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The premise of this book rests on the reality that as embedded microcontrollers reach into vir-
tually all corners of modern life, many of these applications can take advantage of the benefits 
accruing when powered from a coin cell battery. Some of these are:

• small product size,

• reduced product cost,

• enhanced design simplicity,

• portability,

• electrical isolation.

Manufacturers have met this reality with low-power, extended-supply-voltage versions of 
their microcontroller chips. For example, Microchip Technology, the number one supplier of 
8-bit microcontrollers in the world, is using what they call nanoWatt Technology™ features to 
upgrade their entire microcontroller product line by:

• enhancing the feature set of an older part with new power-controlling modules and new 
power-sensitive operating modes,

• reducing leakage current,

• extending the supply voltage range from 5.5 V down to 2.0 V,

while, at the same time, reducing chip cost. The new parts will handle the old applications. In 
addition, they open the door to a wide range of new applications.

The intent of this book is to explore how these features impact the design process and 
the new opportunities these features make possible. This book employs the Qwik&Low 
board, shown on the cover of this book, as the vehicle for the reader to carry out these 
explorations. The board uses two Microchip PIC™ microcontrollers mounted on the under 
side of the board, one as a general purpose microcontroller (PIC18LF4321) and one as the 
controller (PIC18LF6390) for the board’s liquid crystal display. The board was designed by 
the author and is available from MICRODESIGNS (www.microdesignsinc.com), a local 
Atlanta company formed by Bill Kaduck and Dave Cornish, two former students and astute 
designers.

Another goal of this book has been to provide readers with a low-cost tool for their 
learning. It introduces the reader to code writing for a microcontroller using the C program-
ming language. Microchip’s C18 compiler, available to anyone in the form of a free stu-
dent version, is used throughout. In fact, with just the few constraints introduced, and used, 
throughout the book to minimize the execution time of algorithms, the student version of the 
compiler produces machine code that is virtually identical to that produced by the commercial 
version.

PREFACE

7



8 Preface

Free supporting tools are available at the author’s website, www.qwikandlow.com. The 
centerpiece of this support is QwikBug, a debugging user interface. QwikBug supports:

• downloading of an application program to the Qwik&Low board,

• running the program,

• stopping at a breakpoint,

• stepping from one line to the next of the C source file,

• monitoring or changing the content of selected variables and registers.

QwikBug employs the same Background Debug Mode used by Microchip’s debugging tools 
but does so using nothing more than a serial connection (via either a serial cable or a USB-to-
serial adapter) to a PC.

This is the author’s seventh textbook, with four earlier books published by McGraw-Hill 
and two by Prentice Hall. In gratitude to the many students who have supported the author’s 
activities over many years, the book is being made available at no cost. However, this deci-
sion has its downside. By foregoing the fine and generous support of a commercial publisher, 
the author will miss their astute help in having it reach its intended audience of professors, 
students, and professionals. The free download of the book is available from the print-on-
demand book printer, www.lulu.com, by searching their website for Peatman. The site also 
lists a printed version of the book carrying the intended first printing price of $15.50, the same 
price as the author’s first textbook, published by McGraw-Hill thirty-five years ago. While the 
reader awaits the one- to two-week delivery of the printed edition, the free downloaded ver-
sion can be used.

ABOUT THE BOOK

This book will typically be used in a one-semester course at the senior level. Alternatively, it 
might be used at the junior level if it is deemed worthwhile to trade the increased engineering 
sophistication of seniors for the opportunity to follow this course with other design-oriented 
courses and individual project activities.

The book takes the route of writing application code from the outset in C. To support 
readers having no experience with C as well as those having extensive experience, the code 
writing is introduced via a series of template programs. It is the author’s experience that this 
approach brings everyone along, with those new to C able to “do more of the same” as they 
modify template programs to develop code for new lab projects. More experienced C code 
writers find plenty to hold their interest as they explore how alternative codings of an algo-
rithm impact the execution time of the algorithm. With an environment in which the micro-
controller sleeps (and draws only a few microamperes of current from a coin cell when it is not 
otherwise doing useful work), a shortened execution time of an algorithm leads directly to a 
lowering of the average coin cell current.

Code written in C does not translate in an obvious manner into the machine code exe-
cuted by the microcontroller. That is, shortening the C code to implement an algorithm does 
not necessarily translate into faster execution of the algorithm. The issues that arise in this 
translation are discussed throughout the book. Tools are included for monitoring code size 
and code execution time.



An appendix is included for those who are interested in studying how a C algorithm is 
implemented in the assembly language of the PIC18LF4321 microcontroller. This is espe-
cially useful when code is being debugged that does not seem to do what it is intended to do. 
The Microchip compiler is “wrapped” in a c18.exe utility that not only compiles the C code 
into machine code but also generates a qwik.lst file. The appendix explains how this file can 
be used to understand program code execution.

The book begins with the perspective of Steve Sanghi, CEO and President of Microchip 
Technology, on low-power designs. The first three chapters present an overview of the envi-
ronment of the book, low-power operation, and the Qwik&Low board used as a vehicle for 
all that follows. Chapter 4 introduces the first template program and lays the groundwork for 
understanding and using it. Chapter 5 extends the first template to the use of the Qwik&Low 
board’s liquid-crystal display. Chapter 6 opens the door for an application program to be 
tested, with measurement results displayed on the PC monitor. Chapter 7 introduces the use 
of interrupts to control the timing of events with counters controlled by a crystal oscillator. 

Chapter 8 presents an interesting digression. In this chapter a stepper motor and its con-
troller circuit draw power from their own power supply and take control inputs from the 
Qwik&Low board, serving as a model for more general expansion.

For a course that is driven by a sequence of lab projects, Chapters 9 and 10 are likely to 
be studied and used, at least in rudimentary form, earlier than the consecutive sequence of 
chapters would dictate. Chapter 9 explains the use of the microcontroller’s analog-to-digital 
converter. Early in the course, a project might use it to introduce a variable into an algorithm 
with the ADC output from a one-turn potentiometer input. The chapter also deals with the 
scaling and display of a ratiometric temperature sensor’s output. Chapter 10 discusses the 
use of a rotary pulse generator (a.k.a., a rotary encoder) to vary an input parameter to an 
application.

Chapters 11 and 13 provide two takes on timing measurements. Chapter 11 deals with the 
monitoring of the execution time of an algorithm, a critical issue for average current draw and 
an elusive issue when coding is done in C. Interrupt timing measurements are also studied. 
Chapter 13 looks at how the microcontroller’s ±2% accurate internal oscillator can be cali-
brated against the 32768 Hz, ±50-ppm (parts per million) watch crystal oscillator used by two 
of the microcontroller’s timers. It then goes on to convert accurate cycle count measurements 
into accurate microsecond measurements.

Chapter 12 explores in depth the chip’s full interrupt capabilities that were first introduced 
in Chapter 7. It discusses the drastic effect that alternative ways of expressing interrupt service 
routines in C can have on execution time.

Chapter 14, like Chapters 9 and 10 before it, might well be introduced before its sequential 
order in the book. It describes how the nonvolatile EEPROM in the chip can be used to save 
and restore data through power disruptions.

Chapter 15 explains the 1-wire interface protocol used by Dallas/Maxim for a family of 
parts. These parts include the silicon serial number chip that gives each Qwik&Low board a 
unique serial number.

Chapter 16 describes the operation of the PIC18LF6390 LCD controller chip and its firm-
ware. This illustrates the operation of a low-power chip dedicated to a specific, limited task. 
It carries out the task while drawing an average current of only 6 µA, orders of magnitude less 
than the current drawn by popular dot-matrix, multiple-character, 5 V displays.

Preface 9



10 Preface

Chapter 17 considers another role for the serial peripheral interface used by the microcon-
troller to send data to the LCD controller. This interface can be used for attaching chips with 
additional I/O features to the microcontroller. Two chips are considered: a digital-to-analog 
converter, and a temperature sensor with a high-resolution digital output.

The book concludes with four appendices. The first describes the installation and use of 
the QwikBug debugger. The second describes the CPU structure, instruction set, and address-
ing modes of the PIC18 microcontroller family. The intent is to gain an understanding of the 
assembly code produced by the compiler of an application program written in C. The last two 
appendices describe the circuitry of the Qwik&Low board and of the stepper motor control 
board.
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1.1 LOW-POWER DESIGNS: THE WAY FORWARD IN EMBEDDED 
APPLICATIONS1

The need to reduce overall power consumption plays a crucial role in many embedded 
applications. This intention could be twofold—to extend battery life or meet regulations 
like Energy Star. Low power and dependable operation are important in embedded 
applications. As microcontroller designs continue to move into smaller applications with 
limited power resources, the availability of economical small-pin-count devices with 
complex peripherals and power-saving features has become increasingly desirable. 

Batteries are the power source in low-power designs. Since the advances in bat-
tery technology are incremental in nature, it is left to the ingenuity of the embedded 
designer to get the most out of the power source using suitable microcontrollers and 
related devices. This can be seen in examples such as PDAs, mobile phones, media 
players, laptops and other devices. System designers face many challenges posed by 
compact and portable device electronics. 

Chip designers have incorporated several power-saving features into their devices 
that give designers control over power consumption.  The main focus of a successful 

1 This section was written by Steve Sanghi, CEO and President, Microchip Technology Inc., Chandler, 
Arizona.

INTRODUCTION

Chapter 
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14 Chapter 1 Introduction

low-power design is a microcontroller that features a variety of sleep modes and clock 
modes. The idle modes of the microcontroller power down the CPU while allow-
ing peripherals such as an ADC to continue to operate. To conserve power, in most 
applications, system controllers need to remain in a low-power state most of the time, 
waking up periodically under a timer’s interrupt to run program code.  

Several techniques exist that allow designers to save power. The most obvious 
one is being able to turn off the peripherals when they are not needed. For example, 
the Brown-out Reset (BOR) feature is not necessary in battery-powered applications. 
On the other hand, designers can turn off the CPU using an idle instruction and keep 
the peripherals running.  By invoking the sleep state, the power consumption can be 
reduced by as much as 96%. 

Power saving can be optimally achieved in low-power designs by having the micro-
controller control power used by both internal and external peripherals. This requires 
the partitioning of the design based on power consumption during its operation. When 
designing a low-power product, determine the required operation states and plan to 
shutdown unwanted circuitry. As a rule of thumb, if a single peripheral in the device 
consumes most of the power, worrying about reducing the microcontroller’s power 
will have no impact on the overall system power consumption. 

Safety is a high priority in some applications such as medical and mission-critical 
applications. In these applications, system designers need to provide for emergency situ-
ations where an appliance can suffer from loss of power or program control. There could 
be instances where the loss of a clock source can trigger an erroneous execution of a 
product’s control program. In certain microcontrollers, designers can take advantage of 
a fail-safe clock monitor feature to detect the loss of a clock source—thus helping the sys-
tem toward either a gentle shutdown or a “stay-alive” mode, if shutdown is not desired. 

By using the latest microcontrollers, designers can implement power-management 
techniques and build cost-effective low-power devices.  Minimizing power consump-
tion in embedded systems enables the use of smaller batteries in portable systems. The 
combination of lower-power peripherals and microcontroller sleep modes improves 
the design of a low-power solution. This opens up new product design opportunities 
in space-constrained applications that could not afford the cost of a microcontroller. 
The impact of low-power designs can have significant implications from disposable 
medical devices to consumer electronics and beyond. 

1.2 THE LEARNING CURVE

Microcontroller manufacturers develop their products for a highly fractionated mar-
ket. With approximately two dozen manufacturers of microcontrollers worldwide, no 
one company dominates the marketplace. The competition is especially fierce among 
manufacturers of 8-bit microcontrollers, which pervade low-cost high-volume applica-
tions. These microcontrollers, with instructions that operate on 8 bits at a time, afford 
a manufacturer the best tradeoff for developing families of parts having a rich assort-
ment of features reaching across the family. For example, the Qwik&Low board used 
in conjunction with this book employs two Microchip Technology microcontrollers. 
They share the same CPU architecture and instruction set. One is a general-featured, 



multipurpose microcontroller. The other concentrates its feature set around the abil-
ity to serve as a versatile LCD controller that supports a variety of LCD multiplexing 
modes and a variety of serial and parallel data input formats.

Microchip’s 8-bit microcontrollers span from 6-pin to 100-pin parts, each with its 
own set of on-chip peripheral modules (e.g., an analog-to-digital converter). Micro-
chip has pioneered the use of low-cost reprogrammable flash memory, accounting for 
over 2 billion of the 5 billion microcontrollers it has sold to date.

For years Motorola dominated the 8-bit microcontroller market with one out of 
every three microcontrollers sold being a Motorola product. In 2002, a marketplace 
increasingly supplied by many competitors had reduced Motorola’s market share and 
led to Microchip gaining the number one spot in the number of 8-bit microcontrollers 
shipped. Microchip has continued to hold this number one spot since then and has, 
this year, also gained the number one spot in 8-bit microcontroller revenue.

Given this fractionated market and given the benefits that follow market share, 
Microchip has pursued a careful learning curve strategy. The principle of the learning 
curve states that each doubling of the quantity of parts produced results in a fixed 
percentage decrease in the unit cost of a part. By passing these reduced costs along 
to customers in the form of reduced prices, Microchip has gained market share. As 
a consequence, even sophisticated parts such as those used on the Qwik&Low board 
have a unit price of about $3.

The payoff for users of this book is that their learning is directed toward a fam-
ily of parts that finds wide use and is competitively priced. Just as important, readers 
will learn techniques for using a microcontroller in an energy-efficient manner that 
will translate to another manufacturer’s microcontroller. Even as students graduate 
and find themselves immersed in a company environment with tools and facilities 
organized to use another manufacturer’s microcontroller, the skills and perspectives 
gained here will reap dividends there.

1.3 THE PIC18LF4321 MICROCONTROLLER

The general-purpose microcontroller employed in this book is shown in block dia-
gram form in Figure 1-1. It has the diversity of resources that make it a good match 
for a wealth of applications. Its features also make it a fine vehicle for exploring appli-
cations where power is supplied by a wafer-thin coin cell. Alternative approaches to 
hardware and program code organization will be compared for their resulting average 
current draw from the coin cell.

1.4 THE PIC18LF6390 LCD CONTROLLER

The Qwik&Low board includes a second microcontroller with internal resources ded-
icated to the ongoing task of updating and refreshing a liquid-crystal display (LCD). 
This second microcontroller illustrates one of the trends in the world of low-power 
applications. This microcontroller includes an LCD module that autonomously 
refreshes the LCD while the rest of the chip sleeps and draws virtually no power. Only 

Section 1.4 The PIC18LF6390 LCD Controller 15



16 Chapter 1 Introduction

FIGURE 1-1 Block diagram of PIC18LF4321 microcontroller
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CPU awaken and process the characters, load the registers used autonomously by the 
LCD module, and then return to sleep.



1.5 QWIKBUG DEVELOPMENT ENVIRONMENT

The PIC18LF4321 microcontroller on the Qwik&Low board has been programmed 
with an executive kernel that works with its counterpart, QwikBug, running on a PC. 
QwikBug supports application programs written in C and compiled using Microchip’s 
C18 compiler. QwikBug can be used to download a program, run it, stop at a break-
point, “single step” successive lines of C source code, examine and modify registers 
and RAM variables, and serve as a display of character strings for an application pro-
gram (in addition to the Qwik&Low board’s LCD).

All of these tools are free, beginning with the Student Edition of Microchip’s C18 
compiler. While “Student Edition” may sound worrisome, it is available to anyone and 
is identical to the commercial version for 60 days, after which some of its code opti-
mization is withdrawn. The author has found that the relatively small program code 
examples used in this book compiled to virtually identical “hex” files whether using the 
“expired” student version of the compiler or the “site license” commercial version.

The QwikBug “install” program can be downloaded and installed from the 
author’s www.qwikandlow.com website to a PC. If the PC has a serial port, a standard 
“straight-through” serial cable is used for the connection to the Qwik&Low board. 
Otherwise, a USB-to-serial adapter cable is used. Once installed, QwikBug presents 
the easy-to-use, uncluttered user interface described in Appendix A1.

The source code for QwikBug is freely available from the www.qwikandlow.com 
website for anyone interested in making modifications to it (e.g., to modify its choice 
of configuration options, to change the watchdog timer timeout period from 16 ms 
to 8 ms). Reprogramming the modified QwikBug into the chip requires a PICkit™2 
programmer and a special programming utility, QwikProgram 2, as described in 
Appendix A1. The need for a special utility arises because of QwikBug’s use of the 
chip’s Background Debug Mode vector. This vector is located within the PIC18LF4321 
chip at an address that Microchip’s PICkit 2 programming utility prohibits accessing, 
reserving its use for their in-circuit debugging tool.

1.6 PROGRAMMING WITH THE PICKIT 2 PROGRAMMER

Microchip’s low-cost ($35) PICkit 2 programmer can be used to program either the 
PIC18LF4321 MCU or the PIC18LF6390 LCD controller.  If application code is pro-
grammed into the MCU directly (i.e., without QwikBug), the program can be run 
directly from reset, complete with the user program’s “configuration byte” choices 
(which are normally ignored, deferring to QwikBug’s choices). The LCD controller 
code can be modified to enhance its user interface.  

Figure 2-11 in the next chapter illustrates the programming connection. It requires 
the addition of a 6-pin male-to-male header inserted into the 6-pin female socket of the 
PICkit 2. The resulting male probe of the PICkit 2 is inserted (but not soldered) into 
the 6-pin unpopulated header pattern labeled “MCU PICkit 2” on the Qwik&Low 
board. For programming the LCD controller, the header pattern labeled “LCD PICkit 
2” is used.

Section 1.6 Programming With The PICkit 2 Programmer 17
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Chapter 

2

LOW-POWER 
OPERATION

2.1 OVERVIEW

This chapter considers the opportunities and challenges of using a popular MCU  
(microcontroller unit) under the constrained design goal of powering it with a low-
cost 3-V coin cell. The specifications of the coin cell will lead to a consideration of the 
microcontroller and its power-saving operating modes. A vehicle for testing operating 
alternatives will take the form of a manufactured Qwik&Low board. A case will be pre-
sented for writing code in C rather than in assembly language.

2.2 CR2032 COIN CELL

The low-cost ($0.25), popular CR2032 coin cell is shown in Figure 2-1. Note that 
while this coin cell is specified for a standard discharge current of 0.4 mA, a larger 
current can be drawn from it subject to degradation from its specified life of 220 mAh. 
The challenge will be to explore ways to organize an application so as to draw only a 
few tens of microamperes from the coin cell, perhaps with brief excursions to currents 
in the milliampere range. By keeping such excursions short, the average current can 
be minimized. 



2.3 A PIC18LFXXXX FAMILY OF MICROCONTROLLERS

Microchip Technology’s microcontrollers employing nanoWatt Technology offer a 
user a variety of ways to operate the chip to minimize the current draw on the coin cell. 
Other than the amount of program memory and RAM, each chip listed in Figure 2-2a 
includes essentially the same feature set, listed in Figures 2-2b and c. This book will focus 
on the low-power features of Figure 2-2b while using the I/O features of Figure 2-2c.

Current (mA)
1

1.0

2.0

3.0

V
ol

ta
ge

 (
V

)

2

(c) Voltage vs. Current

(b) Specifications

Nominal voltage = 3 V
Rated capacity = 220 mAh (milliampere-hours)
Standard discharge current = 0.4 mA

(a) Coin cell and a dime

FIGURE 2-1 CR2032 lithium 
coin cell
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44-pin TQFP 
package

28-pin DIP 
package

Flash program 
memory 

(kilobytes)
RAM

(bytes)

44/28-pin 
price
(1-25)

PIC18LF4221-I/PT PIC18LF2221-I/SP 4 512 $3.24/$2.96

PIC18LF4321-I/PT PIC18LF2321-I/SP 8 512 $3.41/$3.11

PIC18LF4420-I/PT PIC18LF2420-I/SP 16 768 $6.71/$5.25

PIC18LF4520-I/PT PIC18LF2520-I/SP 32 1536 $7.38/$5.83

(a) Price versus program memory and RAM size (prices from www.microchipdirect.com).

Eight internally generated, 2% accurate CPU clock frequencies (2 MHz down to 8 kHz).
Separate very low power but 10% accurate internal 8 kHz CPU clock.

Another very low power oscillator using external 32768 Hz watch crystal for 50 ppm accuracy.

Power-managed modes of operation:
Run mode: CPU on; peripherals on
Idle mode: CPU off; peripherals on

Sleep mode: CPU off; peripherals off

Operation down to 2.4V for CPU clock of 2 MHz or less.

Watchdog timer for periodic wakeup from lowest-power sleep mode.
 Timeout period of 4 ms, 8 ms, 16 ms, 32 ms, . . . , up to over 2 minutes.

(b) Low-power-achieving features.

Up to 32/25 I/O pins on 44-pin/28-pin parts.
Four sixteen-bit timers plus associated circuitry for versatile timing measurement and control.

13/10 analog-to-ten-bit-digital converter inputs (44-pin/28-pin parts).
Two voltage comparators.

SPI and I2C serial peripheral expansion support.
USART asynchronous and synchronous serial communication support.

Twenty interrupt sources.

(c) Input/output functions

FIGURE 2-2 Family features of four PIC nanoWatt Technology™ 
microcontrollers

The table of Figure 2-2a lists the distinguishing amounts of program memory and 
RAM data memory plus the 2007 price for four otherwise virtually identical pairs of 
chips. Each pair includes a 44-pin surface-mount part and the same microcontroller in 
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a 28-pin DIP package (with 11 of its I/O pads not brought out to DIP pins). Although 
even the 4221/2221 pair with 4,096 bytes of program memory should suffice for the 
tasks of this text, the “sweet spot” 4321/2321 pair, with double the program memory 
for essentially the same price, will be used throughout.

2.4 INTOSC AND INTRC, THE INTERNAL OSCILLATORS

Figure 2-3a illustrates the circuitry that selects one of the eight internally generated 
CPU (central processing unit) clock frequencies, from 2 MHz down to 7.8 kHz. The 
highest seven of these frequencies are derived from a relatively accurate (±2%) 8-MHz 
oscillator, a programmable divider, and a final divide-by-four circuit. The lowest fre-
quency of about 7.8 kHz can be derived in either of two ways. The lowest-power 
choice uses the relatively inaccurate INTRC oscillator. The divided-down INTOSC 
oscillator provides a more accurate clock frequency, but draws roughly an extra 150 µA 
of current from the 3-V coin cell as will be seen in Figure 2-4.

The internal oscillator frequency choice is under the control of a user program. By 
writing any of seven choices to the chip’s OSCCON register, any of the upper seven fre-
quencies can be selected. If the binary value 00000010 is written to OSCCON, then the 
lowest frequency, 7.8 kHz, will be selected. In this case, the most-significant bit of the 
chip’s OSCTUNE register can be set to select the higher-power, more accurate INTOSC 
source. Clearing this bit will select the low-power, less accurate INTRC source.

The effect of the choice of CPU clock upon the current drawn from a 3-V coin 
cell powering the chip is illustrated in Figure 2-4. These are typical values taken from 
actual measurements. Given that Microchip’s data sheet does not address all the vari-
ations of interest here, the table values provide design guidance by way of their com-
parative values.

If the CPU were continuously clocked, the data of Figure 2-4 would tell the whole 
story of the CPU’s relatively high current versus clock rate. Added to this current 
would be the current drawn by peripheral functions, both in the microcontroller and 
external to it.

2.5 INTERMITTENT SLEEP MODE OPERATION

The PIC18LFxxxx microcontrollers include a “sleep” instruction that, when executed, 
causes the CPU clock to stop. With nothing being clocked, the chip exhibits a mea-
sured value of leakage current of 0.1 µA. By awakening the chip from its sleep mode 
periodically, it can respond to inputs and control outputs and then go back to sleep. 
This is illustrated in Figure 2-5.

To execute instructions in periodic bursts in this way, the microcontroller needs a 
mechanism that can awaken it periodically. A built-in mechanism that is satisfactory 
for many applications is the PIC18LFxxxx watchdog timer, illustrated in Figure 2-6. 
Its programmable scaler can be used to create watchdog timeout periods of 4 ms, 8 ms, 
16 ms, 32 ms, . . ., up to something over 2 min. The choice of divider is selected when 
the chip is programmed with what are called its configuration bytes. These bytes select 
features of the chip that cannot be altered during the execution of a user program. 
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(a) CPU clock derivation from INTOSC or INTRC oscillators.

(b) Clock selection registers

INTOSC
8 MHz

±2%

OSCCON divider

÷ 1, 2, 4, 8, 16, 32, 64, 256

÷ 4
0

AND

FOSC
FCPU

1Low-power
INTRC

31.25 KHz
±10% OSCCON = x  0  0  0  x  x  x  x

OSCTUNE = 0  x  x  x  x  x  x  x

FOSC (kHz)
FCPU (kHz)

(FOSC/4)

0 0 0 1 0

Use primary oscillator selected by
configuration choice (Figure 4-2)

0
1

1
0

1 use INTOSC; FCPU = 8000/1024 = 7.8 kHz ± 2%
0 use INTRC;   FCPU = 31.25/4      = 7.8 kHz ± 10% (low-power alternative)

1
1
1
1
0
0
0
0

1
1
0
0
1
1
0
0

1
0
1
0
1
0
1
0

8000
4000
2000
1000
500
250
125

OSCCON

OSCTUNE

System clock select bits

Use Timer1 (32768 Hz crystal oscillator)
Use internal oscillator block (INTOSC or INTRC)

For this choice, use OSCTUNE to select 7.8 kHz source

2000
1000
500
250
125

31.25
62.5

0 0

FIGURE 2-3 INTOSC and INTRC clock sources
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The watchdog timer can be enabled with a bit of a configuration byte, once and for 
all, independent of what a user program might choose to do. Alternatively, as shown 
in Figure 2-6, setting or clearing the SWDTEN bit of the WDTCON register can 
leave the enabling/disabling under program control. Whenever the watchdog timer is 



enabled, the low-power INTRC oscillator is enabled for use with the watchdog timer, 
independent of whether the INTRC oscillator is also selected as the CPU clock. The 
running of INTRC plus the watchdog timer together draw a measured current of 2.2 µA, 
a miniscule current for implementing this intermittent sleep mode of operation.

