$ $D_1 = \sqrt{S_1^2 - P_1^2} \approx 1890 \text{ vad}$ $f_P = \frac{P_1}{S_1} \approx 0.57$ 7. Pour l'installation, on a : $P = 3P_1 \approx 3933 \text{ W}$ Q = 0 var $S = 3S_1 \approx 6900 \text{ VA}$ $D = \sqrt{S^2 - P^2} = 3\sqrt{S_1^2 - P_1^2} \approx 5670 \text{ vad}$ $f_P = \frac{P}{S} = \frac{P_1}{S_1} \approx 0.57$

8. Le montage de mesure proposé (Fig. 19.3) convient car la charge est équilibrée. Attention cependant, de nombreuses pinces multifonctions ne donnent pas D et calculent Q par $\sqrt{S^2 - P^2}$ ce qui est inexact si le courant n'est pas sinusoïdal. Valeurs lues sur les appareils : V = 230 V, I = 10 A, $W_1 = 1311$ W, $W_2 = 0$.

9. Harmoniques de rang 3.

$$i_{1H3} = \frac{4I}{3\pi} \sin\left(\frac{3\pi}{12}\right) \cos(3\omega t) \approx 7,35 \cos(3\omega t)$$

$$i_{2H3} = \frac{4I}{3\pi} \sin\left(\frac{3\pi}{12}\right) \cos(3(\omega t - 2\pi/3)) \approx 7,35 \cos(3\omega t)$$

$$i_{3H3} = \frac{4I}{3\pi} \sin\left(\frac{3\pi}{12}\right) \cos(3(\omega t + 2\pi/3)) \approx 7,35 \cos(3\omega t)$$
D'où : $i_{NH3} = i_{1H3} + i_{2H3} + i_{3H3} = \frac{4I}{\pi} \sin\left(\frac{3\pi}{12}\right) \cos(3\omega t) \approx 22 \cos(3\omega t)$

$$I_{\rm NH3} = \frac{4I}{\pi\sqrt{2}}\sin\left(\frac{3\pi}{12}\right) \approx 15.6 \text{ A}$$

Les harmoniques de rang 3 (à 150 Hz) s'ajoutent en phase dans le neutre, ce qui explique l'importance du courant efficace dans le neutre ($I_N \approx 17,3$ A). **10.** Harmoniques de rang 5.

$$i_{1H5} = \frac{4I}{5\pi} \sin\left(\frac{5\pi}{12}\right) \cos(5\omega t) \approx 6,03\cos(5\omega t)$$

$$i_{2H5} = \frac{4I}{5\pi} \sin\left(\frac{5\pi}{12}\right) \cos(5(\omega t - 2\pi/3)) \approx 6,03\cos(5\omega t - 10\pi/3)$$

$$i_{3H5} = \frac{4I}{5\pi} \sin\left(\frac{5\pi}{12}\right) \cos(5(\omega t + 2\pi/3)) \approx 6,03\cos(5\omega t + 10\pi/3)$$

D'où : $i_{\text{NH5}} = i_{1\text{H5}} + i_{2\text{H5}} + i_{3\text{H5}} = 0$. Les harmoniques de rang 5 s'annulent.

11. Généralisation : les rangs des harmoniques du courant i_N sont impairs et multiples de 3, soit les rangs : 3, 9, 15, 21, etc. La décroissance est assez rapide (en 1/n), et l'harmonique 3 est prépondérant. La (Fig. 19.7) montre le spectre du courant de phase qui alimente la charge et du courant dans le neutre absorbé.

50842 - (I) - (2) - OSB 80° - LAS - MLN

Achevé d'imprimer sur les presses de SNEL Grafics sa Z.I. des Hauts-Sarts - Zone 3 Rue Fond des Fourches 21 – B-4041 Vottem (Herstal) Tél +32 (0)4 344 65 60 - Fax +32 (0)4 286 99 61 avril 2008 – 44542

Dépôt légal : mai 2008

Imprimé en Belgique