The choice of the watchdog timer’s divider can be used to shorten response time 
to input/output demands. Alternatively, it can be used to reduce average current by 
lengthening the “Tperiod” interval of Figure 2-5.

Another issue bearing on this choice is the effect of the contact bounce exhibited 
by pushbutton switches and keypad switches employed in a user interface. If Tperiod 
is selected to be larger than the maximum contact bounce time of any switches in an 
application, then sensing the state of a switch during successive intervals effectively 
debounces the switch, as shown in Figure 2-7. Figure 2-7a illustrates a circuit for sens-
ing the press of a pushbutton. During successive awakenings of the chip, the input is 

Clock source Nominal Fosc
Actual Fcpu
(Fosc/4)

CPU clock 
period Current draw

INTOSC 8 MHz 1.966 MHz 0.508 µs 1.750 mA

INTOSC 4 MHz 983 kHz 1.02 µs 1.036 mA

INTOSC 2 MHz 492 kHz 2.03 µs 674 µA

INTOSC 1 MHz 246 kHz 4.06 µs 486 µA

INTOSC 500 kHz 123.5 kHz 8.10 µs 390 µA

INTOSC 250 kHz 61.7 kHz 16.2 µs 343 µA

INTOSC 125 kHz 30.8 kHz 32.5 µs 207 µA

INTOSC 31.25 kHz 7.69 kHz 130 µs 206 µA

INTRC 31.25 kHz 8.19 kHz 122 µs 64 µA

FIGURE 2-4 Current draw of PIC18LF4321 when operating continuously from a 3V coin cell 
versus CPU clock source and frequency. (All internal and external functions other than CPU 
instruction execution are inactive.)

1750 µA

≈0 µA

timeTactive

Tperiod

1750 × Tactive

Tperiod
Iavg = 

FIGURE 2-5 Effect of intermittent 
sleep mode upon average current. 
(shown for FOSC = 8 MHz, FCPU = 
2 MHz)
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read. Action is taken when the pin is read as a 0 and the previous reading was a 1. 
Before the keypress, a succession of 1s was read. While the key is held down, a succes-
sion of 0s is read. If the key is bouncing at the moment the key state is read and if it is 
read as a 1, then a single change from 1 to 0 will be detected at the time of the following 

(c) Measured value of current

I(INTRC+WDT) = 2.2 µA

(a) Circuit

WDTCON

Enable INTRC
for use by
watchdog timer

Low-power
INTRC

31.25 kHz
±10%

÷128 ÷N scaler

Enable
watchdog timer
itself

N is set by the WDTPS
configuration value

0: Disable watchdog timer
1: Enable both INTRC oscillator
 and watchdog timer

SWDTEN = 

Wake up
sleeping CPU

Period = 4 ms Tperiod

(b) Configuration options programmed into the chip
(unavailable for change by the user program)

WDT

WDTPS

1
2
4
8

16

4 ms
8 ms

16 ms
32 ms
64 ms

OFF :

ON :

Watchdog timer disabled; control is passed
to the SWDTEN bit of the WDTCON register

Watchdog timer is enabled, regardless of the
state of the SWDTEN bit

Tperiod

≈2 minutes32768

•
•
•

FIGURE 2-6 Watchdog Timer



sample. If the bouncing key is read as a 0, a single change from 1 to 0 will be noted at 
the time of this sample. In neither case does the 

 … 1 → 1 → 1 → 0 → 1 → 0 → 1 → 0 → 0 → 0 …

sequence register as anything other than a single 1 → 0 transition.
The maximum contact bounce time of small electromechanical switches is com-

monly specified as less than 10 ms. If Tperiod = 4 ms, the user program just needs to 
check the state of a switch every third awake time to debounce it. For Tperiod = 8 ms, 
the switch can be checked every other awake time. For Tperiod = 16 ms, the switch is 
checked every awake time, with no keybounce ever seen. 

2.6 EFFECT OF CLOCK FREQUENCY

A final consideration when operating the MCU in this intermittent sleep mode is the 
effect of the choice of FOSC, the frequency of the clock source. First consider the com-
monly occurring case where the awake time is determined solely by the time it takes 
to execute a user program that is not delayed by pauses while waiting for a peripheral 
function (e.g., a timer or a serial data transfer module). In this case, the awake time 
(and hence the average current draw on the 3-V coin cell) is proportional to the CPU 
clock period times the instantaneous current draw. Figure 2-8 illustrates the average 
current draw if a user program takes 100 CPU clock cycles to execute every 16 ms. The 
data for this table are drawn from Figure 2-4. The average current is calculated as 

 I avg  = 〈  
 T exec  ______ 16 ms  〉 ×  I awake 

where Texec is the time to execute code for 100 CPU clock cycles.

(a) Circuit

MCU

Digital
input pin

+3 V

R

3 V

0 V

0 or 1111 0 0 0

Tperiod Tperiod Tperiod Tperiod Tperiod Tperiod

Maximum contact
bounce time

(b) Value read by digital input pin
FIGURE 2-7 Debouncing an 
electromechanical switch
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The conclusion to be drawn from Figure 2-8 is dramatic. The choice of a high 
value of FOSC minimizes current draw. At the other extreme, the choice of the low-
current INTRC oscillator produces a higher average current draw than all but the 
lowest FOSC derived from the INTOSC oscillator. It is important to remember that 
these conclusions rest on having an application that is not delayed by waiting for the 
completion of a task by a peripheral module.

2.7 USER PROGRAM STEPS TO REDUCE CURRENT DRAW

The microcontroller used with this text has two ways to reduce the average current 
draw when user code includes externally produced delays. The simplest approach is 
to slow the CPU clock, perhaps by switching to the INTRC oscillator, and repeatedly 
polling the state of an input pin. When the pin changes state, indicating the comple-
tion of the external event, the CPU clock is switched back to the normal clock and 
code execution continues using fast clock cycles.

A second way to reduce the current draw while waiting for the completion of an 
external event makes use of the chip’s interrupt circuitry. Rather than repeatedly poll-
ing the state of an input pin and waiting for it to indicate that an external event has 
been completed, the chip can first be put to sleep. The change in state of the input pin 
can awaken the chip and resume execution at the same point simply by using what 
would normally be an external interrupt pin for this purpose.

If code execution includes a delay caused by an internal module (e.g., waiting for 
the completion of a serial transfer), then the clock for the module is usually the same 
as that used to clock the CPU. In this case, changing the module’s frequency or stop-
ping it is usually not an option. However, a variation of the interrupt approach just 

Clock source
Nominal 
Fosc

Pcpu
Actual 

CPU clock 
period

Texec Time 
to execute 100 
clock periods) Iawake Iavg

INTOSC 8 MHz 0.508 µs 50.8 µs 1750 µA 5.6 µA

INTOSC 4 MHz 1.02 µs 102 µs 1036 µA 6.6 µA

INTOSC 2 MHz 2.03 µs 203 µs 674 µA 8.6 µA

INTOSC 1 MHz 4.06 µs 406 µs 486 µA 12 µA

INTOSC 500 kHz 8.10 µs 810 µs 390 µA 20 µA

INTOSC 250 kHz 16.2 µs 1,62 ms 343 µA 35 µA

INTOSC 125 kHz 32.5 µs 3.25 ms 207 µA 42 µA

INTOSC 31.25 kHz 130 µs 13.0 ms 206 µA 167 µA

INTRC 31.25 kHz 122 µs 12.2 ms 64 µA 49 µA

FIGURE 2-8 Average current calculations



discussed can be used. These microcontrollers include an idle mode. When the IDLEN 
bit in the OSCCON register is set, the subsequent execution of a “sleep” instruction 
will stop the clock to the CPU, but maintain it to the peripheral modules. Virtually 
all of the internal peripheral modules include an interrupt mechanism that can be set 
up to awaken the CPU when its task is complete. As shown in Figure 2-9, stopping 
the clock to the CPU while maintaining it to the chip’s peripheral modules cuts the 
current draw by one half for any but the lowest frequencies of the INTOSC oscillator. 
The 92% reduction in current when clocking only the chip’s peripheral modules with 
the INTRC oscillator may be a reflection of how little current the low-power oscillator 
itself draws. In contrast, the leveling off of both the run-mode current and the idle-
mode current of the chip when clocked by the INTOSC oscillator and its scaler for its 
lower frequencies may be a reflection of the substantial current drawn by the 8-MHz 
oscillator itself.

2.8 THE QWIK&LOW BOARD

This book is intended to be supported by the Qwik&Low board shown in Figure 2-10. 
It will be described in more detail in Chapter Three. Here are its salient features:

• It uses peripherals whose current draw can be reduced to zero (either under 
control of the PIC18LF4321 MPU or by opening a switch or jumper) to moni-
tor the MPU current.

• It uses an eight-character LCD having a PIC18LF6390 chip as its controller, to 
reduce the LCD-plus-LCD-controller current draw to 5 µA.

• It includes a prototype area to allow the use of additional peripheral devices.

Clock source
Nominal 
Fosc

Irun 
Run mode current

(CPU on; 
peripheral on)

Iidle
Idle mode current

(CPU off: 
peripherals on)

Iidle 
Irun

INTOSC 8 MHz 1750 µA 834 µA .48

INTOSC 4 MHz 1036 µA 503 µA .49

INTOSC 2 MHz 674 µA 325 µA .48

INTOSC 1 MHz 486 µA 235 µA .48

INTOSC 500 kHz 390 µA 179 µA .46

INTOSC 250 kHz 343 µA 158 µA .46

INTOSC 125 kHz 207 µA 148 µA .71

INTOSC 31.25 kHz 206 µA 140 µA .68

INTRC 31.25 kHz 64 µA 5 µA .08

FIGURE 2-9 Idle mode current compared with run mode current
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• The PIC18LF4321 can be programmed with Microchip’s low-cost ($35) PICkit 
2 programmer shown probing the Qwik&Low board in Figure 2-11.

• Alternatively, the PIC18LF4321 can be linked to a PC via either a $5 serial 
cable (for PCs having a DB-9 serial port) or a $10 USB-to-serial adapter. Then 
a free QwikBug utility (discussed in Chapter Three) running on the PC can 
download and run a C-compiled “hex” file on the PIC18LF4321. QwikBug 
supports debugging with breakpoint capability, single stepping, and variable 
watching and modifying. A window in QwikBug’s display can be written to by 
a user program to extend the display capability of the board beyond that of the 
eight-character LCD.

2.9 CODING IN C

Most microcontroller applications developed professionally have had their code writ-
ten in C rather than in the microcontroller’s assembly language. There are several 
reasons for C to be preferred:

• C code, even without comments, is close to being self-documenting. Thus it is 
easier for others to understand and augment the original developer’s code.

• The C compiler, rather than the code developer, handles functions such as mul-
tiplication, division, and table lookup that are built into standard C.

FIGURE 2-10 Qwik&Low board



• The need to understand the role of the microcontroller’s CPU structure (i.e., 
its registers, addressing modes, and instruction set) is passed to the C compiler 
and, thereby, bypassed by the code developer. While there is some justification 
for lamenting the resulting loss of control over how algorithms are carried out 
by the microcontroller, there is the compensating accuracy of the resulting C 
implementation.

Writing code in C is not without its downsides:

• The resulting machine code will be larger than if it had been written in the 
microcontroller’s assembly language. This is generally not a problem, as long as 
the microcontroller has sufficient program memory to hold the machine code.

• The code developed in C may not execute as fast as if it had been developed in 
assembly language. However, for issues that really matter, such as measuring 
a pulse width precisely, the microcontroller includes resources to take over this 
role, independent of the speed of execution of the program code.

• C compliers are generally expensive. However, whereas the commercial version 
of Microchip’s C18 compiler is pricey, their student version is available free to 
anybody and provides exactly the same features and optimized compilation for 
60 days. After that, only the optimization is reduced. Even so, the resulting 
machine code is generally satisfactory.

• The code writer must be, or become, familiar with writing code in C. Although 
this is becoming a common skill for electrical and computer engineering students, 
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it is certainly not universally so. However, it is the author’s experience that tem-
plate programs can be used for this purpose. These template programs can prog-
ress through a sequence of increasingly complex tasks. Along the way, student 
projects can build on a given template by “doing more of the same” with an added 
peripheral device.

Ultimately, the role of the developer of a microcontroller application is to under-
stand the functioning of peripheral devices external to the chip (e.g., a temperature 
sensor) as well as peripheral modules within the chip. Program control of these periph-
erals will reduce to testing status bits in registers, setting or clearing control bits in reg-
isters, and reading from and writing to registers. These steps are virtually the same, 
whether implemented in C code or assembly language code. The understanding of 
how to deal with peripheral devices will be a central theme of this book.
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3.1 OVERVIEW

The chapter begins with a brief list of items needed to support the book using the 
Qwik&Low board. The I/O and support circuitry surrounding the PIC18LF4321 on 
the board are described, as is the board’s LCD circuitry. 

3.2 EQUIPMENT SETUP

The Qwik&Low Board is built and tested by MICRODESIGNS, Inc. (www.micro-
designsinc.com). MICRODESIGNS, Inc. is a 30-year-old company founded by Bill 
Kaduck and Dave Cornish, two colleagues and former students of the author. 

Also needed are the supplies listed in Figure 3-1. Any digital multimeter (DMM) 
with a microammeter scale having a resolution of 1 µA will serve, but the normal test 
probes need to be replaced with test leads having banana jacks on each end.  An excel-
lent, low-cost DMM that has been found by the author to be sturdy and reliable in his 
Georgia Tech instructional laboratory is available from www.elexp.com (Part No. 
F01DMMAS830).  They also have banana plug test leads (Part No. F05ALS4). 

The Qwik&Low board comes with the PIC18LF4321 programmed with QwikBug. 
Consequently, the reader does not need to purchase a programmer. Rather, access the 

QWIK&LOW BOARD
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author’s website, www.qwikandlow.com, to obtain and install the QwikBug utility to 
run on a PC. This free utility, prepared by Ryan Hutchinson and Kenneth Kinion not 
only allows the user to download and run a compiled C file on the PIC18LF4321, but 
also to stop at a breakpoint and single step line by line through the C source file while 
monitoring and optionally modifying selected watch variables.

If the user chooses to overwrite the QwikBug utility in the chip, Microchip’s PICkit 
2 programmer ($35) will be needed. If the user later decides to reinstall QwikBug into 
the board’s MCU (microcontroller unit, the PIC18LF4321), a QwikProgram 2 utility 
developed by Louis Howe is available to download from the www.qwikandlow.com 
website and then install and run on a PC. QwikProgram 2 programs not only the 
QwikBug utility itself but also the normally inaccessible Background Debug Mode vector 
located at address 0x200028.

QwikBug employs a serial connection to a PC. To meet the requirements of the RS-
232 standard, such a connection requires the transmit and receive lines of the MCU to 
be inverted and voltage-translated so that the MCU’s 0 V and 3 V levels communicate 
appropriately with the PC’s +15 V and −15 V levels. However, for this nonstandard test 
serial port, the Qwik&Low board employs transmit and receive signal inversion built 
into the MCU itself. The MCU’s receive input is clamped to the 0 V and 3 V levels 
by protection diodes built into the chip, with current limited by a 1 MΩ series resistor. 
The MCU’s transmit output voltage swing of 0 V to 3 V does not meet the RS-232 stan-
dard, but is sufficient to be interpreted satisfactorily by every PC and every serial-to-
USB adapter the author and his students have tried. This simplified connection causes 
minimal current draw on the coin cell with and without the serial cable connected.

If the reader’s PC includes a serial port with its 9-pin male DB-9 connector, all that 
is needed is the normal straight-through DB-9M to DB-9F serial cable. “Straight through” 
means that the pins of the DB-9M connector are connected to the corresponding pins of 
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FIGURE 3-1 Required Qwik&Low 
supplies



the DB-9F connector. If the reader has an up-to-date notebook computer, it probably does 
not include a serial port. In this case, the USB-to-serial adapter will be needed at a cost of 
$10–$15, available by Googling USB to serial adapter to find any one of many sources.

One last, but more expensive, piece of test equipment that finds repeated utility 
with the Qwik&Low board is an oscilloscope. Both the PIC18LF4321 MCU and the 
PIC18LF6390 LCD controller have their internal CPU (central processing unit) clock 
(FOSC/4) brought out to a test point on the board. By probing this point for the MCU, 
a user can see when the chip is awake and when it is asleep, and thereby discern the 
MCU’s duty cycle and the effect that a low duty cycle has on current draw. The LCD 
controller only awakens when a new display string is sent to it by the MCU. The scope 
can monitor the duration of the serial transfer. It can also monitor the LCD control-
ler’s CPU clock (FOSC/4), to discover how long the LCD controller takes to process a 
received display string from the MCU before returning to sleep.

3.3 INPUT/OUTPUT PERIPHERAL POWER

As shown in Figure 3-2, each of the peripheral components on the Qwik&Low board 
is connected to the MCU in a way that permits power to be removed from the com-
ponent. In some cases, an MCU output pin provides the peripheral power. In other 
cases, the power is applied or removed with a jumper or a switch.

To understand how this control of power to a peripheral translates into average 
current draw, consider the 20-kΩ one-turn potentiometer. If it were powered directly 
from the 3-V coin cell supply, it would draw a constant 150 µA, completely overrid-
ing those things that can be done to otherwise reduce the average current draw on the 
coin cell to a few microamperes. By setting bit 7 of PORTA and thereby driving the 
RA7 pin to 3 V, then converting the analog input to AN0, and finally clearing bit 7 of 
PORTA, the average current draw is reduced by an amount proportional to the duty 
cycle of this operation. For example, assume it takes 30 µs to power-up the potentio-
meter, enable the analog-to-digital converter (ADC) module, carry out the conversion, 
power down the potentiometer, and disable the ADC module. If a conversion is car-
ried out every 200 ms (i.e., five times a second), the average current draw due to the 
potentiometer will be reduced by a factor of 

  
30 µs

 _______ 200 ms   =   
30 µs
 _________ 

200000 µs
   = 0.00015

The 150 µA instantaneous current becomes a negligible 0.023 µA average current.
Each of the peripheral devices will be discussed as it is used in subsequent chap-

ters. For now, the role of Figure 3-2 is to illustrate this control of current draw by 
each device. In the case of the LED, its current draw when turned on is on the order 
of 1 mA (given a voltage drop of about 2 V in the LED). Although this is higher than 
desirable as a constant load, if the LED is blinked for just 16 ms every 4 s for a duty 
cycle of 0.004, a visible blink of light will occur while contributing about 4 µA to the 
average current draw. Such blinking will be helpful for telling when an undebugged 
user program is running and not stuck somewhere due to a bug. The jumper allows 
the relatively heavy LED current to be shut down until such a bug is removed.
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3.4 POWER SWITCHING AND CURRENT MONITORING

Figure 3-3 illustrates the circuit used to switch on and measure the coin cell current. If 
the digital multimeter (DMM) is not connected to the board, the power switch works 
alone to control the supply current. With the DMM connected to the board and set to 
its “off” position, the board can be powered in either of two ways:

• Flick on the power toggle switch for simplicity, without monitoring the current.

• With the power switch off, rotate the DMM’s control knob to its “2 mA” (i.e., 
2,000 µA full scale) position to monitor the supply current.

Depending on what scales are traversed between the DMM’s “off” setting and its 
“2 mA” setting, the MCU may experience one or more voltage steps as the control 
knob is turned. For example, the DMM of Figure 2-10 has an internal resistance of 
100 Ω on its “2 mA” scale. But it traverses a “200 µA” scale along the way having 
an internal resistance of 800 Ω. With its default startup FOSC = 1 MHz, the MCU 
draws about 400 µA initially, so with a coin cell voltage of 3.00 V, the MCU’s VDD 
steps through the sequence of 0 V to 2.67 V to 2.96 V (even with the LCD’s controller 
switched off). This sequence does not seem to produce a faulty startup. However, if a 
different DMM is used that causes an unreliable startup of the MCU when powered 
up in this way, the power-up sequence can be altered to:

1. Turn on the power switch.

2. Turn the DMM’s control knob from its “off” position through its various scales 
to its “2 mA” position.

3. Turn off the power switch.

This discussion raises another point worth noting. Most low-cost DMMs feature a 
2,000-count scale for all their measurements. That means that a “2 mA” (or a “2,000 
µA”) scale has a resolution of 1 µA. If there is also a “200 µA” scale, it will have a 
resolution of 0.1 µA (good) but also an internal resistance that is, perhaps, eight times 
higher than that of the “2 mA” scale (bad). With the MCU being operated in an inter-
mittently awake mode with a current in the range of a milliampere, VDD may exhibit 
a negative blip of tens or hundreds of millivolts each time the MCU awakens to do 
its useful work. This will not make a difference for digital transducers but may affect 
the behavior of transducers with analog voltage outputs as well as the MCU’s analog-
to-digital converter (ADC). Given this situation, a user can simply turn on the power 
switch for best results from an analog measurement, and turn off the power switch 
while making the corresponding coin cell current measurement.

3.5 PICkit 2 PROGRAMMER CONNECTION

A new Qwik&Low board comes with its MCU already programmed with QwikBug. 
Consequently, it does not need the PICkit 2 programmer to load a user program into 
the chip. Instead, QwikBug uses the serial port connection for this purpose. QwikBug’s 
executive program, residing in the high addresses of the MCU’s program memory, 
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reads in a user program downloaded from a PC and writes it into the low addresses of 
the MCU’s program memory.

QwikBug takes advantage of the same debug mode employed by the PICkit 2 pro-
grammer. It uses the PGC (RB6) pin of Figure 3-3 to let the PC’s QwikBug utility get 
the attention of the MCU when it is running a user program. By sending a serial char-
acter to the Qwik&Low board, the resulting wiggling of the MCU’s RX UART pin 
also wiggles the PGC pin, as shown in Figure 3-3. This will awaken the MCU if it is 
asleep. Whether or not it is asleep, the user program will be interrupted and will vector 
to the QwikBug executive program in the MCU. The user program will be paused and 
control will return to QwikBug.

3.6 EFFECT OF COIN CELL AGING

Over time, the CR2032 lithium coin cell will exhibit a decrease in its loaded output 
voltage. An especially useful feature of a lithium cell is the flatness of its discharge 
characteristic, as shown in Figure 3-4. With a fixed load of 20 µA, the characteristic 
shows no appreciable droop in the voltage over the first half of its rated life.  Even after 
three-quarters of its rated life, the voltage is only down to 2.9 V.

Both the MCU and the LCD controller are specified to operate down to 2.42 V 
even with FOSC as high as 8 MHz, the clock rate used by the QwikBug executive and 
by the LCD controller. All but two of the peripheral parts on the Qwik&Low board 
will operate down to 2.42 V. The two exceptions are the temperature sensor (down to 
2.7 V) and the silicon serial number part (down to 2.8 V). But, again, these are both 
good for more than three-quarters of the coin cell’s life.

Nominal capacity = 220 mAh

1

120 240 360 480
Days

458 days

Normal life2

3

Volts

Life with 20 µA load =  = 458 days
220 mAh

20 µA

FIGURE 3-4 CR2032 discharge 
characteristic at room temperature 
with a 20 µA load current
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3.7 WATCH CRYSTAL CIRCUITRY

The Qwik&Low board’s MCU includes an optional low-power oscillator that can 
employ an external 32,768-Hz watch crystal to provide 50 parts per million (ppm) 
frequency accuracy. This oscillator (shown in Figure 3-3) can be used to clock either 
of two internal 16-bit counters, even as the rest of the chip sleeps. As such, it provides 
an alternative to the use of the INTRC oscillator and the watchdog timer mechanism 
of Figure 2-6 and its low-current draw of 2.2 µA. Considering Figure 2-5, the watch 
crystal oscillator plus Timer1 combination can provide any interval, Tperiod, up to 2 s. 

The Timer1 oscillator has two alternative configurations. The configuration selec-
tion (discussed in Section 4.3) is made by turning on or off a low-power Timer1 oscil-
lator configuration bit. The low-power option is intended for use with VDD above 4 V. 
It includes a 3-V regulator to maintain the accuracy of the crystal oscillator even as 
VDD varies. For operation of the chip with power from a 3-V coin cell, the Microchip 
application engineers do not recommend using the low-power option. The author’s 
experience is that with the configuration selection  

LPT1OSC = OFF

the Timer1 oscillator will reliably start up and run in less than 0.2 s after it is enabled 
and will draw, together with the Timer1 counter, about 6.5 µA. In contrast, with the 
configuration selection

LPT1OSC = ON

the Timer1 oscillator may not start up and run at all. For those boards that do start 
up, the startup time can be measured in seconds. For such, the current draw, together 
with the Timer1 counter, drops to about 1.5 µA.

3.8 QWIK&LOW LCD

The PIC18LF6390 LCD controller, the LCD, and the surrounding circuitry and con-
nections are illustrated in Figure 3-5. With its inputs seeing very slow (37 Hz) changes to 
what is essentially a very low capacitive load, the LCD has little impact on current draw. 
The LCD controller’s CPU sleeps constantly until the MCU awakens it with a falling 
edge on its INT0 interrupt input. The PIC18LF6390’s CPU then receives a serially sent 
string of ASCII-coded characters over an interval of 100 µs–200 µs, translates them, 
stores the translated data into LCD registers in the chip, and goes back to sleep. Then 
the LCD module within the chip refreshes the display, drawing just 5 µA to do so.

The 4PDT push-to-make, push-to-break switch of Figure 3-5 permits power and 
input connections to be disconnected from the MCU and grounded. When the switch 
goes from off to on, the display treats that operation as a reliable power-on reset. Thus, 
the switch serves two purposes:

• It powers the LCD down to remove its current draw from a measurement of the 
board’s total current draw.

• It powers the LCD up and initializes it for reliable operation.
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The LCD PICkit 2 connection is required during the manufacture of the board 
and probably not thereafter. If there is a feature to be added to the PIC18LF6390, the 
LCD source code developed by Alex Singh is available at www.qwikandlow.com. 

3.9 EXPANSION HEADER

Referring again to Figure 2-10, note the shrouded 10-pin header located in the lower 
right-hand corner of the Qwik&Low board. It is designed to provide a 10-conductor 
ribbon cable connection for power, ground, and the eight other MCU pins shown in 
Figure 3-6.

Later in the book the connection of the Qwik&Low board to a stepper motor 
driver board will be considered. That board and its associated stepper motor employ 
their own wall transformer power supply. The connection draws essentially no current 
from the Qwik&Low coin cell.

3.10 SUMMARY OF MCU PIN USE

Each of the pins of the PIC18LF4321 chip may be used for its dedicated internal 
function (e.g., an analog-to-digital input), or as a general-purpose I/O pin, or in a 
supportive role (e.g., the reset input pin).  External to the chip, a pin takes on a role 
determined by its connection to other devices. 

When looking for an otherwise unused pin, the chart of Figure 3-7 will be of assis-
tance. For example, the occurrence of some event can be sensed by the CPU and sig-
naled to a user by setting an otherwise unused pin high.  Figure 3-7 indicates that RB0, 
for example, is available for this purpose. While it could be probed as pin 8 of the 
MCU chip, it is much more convenient to probe it at the test point labeled RB0/INT0 
on the H4 header pattern, residing just to the left of the proto area.

VDD

RA2

Key

5 × 2 - pin shrouded male header to mate with
10-conductor ribbon cable female header

RA5

RB1

RD0

RA4

RB0

RB3

RD1
FIGURE 3-6 Qwik&Low expansion header
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4 RD6 Power for temperature sensor   
5 RD7 Pushbutton input   
6 GND x x x
7 VDD x x x
8 RB0/INT0 x x
9 RB1/INT1 x x
10 RB2/INT2 RPG interrupt input   
11 RB3/CCP2 x x
12 ICPGC (Unused debugging feature)
13 ICPGD (Unused debugging feature)
14 RB4  x
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16 RB6/PGC (Reserved by background debug mode) x
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18 MCLR/VPP Reset pushbutton x
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FIGURE 3-7 MCU pins and their uses.
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If a new peripheral chip is added to the board in the proto area, Figure 3-7 will 
help to select MCU pins that will not conflict with an already dedicated external con-
nection. MCU pins that are brought out to the H4 header pattern simplify the connec-
tions between the MCU and the peripheral chip.
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4.1 OVERVIEW

This chapter introduces the first template program. It explains the code and its impli-
cations. It concludes with information on how to obtain, install, and run Microchip’s 
free C18 compiler.

4.2 A T1.c TEMPLATE PROGRAM

The first program to be considered is listed in Figure 4-1. If the reader is not familiar 
with coding in C, it should be pointed out that multiple lines of comments can be 
inserted into a source file by bracketing the comments between

  /*

and

  */

Alternatively, a double slash, //, tells the C compiler to ignore the remainder of a line. 
The first 10 lines of T1.c indicate what the program does. The Program Hierarchy con-
sisting of the next few lines lists the functions making up the program, with indenting 
used to indicate that three functions are called from the main program. The function 

A FIRST TEMPLATE 
PROGRAM (T1.c)

Chapter

4
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/******* T1.c ******************
 *
 * Use Fosc = 4 MHz for Fcpu = Fosc/4 = 1 MHz.
 * Sleep for 16 ms (nominal), using watchdog timeout for wakeup.
 *  Toggle RC2 output every 16 milliseconds for measuring looptime with scope.
 * Blink LED on RD4 for 16 ms every four seconds.
 *  Check pushbutton and turn on LED continuously while it is pressed.
 *
 *        Current draw = 4 uA (with LED and LCD switched off)
 *
 ******* Program hierarchy *****
 *
 * main
 *  Initial
 *  BlinkAlive
 *  Pushbutton
 *
 *******************************
 */

#include <p18f4321.h>           //  Define PIC18LF4321 registers and bits

/*******************************
 * Configuration selections
 *******************************
 */

#pragma config OSC = INTIO1     //  Use internal osc, RA6=Fosc/4, RA7=I/O
#pragma config PWRT = ON        // Enable power-up delay
#pragma config LVP = OFF        // Disable low-voltage programming
#pragma config WDT = OFF        //  Disable watchdog timer initially
#pragma config WDTPS = 4        //  16 millisecond WDT timeout period, nominal
#pragma config MCLRE = ON       // Enable master clear pin
#pragma config PBADEN = DIG     // PORTB<4:0> = digital
#pragma config CCP2MX = RB3     //  Connect CCP2 internally to RB3 pin
#pragma config BOR = SOFT       //  Brown-out reset controlled by software
#pragma config BORV = 3         //  Brown-out voltage set for 2.1V, nominal
#pragma config LPT1OSC = OFF    //  Deselect low-power Timer1 oscillator

/*******************************
 * Global variables
 *******************************
 */
unsigned int DELAY;             // Counter for obtaining a delay
unsigned char ALIVECNT;         //  Counter for blinking "Alive" LED

/*******************************
 * Constant strings
 *******************************
 */

FIGURE 4-1 T1.c template



/*******************************
 * Variable strings
 *******************************
 */

/*******************************
 * Function prototypes
 *******************************
 */

void Initial(void);
void BlinkAlive(void);
void Pushbutton(void);

/*******************************
 * Macros
 *******************************
 */
#define Delay(x) DELAY = x; while(--DELAY){ Nop(); Nop(); }

/////// Main program ///////////////////////////////////////////////////////////

/*******************************
 * main
 *******************************
 */

void main()
{
   Initial();                   // Initialize everything
   while (1)
   {
      PORTCbits.RC2 = !PORTCbits.RC2;  //  Toggle pin, for measuring loop time
      BlinkAlive();             // Blink "Alive" LED
      Pushbutton();             //  Turn on LED while pushbutton is pressed
      Sleep();                  //  Sleep, letting watchdog timer wake up chip
      Nop();
   }
}

/*******************************
 * Initial
 *
 *  This function performs all initializations of variables and registers.
 *******************************
 */

void Initial()
{
   OSCCON = 0b01100010;         // Use Fosc = 4 MHz (Fcpu = 1 MHz)

FIGURE 4-1 (continued)
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   ADCON1 = 0b00001011;         //  RA0,RA1,RA2,RA3 pins analog; others digital
   TRISA = 0b00001111;          // Set I/O for PORTA
   TRISB = 0b01000100;          // Set I/O for PORTB
   TRISC = 0b10000000;          // Set I/O for PORTC
   TRISD = 0b10000100;          // Set I/O for PORTD
   TRISE = 0b00000010;          // Set I/O for PORTE
   PORTA = 0;                   //  Set initial state for all outputs low
   PORTB = 0;
   PORTC = 0;
   PORTD = 0b00100000;          //  except RD5 that drives LCD interrupt
   PORTE = 0;
   Delay(50000);                // Pause for half a second
   RCONbits.SBOREN = 0;         // Now disable brown-out reset
   ALIVECNT = 247;              // Blink immediately
   WDTCONbits.SWDTEN = 1;       // Enable watchdog timer
}

/*******************************
 * BlinkAlive
 *
 * This function briefly blinks the LED every four seconds.
 * With a looptime of about 16 ms, count 250 looptimes
 *******************************
 */

void BlinkAlive()
{
   PORTDbits.RD4 = 0;           // Turn off LED
   if (++ALIVECNT == 250)       //  Increment counter and return if not 250
   {
      ALIVECNT = 0;             // Reset ALIVECNT
      PORTDbits.RD4 = 1;        //  Turn on LED for 16 ms every 4 secs
   }
}

/*******************************
 * Pushbutton
 *
 *  This function overrides the role of the BlinkAlive function and turns on
 * the LED for the duration of a pushbutton press.
 *******************************
 */

void Pushbutton()
{
   PORTEbits.RE0 = 1;           // Power up the pushbutton
   Nop();                       //  Delay one microsecond before checking it
   if (!PORTDbits.RD7)          // If pressed
   {
      PORTDbits.RD4 = 1;        // turn on LED
   }
   PORTEbits.RE0 = 0;           // Power down the pushbutton
}

FIGURE 4-1 (continued)
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name main is used by C programs to indicate to the C compiler where program execu-
tion is to begin. The line

#include <p18f4321.h>

is needed by the C compiler to assign addresses to register names like OSCCON, 
TRISA, and WDTCON. Also listed in the p18f4321.h file are the bit numbers associ-
ated with bit names like RC2, SBOREN, and SWDTEN. For example, SWDTEN is 
the name of bit 0, the least-significant bit of the WDTCON register. Because the com-
piler knows SWDTEN is the name of bit 0, it is not necessary for the user to know it. 
Knowing the names of bits and the registers in which they reside is sufficient. 

4.3 CONFIGURATION SELECTIONS

Listed next are the configuration choices for the MCU. Actually, these choices have 
already been made when QwikBug was programmed into the chip. When T1.hex 
(the compiled version of T1.c) is downloaded to the Qwik&Low board, QwikBug 
ignores the configuration selections. They are shown here to indicate the configura-
tion options under which the T1.c template program will run. And they indicate an 
essential part of the T1.c file were it to be programmed into the MCU with the PICkit 
2 programmer instead of being downloaded by QwikBug.

Many of these configuration choices are described in Figure 4-2, which shows the 
choice selected in boldface. The two watchdog timer choices for WDT and WDTPS 
were described in Figure 2-6.

OSC   = INTIO1 Selects internal oscillator block; uses RA6 for Fosc/4 output; uses RA7 
for I/O.

  = INTIO2 Selects internal oscillator block; RA6 and RA7 both available for I/O.
  = RCIO  Selects external RC oscillator on RA7; RA6 available for I/O.
  = LP Uses RA6 and RA7 for 32768 Hz crystal oscillator.
  = XT Uses RA6 and RA7 for 1-4 MHz crystal oscillator.
  = HS Uses RA6 and RA7 for 4-25 MHz crystal oscillator.
  = HSPLL Uses RA6 and RA7 with 10 MHz crystal and phase-locked loop for 40 MHz 

oscillator.
  = EC Uses an external oscillator into RA7; uses RA6 for Fosc/4 output.
  = ECIO Uses an external oscillator into RA7; uses RA6 for I/O.

 (a) Oscillator power-up configuration

PWRT   = ON Introduces a delay of about 66 ms after the chip detects that power has been 
turned on and before CPU clocking begins.

  = OFF  No 66 ms delay.

 (b) Power-up timer

FIGURE 4-2 Configuration selections
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The OSC choice of INTIO1 selects the primary, power-on reset, oscillator for the 
chip. This choice can be overridden at any time by the user program by changing the 
content of the OSCCON register (see Figure 2-3).

The brownout-reset options are described in Figure 4-3. The original intent of a 
brownout reset was to stop the clocking of the CPU when VDD drops below a speci-
fied threshold level, as when a power switch is opened. Here, the brownout-reset 
mechanism is used at startup, to hold the chip in the reset state until sometime after 
the power switch connects the coin cell to the VDD line supplying the MCU. With 
BORV = 3 and with the power-up timer enabled with PWRT = ON, clocking of 
the CPU begins about 66 ms after VDD rises above about 2.1 V. Should the power 

CCP2MX  = RB3 CCP2 input/output is multiplexed with the RB3 pin.
     = RC1  CCP2 input/output is multiplexed with the RC1 pin.

 (c) CCP2 configuration

LPT1OSC  = ON Timer1 oscillator is configured for low-power, 32768 Hz operation.
      = OFF Timer1 oscillator is configured for higher-power, higher frequency 

operation. 

 (d) Timer1’s oscillator configuration

DEBUG = ON Background debugger is enabled - needed by QwikBug.
             = OFF Background debugger is disabled; RB6 and RB7 available for I/O.

 (e) Background debug mode use

LVP  = OFF This choice is needed for normal, fast start from reset.
  = ON This choice can cause a delay of several seconds coming out of reset.

 (f) In-circuit serial programming (ICSP) option that permits programming voltage = VDD

MCLRE = ON RE3/MCLR pin is an active dedicated active-low master reset input.
  = OFF RE3/MCLR pin is a general purpose RE3 I/O pin.

 (g) Optional reset pin

PBADEN = DIG PORTB bits 4,3,2,1,0 are configured as digital I/O pins at reset.
  = ANA PORTB bits 4,3,2,1,0 are configured as analog input pins at reset.

 (h) PORTB reset configuration

FIGURE 4-2 (continued) 
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FIGURE 4-3 Brownout-reset options

BOR   = SOFT Brownout reset controlled by SBOREN bit in RCON register and 
enabled at reset

  = OFF Brownout reset disabled (0 µA current draw)
  = ON Brownout reset enabled (≈34 µA current draw)
  = NOSLP Brownout reset in run and idle modes; disabled in sleep mode

(b) Brownout-reset configuration

SBOREN = 1 Brownout feature enabled
  = 0  Brownout feature disabled

(c)  Software control of the brownout-reset feature when BOR = SOFT 
(SBOREN is bit 6 of the RCON register)



switch exhibit contact bounce, a reliable startup will ensue, even after one or more 
false starts. With BOR = SOFT, the brownout feature can be disabled after startup 
by clearing the SBOREN bit in the RCON register to eliminate its current draw of 
about 34 µA.

4.4 GLOBAL VARIABLES

The Global variables section of T1.c assigns two variables to the program, both as 
unsigned numbers. The unsigned int variable, DELAY, ranges from 0 to 65,535. The 
unsigned char variable, ALIVECNT, ranges from 0 to 255. 

Sophisticated C code writers may note that the DELAY variable is used only 
within the Initial function. Once initialized, ALIVECNT is used only within the 
BlinkAlive function. In both cases, the variable could have been defined to be local to 
the function within which it is used. However, because the definition of local variables 
produces extra machine code and extra execution time by Microchip’s C18 compiler, 
only global variables will be used throughout this book.

4.5 BIT MANIPULATIONS

As a programming language, C offers no direct support for defining a bit type or for 
testing or modifying 1 bit of a register or variable. Microchip’s C18 compiler alleviates 
this deficiency in the case of registers. Thus

WDTCONbits.SWDTEN = 1;

will set the SWDTEN bit in the WDTCON register. For testing or manipulating a bit 
of a variable, the C18 compiler does not provide the same support. Thus

ALIVECNTbits.7 = 0;

will generate a compiler error rather than generating code that will clear bit 7 of the 
RAM variable, ALIVECNT. 

When writing code for a microcontroller, a commonly recurring need arises for 
flag bits that can be set, cleared, and tested. Because the PIC18LF4321 has 512 bytes 
of RAM available, dedicating some of these to serve as two-valued flags is not unrea-
sonable. Thus, in the template program of the next chapter, a char (8-bit) variable 
named PBFLAG is introduced to distinguish between operation before the pushbutton 
is first pressed and subsequently.  Before the pushbutton is first pressed, PBFLAG is 
cleared to zero with the line

PBFLAG = 0;

and the display shows the message

PRESS PB

After the pushbutton is pressed, PBFLAG is set to one with

PBFLAG = 1;
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and the display switches to its ongoing program use. The flag is tested with

if (!PBFLAG)

{

   <do these tasks before pushbutton is first pressed>

}

or with

if (PBFLAG)

{

    <do these tasks if pushbutton has already been pressed>

}

The pushbutton can be powered up, as shown in Figure 3-2, by setting RE0.  Then 
RD7 can be read to set NEWPB if RD7 is low (i.e., if the pushbutton is pressed) 

NEWPB = !PORTDbits.RD7;

This flag is compared with the value of NEWPB found some time earlier and saved 
in OLDPB with

if (!OLDPB && NEWPB)// Look for last time = 0, now = 1

{

   <do these tasks if pushbutton is newly pressed>

}

4.6 FUNCTION PROTOTYPES

Each function, other than main, must be listed in the Function prototypes section, to indi-
cate the type (e.g., char) of any parameters to be passed to the function other than the 
global variables, and the type of any parameter to be returned by the function. Through-
out this book all parameters will be passed to a function as global variables. Furthermore, 
within a function, local variables will be avoided. The reasons for these decisions are:

• Parameters passed in the call of the function add significantly to both the result-
ing function code and its execution time. The latter issue is a major theme of 
this book because an increase in execution time translates into a proportional 
increase in average current draw.

• Local variables do the same, increasing both the amount of code and the execu-
tion time. Furthermore, only global variables can serve as watch variables for 
QwikBug. Thus, this decision fosters the debugging of new program code.

4.7 A CALIBRATED DELAY MACRO

The Macros section of T1.c includes a single macro definition:

#define Delay(x) DELAY = x; while(--DELAY){ Nop(); Nop(); }
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This tells the C18 compiler that, when it subsequently sees the character sequence:

Delay(50000)

it should make the substitution:

DELAY = 50000; while(--DELAY){ Nop(); Nop(); }

The compiler will generate code that, when executed, will load 50,000 into the unsigned 
int variable, DELAY, then decrement DELAY. If the decremented value of DELAY 
equals zero, then the execution of the macro is done. Otherwise two Nop() macros are 
executed before DELAY is decremented again. Each Nop() macro is compiled to a 
“no operation” assembly language instruction.

What is interesting here is the relationship between the parameter value and the 
duration of the resulting delay. The insertion of the line

Delay(value); (4-1a)

will create a delay in the program execution of exactly

delay = (10 × value)  clock periods for value < 256

or

delay = (10 × value)  + 1 clock periods for value ≥ 256

Ignoring the additional clock period for value ≥ 256 and the 2% accuracy of the inter-
nal clock, this macro can be used to generate a calibrated delay. With FOSC = 4 MHz, 
the CPU clock period equals one microsecond and the delay will equal

delay = 10 × value  microseconds (4-1b)

given the global variable declaration

unsigned int DELAY; (4-1c)

In general, it is difficult to predict how the C18 compiler will optimize the code 
of a program. Alex Singh discovered that without the inclusion of any assembly lan-
guage code within the Delay() macro, it would be compiled in three different ways in 
different source files (optimized for speed of execution, optimized for minimal code 
generation, or not optimized at all). However, with the inclusion of any assembly 
code in a macro definition, the macro is always compiled to the same machine code.  

4.8 MAIN FUNCTION

The main function begins with a call of Initial. Then the main function enters an infi-
nite loop in which it toggles a pin that can be probed on one of the Qwik&Low board’s 
H4 header pins. With the help of a scope, the time the CPU takes to traverse the loop 
can be measured as the time from a rising edge of the RC2 pin to the next falling 
edge. The main program then calls BlinkAlive and Pushbutton in succession before 
executing the Sleep macro. Note that the C compiler identifies the RC2 bit within the 
PORTC register as PORTCbits.RC2 and toggles it with

PORTCbits.RC2 ^= 1;



4.9 8-BIT AND 16-BIT REGISTERS

The role of the Initial function is to initialize registers, control and status bits, and 
variables. Most of the PIC18LF4321 registers are 8 bits long. The few that are 16 bits 
long generally carry two names. For example, the 10-bit output of the analog-to-digital 
converter can be right justified into the 16-bit register, ADRES, and treated as an 
unsigned int variable ranging from 0 to 1,023. On the other hand, it is sometimes use-
ful to use the analog-to-digital converter as an 8-bit converter. Its output can be left jus-
tified into ADRES. The upper 8 bits, accessed as ADRESH, range from 0 to 255. The 
least-significant 2 bits of the 10-bit conversion reside in the upper 2 bits of ADRESL 
and are ignored.

Throughout this book, as a multiple-function hardware module of the PIC18LF4321 
chip is discussed, it will be dealt with one function at a time. All of the registers, control 
bits, and status bits associated with that function will be described. Then the C code to 
make use of that function will reduce to interactions with those registers and bits.

4.10 CLOCK RATE CHOICE

Referring back to Figure 2-3, it can be seen that the first line of the Initial function of 
Figure 4-1

OSCCON = 0b01100010;

selects FOSC = 4 MHz and a CPU clock rate of FCPU = 1 MHz. Since most instructions 
are executed in one CPU clock period, this means that a sequence like

PORTBbits.RB0 = 1;

PORTBbits.RB0 = 0;

will generate a 1-µs positive pulse on the RB0 pin.
Sometimes a short pause is required between the activation of a process and the 

reading of the output of the process. Inserting the macro

Nop();

can be used to insert a pause of 1 µs in the execution of the code as the CPU executes 
a single-cycle “no operation” machine instruction. 

The decision to select FOSC = 4 MHz rather than the higher value of 8 MHz is 
driven largely by the data of Figure 2-4. This illustrates that while the MCU is awake 
and running with FOSC = 8 MHz, it draws 1.750 mA, a heavy current for the coin 
cell while undebugged code leaves the chip constantly awake. The choice of FOSC = 
4 MHz drops this steady current draw of a malfunctioning program to a milliampere, 
considerably better. For intermittent sleep mode operation with FOSC = 4 MHz, an 
application suffers an average current draw penalty of 

    6.6 − 5.6 _______ 5.6   × 100 = 18%

relative to the  average current draw with FOSC = 8 MHz.
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The choice of FOSC = 4 MHz versus an even slower clock rate is driven by Figure 
2-8, given that the applications discussed in this book will usually operate in the inter-
mittent sleep mode. When such is not the case, the slow INTRC internal oscillator of 
Figure 2-3 or the slow Timer1 crystal oscillator of Figure 3-3 will present an excellent 
alternative for applications that can deal with the slow execution of a CPU clock that 
executes only about eight machine instructions every millisecond.

4.11 ANALOG PINS VERSUS DIGITAL I/O PINS

The initialization of ADCON1 in general selects which of the chip’s possible 13 inputs 
to the analog-to-digital converter will be used as analog inputs and which will be used 
as digital I/O pins. Given the Qwik&Low I/O connections of Figure 3-2, the choice 
used in the T1.c code is to select the four ADC pins 

AN0, AN1, AN2, and VREF+/AN3

Adding one or two additional analog input channels will be discussed in Chapter Nine.

4.12 DIGITAL INPUTS VERSUS OUTPUTS

Each digital I/O pin used by the Qwik&Low board must be properly configured as 
either an input or an output, whether or not it is used by the code of T1.c. These pins 
are shown in Figure 3-2. Input/output configuring is carried out by setting (input) or 
clearing (output) the TRIS register bits. MCU pins not connected to anything on the 
Qwik&Low board should be made outputs. Thus the initialization

TRISD = 0b10000100;

sets up bits 7 and 2 of PORTD as inputs and bits 6, 5, 4, 3, 1, and 0 as outputs. The 
pins that are unused by the board are indicated as such in Figure 3-7. These are RD0 
and RD1, also set up as outputs.  

All of the PORTD output port pins are initialized to zero except for RD5 that is 
set to one via the line

PORTD = 0b00100000;

A 1→0 transition from this output pin will be used to wake up the LCD controller. 
For now it is left to idle high.

4.13 BROWNOUT MODULE DISABLING

After initializing the oscillator and the states of the I/O pins, the Initial subroutine 
uses the Delay macro to wait half a second before continuing. During this time, the 
brownout reset mechanism will have resolved any powering-up issues and the LCD 
controller will have had time to initialize itself. At the completion of the delay, the 
brownout reset module is shut down, to eliminate a current draw of about 34 µA on 
the coin cell. The user program variables (ALIVECNT in this case) are initialized, 
and the watchdog timer of Figure 2-6 is started counting (from zero).



4.14 MAIN LOOP

Upon returning from the Initial function, the main function toggles the RC2 output 
pin. As shown in Figure 4-4, a scope can probe this pin (labeled RC2/CCP1 on the 
H4 strip) to verify that the watchdog timer’s timeout period is close to 16 ms, the time 
selected by the WDTPS = 4 configuration choice (see Figure 2-6). For slow events, 
the resulting loop times can be counted to derive the event timing. Thus the BlinkAlive 
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function is called during each pass around the main loop. Each call occurs approxi-
mately 16 ms after the previous one, so every

250 × 16 ms = 4,000 ms = 4 s

the ALIVECNT variable will have been incremented to 250, reset to zero, and the 
LED driven from RD4 will be turned on. It remains on until 16 ms later when Blink-
Alive is again called and RD4 is cleared with the opening statement of BlinkAlive, 

PORTDbits.RD4 = 0;

Note this use by the C compiler of the term PORTDbits rather than the term PORTD 
when accessing a specific bit (RD4) in a register (PORTD). The main function closes 
with a Sleep macro that is translated by the C compiler into the PIC18LF4321’s “sleep” 
instruction. Upon awakening from sleep, the CPU may not carry out the operation of 
the next instruction correctly. By having that next instruction be a “nop” instruction, 
no intended operation is passed over. Consequently, a Sleep macro should always be fol-
lowed by a Nop macro (translated to the chip’s “no operation” one cycle instruction). 

4.15 COMPILATION

Set up a folder

C:\WORK

to hold source files (e.g., T1.c) as well as the files generated as a result of the compila-
tion of source files. In addition, it is useful to have a desktop icon that opens into this 
folder and another desktop icon that opens a DOS window into this folder. 

For Windows XP, the www.qwikandlow.com website has a batch file

MakeWork.bat

and two desktop short cuts

Work

DOS for work

that can be downloaded to the reader’s desktop. The batch file creates a new folder

C:\Work

Clicking on the Work desktop icon opens the C:\Work folder. Clicking on the DOS 
for Work desktop icon opens a DOS window with a 

C:\Work>

prompt.
Download from www.qwikandlow.com into the new C:\Work folder the batch file

C18.exe

and the source file

T1.c



Finally, install the student version of Microchip’s C18 compiler including their path-
list settings. This can be found on the Microchip website by Googling

+“MPLAB C18 compiler” +“Student Edition” 

To try compilation, click on the DOS for Work icon. Then after the C:\Work> 
prompt, type

C18  T1

To edit the T1.c file, any text editor can be used. The Crimson editor is a popular 
and free one, available from www.crimsoneditor.com. It understands C and it flags 
syntax errors. 

PROBLEMS

4-1  Faster blinking Modify the T1.c file into T1faster.c so as to blink the LED 
every second. Recompile, download, and run the result.

4-2  Pushbutton modification Form a T1pb.c file in which the BlinkAlive func-
tion and its call are removed from the file. Modify the Pushbutton function so 
that it blinks on for only 16 ms in response to each pushbutton press.

4-3  Another pushbutton modification Form a T1pb2.c file. In response to 
each pushbutton press, blink the LED twice. Each blink should last for one 
loop time (i.e., about 16 ms). The duration between blinks should be 32 loop 
times (i.e., about 0.5 second). Make sure that the MCU sleeps between loop 
times.

4-4 Measurements For each of the above programs, make two measurements.

  a) Measure the current draw with the LED jumper removed. Is there any 
measurable difference between the current draw for these programs?  

  b) Probe the MCU’s CPU clock, FOSC/4 at test point TP6. Referring to Figure 
2-5, measure both Tperiod and the maximum value in each case of Tactive. 
How do these compare between the programs?

4-5  Oscillator Control For this project, you will carry out the eight INTOSC 
clock source tests of Figure 2-8. However, instead of executing the 100 clock 
periods called for there, just execute enough code to switch the oscillator 
frequency to the next value in response to a pushbutton press. Initialize 
OSCCON to 0b01110010 and OSCTUNE to 0b10000000. This will pro-
duce the conditions for measuring PCPU, Texec, and Iavg for the first row of 
the table of Figure 2-8. Each of the seven pushes of the pushbutton will yield 
the conditions for the remaining rows (ignoring the row for the INTRC 
clock source). To change OSCCON just once for each pushbutton press, 
define and use the two flag variables NEWPB and OLDPB discussed at the 
end of Section 4.5.
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5.1 OVERVIEW

This chapter is based on the development of the firmware for the LCD controller by 
Alex Singh. He has developed an elegant implementation of the LCD controller speci-
fication of this chapter.

The chapter begins with an explanation of the MCU’s and the LCD controller’s 
Serial Peripheral Interface (SPI) and how it is used for the fast serial transfer of display 
strings to update the LCD. A template program, T2.c, introduces a Display function 
for sending a variable string to the display.

5.2 SERIAL PERIPHERAL INTERFACE

The PIC18LF4321 MCU and the PIC18LF6390 LCD controller each use their SPI 
for the communication of display messages from the MCU to the LCD controller, as 
shown in Figure 5-1a. The SPI bus is a fast serial interface. In response to writing a 
byte to the MCU’s SSPBUF register, the 8 bits are shifted out of its SDO (serial data 
out) pin, synchronized to eight clock pulses on its SCK (serial clock) pin, as shown in 
Figure 5-1b.

SPI BUS 
AND THE LCD (T2.c)

Chapter 

5



The MCU signals the LCD controller to wake up with a one to zero falling edge 
from its RD5 output pin to the LCD controller’s INT0 interrupt input pin. Upon recep-
tion of this falling edge, the LCD controller’s CPU awakens to receive a string of char-
acters from the MCU, interpret them into their 14-segment “starburst” representation, 
and load the results into LCD data registers before returning to sleep. While the LCD 
controller’s CPU sleeps, its LCD module refreshes the LCD display at a 37 Hz refresh 

8 µs
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FIGURE 5-1 MCU’s SPI use for LCD display
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rate. It is this combination of sleeping CPU, very slow refresh rate, and low capaci-
tance loading by the LCD pins that produces the small 5-µA current draw of the LCD 
and its controller when it is not being updated by a display string from the MCU.

Figure 5-1b also illustrates the role of the MCU’s SSPIF flag that is set upon 
the completion of the 1-byte transfer. To send a sequence of bytes, the SSPIF flag is 
cleared, the first byte of the sequence is written to the SSPBUF register, and program 
execution waits until the SSPIF flag is set before clearing SSPIF and writing the next 
byte to SSPBUF.

With each 1-byte transfer taking just the 8 µs dictated by an SCK clock output that 
consists of eight pulses of the MCU’s FOSC/4 CPU clock, this interface helps to mini-
mize the awake time of both the MCU when it deals with the display and the LCD 
controller when it awakens to receive an update.

The MCU’s SPI registers and their initialization to produce the waveform of 
Figure 5-1b are illustrated in Figure 5-1c. The SPI has many options:

 • Whether the SPI module drives SCK (master mode) or uses SCK as a clock 
input (slave mode).

 • Whether the SCK pin idles high (as in Figure 5-1b) or low.

 • Whether it uses its fastest clock rate of Fosc/4 or a slower rate.

For the connection of Figure 5-1a to function properly, it is important for the 
MCU’s SPI to be set up as master and the LCD controller’s SPI to be set up as slave. It 
is also important for the MCU and the LCD controller to agree on the polarity of the 
SCK pulses. With its use of FOSC = 8 MHz, the LCD controller can accept SPI inputs 
at any of the MCU’s SPI clock rates. The initialization of SSPSTAT and SSPCON1 
shown in Figure 5-1c produces the waveforms of Figure 5-1b and produces the idle-
high SCK that the LCD controller expects.

FIGURE 5-1 (continued) 

x
7 6 5 4 3 2 1

TRISC

Makes SCK/RC3 an output
Makes SDO/RC5 an output

A write to SSPBUF initiates a transfer
(most-significiant bit first)

SSPSTAT

SSPCON1

PIR1

SSPBUF

x 0 x 0 x x x
0

0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0

SSPIF = 
1: Transfer completed
0: Must be cleared before transfer

(c) MCU’s SPI registers



5.3 DISPLAY STRINGS

The sequence of operations needed to update the entire display’s eight characters 
plus an optional decimal point via a new message string is shown in Figure 5-2. The 
sequence begins with the dropping of the RD5 pin from one to zero. Since the LCD 
controller only reacts to this falling edge, it is unimportant when this pin is raised 
again. It is only necessary that it be high again when a subsequent message string is 
ready to be sent.

Before the first byte is written to SSPBUF, the SSPIF flag is cleared. Before each 
subsequent byte is written to SSPBUF, the CPU waits for the automatic setting of the 
SSPIF flag at the completion of the 1-byte transfer before clearing the flag and writing 
the next byte. After receiving the 9 bytes, the LCD controller interprets and displays the 
bytes, and then returns to sleep. With the character positions named as in Figure 5-3a, 
the characters in a display string are arranged in the same order as shown in Figure 5-3b. 
Thus the first character sent will appear in the leftmost character position, with subse-
quent characters appearing in order to the right of this position. If the 9 bytes include a 
decimal point, the decimal point is displayed with the character that precedes it. If no 
decimal point is included in the string, the ninth byte received is ignored.

Wake up LCD controller

RD5

SSPIF
flag

SDO CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7

Clear
SSPIF

Write to
SSPBUF

Raise RD5 any time before sending another display string

FIGURE 5-2 Display string format consisting of nine bytes (eight ASCII-coded characters 
plus an optional ASCII-coded decimal point)

CH0

(a) LCD display, showing names of character positions

CH1 CH2 CH3 CH4 CH5 CH6 CH7

(b) Display strings and the LCD result

''1 2 3 4 5 6 7 8   '' will produce

''1 2 3 4 . 5 6 7 8'' will produce

1 2 3 4 5 6 7 8

1 2 3 4. 5 6 7 8
FIGURE 5-3 Display string positioning 
of characters
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5.4 DISPLAYABLE CHARACTERS

Any byte that is received by the LCD controller will be interpreted as:

 • A displayable character (see Figure 5-4a)

 • A reinterpreted character (see Figure 5-4b)

ASCII code does not include the degree symbol for units of temperature. The 
ASCII code for a question mark (0x3F), if received by the LCD controller, will be 
reinterpreted to display the degree symbol.

If the LCD controller receives any lower-case letter, it is reinterpreted as the corre-
sponding upper-case character. If any unrecognized codes are received, the LCD con-
troller will turn on all segments of that character position to alert the user of a faulty 
choice, given the limitations of a starburst character representation.

5.5 DECIMAL POINT

Because the LCD includes an optional decimal point with each character position, the 
LCD controller treats the reception of the ASCII code for a decimal point as a special 
case. For example, the nine-character display string

″1234.5678″

will show up as

1234.5678

 Numbers: 0 1 2 3 4 5 6 7 8 9

 Upper-case letters: A B C ... X Y Z

 Recognized symbols: ( ) ' . + − * / < > ^ 

(a) Characters displayed in response to their ASCII codes.

 Character sent is reinterpreted as

 ? ° (degree symbol for temperature)

 a b c ... x y z A B C ... X Y Z

(b) Reinterpreted characters

         Turn on all segments for that character position

(c) Unaccounted-for 8-bit codes.

FIGURE 5-4 Displayable characters



with both the 4 and the decimal point in the CHAR3 position.
The LCD display on the Qwik&Low board has eight decimal points, one on the 

right side of each character position. Consequently the display string

".12345678"

will be displayed as

.1234567

with the last character (8) ignored. A more readable result will occur by sending

"0.1234567"

to produce the following display

0.1234567

5.6 T2.C, A DISPLAY TEMPLATE

The template program of Figure 5-5 illustrates how to deal with the LCD display.
The template program also illustrates several new considerations arising because 

of interactions with a second microcontroller.

/******* T2.c ******************
 *
 * Use Fosc = 4 MHz for Fcpu = Fosc/4 = 1 MHz.
 * Sleep for 16 ms (nominal), using watchdog timeout for wakeup.
 *  Toggle RC2 output every 16 milliseconds for measuring looptime with scope.
 * Blink LED on RD4 for 16 ms every four seconds.
 * Post PRESS PB message on LCD until first pushbutton push.
 * Increment LCD's CHAR0:CHAR1 every second.
 * Increment LCD's CHAR3:CHAR4 for each pushbutton press.
 *
 *        Current draw = 7 uA (with LED and LCD switched off)
 *
 ******* Program hierarchy *****
 *
 * main
 *  Initial
 *    Display
 *  BlinkAlive
 *  Time
 *  Pushbutton
 *  UpdateLCD
 *    Display
 *
 *******************************
 */

FIGURE 5-5 T2.c template
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#include <p18f4321.h>           //  Define PIC18LF4321 registers and bits
#include <string.h>             //  Used by the LoadLCDSTRING macro

/*******************************
 * Configuration selections
 *******************************
 */

#pragma config OSC = INTIO1     //  Use internal osc, RA6=Fosc/4, RA7=I/O
#pragma config PWRT = ON        // Enable power-up delay
#pragma config LVP = OFF        //  Disable low-voltage programming
#pragma config WDT = OFF        //  Disable watchdog timer initially
#pragma config WDTPS = 4        //  16 millisecond WDT timeout period, nominal
#pragma config MCLRE = ON       // Enable master clear pin
#pragma config PBADEN = DIG     // PORTB<4:0> = digital
#pragma config CCP2MX = RB3     //  Connect CCP2 internally to RB3 pin
#pragma config BOR = SOFT       //  Brown-out reset controlled by software
#pragma config BORV = 3         //  Brown-out voltage set for 2.1V, nominal
#pragma config LPT1OSC = OFF    //  Deselect low-power Timer1 oscillator

/*******************************
 * Global variables
 *******************************
 */
char PBFLAG;                    //  Flag, set after first press of pushbutton
char LCDFLAG;                   //  Flag, set to send string to display
char NEWPB;                     //  Flag, set if pushbutton is now pressed
char OLDPB;                     //  Flag, set if pushbutton was pressed last loop
unsigned char ALIVECNT;         //  Scale-of-248 counter for blinking "Alive" LED
unsigned char TIMECNT;          //  Scale-of-62 counter of loop times = 1 second
unsigned char ONES;             // For display of seconds
unsigned char TENS;
unsigned char PBONES;           //  For display of pushbutton count
unsigned char PBTENS;
unsigned char i;                // Index into strings
unsigned int DELAY;             //  Sixteen-bit counter for obtaining a delay
char LCDSTRING[] = "PRESS PB "; // LCD display string

/*******************************
 * Function prototypes
 *******************************
 */

void Initial(void);
void BlinkAlive(void);
void Pushbutton(void);
void Time(void);
void UpdateLCD(void);
void Display(void);

/*******************************
 * Macros
 *******************************
 */

FIGURE 5-5 (continued)



#define Delay(x) DELAY = x; while(--DELAY){ Nop(); Nop(); }
#define LoadLCDSTRING(lit)  strcpypgm2ram(LCDSTRING,(const far rom char*)lit)

/////// Main program ///////////////////////////////////////////////////////////

/*******************************
 * main
 *******************************
 */
void main()
{
  Initial();                   // Initialize everything
  while (1)
  {
    PORTCbits.RC2 ^= 1;        //  Toggle pin, for measuring loop time
    BlinkAlive();              // Blink "Alive" LED
    Time();                    // Display seconds
    Pushbutton();              // Display pushbutton count
    UpdateLCD();               // Update LCD
    Sleep();                   //  Sleep, letting watchdog timer wake up chip
    Nop();
  }
}

/*******************************
 * Initial
 *
 *  This function performs all initializations of variables and registers.
 *******************************
 */
void Initial()
{
  OSCCON = 0b01100010;         // Use Fosc = 4 MHz (Fcpu = 1 MHz)
  SSPSTAT = 0b00000000;        // Set up SPI for output to LCD
  SSPCON1 = 0b00110000;
  ADCON1 = 0b00001011;         //  RA0,RA1,RA2,RA3 pins analog; others digital
  TRISA = 0b00001111;          // Set I/O for PORTA
  TRISB = 0b01000100;          // Set I/O for PORTB
  TRISC = 0b10000000;          // Set I/O for PORTC
  TRISD = 0b10000000;          // Set I/O for PORTD
  TRISE = 0b00000010;          // Set I/O for PORTE
  PORTA = 0;                   //  Set initial state for all outputs low
  PORTB = 0;
  PORTC = 0;
  PORTD = 0b00100000;          //  except RD5 that drives LCD interrupt
  PORTE = 0;
  SSPBUF = ' ';                //  Send a blank to initialize state of UART
  Delay(50000);                // Pause for half a second
  RCONbits.SBOREN = 0;         // Now disable brown-out reset
  PBFLAG = 0;                  //  Clear flag until pushbutton is first pressed
  LCDFLAG = 0;                 //  Flag to signal LCD update is initially off
  TIMECNT = 0;                 // Reset TIMECNT
  TENS = '5';                  //  Initialize to 59 so first display = 00
  ONES = '9';

FIGURE 5-5 (continued)
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  PBTENS = '0';                 //  Initialize count of pushbutton presses
  PBONES = '1';
  OLDPB = 0;                    //  Initialize to unpressed pushbutton state
  ALIVECNT = 247;               // Blink immediately
  WDTCONbits.SWDTEN = 1;        // Enable watchdog timer
  Display();                    //  Display initial "PRESS PB" message
  LoadLCDSTRING("00 01    ");   // Reinitialize LCDSTRING
}

/*******************************
 * BlinkAlive
 *
 * This function briefly blinks the LED every four seconds.
 * With a looptime of about 16 ms, count 4x62 = 248 looptimes
 *******************************
 */
void BlinkAlive()
{
  PORTDbits.RD4 = 0;            // Turn off LED
  if (++ALIVECNT == 248)        //  Increment counter and return if not 248
  {
    ALIVECNT = 0;               // Reset ALIVECNT
    PORTDbits.RD4 = 1;          //  Turn on LED for 16 ms every 4 secs
  }
}
/*******************************
 * Time
 *
 * After pushbutton is first pushed, display seconds.
 *******************************
 */
void Time()
{
  if (PBFLAG)                   //  After pushbutton is first pushed,
  {
    if (++TIMECNT == 62)        // count TIMECNT to 1 second
    {
      TIMECNT = 0;              // Reset TIMECNT for next second
      if (++ONES > '9')         // and increment time
      {
        ONES = '0';
        if (++TENS > '5')
        {
          TENS = '0';
        }
      }
      LCDSTRING[0] = TENS;      // Update display string
      LCDSTRING[1] = ONES;
      LCDFLAG = 1;              // Set flag to display
    }
  }
}

FIGURE 5-5 (continued)



/*******************************
 * Pushbutton
 *
 * After pushbutton is first pressed, display pushbutton count.
 *******************************
 */
void Pushbutton()
{
  PORTEbits.RE0 = 1;           // Power up the pushbutton
  Nop();                       //  Delay one microsecond before checking it
  NEWPB = !PORTDbits.RD7;      //  Set flag if pushbutton is pressed
  PORTEbits.RE0 = 0;           // Power down the pushbutton
  if (!OLDPB && NEWPB)         //  Look for last time = 0, now = 1
  {
    if (!PBFLAG)               //  Take action for very first PB press
    {
      PBFLAG = 1;
      ALIVECNT = 0;            //  Synchronize LED blinking to counting
      TIMECNT = 61;            // Update display immediately
    }
    else                       //  Take action for subsequent PB presses
    {
      if (++PBONES > '9')      //  and increment count of PB presses
      {
        PBONES = '0';
        if (++PBTENS > '9')
        {
          PBTENS = '0';
        }
      }
    }
    LCDSTRING[3] = PBTENS;     //  Update display string for simulated LCD
    LCDSTRING[4] = PBONES;
    LCDFLAG = 1;               // Set flag to display
  }
  OLDPB = NEWPB;               // Save present pushbutton state
}
/*******************************
 * UpdateLCD
 *
 *  This function updates the 8-character LCD once the pushbutton has
 * first been pressed, if Time or Pushbutton has set LCDFLAG.
 *******************************
 */
void UpdateLCD()
{
  if(PBFLAG && LCDFLAG)
  {
    Display();
    LCDFLAG = 0;
  }
}

FIGURE 5-5 (continued)
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/*******************************
 * Display()
 *
 * This function sends LCDSTRING to the LCD.
 *******************************
 */
void Display()
{
  PORTDbits.RD5 = 0;            // Wake up LCD display
  for (i = 0; i <= 8; i++)
  {
    PIR1bits.SSPIF = 0;         // Clear SPI flag
    SSPBUF = LCDSTRING[i];      // Send byte
    while (!PIR1bits.SSPIF);    //  Wait for transmission to complete
  }
  PORTDbits.RD5 = 1;            //  Return RB5 high, ready for next string
}

FIGURE 5-5 (continued)

5.7 INITIALIZATION OF TWO MICROCONTROLLERS

The PIC18LF4321 MCU and the PIC18LF6390 LCD controller each has its own power-
on reset circuit. Each one has to deal with contact bounce in the power switch. Also it is 
important for the LCD controller to have initialized itself before the first display string is 
sent to it by the MCU. Accordingly, the MCU’s Initial function includes a half-second 
delay followed by a disabling of the brownout-reset circuit. Any power switch contact 
bounce occurring during this half second will reset the MCU and start up again with the 
same, proper initialization sequence of instructions, followed by the shutting down of the 
brownout-reset module to eliminate its constant 34 µA current draw on the coin cell.

The LCD controller powers up in the same way, to keep from being corrupted 
by power switch contact bounce. It uses a shorter delay, but with enough leeway to 
account for any difference in the brownout modules’ threshold voltages and for the 
more extensive initialization required by the LCD controller.

5.8 SPI INITIALIZATION

The initialization of the serial peripheral interface consists of the initialization of the 
SSPSTAT and SSPCON1 registers with the values shown in Figure 5-1c. Also, the 
RD5 pin of PORTD is set up as an output, driven high. Thus, when the MCU is ready 
to send its first display string to the LCD controller, all three output lines, RD5, SCK, 
and SDO will have been correctly initialized.

5.9 THE DISPLAY FUNCTION AND LCDSTRING

The Display function is called twice within the T2.c template program. First, it is 
called in the Initial function when it displays “PRESS PB”. Subsequently, it is called 
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by the UpdateLCD function after the pushbutton has first been pressed. Thereafter, it 
is called by the UpdateLCD function to display the elapsed seconds and to update the 
number of pushbutton presses.

Before the Display function is called, LCDSTRING must be loaded with the nine 
ASCII-coded characters to be sent to the display. The T2.c template program does this 
in several ways. In the Global variables section, the line

char LCDSTRING[] = "PRESS PB "; // LCD display string

both defines LCDSTRING as a char array and initializes it to contain the nine char-
acters between the quotes. At the end of the Initial function, the Display function 
sends this message string to the display and then uses a LoadLCDSTRING macro to 
reinitialize LCDSTRING with the initial values of the numbers that will be displayed 
subsequently, when the Time function and the Pushbutton function update individual 
characters in LCDSTRING. When the string of characters is sent to the display, the 
sequence of events shown in Figure 5-2 occur.

The Display function begins by dropping RD5 to awaken the LCD controller. It 
sends the nine characters to the display via the SPI bus. After clearing the SPI’s SSPIF 
flag, each character is written to the SPI’s SSPBUF register. The function then waits 
for the completion of the transfer (signaled by the setting of the SSPIF flag) before 
sending the next character. After all characters have been sent, RD5 is raised, ready 
for the next call of Display. 

5.10 THE TIME FUNCTION

Within the Time function, the lines

LCDSTRING[0] = TENS;

and

LCDSTRING[1] = UNITS;

insert the ASCII characters stored in the TENS and ONES variables into the first 2 bytes 
of  LCDSTRING. The lines leading up to these lines increment the two-digit ASCII-
coded number in TENS:ONES from 00 to 59 and back to 00. By counting 62 loop times 
in TIMECNT between each increment of TENS:ONES, the displayed time is incre-
mented every second (within the accuracy of the watchdog timer’s nominal 16 ms time-
out period). The test of PBFLAG maintains the initial startup message on the display

PRESS PB

until the first press of the pushbutton. The setting of the LCDFLAG at the end of the 
Time function is used to signal the UpdateLCD function that LCDSTRING has been 
changed and that the LCD should be updated accordingly.

5.11 THE PUSHBUTTON FUNCTION

Like the Time function, the Pushbutton function increments a counter, PBTENS:
PBONES. When the Pushbutton function has updated LCDSTRING in response to 
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a pushbutton press, it sets LCDFLAG, just as was done by the Time function. Con-
sequently, whenever either a 1-s tick or a pushbutton press occurs, the UpdateLCD 
function will update the display during that same pass around the main loop.

To understand how the MCU detects a pushbutton press, refer back to the circuit of 
Figure 3-2. RE0 is first raised. A 1-µs pause is introduced by the Nop() macro to allow 
time to change whatever capacitance is associated with the RE0 trace on the Qwik&Low 
board. If the pushbutton is pressed, the RD7 input will be read as a zero and the line

NEWPB = !PORTDbits.RD7;

will put a nonzero value into the NEWPB byte serving as a flag. If the pushbutton is 
not pressed, RD7 will be read as a one and NEWPB will be zero.

The state of the pushbutton one loop time (i.e., 16 ms) ago is held in OLDPB. The 
combined condition 

!OLDPB && NEWPB

detects the beginning of a keypress. Keybounce has been suppressed by the loop time 
sampling of the keyswitch state, as per Figure 2-7.

Before the first press after reset, PBFLAG will equal zero. Accordingly, when 
the first press occurs, PBFLAG will be set and the initialization of ALIVECNT and 
TIMECNT will occur just for this initial press. The ASCII values for zero and one 
initialized into PBTENS and PBONES are copied into LCDSTRING[3] and LCD-
SRING[4] and LCDFLAG is set, to signal the UpdateLCD function to overwrite the

PRESS PB 

message with a time of 00 and a number of keypresses of 01. On subsequent key-
presses, the ASCII values held in PBTENS and PBONES are incremented and then 
displayed by the UpdateLCD function.

PROBLEMS

5-1  Initial message Change the initial message from “PRESS PB” to “WEL-
COME”.

5-2 Relocation of display elements

 a) Move the elapsed time to the CHAR1:CHAR2 position on the display.

 b) Move the count of pushbutton presses to the CHAR5:CHAR6 position on 
the display. 

5-3  Blast off counter Change the display of elapsed time to count down from 
an initial value of 10. When zero is reached:

 a) Fill the screen with eight asterisks and stop further updating of the display.

 b) Blank the screen. Twelve loop times later write asterisks to the middle two 
character positions. After another 12 loop times, write asterisks to the mid-
dle four character positions. After another 12 loop times, write asterisks to 
the middle six character positions. Finally, after another 12 loop times, fill 
the screen with eight asterisks and stop any further updating of the display.
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6.1 OVERVIEW

Because a user program has access to the same UART module in the MCU that is 
used by QwikBug, the Console window within QwikBug can provide the Qwik&Low 
board with two distinct opportunities:

• It can be used by a user’s application program to supplement the eight-character 
LCD. For example, it can display the 16-hex-digit serial number read from the 
DS2401 silicon serial number IC of Chapter Fifteen.

• It can be used by a user’s test program that exercises a user algorithm or func-
tion as a way to report measurement results. For example, this chapter will end 
with a Measure.c program that compares the execution time of four functions 
that convert a variable into a decimal display.

The chapter begins with an examination of the MCU’s UART module, its setup, and 
its ability to transmit data reliably to the PC using the MCU’s internal oscillator having 
a ±2% frequency accuracy. The chapter ends with the Measure.c template program. 
When compared with the use of a scope to measure execution times in units of micro-
seconds, the counting of CPU cycles explored here produces exact CPU cycle counts. 
Consequently, its measurement results of cycle counts do not vary as the same code 
is run on multiple Qwik&Low boards. In contrast, scope measurements of execution 

PC MONITOR USE 
(MEASURE.c)

Chapter 

6
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times in units of microseconds will vary from board to board because of variations in 
the 2% accurate internal clock frequency.

6.2 WAVEFORMS AND BAUD RATE ACCURACY

The UART, universal asynchronous receiver transmitter, is a module in the MCU that 
is used by the QwikBug utility to send and receive information between the PC and 
the MCU. For this transmission, the PC employs a baud rate of 19,200 baud; that is, a 
transmission rate in which the duration of each bit is 

1 bit time =   1 ______ 19,200   s ≈ 50 µs

The protocol employed for the asynchronous serial data transmission from the 
MCU to the PC is illustrated in Figure 6-1 for a 3-byte transfer. Each byte is framed 
between a high start bit and a low stop bit, producing a 10-bit frame having a duration 
of about half a millisecond. As pointed out in conjunction with Figure 3-3, the MCU 
is able to implement the signal level inversion for its output to the PC that is normally 
implemented with an external chip. Thus, the TX signal idles low to drive the RS-232 
cable going to the PC, just the opposite of what would be expected from a UART 
whose output is inverted externally.

Because both clock and data are combined in the single TX output from the MCU, 
the PC must synchronize on the serial data stream in order to read the data bits reli-
ably. The PC knows that each byte of data is framed between low idle bits or between 
the low trailing stop bit of a frame and the high leading start bit of the following frame. 
This low-to-high transition triggers a counter in the PC’s UART that divides each bit 
time into 16 “ticks”.

The PC’s crystal baud rate oscillator with a frequency accuracy of better than 100 
parts per million will introduce an error, relative to the nominal 19,200 baud rate, 
of no more than 0.01%. Because of its sampling of the received waveform, the PC’s 
UART can miss the time of the rising edge of the start bit by up to one tick. The PC’s 
UART actually reads each bit in the middle of each bit time as measured by count-
ing ticks. Thus, as shown in Figure 6-2, each frame consisting of 160 ticks is sampled 
at the 24th, . . . , 136th ticks to read the 8 data bits. It finally samples the input at the 
152nd tick and expects to read the low stop bit.

If the input is high at the 152nd tick because of the MCU’s baud rate clock frequency 
being off from the nominal 19,200 baud by a sufficient amount, the PC’s UART registers 
a framing error. The effect of a slow MCU baud rate clock is to stretch the waveform of 
Figure 6-2 relative to the PC’s tick clock. If this stretching is as much as 160 – 152 – 1 = 7 
ticks relative to the 152 ticks when the stop bit is read, a framing error will occur, signal-
ing the reception of possibly erroneous data. A maximum deviation of the MCU baud 
rate from the nominal baud rate of 19,200 baud follows from this of 

Baud rate = 19,200 baud ±   7 ____ 152   × 100% = 19,200 baud ± 4.60%  

The generation of a baud rate approximating 19,200 baud by the MCU is illustrated 
by the circuit of Figure 6-3a, with the chip’s internal oscillator being divided down 
by either 16 or 64 followed by a divide-by-(N + 1) counter. The resulting relationship 
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between FOSC, baud rate, BRGH, and SPBRG is shown in Figure 6-3b. Using the MCU’s 
INTOSC internal oscillator, the 19,200-baud rate of the PC can be approximated by any 
of the four settings of Figure 6-3c, depending upon the Fosc value selected.

The frequency error of the INTOSC oscillator is specified to be less than ±2% at 
25°C (i.e., 77°F) over the full supply voltage range of 2.0 V to 5.5 V. This error plus 
the 0.16% baud-rate error of Figure 6-3c are comfortably less than the ±4.60% accu-
racy required by the PC’s UART.

(b) Baud rate derivation from FOSC

BRGH = 1

 = 16 (SPBRG + 1)

 = 4 (SPBRG + 1)
FOSC

Baud rate

FOSC

Baud rate
BRGH = 0

(a) MCU’S UART baud-rate generator circuit

SPBRG
N

TXSTA

Comparator

Synchronous reset

÷4 for BRGH = 1
÷16 for BRGH = 0

BRGH

FOSC..., N, 0, 1, 2, ..., N, 0, ...

Equal

Baud rate clock

(c) BRGH and SPBRG settings for 19200 baud

FOSC

8 MHz 0 25 −0.16%

−0.16%

−0.16%

−0.16%

12

25

12

0

1

1

4 MHz

2 MHz

1 MHz

BRGH SPBRG Baud rate error

FIGURE 6-3 Baud rate generation by the MCU
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6.3 UART’S TX CIRCUITRY AND USE

The circuitry of Figure 6-4 implements the TX (transmit) portion of the UART mod-
ule in the MCU. It consists of two registers plus a TRMT (transmit) flag that can be 
used for flow control. When a string of bytes is sent to the display, before a new byte 
is written to TXREG, a pause until the present byte in the UART has been completely 
transferred can be implemented by pausing while TRMT = 0. 

An alternative flag (TXIF) could have been used that signals when TXREG is 
ready for a new byte. This flag provides the benefit of allowing 2 bytes to be written to 
the UART before the first half-millisecond pause occurs. However, before the chip is 
put to sleep, it is necessary to pause while TRMT = 0 so that no intended byte being 
sent to the PC is aborted when FOSC is stopped.

6.4 UART INITIALIZATION

The UART module in the MCU must be initialized before it can be used. The baud 
rate settings of Figure 6-3c for FOSC = 4 MHz are reflected in the register contents of 
Figure 6-5.

TXREG

Start bit = 1

Data is transmitted LSb first

TXSTA

TRMT remains cleared
while byte is being
transmitted by TSR

TRMT flag

TX (RC6) pin

Stop bit = 0

TSR (transmit shift register)

Automatically set TRMT
flag when TSR is empty

0

x x x x x x x

Automatically transfer TXREG to TSR
when TSR has been emptied

FIGURE 6-4 TX circuitry
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(a) Registers

xTRISC

BAUDCON

RCSTA

TXSTA

SPBRG 12

TXREG Transmit register

Baud-rate generator for 19200 baud
with FOSC = 4 MHz (see Figure 6-3c)

BRGH = 0 for FOSC = 4 MHz (see Figure 6-3c)

PIR1

0 x x x x x x

1 x x x x x x x

x x x x x x x

0 0 1 0 0 0 0

0 1 1 1 1 0 0 0

TXIF
1: TXREG is ready to receive a byte
0: TXREG is full, waiting upon TSR

TXEN
1: Transmit function is enabled
0: Transmit function is disabled

TRMT
1: Flag indicates TSR is empty
0: Flag indicates TSR is transmitting

SPEN
1: Serial port is enabled
0: Serial port is disabled

TX/RC6 configured as an output

TXCKP
1: TX data is inverted
0: TX data is not inverted

FIGURE 6-5 UART registers and initialization for TX output

/*******************************
 * InitTX
 *
 *  This function initializes the UART for its TX output function. It assumes
 *  Fosc = 4 MHz. For a different oscillator frequency, use Figure 6-3c to
 * change BRGH and SPBRG appropriately.
 *******************************
 */

void InitTX()
{
    RCSTA = 0b10010000;         // Enable UART
    TXSTA = 0b00100000;         // Enable TX
    SPBRG = 12;                 // Set baud rate
    BAUDCON = 0b00111000;       // Invert TX output
}

(b) Initialization
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#define TXascii(in)   TXREG = in; while(!TXSTAbits.TRMT)

(a) TXascii macro definition

TXascii(HUNDREDS);           // Display ASCII-coded content of HUNDREDS

TXascii(0x41);               // Display the letter A
TXascii(0x0D);               // Carriage return
TXascii(0x0A);               // Line feed

TXascii('A');                // Display the letter A
TXascii('\r');               // Carriage return
TXascii('\n');               // Line feed

(b) Useful invocations

FIGURE 6-6 TXascii macro definition and several useful invocations

Even though QwikBug has already initialized the UART in order to download 
a user program, run it, and aid in debugging it, QwikBug has done so with FOSC = 8 
MHz. For a user program operating with FOSC = 4 MHz, the baud rate settings must 
be reinitialized to the settings shown in Figure 6-5 in order to have the PC accept the 
MCU output correctly at 19,200 baud. QwikBug handles these shared registers with 
care, saving user contents on entering QwikBug at a breakpoint or after a single step, 
and restoring the user contents on exiting back to the user program.

6.5 TXASCII MACRO

The fundamental building block for sending an ASCII-coded character to the PC is a 
TXascii macro. The macro does two things:

• It sends its ASCII-coded parameter, whether a constant or a char variable, to 
TXREG for transmission to the PC.

• It waits for the completion of the transfer by testing the TRMT bit of Figure 6-5a 
and pausing until it becomes set.

The macro definition and examples of its use are shown in Figure 6-6.

6.6 NUMBER-TO-ASCII CONVERSION

In the last chapter, ASCII-coded characters were formed in the Time function (and 
similarly in the Pushbutton function) by starting with

ONES = '0'  and  TENS = '0'

That is, each of these variables began with the ASCII code for zero. Thereafter, these 
values were updated by incrementing to the next ASCII code or by resetting to '0'.



More generally, a number will be obtained as a result of a measurement and will 
need to be converted to ASCII-coded char variables:

ONES              TENS              HUNDREDS              THOUSANDS          etc.

ready for display. In this section, two algorithms will be considered. The first breaks 
out the digits, most-significant-digit first, by successive subtractions. The second breaks 
out the digits, least-significant-digit first, by successive divisions. For each of these 
algorithms, two versions will be developed.

ASCII and ASCIID convert NUMBER, a value ranging from 0 to 255, with the 
functions shown in Figure 6-7. The first line of ASCII initializes the three output vari-
ables to ‘0’. The second line forms HUNDREDS by repeatedly subtracting 100 from 
NUMBER until NUMBER is less than 100. The third line forms TENS by repeat-
edly subtracting 10 from what remains in NUMBER. The fourth line is reached with 
NUMBER having a value ranging between zero and nine. This value is added to the 
ASCII-coded zero initialized into ONES.

In Figure 6-8, ASCII4 and ASCII4D operate on BIGNUM, the int version of 
NUMBER by adding the extra lines of code needed to generate one more digit. 
Although numbers up to 65,535 can be held in BIGNUM, restricting the conversion 
to any four-digit number up to 9,999 will serve the needs that arise in this book.

Global variables:

unsigned char NUMBER;              // Eight-bit number to be converted
unsigned char HUNDREDS,TENS,ONES;  // ASCII coding of digits

Function prototypes:

void ASCII(void);
void ASCIID(void);

(a) Definitions

/*******************************
 * ASCII
 *
 * This function converts the unsigned char parameter passed to it
 * in NUMBER, ranging from 0 to 255, to three ASCII-coded digits
 * by performing successive subtractions.
 * Simplified by Chad Kersey.              Takes up to 98 cycles.
 *******************************
 */
void ASCII()
{
   ONES = TENS = HUNDREDS ='0';  //Initialize to ASCII zeroes
   while (NUMBER >= 100) { HUNDREDS++; NUMBER -= 100; } // Form HUNDREDS

FIGURE 6-7 Conversion of the char variable NUMBER ranging from 0 to 255
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   while (NUMBER >= 10) { TENS++; NUMBER -= 10; }    // Form TENS
   ONES += NUMBER;                                   // Form ONES
}

(b) ASCII for conversion by successive subtractions

/*******************************
 * ASCIID
 *
 * This function converts the unsigned char parameter passed to it
 * in NUMBER, ranging from 0 to 255, to three ASCII-coded digits
 *  by performing successive divisions.             Takes up to 357 cycles.
 *******************************
 */
void ASCIID()
{
   ONES = '0' + (NUMBER % 10);        // Form ONES
   NUMBER = NUMBER / 10;
   TENS = '0' + (NUMBER % 10);        // Form TENS
   HUNDREDS = '0' + (NUMBER / 10);    // Form HUNDREDS
}

(c) ASCIID for conversion by successive divisions

FIGURE 6-7 (continued)

6.7 MEASURE.c, A CYCLE COUNTING PROGRAM

With the four functions of the last section and the TXascii macro of Section 6.6 ready 
for use, this section introduces in Figure 6-9 a Measure.c template program that will 
evaluate the number of cycles needed to execute each function. Using Start, Stop, 
and Send functions that will be developed in Chapter 13, Measure.c starts a counter 
of CPU clock cycles (Timer0) immediately before the call of each ASCII conversion 
function, stops the counter immediately after the conversion, and sends the resulting 
number of cycles to the QwikBug Console. The numbers used for the conversions

NUMBER = 199     and     BIGNUM = 9,999

represent worst-case values (i.e., values that produce the most cycles) for ASCII and 
ASCII4, the successive-subtraction algorithms. They are reasonable values for esti-
mating worst-case cycle counts for the successive-division algorithms. Determining 
the actual worst-case cycle count for each of the two successive-division algorithms is 
left as end-of-chapter problems.

The resulting numbers of cycle counts are listed in the header of the Measure.c 
template. The successive-subtraction algorithms require, in the worst case, about a 
quarter of the number of cycles of the successive-division algorithms. Furthermore, 
the successive-subtraction algorithms produce cycle counts that are proportional to 
the sum of the digits in the result, and can thus produce a significantly reduced cycle 
count in a specific case. For these reasons, ASCII and ASCII4 are used throughout 
the rest of the book whenever a conversion is needed.



Global variables:

unsigned int BIGNUM;        // Ranges from 0 to 9999
unsigned char THOUSANDS,HUNDREDS,TENS,ONES; // ASCII coding of digits

Function prototypes:

void ASCII4(void);
void ASCII4D(void);

(a) Definitions

/*******************************
 * ASCII4
 *
 * This function converts the unsigned int parameter passed to it
 * in BIGNUM, ranging from 0 to 9999, to four ASCII-coded digits
 * by performing successive subtractions.
 *  Simplified by Chad Kersey.                      Takes up to 353 cycles.
 *******************************
 */
void ASCII4()
{
    ONES = TENS = HUNDREDS = THOUSANDS ='0';  //Initialize to ASCII zeroes
    while (BIGNUM >= 1000) { THOUSANDS++; BIGNUM -= 1000; } // Form THOUSANDS
    while (BIGNUM >= 100)  { HUNDREDS++; BIGNUM -= 100; }   // Form HUNDREDS
   while (BIGNUM >= 10)  { TENS++; BIGNUM -= 10; }         // Form TENS
   ONES += BIGNUM;                                         // Form ONES
}

(b) ASCII4 for conversion by successive subtractions

/*******************************
 * ASCII4D
 *
 * This function converts the unsigned int parameter passed to it
 * in BIGNUM, ranging from 0 to 9999, to four ASCII-coded digits
 *  by performing successive divisions.             Takes up to 1498 cycles.
 *******************************
 */
void ASCII4D()
{
   ONES = '0' + (BIGNUM % 10);       // Form ONES
   BIGNUM = BIGNUM / 10;
   TENS = '0' + (BIGNUM % 10);       // Form TENS
   BIGNUM = BIGNUM /10;
   HUNDREDS = '0' + (BIGNUM % 10);   // Form HUNDREDS
   THOUSANDS = '0' + (BIGNUM / 10);  // Form THOUSANDS
}

(c) ASCII4D for conversion by successive divisions

FIGURE 6-8 Conversion of the int variable BIGNUM ranging from 0 to 9999
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/******* Measure.c *************
 *
 * A number between 0 and 9999 is converted to ASCII-coded digits two ways:
 *   ASCII4 forms each digit by successive subtractions (up to 353 cycles).
 *   ASCII4D forms each digit via two divisions (up to 1498 cycles).
 * Then a number between 0 and 255 is converted to ASCII-coded digits two ways:
 *   ASCII forms each digit by successive subtractions (up to 98 cycles).
 *   ASCIID forms each digit via two divisions (up to 357 cycles).
 * For each one, the result is displayed on the LCD.
 * The execution time (cycles)is displayed on the PC
 * Execution stops with a sleep command.
 *
 * Start and Stop functions are added to measure the execution time of the
 * code between them.  The Send function sends the time to the PC monitor.
 *
 * Use Fosc = 4 MHz for Fcpu = Fosc/4 = 1 MHz.
 *
 ******* Program hierarchy *****
 *
 * main
 *  Initial
 *  InitTX
 *  Start
 *  Stop
 *  Send
 *    TXascii
 *  ASCII4
 *  ASCII4D
 *  ASCII
 *  ASCIID
 *  Display
 *
 *******************************
 */

#include <p18f4321.h>           // Define PIC18LF4321 registers and bits

/*******************************
 * Configuration selections
 *******************************
 */
#pragma config OSC = INTIO1     // Use internal osc, RA6=Fosc/4, RA7=I/O
#pragma config PWRT = ON        // Enable power-up delay
#pragma config LVP = OFF        // Disable low-voltage programming
#pragma config WDT = OFF        // Disable watchdog timer initially
#pragma config WDTPS = 4        // 16 millisecond WDT timeout period, nominal
#pragma config MCLRE = ON       // Enable master clear pin
#pragma config PBADEN = DIG     // PORTB<4:0> = digital
#pragma config CCP2MX = RB3     // Connect CCP2 internally to RB3 pin
#pragma config BOR = SOFT       // Brown-out reset controlled by software
#pragma config BORV = 3         // Brown-out voltage set for 2.1V, nominal
#pragma config LPT1OSC = OFF    // Deselect low-power Timer1 oscillator

FIGURE 6-9 Measure.c



/*******************************
 * Global variables
 *******************************
 */
unsigned int DELAY;             // Sixteen-bit counter for obtaining a delay
unsigned char NUMBER;           // Eight-bit number to be converted
unsigned int BIGNUM;            // Sixteen-bit number to be converted
unsigned char THOUSANDS,HUNDREDS,TENS,ONES; // ASCII coding of digits
unsigned char i;                // Index into strings
unsigned int CYCLES;            // Result of Timer0 counting cycles
char LCDSTRING[] = "         "; // Nine-character display string

/*******************************
 * Function prototypes
 *******************************
 */
void Initial(void);
void InitTX(void);
void Start(void);
void Stop(void);
void Send(void);
void ASCII4(void);
void ASCII4D(void);
void ASCII(void);
void ASCIID(void);
void Display(void);

/*******************************
 * Macros
 *******************************
 */
#define Delay(x) DELAY = x; while(--DELAY){ Nop(); Nop(); }
#define TXascii(in)  TXREG = in; while(!TXSTAbits.TRMT)

/////// Main program //////////////////////////////////////////////////////////

/*******************************
 * main
 *******************************
 */
void main()
{
   Initial();                   // Initialize everything
   InitTX();                    // and the UART as well

   BIGNUM = 9999;
   Start();
   ASCII4();                    // Convert BIGNUM           Takes 353 cycles
   Stop();
   LCDSTRING[0] = THOUSANDS;
   LCDSTRING[1] = HUNDREDS;
   LCDSTRING[2] = TENS;

FIGURE 6-9 (continued)
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   LCDSTRING[3] = ONES;
   Send();                      // Send cycle count to PC for display

   LCDSTRING[4] = '.';          // Use decimal point as separator

   BIGNUM = 9999;
   Start();
   ASCII4D();                   // Convert BIGNUM           Takes 1498 cycles
   Stop();
   LCDSTRING[5] = THOUSANDS;
   LCDSTRING[6] = HUNDREDS;
   LCDSTRING[7] = TENS;
   LCDSTRING[8] = ONES;
   Send();                      // Send this cycle count to PC for display
   Display();                   // Verify correct conversions on LCD

   Delay(50000); Delay(50000); Delay(50000); Delay(50000) // Two-second pause

   NUMBER = 199;
   Start();
   ASCII();                     // Convert NUMBER            Takes 98 cycles
   Stop();
   LCDSTRING[0] = ' ';
   LCDSTRING[1] = HUNDREDS;
   LCDSTRING[2] = TENS;
   LCDSTRING[3] = ONES;
   Send();                      // Send cycle count to PC for display

   LCDSTRING[4] = '.';          // Use decimal point as separator

   NUMBER = 199;
   Start();
   ASCIID();                    // Convert NUMBER            Takes 357 cycles
   Stop();
   LCDSTRING[5] = ' ';
   LCDSTRING[6] = HUNDREDS;
   LCDSTRING[7] = TENS;
   LCDSTRING[8] = ONES;
   Send();                      // Send this cycle count to PC for display
   Display();                   // Verify correct conversions on LCD

   Sleep();                     // Sleep forever
}

/*******************************
 * Initial
 *
 * This function performs all initializations of variables and registers.
 *******************************
 */

FIGURE 6-9 (continued)



void Initial()
{
   OSCCON = 0b01100010;         // Use Fosc = 4 MHz (Fcpu = 1 MHz)
   SSPSTAT = 0b00000000;        // Set up SPI for output to LCD
   SSPCON1 = 0b00110000;
   ADCON1 = 0b00001011;         // RA0,RA1,RA2,RA3 pins analog; others
                                // digital
   TRISA = 0b00001111;          // Set I/O for PORTA
   TRISB = 0b01000100;          // Set I/O for PORTB
   TRISC = 0b10000000;          // Set I/O for PORTC
   TRISD = 0b10000000;          // Set I/O for PORTD
   TRISE = 0b00000010;          // Set I/O for PORTE
   PORTA = 0;                   // Set initial state for all outputs low
   PORTB = 0;
   PORTC = 0;
   PORTD = 0b00100000;          // except RD5 that drives LCD interrupt
   PORTE = 0;
   SSPBUF = ' ';                // Send a blank to initialize state of UART
   Delay(50000);                // Pause for half a second
   RCONbits.SBOREN = 0;         // Now disable brown-out reset
}

/*******************************
 * InitTX
 *
 * This function initializes the UART for its TX output function.  It assumes
 * Fosc = 4 MHz.  For a different oscillator frequency, use Figure 6-3c to
 * change BRGH and SPBRG appropriately.
 *******************************
 */
void InitTX()
{
   RCSTA = 0b10010000;          // Enable UART
   TXSTA = 0b00100000;          // Enable TX
   SPBRG = 12;                  // Set baud rate
   BAUDCON = 0b00111000;        // Invert TX output
}

/*******************************
 * Start
 *
 * This function clears Timer0 and then starts it counting.
 *******************************
 */
void Start()
{
   T0CON = 0b00001000;          // Set up Timer0 to count CPU clock cycles
   TMR0H = 0;                   // Clear  Timer0
   TMR0L = 0;
   T0CONbits.TMR0ON = 1;        // Start counting
}

FIGURE 6-9 (continued)
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/*******************************
 * Stop
 *
 * This function stops counting Timer0, and reads the result into CYCLES.
 *******************************
 */
void Stop()
{
   T0CONbits.TMR0ON = 0;        // Stop counting
   CYCLES = TMR0L;              // Form CYCLES from TMR0H:TMR0L
   CYCLES += (TMR0H * 256);
   CYCLES -= 3;                 // Remove 3 counts so back-to-back Start-Stop
}                               // functions produce CYCLES = 0

/*******************************
 * Send
 *
 * This function converts CYCLES to four ASCII-coded digits and sends
 * the result to the PC for display.
 *******************************
 */
void Send()
{
   BIGNUM = CYCLES;             // Load ASCII4’s input parameter
   ASCII4();                    // Convert
   TXascii('\r');               // Send carriage return
   TXascii('\n');               // Send line feed
   TXascii(THOUSANDS);          // Send four-digit number
   TXascii(HUNDREDS);
   TXascii(TENS);
   TXascii(ONES);
}

/*******************************
 * Display()
 *
 * This function sends LCDSTRING to the LCD.
 *******************************
 */
void Display()
{
   PORTDbits.RD5 = 0;           // Wake up LCD display
   for (i = 0; i <= 8; i++)
   {
      PIR1bits.SSPIF = 0;       // Clear SPI flag
      SSPBUF = LCDSTRING[i];    // Send byte
      while (!PIR1bits.SSPIF);  // Wait for transmission to complete
   }
   PORTDbits.RD5 = 1;           // Return RB5 high, ready for next string
}

FIGURE 6-9 (continued)



/*******************************
 * ASCII
 *
 * This function converts the unsigned char parameter passed to it
 * in NUMBER, that ranges between 0 and 255, to three ASCII-coded digits
 * by performing successive subtractions.
 * Simplified by Chad Kersey.                Takes a maximum of 98 cycles.
 *******************************
 */
void ASCII()
{
   ONES = TENS = HUNDREDS ='0';  //Initialize to ASCII zeroes
   while (NUMBER >= 100)  { HUNDREDS++; NUMBER -= 100; }  // Form HUNDREDS
   while (NUMBER >= 10)  { TENS++; NUMBER -= 10; }        // Form TENS
   ONES += NUMBER;                                        // Form ONES
}

/*******************************
 * ASCIID
 *
 * This function converts the unsigned char parameter passed to it
 * in NUMBER, that ranges between 0 and 255, to three ASCII-coded digits
 * by performing successive divisions.             Takes up to 357 cycles.
 *******************************
 */
void ASCIID()
{
   ONES = '0' + (NUMBER % 10);       // Form ONES
   NUMBER = NUMBER / 10;
   TENS = '0' + (NUMBER % 10);       // Form TENS
   HUNDREDS = '0' + (NUMBER / 10);   // Form HUNDREDS
}

/*******************************
 * ASCII4
 *
 * This function converts the unsigned int parameter passed to it
 * in BIGNUM, that ranges between 0 and 9999, to four ASCII-coded digits
 * by performing successive subtractions.
 * Simplified by Chad Kersey.                Takes a maximum of 353 cycles.
 *******************************
 */
void ASCII4()
{
   ONES = TENS = HUNDREDS = THOUSANDS ='0';  //Initialize to ASCII zeroes
   while (BIGNUM >= 1000)  { THOUSANDS++; BIGNUM -= 1000; } // Form THOUSANDS
   while (BIGNUM >= 100)  { HUNDREDS++; BIGNUM -= 100; }    // Form HUNDREDS
   while (BIGNUM >= 10)  { TENS++; BIGNUM -= 10; }          // Form TENS
   ONES += BIGNUM;                                          // Form ONES
}

FIGURE 6-9 (continued)
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/*******************************
 * ASCII4D
 *
 * This function converts the unsigned int parameter passed to it
 * in BIGNUM, that ranges between 0 and 9999, to four ASCII-coded digits
 * by performing successive divisions.             Takes up to 1498 cycles.
 *******************************
 */
void ASCII4D()
{
   ONES = '0' + (BIGNUM % 10);       // Form ONES
   BIGNUM = BIGNUM / 10;
   TENS = '0' + (BIGNUM % 10);       // Form TENS
   BIGNUM = BIGNUM /10;
   HUNDREDS = '0' + (BIGNUM % 10);   // Form HUNDREDS
   THOUSANDS = '0' + (BIGNUM / 10);  // Form THOUSANDS
}

FIGURE 6-9 (continued)

PROBLEMS

6-1  ASCIID worst case Modify the Measure.c template to form a Measure-
ASCIID.c. This program is to run the successive-division algorithm, ASCIID, 
256 times with each possible value of NUMBER. Each run is to (possibly) 
update two int values MIN and MAX and to update a short long (i.e., 24-bit) 
value SUM. At the conclusion, send MIN and MAX to the QwikBug Con-
sole for display. Then form

AVG = (int)(SUM >> 8)

   to divide SUM by the 256 trials to get the average number of cycles. Send 
AVG out for display.

6-2  ASCII worst case Repeat the last problem for the ASCII successive-
subtraction algorithm.

6-3  ASCII4D worst case Repeat for the 0–9,999 cases of the four-digit 
successive-division algorithm.

6-4  ASCII4 worst case Repeat for the 0–9,999 cases of the four-digit successive-
subtraction algorithm.

6-5  Display execution time Measure the number of cycles taken to execute the 
Display function.
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7.1 OVERVIEW

The code of the template programs to this point has put the MCU to sleep after car-
rying out the main loop tasks. Then the low-power watchdog timer has awakened the 
chip every 16 ms to repeat the mainline tasks. 

In this chapter, an alternative approach for awakening the chip is employed. 
Now the watchdog timer remains disabled. The MCU’s low-power Timer1 oscillator 
runs continuously and is able to clock its Timer1 counter regardless of whether the 
remainder of the MCU is asleep or awake. The Timer1 counter is used to control the 
loop time by awakening the chip periodically with an interrupt. The MCU also has a 
Timer3 counter, also clocked by the Timer1 oscillator. Tasks requiring faster periodic 
“ticks” can easily do so by using Timer3 to produce high-priority interrupts.

7.2 LOW- AND HIGH-PRIORITY INTERRUPTS

The PIC18LF4321 supports two levels of interrupts. It also supports a score of inter-
rupt sources, any one of which can be used to suspend the CPU’s execution of the main 
program and divert the CPU to either a high-priority interrupt service routine (HPISR) or 
a low-priority interrupt service routine (LPISR). Furthermore, if a low-priority interrupt 
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has interrupted the main program and the CPU has begun executing the LPISR when 
a high-priority interrupt source requests service, the CPU automatically suspends the 
LPISR and executes the HPISR before returning to where it left off in the LPISR.

A new template program, T3.c, is introduced that still carries out the tasks of the 
T2.c template, but with the code reorganized as shown in Figure 7-1. The new main 
function calls the Initial function where it carries out all of the initialization tasks of 
T2.c plus the initialization of Timer1 as a low-priority interrupt source and Timer3 as a 
high-priority interrupt source. Then the CPU puts itself to sleep. Only the Timer1 oscil-
lator with its external 32,768-Hz watch crystal and the Timer1 and Timer3 counters 
continue to run. The current draw of the MCU drops to 6.5 µA.

Timer1 is used to produce a 10-ms loop time for all of the main loop tasks. Timer1 
is a 16-bit timer that counts from 0 up to 65,535 and then rolls over, back to 0 to 

FIGURE 7-1 Reorganization to use 
Timer1 for controlling loop time 
and Timer3 for controlling faster 
recurring tasks

Power up to
main function

Initial

Main loop tasks

Timer1
wakeup with
low-priority

interrupt

Reload Timer1

Set LPISRFLAG

Return
from

interrupt

Timer3
wakeup with
high-priority

interrupt

Reload Timer3

Do “tick-time” tasks

Return
from

interrupt

Sleep

Yes

No
LPISRFLAG = 1 ?



continue counting. The rollover produces a low-priority interrupt. Within the LPISR, 
Timer1 is reloaded with a number that cuts out all but 328 counts so that the next 
rollover will occur in

328counts ×   1 ______________  
32,768counts/s

   ≈   1 ____ 
100

   s = 10ms

Timer3 is set up to produce faster “tick time” interrupts in the same manner. For 
now, the task is to produce a 1-µs-positive pulse every 4 ms on an output pin. The 
pulse can be monitored with a scope or used to step the stepper motor of Chapter 
Eight at a rate of 250 steps/s.

The sequencing of the two interrupt service routines is illustrated in Figure 7-2. 
Note how the LPISR is executed every 10 ms, perhaps being briefly extended by a 
concurrent HPISR.

7.3 INTERRUPTS AND THE C18 COMPILER

When a low-priority interrupt occurs, the CPU sets aside its present state and loads 
its program counter with the low-priority interrupt vector address, 0x0018. The C18 
compiler generates the code to begin execution of the LoPriISR shown in Figure 7-3. 
The code to set aside CPU registers upon entry to an interrupt service routine and to 
later restore CPU registers back to their state at the time of the interrupt is handled 
transparently by the compiler. To the writer of user code, each interrupt service rou-
tine is written with the same form as any other function. The difference lies in its being 
called by a hardware-initiated event (e.g., the setting of an interrupt flag by a timer).

7.4 TIMER1 OSCILLATOR

The Timer1 oscillator is a module that can function independently of the Timer1 coun-
ter. Its external circuitry consists of the 32,768-Hz crystal and two 15-pF capacitors of 
Figure 3-3. As mentioned in Section 3.7, this oscillator can be configured to operate 
reliably with VDD = 3 V using the configuration selection

LPT1OSC = OFF

This choice uses a somewhat higher power driver in its oscillator circuit than is used 
by the circuit selected with the configuration choice

LPT1OSC = ON

The “OFF” choice also removes a 3-V regulator from the circuit, intended for use 
with a higher VDD value. The “OFF” choice is needed for reliable operation with the 
Qwik&Low board’s 3-V VDD supply. The oscillator, together with its clocking of both 
Timer1 and Timer3 while the CPU sleeps, draws about 6.5 µA.

The Qwik&Low board can use the Timer1 oscillator for loop-time control. The 
crystal oscillator runs even as the rest of the chip sleeps, providing the timing accuracy 
associated with a 50 parts per million (i.e., ±0.005%) crystal. In contrast, use of the 

Section 7.4 Timer1 Oscillator 91



92 Chapter 7 Reorganization of Timing Via Interrupts (T3.c)

C
P

U
 a

sl
ee

p

P
ow

er
 u

p

M
ai

n 
fu

nc
ti

on

In
it

ia
l f

un
ct

io
n

L
ow

-p
ri

or
it

y 
IS

R

H
ig

h-
pr

io
ri

ty
 I

SR

4 
m

s
4 

m
s 10

 m
s

10
 m

s

4 
m

s
4 

m
s

4 
m

s
4 

m
s

•
•
•

FI
G

U
RE

 7
-2

 S
eq

ue
nc

in
g 

of
 th

e 
tw

o 
in

te
rr

up
t s

er
vi

ce
 r

ou
ti

ne
s



/*******************************
 * Interrupt vectors
 *******************************
 */
// For high priority interrupts:
#pragma code high_vector=0x08
void interrupt_at_high_vector(void)
{
  _asm GOTO HiPriISR _endasm
}
#pragma code
#pragma interrupt HiPriISR

// For low priority interrupts:
#pragma code low_vector=0x18
void interrupt_at_low_vector(void)
{
  _asm GOTO LoPriISR _endasm
}
#pragma code
#pragma interruptlow LoPriISR

(a) Handling of vectoring to HiPriISR and LoPriISR

/*******************************
 * HiPriISR
 *******************************
 */
void HiPriISR()
{

   <Tasks to be done>

}

/*******************************
 * LoPriISR
 *******************************
 */
void LoPriISR()
{

   <Tasks to be done>

}

(b) Interrupt service routines themselves

FIGURE 7-3 C18 compiler’s handling of interrupt vectoring
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watchdog timer for loop-time control saves $1.35 in parts cost (the cost of the crystal 
and its two capacitors) and draws only 2.2 µA. However, using the watchdog timer

• Provides limited alternatives for a loop time (i.e., 4-ms minimum or some power 
of two greater than this).

• Does so with the much larger error specification of ±14%.

• Does not support fast counting as a side benefit.

7.5 TIMER1 COUNTER

The circuit of Figure 7-4 illustrates the use of the Timer1 counter in conjunction 
with the Timer1 oscillator. Each time the 16-bit TMR1H:TMR1L counter over-
flows, the TMR1IF flag in the PIR1 register is set and, with the initialization shown, 
a low-priority interrupt occurs. The chip, which had been asleep, awakens and the 
low-priority interrupt service routine is executed. Two Timer1 housekeeping tasks 
must be carried out:

• TMR1H:TMR1L must be reinitialized to eliminate all but 328 counts until the 
next interrupt.

• The TMR1IF flag in the PIR1 register must be cleared.

Because the low-priority interrupt automatically clears the low-priority global inter-
rupt enable bit, GIEL, but not the GIEH bit, a high-priority interrupt can be accepted 
and acted on while the LPISR is being executed. When the CPU completes the exe-
cution of the LPISR, it automatically reenables low-priority interrupts by setting the 
GIEL bit and returns to the main loop and to the sleep instruction of Figure 7-1.

With its clock input from the 32,768-Hz Timer1 oscillator, Timer1 will not be 
incremented for 30.5 µs after the interrupt occurs. The CPU awakens immediately 
and begins executing machine instructions at a rate of 1 (or, at most, 2) µs per instruc-
tion. Unless a high-priority interrupt intervenes, Timer1 will be reinitialized before the 
counter is clocked again and any counts are missed. The loop time will be

  328 ______ 
32,768

   = 0.010009765 s = 10 ms + 0.1%

If an intervening high-priority interrupt does occur in the few microseconds after 
Timer1 rolls over and interrupts the LPISR, it is unlikely to cause even one count of 
Timer1 to be lost. Even one lost count produces a loop time of

0.010009765 + 0.000030518 = 0.010040283 = 10 ms + 0.4%

Given the normal circumstance of the HPISR infrequently overlapping with the LPISR 
as in Figure 7-1, the accuracy of this loop-time mechanism should be close to 0.1%.
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7.6 TIMER3 COUNTER

The Timer3 counter is identical in performance to Timer1. Its registers are illustrated 
in Figure 7-5. To have it generate a high-priority interrupt rather than Timer1’s low-
priority interrupt, it is only necessary to set its interrupt priority bit, TMR3IP, in the 
IPR2 register.

Timer3 (as well as Timer1) has a TMR3ON bit in its T3CON control register that 
can be used to stop the counter for its reinitialization. It (as well as Timer1) also has the 
option of synchronizing the edges of the slow Timer1 oscillator to the edges of the faster 
FOSC/4 CPU clock. The latter option is helpful if the counter is to be read or written to 
as it is being clocked without occasionally obtaining a garbled result. However, syn-
chronization causes the counter to stop being clocked when the chip is put to sleep, even 
though the Timer1 oscillator is still running. Switching synchronization on and off also 
does not provide satisfactory operation because it results in lost counts. Using the option 
of stopping the counter, reinitializing it, and then starting it again is done instead.

7.7 THE T3.c TEMPLATE PROGRAM

The T3.c template program is listed in Figure 7-6. It differs from T2.c in the following 
ways:

• The addition of LoopTime, HiPriISR and LoPriISR function prototypes. 

• The addition of the Interrupt vectors section.

• The creation of the LoPriISR and HiPriISR functions.

• The initialization of the Timer1 oscillator, Timer1, and Timer3 to run and to 
produce interrupts.

• The replacement of the Sleep macro in the main loop with the call of a Loop-
Time function.

• The addition of a LoopTime function that handles the wakeup from the Sleep 
instruction in one way for Timer1 interrupts and in another way for Timer3 
interrupts.

PROBLEMS

7-1  LoopTime function The testing of the LPISRFLAG in the LoopTime func-
tion located at the end of the T3.c program of Figure 7-6 is used to exit from the 
while loop. Upon entry to the LoopTime function, the CPU immediately goes 
to sleep. It will remain asleep until either Timer1 or Timer3 causes an inter-
rupt. As part of its execution, Timer1’s LPISR will set the LPISRFLAG bit.

 a)  Describe the program flow when the chip is asleep and a Timer3 interrupt 
occurs.

 b)  Describe the program flow when the chip is asleep and a Timer1 interrupt 
occurs.
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/******* T3.c ******************
 *
 * Use Fosc = 4 MHz for Fcpu = Fosc/4 = 1 MHz.
 * Timer1 and Timer3 are both clocked by the Timer1 crystal oscillator.
 * Same mainline code as for T2.c.
 * LoopTime function puts chip to sleep.  Timer1 awakens chip every 10 ms
 * within LoopTime function.  CPU adjusts Timer1 content for it to timeout
 * after another ten milliseconds.
 * Timer3 generates high-priority interrupts every 4 ms to step motor.
 * Toggle RC2 output every 10 milliseconds for measuring looptime with scope.
 * Blink LED on RD4 for 10 ms every four seconds.
 * Post PRESS PB message on LCD until first pushbutton push.
 * Thereafter, increment and display LCD's CHAR0:CHAR1 every second
 * and increment and display LCD's CHAR3:CHAR4 for each pushbutton press.
 *
 *           Current draw = 31 uA (with LED and LCD switched off but whether
 *                                 or not the stepper motor is connected.)
 *
 ******* Program hierarchy *****
 *
 * main
 *    Initial
 *       Display
 *    BlinkAlive
 *    Time
 *    Pushbutton
 *    UpdateLCD
 *       Display
 *    LoopTime
 *
 * LoPriISR
 *
 * HiPriISR
 *
 *******************************
 */

#include <p18f4321.h>           // Define PIC18LF4321 registers and bits
#include <string.h>             // Used by the LoadLCDSTRING macro

/*******************************
 * Configuration selections
 *******************************
 */
#pragma config OSC = INTIO1     // Use internal osc, RA6=Fosc/4, RA7=I/O
#pragma config PWRT = ON        // Enable power-up delay
#pragma config LVP = OFF        // Disable low-voltage programming
#pragma config WDT = OFF        // Disable watchdog timer initially
#pragma config WDTPS = 4        // 16 millisecond WDT timeout period, nominal
#pragma config MCLRE = ON       // Enable master clear pin
#pragma config PBADEN = DIG     // PORTB<4:0> = digital

FIGURE 7-6 T3.c template.



#pragma config CCP2MX = RB3     // Connect CCP2 internally to RB3 pin
#pragma config BOR = SOFT       // Brown-out reset controlled by software
#pragma config BORV = 3         // Brown-out voltage set for 2.0V, nominal
#pragma config LPT1OSC = OFF    // Deselect low-power Timer1 oscillator

/*******************************
 * Global variables
 *******************************
 */
char PBFLAG;                    // Flag, set after first press of pushbutton
char LCDFLAG;                   // Flag, set to send string to display
char NEWPB;                     // Flag, set if pushbutton is now pressed
char OLDPB;                     // Flag, set if pushbutton was pressed last loop
char LPISRFLAG;                 // Flag, set when LP interrupt has been handled
unsigned int ALIVECNT;          // Scale-of-400 counter for blinking "Alive" LED
unsigned int STEPCNT;           // 65536 - number of counts between steps
unsigned char TIMECNT;          // Scale-of-100 counter of loop times = 1 second
unsigned char UNITS;            // For display of seconds
unsigned char TENS;
unsigned char PBUNITS;          // For display of pushbutton count
unsigned char PBTENS;
unsigned char i;                // Index into strings
unsigned int DELAY;             // Sixteen-bit counter for obtaining a delay
char LCDSTRING[] = "PRESS PB "; // LCD display string

/*******************************
 * Function prototypes
 *******************************
 */
void Initial(void);
void BlinkAlive(void);
void Time(void);
void Pushbutton(void);
void UpdateLCD(void);
void Display(void);
void LoopTime(void);
void HiPriISR(void);
void LoPriISR(void);

/*******************************
 * Macros
 *******************************
 */
#define Delay(x) DELAY = x; while(--DELAY){ Nop(); Nop(); }
#define LoadLCDSTRING(lit)  strcpypgm2ram(LCDSTRING,(const far rom char*)lit)

/*******************************
 * Interrupt vectors
 *******************************
 */

FIGURE 7-6 (continued)
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// For high priority interrupts:
#pragma code high_vector=0x08
void interrupt_at_high_vector(void)
{
  _asm GOTO HiPriISR _endasm
}
#pragma code
#pragma interrupt HiPriISR

// For low priority interrupts:
#pragma code low_vector=0x18
void interrupt_at_low_vector(void)
{
  _asm GOTO LoPriISR _endasm
}
#pragma code
#pragma interruptlow LoPriISR

/////// Main program //////////////////////////////////////////////////////////

/*******************************
 * main
 *******************************
 */
void main()
{
   Initial();                   // Initialize everything
   while (1)
   {
      PORTCbits.RC2 ^= 1;       // Toggle pin, for measuring loop time
      BlinkAlive();             // Blink "Alive" LED
      Time();                   // Display seconds
      Pushbutton();             // Display pushbutton count
      UpdateLCD();              // Update LCD
      LoopTime();               // Use Timer1 to wakeup and loop again
   }
}

/*******************************
 * HiPriISR
 *
 * This high-priority interrupt service routine creates a positive pulse on
 * RD1 every 4 ms.   Four milliseconds = 4000 * 0.032768 = 131 Timer3 counts.
 * Add STEPCNT = 65536+1-131 = 65406 counts to Timer3.
 * The +1 in the above equation results because the 0-to-1 transition when
 * Timer3 is reenabled increments Timer3.
 * RB0 is toggled to measure step period.
 *******************************
 */
void HiPriISR()
{
   T3CONbits.TMR3ON = 0;        // Disable clock input to Timer3
   TMR3L += STEPCNT;            // Add into lower byte

FIGURE 7-6 (continued)



   TMR3H = (TMR3H + STATUSbits.C) + (STEPCNT >> 8);  // and into upper byte
   T3CONbits.TMR3ON = 1;        // Reenable Timer3
   PIR2bits.TMR3IF = 0;         // Clear interrupt flag
   PORTDbits.RD1 = 1;           // Create 1 us wide positive pulse
   PORTDbits.RD1 = 0;           // to step motor
   PORTBbits.RB0 ^= 1;          // Toggle pin to measure step period
}

/*******************************
 * LoPriISR
 *
 * This low-priority interrupt service routine updates Timer1 to interrupt
 * every 10 ms.  Ten ms = 10000 * 0.032768 = 328 to cut out all
 * but 328 counts.  Add 65536+1-328 = 65209 = 0xFEB9 to Timer1 = 0x0000 (or
 * at most a count or two higher if the HPISR intervenes).
 *******************************
 */
void LoPriISR()
{
   T1CONbits.TMR1ON = 0;        // Pause Timer1 counter
   TMR1L += 0xB9;               // Cut out all but 328 counts of Timer1
   T1CONbits.TMR1ON = 1;        // Resume Timer1 counter
   TMR1H = 0xFE;                // Upper byte of Timer1 will be 0xFE
   PIR1bits.TMR1IF = 0;         // Clear interrupt flag
   LPISRFLAG = 1;               // Set a flag for LoopTime
}

/*******************************
 * Initial
 *
 * This function performs all initializations of variables and registers.
 *******************************
 */
void Initial()
{
   OSCCON = 0b01100010;         // Use Fosc = 4 MHz (Fcpu = 1 MHz)
   SSPSTAT = 0b00000000;        // Set up SPI for output to LCD
   SSPCON1 = 0b00110000;
   ADCON1 = 0b00001011;         // RA0,RA1,RA2,RA3 pins analog; others digital
   TRISA = 0b00001111;          // Set I/O for PORTA
   TRISB = 0b01000100;          // Set I/O for PORTB
   TRISC = 0b10000000;          // Set I/O for PORTC
   TRISD = 0b10000000;          // Set I/O for PORTD
   TRISE = 0b00000010;          // Set I/O for PORTE
   PORTA = 0;                   // Set initial state for all outputs low
   PORTB = 0;
   PORTC = 0;
   PORTD = 0b00100000;          // except RD5 that drives LCD interrupt
   PORTE = 0;
   SSPBUF = ' ';                // Send a blank to initialize state of UART
   Delay(50000);                // Pause for half a second
   RCONbits.SBOREN = 0;         // Now disable brown-out reset
   PBFLAG = 0;                  // Clear flag until pushbutton is first pressed

FIGURE 7-6 (continued)
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   LCDFLAG = 0;                 // Flag to signal LCD update is initially off
   LPISRFLAG = 0;               // Flag to signal that LPISR has been executed
   TIMECNT = 0;                 // Reset TIMECNT
   TENS = '5';                  // Initialize to 59 so first display = 00
   UNITS = '9';
   PBTENS = '0';                // Initialize count of pushbutton presses
   PBUNITS = '1';
   ALIVECNT = 300;              // Blink immediately
   STEPCNT = 65406;             // Cut out all but 131 counts of Timer3
   OLDPB = 0;                   // Initialize to unpressed pushbutton state
   T1CON = 0b01001111;          // Timer1 - loop time via low-pri interrupts
   T3CON = 0b00000111;          // Timer3 - step motor via hi-pri interrupts
   TMR1H = 0xFE;                // Set Timer1 to be 10 ms away from
   TMR1L = 0xB9;                // next roll over (65536 + 1 - 328 = 0xFEB9)
   TMR3H = 0xFF;                // Set Timer3 to be 4 ms away from
   TMR3L = 0xAE;                // next roll over (65536 + 1 - 131 = 0xFF7E)
   PIE1bits.TMR1IE = 1;         // Enable local interrupt source
   PIE2bits.TMR3IE = 1;         // Enable local interrupt source
   IPR1bits.TMR1IP = 0;         // Use Timer1 for low-priority interrupts
   IPR2bits.TMR3IP = 1;         // Use Timer3 for hi-priority interrupts
   RCONbits.IPEN = 1;           // Enable high/low priority interrupt feature
   INTCONbits.GIEL = 1;         // Global low-priority interrupt enable
   INTCONbits.GIEH = 1;         // Enable both high and low interrupts
   Display();                   // Display initial "PRESS PB" message
   LoadLCDSTRING("00 01    ");  // Reinitialize LCDSTRING
}

/*******************************
 * BlinkAlive
 *
 * This function briefly blinks the LED every four seconds.
 * With a looptime of about 10 ms, count 400 looptimes.
 *******************************
 */
void BlinkAlive()
{
   PORTDbits.RD4 = 0;           // Turn off LED
   if (++ALIVECNT == 400)       // Increment counter and return if not 400
   {
      ALIVECNT = 0;             // Reset ALIVECNT
      PORTDbits.RD4 = 1;        // Turn on LED for one looptime
   }
}

/*******************************
 * Time
 *
 * After pushbutton is first pushed, display seconds.
 *******************************
 */

FIGURE 7-6 (continued)



void Time()
{
   if (PBFLAG)                  // After pushbutton is first pushed,
   {
      if (++TIMECNT == 100)     //  count TIMECNT to 1 second
      {
         TIMECNT = 0;           // Reset TIMECNT for next second
         if (++UNITS > '9')     // and increment time
         {
            UNITS = '0';
            if (++TENS > '5')
            {
               TENS = '0';
            }
         }
         LCDSTRING[0] = TENS;   // Update display string
         LCDSTRING[1] = UNITS;
         LCDFLAG = 1;           // Set flag to display
      }
   }
}

/*******************************
 * Pushbutton
 *
 * After pushbutton is first pressed, display pushbutton count.
 *******************************
 */
void Pushbutton()
{
   PORTEbits.RE0 = 1;           // Power up the pushbutton
   Nop();                       // Delay one microsecond before checking it
   NEWPB = !PORTDbits.RD7;      // Set flag if pushbutton is pressed
   PORTEbits.RE0 = 0;           // Power down the pushbutton
   if (!OLDPB && NEWPB)         // Look for last time = 0, now = 1
   {
      if (!PBFLAG)              // Take action for very first PB press
      {
         PBFLAG = 1;
         ALIVECNT = 399;        // Synchronize LED blinking to counting
         TIMECNT = 99;          // Update display immediately
      }
      else                      // Take action for subsequent PB presses
      {
         if (++PBUNITS > '9')   // and increment count of PB presses
         {
            PBUNITS = '0';
            if (++PBTENS > '9')
            {
               PBTENS = '0';
            }

FIGURE 7-6 (continued)
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         }
      }
      LCDSTRING[3] = PBTENS;    // Update display string for simulated LCD
      LCDSTRING[4] = PBUNITS;
      LCDFLAG = 1;              // Set flag to display
   }
   OLDPB = NEWPB;               // Save present pushbutton state
}

/*******************************
 * UpdateLCD
 *
 * This function updates the 8-character LCD if Time
 * or Pushbutton has set LCDFLAG.
 *******************************
 */
void UpdateLCD()
{
   if(PBFLAG && LCDFLAG)
   {
      Display();
      LCDFLAG = 0;
   }
}

/*******************************
 * Display
 *
 * This function sends LCDSTRING to the LCD.
 *******************************
 */
void Display()
{
   PORTDbits.RD5 = 0;           // Wake up LCD display
   for (i = 0; i < 9; i++)
   {
      PIR1bits.SSPIF = 0;       // Clear SPI flag
      SSPBUF = LCDSTRING[i];    // Send byte
      while (!PIR1bits.SSPIF);  // Wait for transmission to complete
   }
   PORTDbits.RD5 = 1;           // Return RB5 high, ready for next string
}

/*******************************
 * LoopTime
 *
 * This function puts the chip to sleep upon entry.
 * For a Timer3 interrupt, it executes the HPISR and then returns to sleep.
 * For a Timer1 interrupt, it executes the LPISR and then exits.
 *******************************
 */

FIGURE 7-6 (continued)



 c)  Describe the program flow when the chip is awakened by a Timer1 inter-
rupt but a Timer3 interrupt intervenes just before the LPISR sets the 
LPISRFLAG.

7-2  Timer1 interrupt interval When the low-priority interrupt service routine 
cuts out all but 328 counts in its count sequence, it rolls over approximately 
every 10 ms. As pointed out in Section 7.5, the exact time is 10,009.765 µs. 

 a)  How many parts per million is this off from the nominal 10 ms?

 b)  How does this compare with the 50-ppm accuracy of the crystal oscillator?

 c)  Repeat parts (a) and (b) if the number of counts of the Timer1 oscillator 
between Timer1 rollovers were reduced to 327.

7-3  Effect of stopping-starting Timer1 Consider that the output of the Timer1 
oscillator is a squarewave, and that the Timer1 counter is clocked on the rising 
edge of this squarewave. With an oscillator period of about 30.5 µs, the oscil-
lator output will be high for about 15 µs after the rising edge that produced 
the low-priority interrupt. During that time, the CPU wakes up and switches 
on its FCPU = 1 MHz clock. It takes several microseconds to set aside the pro-
gram counter and a few other CPU registers before clearing the TMR1ON bit 
to block clock edges from reaching the Timer1 counter. It takes 2 µs to update 
TMR1L before setting the TMR1ON bit again. As shown in Figure 7-4, both 
the TMR1ON bit and the Timer1 oscillator’s squarewave output are inputs to 
an AND gate whose output clocks the Timer1 counter.

 a)  Draw a timing diagram showing the inputs and output of the AND gate 
assuming the clearing and setting of TMR1ON takes place during the first 
15 µs after the Timer1 rollover that caused the interrupt.

 b)  Now repeat this, assuming a high-priority interrupt intervenes and delays 
the entry into the LPISR from the time of the Timer1 rollover by

30.5 × n + 15 µs, where n is 0 or 1 or 2.

 c)  If the LPISR adds 65,536 + 1 − 328 = 65,211 to whatever number is in the 
Timer1 counter, how many Timer1 oscillator periods will occur between 
the last Timer1 rollover and the next one? Answer this for both parts (a) 
and (b).

void LoopTime()
{
   while (!LPISRFLAG)           // Sleep upon entry and upon exit from HPISR
   {                            // Return only if LPISR has been executed,
       Sleep();                 //  which sets LPISRFLAG
       Nop();
   }
   LPISRFLAG = 0;               // Sleep upon next entry to LoopTime
}

FIGURE 7-6 (continued)
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7-4  Reinitializing Timer1 versus adding into it The LoPriISR of Figure 7-6, 
the T3.c program, adds 0xFEB9 to Timer1. A slightly simpler procedure 
would be to load 0xFEB9 into Timer1. In both cases, assume TMR3ON = 0 
when the low byte, TMR1L, of Timer1 is updated.

 a)  If this adding or loading takes place within 15 µs of when Timer1 rolled 
over, what will be the time until the next rollover in each case?

 b) Now assume that the adding or loading takes place

31.5 × 2 + 5 = 68 µs

  after the Timer1 rollover, delayed by an exceptionally long intervening high-
priority interrupt service routine. What will be the time until the next rollover 
in each case?

7-5  Effect of 8-bit add Instead of adding 0xFEB9 to TMR1H:TMR1L, the 
LoPriISR of the T3.c template program simply adds 0xB9 to TMR1L and 
loads 0xFE into TMR1H. The possible clocking of TMR1L is prevented by 
making TMRON = 0 during the addition on the chance that the CPU and the 
Timer1 oscillator might both try to change TMR1L at the same time. No such 
issue arises for TMR1H, which will contain 0x00 after the rollover and until 
0x100 − 0xB9 counts of the Timer1 oscillator’s clock periods have occurred.

 a) How long is this?

 b)  Using the simplified update scheme for TMR1H:TMR1L of the LoPriISR 
at any time short of this will produce what interval between the last inter-
rupt and the next one? Explain.

7-6  Worst-case overlapping of interrupts The machine code generated by the 
line 

TMR1L += 0xB9

  consists of a 1-µs-long instruction to load 0xB9 into a CPU register followed by 
a second 1-µs-long instruction to add the CPU register to TMR1L. An inter-
rupt cannot break into the middle of the execution of an instruction. Hence, 
were the HPISR to interrupt during the execution of the LPISR’s execution of 
the add instruction,

 a) What would be the effect on the addition?

 b)  What would be the effect on the counting of Timer1 oscillator clock edges 
if the HPISR that causes the CPU to digress from the LPISR at this pre-
cise point in its execution takes 20 µs to execute?

 c)  What is the percent chance of a randomly occurring high-priority inter-
rupt producing the effect of (b), given that the LPISR is executed every 
10 ms = 10,000 µs?
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8.1 OVERVIEW

A stepper motor is a low-cost, high-resolution positioning actuator. Though it would 
not seem to fit in an environment powered solely by the coin cell of the Qwik&Low 
board, a $5-motor can be powered by a $5-wall transformer as shown in Figure 8-1 
and driven with signals from the Qwik&Low board. The role of the driver chip is filled 
by a $3-part manufactured by Allegro Microsystems, a company with a long history 
of building sophisticated stepper-motor logic and current-switching technology into a 
chip. The resulting combination produces an actuator with a resolution of 200 steps 
per revolution that can be stepped at rates up to 800 steps/s or so.

8.2 STEPPER-MOTOR OPERATION

Taking apart a 200 steps per revolution stepper motor illuminates its operation. 
Figure 8-2a shows that its rotor consists of two sets of laminations separated by a thin 
doughnut-shaped permanent magnet. Each set of laminations has 50 teeth that are 
offset by one-half of a tooth from the other set. The net result is to produce a low-cost 
rotor consisting of 50 N-S pole pairs. The two sets of laminations and their perma-
nent magnet are mounted on a motor shaft with ball bearings on each end for support 
within the stepper-motor case.  

STEPPER MOTOR 
CONTROL

Chapter 

8
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The stator of the stepper motor is shown in Figure 8-2b. It consists of eight wind-
ings on eight poles, with every other winding connected together but wound in the 
opposite direction. Thus, if the windings are numbered in order, 1 – 2 – 3 – 4 – 5 – 6 
– 7 – 8, then a current into 1 – 3 – 5 – 7 that makes winding number 1 a north pole will 
make 3 a south pole, 5 a north pole, and 7 a south pole. This is illustrated in Figure 
8-3a. Backtracking to the photo of Figure 8-2b, note that each pole is broken into six 
teeth. These teeth have the same pitch as the 50 teeth of a set of rotor laminations. 
Furthermore, the 6 teeth on one pole are offset by 1.25 teeth from the 6 teeth on an 
adjacent pole. It is this 1.25-tooth offset that produces the offset shown in Figure 8-3a, 
where stator poles 1 and 5 and stator poles 3 and 7 are shown aligned with the rotor 
while stator poles 2 and 4 and stator poles 6 and 8 are shown offset by half a tooth.

A full step is illustrated by the change between the winding energization of Figure 
8-3a and that of Figure 8-3b. For this step, the winding current in 1 – 3 – 5 – 7 is turned 
off while the winding current in 2 – 4 – 6 – 8 is turned on. In response, the rotor rotates 
one full step. Figures 8-3b, c, d, and e illustrate the sequence of four steps that return 
to the winding excitation of Figure 8-3a. Fifty of these four-step sequences will result 
in the stepper motor turning one revolution. This accounts for the motor being desig-
nated a 200 steps per revolution motor.

A 200 steps per revolution motor can be made to step 400 steps per revolution by 
means of half-step sequencing of the winding currents. Let “A” represent a current 
into the 1 – 3 – 5 – 7 windings while “A” represents the reverse current into the same 
windings. Let “B” and “B” do the same for current into the 2 – 4 – 6 – 8 windings. 
Full stepping consists of sequencing the windings as follows:

… A   B   A   B   A   B   A   B   A … 

FIGURE 8-1 Stepper motor addition 
to the Qwik&Low board
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(a) Rotor

FIGURE 8-2 Stepper motor

(b) Stator
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(a) Step position 0

N

S

S

Stator poles 1 and 5
Stator poles 2 and 6
Stator poles 3 and 7
Stator poles 4 and 8

Rotor N S N S N S N

S S

N N

(b) Step position 1

N

S

S

Stator poles 1 and 5
Stator poles 2 and 6
Stator poles 3 and 7
Stator poles 4 and 8

Rotor N S N S N S N

S S

N N

(c) Step position 2

S

N

S

Stator poles 1 and 5
Stator poles 2 and 6
Stator poles 3 and 7
Stator poles 4 and 8

Rotor N S N S N S N

N N

S S

(d) Step position 3

(e) Step position 4 (same as step position 0)

S

S

Stator poles 1 and 5
Stator poles 2 and 6
Stator poles 3 and 7
Stator poles 4 and 8

Rotor N S N S N S N

S S

N N N

N

S

S

Stator poles 1 and 5
Stator poles 2 and 6
Stator poles 3 and 7
Stator poles 4 and 8

Rotor N S N S N S N

S S

N N

• • •• • •

• • •• • •

• • •• • •

• • •• • •

• • •• • •

• • •• • •

• • •• • •

• • •• • •

• • •• • •

• • •• • •

FIGURE 8-3 Stepper motor operation



where the winding excitation repeats every four steps. Half stepping is produced by 
the sequence:

… A   AB  B   AB  A   AB  B   AB    A …

Here, the winding excitation does not repeat before eight half steps have been taken. 
An alternate, popular mode of full stepping makes use of the sequence

… AB  AB   AB   AB    AB …

The sophisticated Allegro Microsystems A3967 stepper-motor driver chip used 
in Figure 8-1 has two logic inputs that allow a user to select any of four stepping 
modes: full stepping, half stepping, quarter stepping, and eighth stepping. It does so 
by controlling not only the direction of the A and B currents but also their magnitude. 
When half stepping is selected, a step position with only one winding energized uses 
100.0% of the current established by the current-sensing resistor while a step position 
with two windings energized uses 70.7% of that current for each winding. When full 
stepping is selected, each winding is energized with the 70.7% of the current. Because 
the magnetic flux produced is the same under all circumstances for all four stepping 
modes, the torque produced at each step is the same. The effect is to help reduce 
vibration and noise.

8.3 BIPOLAR VERSUS UNIPOLAR STEPPER MOTORS

Figure 8-4a illustrates in crude form the excitation of a winding with current in either 
direction. Figure 8-4b shows one split winding of a unipolar stepper motor. It is driven 
by applying the motor supply voltage to the center tap and using either of two transis-
tor switches to ground one side or the other. Six leads are brought out of the motor, 
three for each winding.

Contrast this with a modern bipolar stepper motor like that of Figures 8-1 and 8-2 
for which each winding must be driven with current in either direction. An H-bridge 
driver such as that of Figure 8-4c provides the solution for reversing the current for 
each winding. If the upper left and bottom right transistor switches are both turned 
on, the A current will flow. In like manner, if the upper right and lower left transis-
tor switches are both tuned on, the A current will flow. If all transistor switches are 
turned off, the current is cut off.

All high-performance stepper motors are built as bipolar stepper motors for several 
reasons:

• For the same number of turns of wire on each pole and the same current in 
each winding, a bipolar motor produces twice the magnetic flux of that pro-
duced by a unipolar motor, where only half of the winding is used at any one 
time. The larger flux means more torque is produced for each step, thus pro-
ducing a higher maximum stepping rate.

• Reversing the current in a winding is more aggressively addressed with an H-
bridge driver than with a unipolar driver. In both cases, the inductance of a 
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winding impedes the change. A unipolar driver typically allows the current 
in a turned-off winding to decay through a diode-resistor circuit. A tradeoff is 
made between speed of decay and maximum breakdown voltage of the opened 
transistor switch that confronts the back emf of the collapsing magnetic field 
in the winding. In contrast, a bipolar driver chip such as Allegro’s A3967 deals 
with current control and the breakdown voltage limits of its output transistors 
as an integrated whole. With all four leads of the bipolar stepper motor con-
nected only to the A3967, the controller chip has full control of the winding 
voltages and currents.

8.4 STEPPER-MOTOR DRIVER

The stepper-motor driver board (designed for use in conjunction with the Qwik&Low 
board and available as an option) is shown in Figure 8-5a and its circuit in Figure 
8-5b. The board includes (unpopulated) options for varying the drive parameters that 
are controlled by the $3 Allegro A3967 driver chip. The chip itself can handle a motor 
supply voltage as high as 30 V and a maximum current per winding of ±750 mA. 

(b) The unipolar stepper motor solution

(c) The bipolar stepper motor H-bridge driver solution

(a) The problem

VMOTOR

VMOTOR

A

A

VMOTOR

A

(split winding)

A

VMOTOR

Current-sensing resistor

A

A

or

FIGURE 8-4 Two solutions to reversing 
the current in a stepper motor winding



The $5 regulated 12-V DC wall transformer shown in Figure 8-1 will supply a maxi-
mum current of 250 mA per winding. This supply can be replaced by a supply of up to 
20 V @ 1.5 A (the 1.5-A limit is imposed by the A3967; the 20-V limit is imposed by 
the MC33269 voltage regulator). The provided supply is fine for the NEMA Size 17 
(≈ 1.7 sq. in.) stepper motor shown in Figure 8-1.

The circuit shown in Figure 8-5b derives a 3.3-V supply from the 12-V input. This 
supplies the 50-mA current draw of the logic circuitry of the A3967. A 3.3-V regulator 
ensures that the logic inputs from the Qwik&Low board will never exceed this supply 
voltage and yet will exceed the 0.7 × 3.3 V = 2.3 V minimum logic 1 voltage. The result-
ing current draw on the Qwik&Low coin cell is essentially zero when the two inputs, 
“Step” and “Dir”, are low. When the inputs are both high, the current draw by the two 
51.1-kΩ pull-down resistors is 120 µA. Consequently, the outputs from the Qwik&Low 
board that drive these two inputs should be kept low except for the few microseconds 
needed to control them for each step.

The 1.5-Ω resistors shown in Figure 8-5b are used to set the “100%” current level 
in each of the stepper motor’s two windings; that is, the current level set when one 
winding is being driven while the other winding is turned off, as occurs with every 
other half step described in Section 8.2. This current is specified by Allegro to be

 100% current =   
 V ref 

 ____ 8 Rs   (8-1)

Section 8.4 Stepper-Motor Driver 113

FIGURE 8-5 Stepper motor driver board

(a) Board
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C8 
10 µF

U23

1

4

VMOTOR 
= 12 V@0.5 A

VMOTOR

VCC

VCC = 3.3 V

GND

S S R B

Toggle
switch LED

CON1

2.1 mm
barrel

connector
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FIGURE 8-5 (continued) 



where Vref is the voltage connected to pin 1 of the chip, namely the regulated 3.3-V 
supply voltage. With the 1.5-Ω (1/4-W) resistor on the board, the 100% current has 
been set to a quarter of an ampere, in deference to the 0.5-A power supply.

The Allegro chip pulse-width-modulates the current to each motor winding, turn-
ing on the two diagonal transistor switches of the H-bridge driver when the current is 
low and opening the upper transistor switch when the current has risen to the 100% 
level. The RC circuits connected to RC1 and RC2 control the PWM frequency.

The driver board includes the provision for replacing the resistor in each RC cir-
cuit with a one-turn trimpot, should a user wish to experiment with the PWM fre-
quency. The board also includes the option of installing alternate current-setting 
resistors (alternate to the 1.5-Ω resistors) plus two jumpers to select one pair or the 
other. Another optional potentiometer can be connected to the PFD pin to control 
how fast the current in a winding decays for a half step from 100% current to 70.7% 
current or from 70.7% to 0% current. A third option is to add jumpers to the MS1 and 
MS2 inputs that allow the default full-stepping mode to be replaced by half stepping, 
quarter stepping, or one-eighth stepping. Or the MS1 and MS2 pins can be connected 
to pins on the 10-pin header connected to the Qwik&Low board to allow this choice 
to be made by the MCU. These options provide refinements to what is, by default, an 
excellent and clean application of Allegro’s superb driver chip. For more information 
on the stepper-motor driver board, refer to Appendix A4. 

8.5 STEPPING

Stepper motors are widely used as open-loop positioning actuators because of being 
able to reach a given position by counting steps from the present position. Further-
more, the error in step position never accumulates; that is, 563 steps CW followed 
by 563 steps CCW will return the motor output to the same position from which it 
started, as long as no steps are lost by stepping too fast.

With the 10-pin ribbon cable connected between the Qwik&Low board and the 
stepper-motor controller board as shown in Figure 8-6a, the two MCU pins, RD0 and 
RD1, control stepping, as indicated in Figure 8-6b. Thus to take a CW step, the fol-
lowing sequence is executed:

PORTDbits.RD0 = 1;  //Clockwise

Nop();    //Pause 1µs
PORTDbits.RD1 = 1;  //Take step

PORTDbits.RD0 = 0;  //Zero the pulldown resistor currents

PORTDbits.RD1 = 0;

A CCW step is simpler:

PORTDbits.RD1 = 1;  //Take step

PORTDbits.RD1 = 0;  //Zero the pulldown resistor current

Section 8.5 Stepping 115
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PROBLEMS

8-1  Stepper-motor operation Consider Figure 8-3a and also the photograph of 
Figure 8-2b.

 a)  On the photograph, label the poles that are north poles and those that are 
south poles.

 b) Now do the same with a different color for the excitation of Figure 8-3b.

  This illustrates how the stator north and south poles move. Given the 1.25-
tooth offset between adjacent stator poles, it explains the movement of the 
rotor by one-quarter of the distance from one of its north poles to an adjacent 
north pole.

8-2  Quarter stepping To get to the data sheet for Allegro Microsystem’s A3967 
stepper-motor driver chip, Google “A3967”. Within the data sheet, find its 
specification for the two winding currents at each quarter-step position.

(a) Connections

Qwik&Low

MCU

STEP
DIR

Ribbon
Cable

Stepper Driver

R
B

W
Y

B
R

S
S

Stepper motor
connections

Power switch
connections
LED connections

Power supply
connector

RD1
RD0

(b) Control by MCU

PORTDbits.RD1 = 0 1: Take a step

PORTDbits.RD0 = 
1: CW
0: CCW

FIGURE 8-6 Stepper motor connections and control



 a) What is maximum current in a winding relative to the “100% value” of 
Equation 8-1?

 b) If used with the 12 V @ 0.5 A regulated supply of Figure 8-5b, what 
current-sensing resistors should be used to limit the supply current to the 
0.5 A of the power supply?

8-3  Current-sensing resistor The stepper-motor driver board of Figure 8-5 
uses, by default, the full-stepping mode described at the close of Section 8.2. 
As pointed out there, each stepper winding is energized with a current that is 
70.7% of the “100%” current set by the current-sensing resistor via Equation 
8-1 of Section 8.4. Consequently, another resistor might be used to control the 
current that drives the stepper motor harder.

 a) Given the 12 V @ 0.5 A regulated supply that must supply current for two 
windings, what resistance value is optimum?

 b) The driver board has provision for adding a second pair of current-sensing 
resistors plus two 3-pin headers and two jumpers so that the switch from 
one pair to the other involves moving two jumpers. The board uses Type 
1210, 1/4-W surface-mount parts for these resistors. The sizes supplied by 
Digi-Key are:  

…, 1.0 Ω, 1.2 Ω, 1.5 Ω, 1.8 Ω, 2.2 Ω, …

   Which resistors are a good choice for the second pair, and what is the 
resulting 70.7% current that will excite each winding?

8-4  Alternate power supply Along with the 12-V DC @ 0.5 A regulated supply 
discussed here (Digi-Key T983-P5P), Digi-Key also stocks T986-P5P, an 18 V 
@ 0.33 A regulated supply with the same 2.1-mm barrel connector that can be 
used with the stepper-motor driver board. Look in the on-line catalog of sur-
plus parts of Herbach and Radman (www.herbach.com) or of Marlin P. Jones 
& Assoc. (www.mpja.com) for any bipolar (or “four wire”) stepper motors 
that specify a voltage and either current per phase or resistance per phase that 
can be used with the stepper-motor driver board with the 18-V supply.

 a) What is the part number and what are its specifications?

 b) Using Equation 8-1 in the text, what should be the resistance of the 
current-sensing resistor to produce a winding current of 70.7% of the value 
set by Equation 8-1?

8-5 Clockwise stepping The code of T3.c steps the stepper-motor CCW.

 a) Modify it to step CW.

 b) Check the current draw on the coin cell with and without the stepper-
motor ribbon cable attached to the Qwik&Low board.

Section 8.5 Stepping 117
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8-6  Variable stepping rate The code of T3.c uses an int variable, STEPCNT, 
to control the stepping rate. To step every 4 ms (i.e., at a rate of 250 steps/s), 
Timer3 must roll over every

4,000 × 0.032768 = 131 Timer3 counts

  This leads to

STEPCNT = 65,536 + 1 − 131 = 65,406

  Modify the Pushbutton function of T3.c so that each press of the pushbutton, 
in addition to incrementing the displayed pushbutton count, also switches the 
stepping rate between 250 steps/s and 500 steps/s.
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9.1 OVERVIEW

This chapter discusses the features and use of the analog-to-digital converter (ADC) 
module in the PIC18LF4321. This module greatly extends the reach of the MCU 
into applications that employ any of the wealth of transducers (of temperature, pres-
sure, acceleration, weight, etc.) that produce a voltage output. The ADC is a versatile 
module in the MCU with the following features:

• A resolution of 1 part in 1,024.

• The inclusion of a multiplexer that allows up to 13 pins to be used as analog 
inputs.

• A choice of reference voltages.

• A conversion time of 24 µs.

9.2 QWIK&LOW ANALOG VERSUS DIGITAL PINS

The PIC18LF4321’s ADC has 13 possible analog inputs, any one of which can be mul-
tiplexed into its 10-bit converter, as shown in Figure 9-1. The figure illustrates that each 
analog input is shared with a digital input or output on a port pin. For example, the 

ANALOG-TO-DIGITAL 
CONVERTER

Chapter

9
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Qwik&Low board’s potentiometer is connected to the ADC’s AN0 input. Because this 
input shares a pin with the RA0 bit of PORTA, a choice between these two uses of the 
pin must be made. Figure 9-2 shows how the choice is made. The 4-bit number loaded 
into the port configuration control bits of ADCON1 can select any number of the 13 
possible analog inputs to actually serve in this capacity, with the remaining inputs serv-
ing as digital I/O pins. Unlike some other PIC microcontrollers, the specification of 

FIGURE 9-1 Analog-to-digital converter pin connections both within the PIC18LF4321 
and to Qwik&Low resources
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the number of analog inputs selected also specifies which pins will be the analog pins. 
Furthermore, the choice is critical in the following sense:

• Any pin that is selected to be an analog pin has its digital I/O circuitry disabled.

• Any pin that is selected to be a digital pin can then be set up to be a digital 
(high-impedance) input and also used as an analog input. However, for an ana-
log input in the middle voltage range (well above 0 V and well below 3 V), the 
digital circuitry will exhibit excessive leakage current.

The two devices designed into the Qwik&Low board having analog inputs are:

• The potentiometer.

• A temperature sensor.

Also, the output pin of the MCU that powers the temperature sensor is used as the 
VREF+/AN3/RA3 pin, taking advantage of a sensor whose voltage output is pro-
portional to its supply voltage as well as its temperature. These have been assigned to 

ADCON1
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FIGURE 9-2 Selection of I/O pins to be analog inputs
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inputs AN0, AN1, and AN3 respectively so that a choice of 1011 for the Port Con-
figuration control bits of Figure 9-2 will designate all but one (AN2) of the remaining 
pins to be available as possible digital I/O pins. Of these digital pins, any that are 
unused will be set up as outputs. Whether initialized high or low, the output voltage 
will not subject the also enabled digital input circuitry to a leakage-current-inducing 
voltage in the middle range.

Consider again Figure 9-1. One more analog device can easily be added to the 
proto area of the Qwik&Low board by connecting the analog device’s output to the 
MCU’s AN2 input. Another analog input can be connected to the AN4/RA5 input 
pin if the port configuration control bits of Figure 9-2 are changed to 1010.

9.3 ADC RESULT ALTERNATIVES

Depending on the state of the ADFM (ADC format) bit of Figure 9-3a at the time of 
an ADC conversion, the 10-bit result will be returned either right justified or left justi-
fied in the 16-bit register, ADRES, the 2 bytes of which can be identified as ADRESH 

(a) ADC format control bit

ADRESL

for ADCON2bits.ADFM = 1

for ADCON2bits.ADFM = 0

(with ADFM = 1)

(with ADFM = 0)

(with ADFM = 1)

ADRESL

ADRESH
ADRES

or

ADRES

ADRES

ADRESH

ADRESL

(d) Eight-bit result in ADRESH ranging from 0–255
as input ranges from 0 V to VDD

(c) Sixteen-bit result in ADRES ranging from 0–1023
as input ranges from 0 V to VDD

(e) Eight-bit result in ADRESL ranging from 0–255
for inputs less than VDD/4 = 750 mV

ADRESH

(b) Two alternative sixteen-bit result formats

b b b b b b b b

b b b b b b b b

0 0 0 0 0 0 b b b b b b b b b b

b b b b b b b b b b 0 0 0 0 0 0

0 0 0 0 0 0 b b b b b b b b b b

ADCON2

ADFM
1 : Right justify result
0 : Left justify result

x x x x x x x

FIGURE 9-3 ADC result alternatives



and ADRESL, as shown in Figure 9-3b. To use the full 0–1,023 range of the ADC 
output, ADFM should be set prior to the conversion. On its completion, ADRES can 
be read as the unsigned int variable of Figure 9-3c.

Obtaining the output of the single-turn potentiometer on the Qwik&Low board as 
a number having 256 values can be achieved by first clearing ADFM to zero, to left 
justify the result. When the conversion is complete, the upper 8 bits of the conversion 
will reside in ADRESH, as illustrated in Figure 9-3d. By reading only this unsigned char 
variable, the least significant 2 bits of the 10-bit conversion are ignored, throwing away 
the extra resolution provided by those 2 bits. What remains in ADRESH is a value of 
0 if the potentiometer is turned fully CCW and a value of 255 if the potentiometer is 
turned fully CW.

Another option arises for an analog device whose output has a range reaching up 
to less than 750 mV (i.e., less than VDD/4). The choice of Figure 9-3e provides the 
same resolution as using the 16-bit ADRES output of Figure 9-3b but with the compu-
tational advantage, for subsequent scaling of the output, of an 8-bit output.

9.4 REFERENCE VOLTAGE CHOICE

The ADCON1 register of Figure 9-2 contains 2 control bits that allow an analog input 
to be scaled by a reference voltage input. Normally both VCFG0 and VCFG1 will be 
initialized to zero. Then the analog input will be compared against a voltage range 
extending between GND and VDD. The PIC18LF4321 specification indicates that the 
chip will produce a scaled 10-bit output even with (VREF+ − VREF-) down to 1.8 V. 

The temperature sensor on the Qwik&Low board generates an output voltage pro-
portional to temperature and to the supply voltage. This means that whether the sup-
ply voltage is 3 V early in the coin cell’s life or 2.8 V some time later, the temperature 
reading will be the same. However, as shown in Figure 3-2, the sensor is powered 
from RD6. With an output impedance of the RD6 pin of perhaps 200 Ω driving the 
400-µA current drawn by the temperature sensor, the temperature sensor may see a 
supply voltage that is 80 mV less than VDD. This is equivalent to 26 counts of the ADC 
(for which each count represents 3,000/1,024 ≈ 3 mV ). One way to handle this offset 
is as an added, but somewhat uncertain, term in the temperature calculation. Another 
way is to load

ADCON1 = 0b00011011

This value will make AN3 an analog input and will use the input on AN3 from the 
RD6 output as the VREF+ reference voltage pin for the ADC for this measurement.

9.5 ADC TIMING

The ADCON2 register is described in Figure 9-4. In addition to controlling the left 
justify/right justify ADFM feature, this register controls the timing aspects of the con-
verter. Figure 9-4a defines terms used in the specifications of Figure 9-4b. The clock 
period, TAD, of the ADC should be no shorter than 1.4 µs. Given FOSC = 4 MHz, 
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Figure 9-4c indicates that the least significant 3 bits of ADCON2 should be initialized 
to 001, making TAD = 2 µs. A value of TAD of 1 µs or less is too fast for accurate 
conversion while a TAD of 4 µs or greater will produce conversions that take 48 µs or 
96 µs. With TAD = 2 µs, the 10-bit conversion will take 12 × TAD = 24 µs.

The time between selecting which input pin is to be multiplexed into the ADC and 
when the conversion is begun is automatically controlled by the TACQ parameter. The 
001 setting of Figure 9-4c selects an acquisition time of 4 µs, sufficient for the two ana-
log devices on the Qwik&Low board. Among the factors entering into the acquisition 
time determination, the two that a user has some control over are the source imped-
ance of each analog source and the needed resolution of the result.

(a) ADC definitions

2.5 µs > TAD > 1.4 µs

TACQ > 3.7 µs for RSOURCE ≤ 5 kΩ 
           > 6.9 µs for RSOURCE ≤ 20 kΩ  

VDD + 3.0 V > VREF+ > 1.8 V

Conversion time = 12 TAD

(b) PIC18LF4321 specifications

(c) Initialization options for ADCON2

TAD = 2 µs for FOSC = 1 MHz
TAD = 2 µs for FOSC = 2 MHz 
TAD = 2 µs for FOSC = 4 MHz 
TAD = 2 µs for FOSC = 8 MHz 
TAD ≈ 2.5 µs using the ADC’s internal RC oscillator

ADCON2

Unused

0 0 0 1 0 0 1

0
1
0
1
1

0
0
0
0
1

0
0
1
1
1

TACQ = 2 × TAD = 4 µs

ADFM See Figure 9.3
1: Right justify result 
0: Left justify result

TAD is the ADC clock period.

TACQ is the ADC acquisition time required between when an ADC
 channel has been selected and when a conversion can be initiated.
RSOURCE is the source (i.e., Thevenin) resistance of the device
 whose voltage output is being measured.

VREF+ is the optional external high reference voltage (if  used)

FIGURE 9-4 ADCON2 initialization



Example 9-1 Determine the maximum source resistance of the 20-kΩ 
potentiometer.

Solution

The source resistance is really the Thevenin resistance of a source. When the 
potentiometer is turned fully CCW, the source resistance is 0 Ω, the short cir-
cuit to ground. When the potentiometer is turned fully CW, the source resis-
tance is again 0 Ω, the short circuit to VDD (which is the same as a short circuit 
to ground, assuming the coin cell has essentially zero internal resistance). 
When the potentiometer wiper is at its midpoint, the source resistance is at its 
maximum of 10 kΩ to VDD in parallel with the 10 kΩ to ground. That is, the 
maximum source resistance is 5 kΩ.

The source resistance affects the maximum acquisition time. A small internal sam-
pling capacitor in the ADC charges up to match the (Thevenin) voltage of the analog 
source. The RC time constant of this charging depends on internal resistances in the 
ADC in series with the source resistance.

9.6 ADC INPUT SELECTION AND CONVERSION

The ADCON0 register of Figure 9-5 contains bits to select the analog input. It also 
contains an ADON bit that selects whether the ADC module in the MCU is powered 
up or not. Finally, it contains a GO_DONE bit that is set to initiate a conversion. 
Then the GO_DONE bit becomes a flag that can be tested to determine whether the 
conversion has been completed.

ADCON0

Unused

0
0
0
0
0

0
0
0
0
1

0
0
1
1
0

0
1
0
1
0

Select  AN0 
Select  AN1 
Select  AN2 
Select  AN3 
Select  AN4

0 0
ADON

1: ADC module is powered up 
0: ADC module is powered down

GO_DONE 
Set bit to initiate conversion 
Conversion is complete when bit returns to zero

•
•
•

FIGURE 9-5 ADCON0 use
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Because the acquisition time setting in the ADCON2 register inserts a delay after 
the GO_DONE bit has been set and because the ADC module powers up essentially 
instantaneously relative to the 8 µs acquisition time selected, ADCON0 can be loaded 
with the one value that will: 

• Power up the ADC.

• Select an analog input.

• Initiate the conversion.

Example 9-2 Show the code to convert the output of the potentiometer into 
an 8-bit value in ADRESH.

Solution

Figure 9-6 shows the code lines to use VDD as the reference voltage, to use 
the timing associated with FOSC = 4 MHz, and to form ADRESH. Before the 
conversion is initiated, the output on RA7 that powers the potentiometer must 
be set, as shown back in Figure 3-2. Then the ADFM bit is cleared, to have 
the upper 8 bits of the 10-bit result put into ADRESH. The conversion of the 
potentiometer input to AN0 is then initiated. The result will be found in

TACQ + 12 TAD = 4 + (12 × 2) = 28 µs

with the automatic clearing of the GO_DONE bit signaling that ADRESH is 
ready with the result. The remaining lines power down the potentiometer and 
the ADC module as soon as possible before the result in ADRESH is read and 
used.

9.7 ADC CONVERSION DURING SLEEP

When the ADC is on but not converting, it typically draws 1.0 µA. Such a low current 
draw suggests another way that conversions can be carried out. As indicated in Figure 
9-4c, the ADCON2 register’s bits for setting TAD offer the option of using the ADC’s 
own RC oscillator as its clock. Using this RC oscillator allows a conversion to be car-
ried out while the chip is asleep. If the setting of the GO_DONE bit is immediately 
followed by the Sleep instruction, the current draw will be reduced.

ADCON1 = 0x0b;            // Initialize ADC for Q&L's four analog inputs
ADCON2 = 0x09;            // ADC clock with Fosc = 4 MHz; left justify result
PORTAbits.RA7 = 1;        // Power up potentiometer (see Figure 3-2)
ADCON0 = 0x03;            // Power up ADC; select pot input; start conversion
while (ADCON0bits.GO_DONE);  // Wait for completion of conversion
PORTAbits.RA7 = 0;        // Power down potentiometer
ADCON0bits.ADON = 0;      // Power down ADC
<read result from ADRESH>

FIGURE 9-6 Use of ADC to read potentiometer



Example 9-3 If the potentiometer output is read every tenth of a second, 
what is the effect on average current draw of having the conversion take place 
during sleep versus while the MCU is awake?

Solution

The CPU will spend less time awake in the main loop if the conversion is put 
off until the chip sleeps. But between the setting of the GO_DONE bit and 
its automatic clearing at the completion of the conversion, the awake CPU 
runs for the 28 µs pointed out at the end of the last section. Referring back 
to Figure 2-4, a current draw of 1.036 mA was measured when the CPU 
was running with FOSC = 4 MHz but otherwise doing nothing to draw extra 
current. If the CPU is awake for an extra 28 µs every tenth of a second, this 
represents an extra average current draw by the CPU of

  28 _______ 100,000    × 1,036 µA = 0.29 µA

regardless of how much current the ADC module draws, since that is essen-
tially the same whether carried out while asleep or awake. On the other hand, 
if the conversion is carried out while asleep, its quiescent current of 1.0 µA 
while not converting will last for the duration of sleep within one pass through 
the main loop.  This will contribute some fraction of 

  10ms ______ 
100ms

   × 1.0 µA = 0.10 µA

If the CPU spends 2 ms out of every 10 ms loop time doing useful work before 
going to sleep, the net benefit of doing 10 conversions/s while asleep is about 
0.29 – 0.08 = 0.21 µA of average current.

9.8 AD22103 TEMPERATURE SENSOR

The Analog Devices AD22103 temperature sensor is the small three-terminal device 
housed in the TO-92 transistor-like package located in the upper left corner of the 
Qwik&Low board. It is connected to the MCU as shown in Figure 3-2. As mentioned 
in Section 9.4, this is a ratiometric temperature sensor whose output voltage is not only 
proportional to temperature but also to its supply voltage.

Because the quiescent current is specified to be in the 350 µA–600 µA range over 
a supply voltage range of 2.7 V–3.6 V, the sensor needs to have its power switched off 
when it is not in use. Thus, the circuit of Figure 3-2 shows the sensor being powered 
from RD6. It also shows this same supply voltage serving as the reference voltage 
for the conversion. By taking advantage of the ratiometric feature of the sensor, the 
converted output value is insensitive to whether the coin cell is new, with an output 
voltage of 3.0 V, or run down, with an output voltage of (say) 2.7 V. Furthermore, by 
using this same supply voltage from RD6 (rather than VDD) as the reference voltage 
for the conversion, the measurement is made insensitive to the output pin’s voltage 
drop due to its output impedance and the ≈400 µA current drawn by the sensor.
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Although Analog Devices does not specify a settling time for this temperature 
sensor, clearly this becomes an important consideration in the following sequence:

• Set RD6 = 1 to power up the sensor.

• Pause to allow the sensor to settle.

• Initiate the measurement.

• Wait for the completion of the conversion.

• Clear RD6 = 0 to power down the sensor.

The settling time of the sensor has two measurable components:

• The settling out of its underdamped step response (≈10 µs).

• Any longer asymptotic tail of this step response.

By waiting perhaps 20 µs after raising RD6 and then making repeated full 10-bit ADC 
measurements spaced apart by the 24-µs conversion time of the ADC, the fast settling 
of the 10-bit readings can be verified. With essentially no change between the first and 
the second reading, evidently a 20-µs pause is sufficient.

The transfer function of the AD22103 is illustrated in graphical form in Fig ure 9-7a 
when the sensor’s supply voltage, VS, is 3.3 V. More generally, for a sensor supply volt-
age in the specified range of +2.7 V to +3.6 V, the output voltage, VO, is given by the 
equation of Figure 9-7b. Analog Devices provides a somewhat ambiguous accuracy 
specification for the AD22103. The typical error of a room temperature measurement 
should be within half a degree Centigrade. Over the full range for the part, namely 
0°C–100°C, the typical error should be within ±0.75°C.

Often it is useful to obtain temperature measurements with a resolution that is finer 
than the absolute accuracy that is warranted for a sensor. For temperature changes, 
the resolution produces temperature-difference measurements that are essentially cor-
rect. For example, if the sensor output voltage presently translates to a temperature of 
71.4°F, whereas 10 min ago it translated to a temperature of 70.6°F, then the increase 
over the last 10 min is actually quite close to

71.4°F − 70.6°F = 0.8°F

even though the absolute value of 71.4°F is probably less accurate.
Obtaining a temperature reading from an ADC measurement is expedited by 

translating the expression of Figure 9-7b into an expression of temperature in terms 
not of voltage but of ADRES, the 16-bit register that holds the 10-bit ADC output. If 
the output voltage equals 3,050 mV at 100°C when the supply voltage is 3,300 mV, 
then the ADC converter would translate this to

  
3,050

 _____ 3,300   × 1,024 = 946.424 counts

where, for the sake of the calculations that follow, the three digits to the right of the deci-
mal point are warranted as an intermediate result, even though the ADC itself would 
show this result as 946. With the same 3,300 mV supply voltage, 0°C would translate to

  250 _____ 3,300   × 1,024 = 77.576 counts



Because of the ratiometric feature of the sensor, these are the same readings that would 
be obtained with the measurements using the Qwik&Low circuit and its lower VDD 
and its even slightly lower RD6 supply voltage to both the temperature sensor and the 
VREF+ pin used by the ADC.

The equation of Figure 9-7c expresses the resulting value of ADRES as a function 
of the Centigrade temperature, again carrying extra (intermediate) digits of resolution. 

(a) Transfer function for VS (the supply voltage) = 3.3 V = 3300 mV

(b) General transfer finction

(c) Translation of (b) to counts of ADRES

(d) Reexpressing centigrade temperature as a function of ADRES

(e) Expressing Fahrenheit temperature as a function of ADRES

VO =   ×  250 mV + (28 mV/°C) × Centigrade  millivolts
VS (volts) 
3.3 (volts) 

Centigrade =   − 8.9285 °CADRES
8.68848

Fahrenheit =    × Centigrade  + 32 =      + 15.92879
5

ADRES
4.82693

3050 mV

2000 mV

1000 mV

250 mV

28 mV/°C

100°C
Centigrade

VO

= (8.68848 × Centigrade) + 77.575

ADRES =   × Centigrade + 77.575946.424 − 77.576
100 − 0

FIGURE 9-7 AD22103 transfer function
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This is inverted in Figure 9-7d to express the Centigrade temperature as a function of 
the value of ADRES. The conversion to Fahrenheit is shown in Figure 9-7e.

Carrying out the calculation of Figure 9-7d using integer arithmetic (for speed) 
requires that numerator and denominator be multiplied by the same integer constant 
before the division takes place. Recall from Figure 9-3b that clearing the ADFM bit 
of the ADCON2 register before the ADC conversion takes place will produce a left-
justified 10-bit result. In effect, this multiplies ADRES by 64. If the denominator of 
the quotient in Figure 9-7d is also multiplied by 64, the resulting expression for the 
Centigrade temperature becomes that shown in Figure 9-8a. If the terms in this equa-
tion are multiplied by 10, the integer result will be expressed in tenths of a degree 
Centigrade, as shown in Figure 9-8b. Note that a resulting integer of 253 represents a 
temperature of 25.3°C. If the Centigrade to Fahrenheit conversion of 

F =   9 __ 5   C + 32

is applied to these equations, the equations of Figure 9-8c and d result.
A calculation can be massaged to shorten its execution time. Note that multiply 

operations are significantly faster than divide operations. Also, a multiply or a divide 
of a multiple-byte number by 28 = 256 = 0x100 amounts to moving the bytes left or 
right by 1 byte. For example, 

28 × 0x00001234 = 0x00123400

Applying these ideas to the equation of Figure 9-8d to obtain the temperature in 
tenths of a degree Fahrenheit, the equation is reexpressed in Figure 9-9a. Instead of 

 Centigrade = (ADRES / 556.063) − 8.9285

(a) For Centigrade measurement with 1˚C resolution

 TenthC = (ADRES  / 55.6063) − 89.285

(b) For Centigrade measurement with 0.1˚C resolution

 Fahrenheit = (ADRES / 308.924) + 15.9287

(c)  For Fahrenheit measurement with 1˚F resolution

 TenthF = (ADRES / 30.8924) + 159.287

(d) For Fahrenheit measurement with 0.1˚F resolution

FIGURE 9-8 Temperature equations after converting voltage with ADCON2bits.ADFM = 0  
(to left justify the output and, in effect, multiply ADRES by 64).



dividing by the denominator of 30.8924, both the numerator and denominator can be 
first multiplied by

   2 16  _______ 30.8924   = 2,121.43

so that the denominator becomes 216 and also the division by 216 becomes two 1-byte 
shifts of the numerator. The resulting equation is shown in Figure 9-9c. To avoid 
overflow when the int register ADRES is multiplied by the int constant 2,121, ADRES 
can first be copied into the 4-byte-long variable, VALUE. The computation of Figure 
9-9c is shown broken down into six steps for the benefit of optimization by the C18 
compiler. The calculation in this form takes just 111 CPU clock periods.

 TenthF = (ADRES / 30.8924) + 159.287

(a) For Fahrenheit measurement with 0.1˚F resolution
 
 2^16 / 30.8924 = 65536 / 30.8924 = 2121.43

(b) Forming a multiplier for numerator and denominator that will make the denominator 
equal to 2^16

 TenthF = ((2121 * ADRES ) >> 16 ) + 159

(c) Resulting equation

 unsigned long VALUE;  // 32-bit repesentation
 unsigned int BIGNUM;         // 16-bit representation

(d) Definition of global variables

 VALUE = ADRES;   // 32 bits to avoid overflow
 VALUE *= 2121;
 VALUE >>= 8;
 VALUE >>= 8;
 VALUE += 159;
 BIGNUM = VALUE;   // 16-bit representation

(e) Calculation, broken down into separate steps that the C18 compiler handles better than a 
single-line calculation. Execution takes 111 µs.

FIGURE 9-9 Speeding up the calculation of temperature with 0.1˚F resolution
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PROBLEMS

9-1  Running average Write a Filter function that maintains an array of eight int 
values:  

RESULT[0], RESULT[1], . . . , RESULT[7]

 a)  In the Initial function, read a 10-bit value using the potentiometer output 
(as an easily available vehicle for averaging). Load this value into all eight 
RESULT[i  ] variables and form SUM equal to one of these, shifted left 
three places to multiply it by eight.

 b)  Every tenth of a second, subtract RESULT[7] from SUM, copy each 
RESULT value to the next location using a for loop, collect a new sample 
from the potentiometer, add it to SUM, and copy the sample value into 
RESULT[0]. Finally, shift SUM right three places into the int variable, 
BIGNUM (to divide it by eight, the number of samples in the running 
average) and then use the ASCII4 function from Figure 6-8b to break out 
the four digits and display them on the LCD.

9-2  ADC timing 

 a)  Modify the Temperature function in the TenthsFahr.c file on the www.
qwikandlow.com web site so that after collecting a sample, but before 
powering down the sensor, immediately collect a second sample. Display 
these two samples side by side on the LCD using the format exemplified 
by

73.2 73.4

  Update the values every half second.

 b)  Does the extra delay produce a difference between the two values? If so, 
collect three samples (for timing), throw away the first and display the 
second and third. Does the extra delay help?

 c)  Set RB0 before the initial setting of RD6 that powers up the tempera-
ture sensor. Clear it before the first loading of ADCON0 that produces a 
settled value of temperature. What is the resulting sensor setup time?

9-3 TenthsCent.c file  

 a)  Modify the TenthsFahr.c file to use the equation of Figure 9-8b and a 
scheme analogous to that of Figure 9-9 to calculate the temperature with 
0.1°C resolution.

 b)  Set and clear RB0 around the calculation of Part (a), analogous to 
Figure 9-9e, and measure its execution time.

 c)  Compare the temperature you get with that of a mercury (or liquid) 
thermometer.
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10.1 OVERVIEW

The rotary pulse generator (RPG), also known as a rotary encoder, is a widely used 
device for parameter entry in an application. If used as an audio system volume con-
trol, the sound level provides the feedback of its setting. If used to tune a radio, a dis-
play provides frequency feedback. Because of its versatility, ruggedness, and ease of 
use with a microcontroller, the RPG is used in many applications involving the entry 
of a multiple-valued parameter, particularly if the parameter must be incremented or 
decremented to be useful. For example, virtually every function generator uses an 
RPG rather than a keypad for controlling the frequency output.

In this chapter, the use of the detented RPG found on the Qwik&Low board will 
be considered. This low-cost RPG shares the same features found on the more robust 
RPGs of commercial products and instrument designs.

10.2 RPG RESOLUTION

Two RPGs are shown in Figure 10-1. The little Bourns RPG on the left will be used to 
explain the operation of an RPG when polled from the main loop. It uses three inter-
nal electrical contacts to three tracks of a coded wheel, as illustrated in Figure 10-2a. 

ROTARY PULSE 
GENERATOR (RPG.c)

Chapter

10
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The pull-up resistors are powered up by raising RB3 when the RPG output is to be que-
ried and powered down immediately afterwards, thus once again reducing the average 
current draw to a negligible amount. The inputs to RB1 and RB0 traverse through six 
cycles per revolution. Each cycle produces four output states, giving 24 states per revo-
lution, as shown in Figure 10-2b.

The ALPS RPG, also pictured in Figure 10-1 and actually used on the Qwik&Low 
board, has a resolution of 30 detented increments per revolution. Detented means that 
the unit includes a mechanism that causes the RPG shaft to “click” from one of its 30 
increments to the next, and that holds the position when released.

The 24 or 30 increments per revolution resolution of these two RPGs is typical 
of the resolution found in many commercial products and instruments. Although it 
might seem that “finer is better”, a user will find it frustrating to have an undetented 
resolution so fine that one or more increments or decrements can occur when the knob 
is released.

In the sections that follow, the use of the Bourns RPG will be described first. It 
provides a good example of polled operation. It also provides insight that will help 
clarify why an interrupt handler is used with the detented ALPS unit.

10.3 RPG FUNCTIONALITY

As an RPG is turned, its output pins traverse the 2-bit Gray code sequence

… → 00 → 01 → 11 → 10 → 00 → … 

when turned in one direction and

… → 00 → 10 → 11 → 01 → 00 → …

when turned in the other direction. By reading the RPG outputs at a faster rate than 
they change, the resulting changes can be used to increment or decrement the para-
meter being controlled.

FIGURE 10-1 Two rotary pulse 
generators (Bourns 3315-C-001-
006L; ALPS EC11G1524402)



The Bourns unit has a specified maximum turning rate of 120 rpm, or 2 revolu-
tions/s. At this maximum rate, the minimum time between increments is about 20 ms. 
By reading the RPG every time around the main loop (i.e., every 10 ms), every change 
of state will be detected. Furthermore, because the application code integrates the effect 
of many rapidly occurring increments or decrements when the RPG is turned fast, miss-
ing any counts because of too-fast turning goes unnoticed. The Bourns RPG carries a 

(b) Output

One
cycle

(4 states)

One revolution
(6 cycles)
(24 states)

(a) Brush/wheel configuration

Three
brushes

PORTB

PIC18LF4321

RB3

RB1

RB0

22.6 kΩ22.6 kΩ

Conductive pattern

Non-conductive pattern

FIGURE 10-2 RPG’s encoding wheel and brushes
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maximum contact-bounce time specification of 5 ms. Consequently, reading its output 
every 10 ms effectively debounces it.

The ALPS unit with its detented output is used somewhat differently. Its two out-
put pins traverse the same 2-bit Gray code sequence

… → 00 → 01 → 11 → 10 → 00 → … 

when turned in one direction and

… → 00 → 10 → 11 → 01 → 00 → …

when turned in the other direction. However, only the 00 and 11 states represent 
detented positions. 

10.4 THE RPG FUNCTION

If the Bourns RPG were added to the Qwik&Low board as shown in Figure 10-2a, 
its outputs would be sensed by raising RB3, waiting for 1 µs (with a Nop() macro) 
to allow for the 22.6-kΩ resistors and the slight capacitive loading of the circuitry to 
charge up, reading PORTB, and lowering RB3 again. Each time around the main 
loop, RB1 and RB0 are compared with their state 10 ms earlier in the RPG function 
of Figure 10-3. The subroutine returns with

DELRPG = 0x00  if no change

       =   +1  if CW change

       =   -1  if CCW change

Other functions called within the main loop can use the value of DELRPG to incre-
ment or decrement a parameter value in response to a change in the RPG position.

When reading external pins from within a function, care should be taken to read the 
pins just once. In the case of the RPG function, the state of PORTB is read and masked, 
to form NEWRPG. It is needed at the beginning of the function to compare with the 
state 10 ms ago. At the conclusion of the function, the present state of NEWRPG is used 
to update OLDRPG, saving this value for use 10 ms later, next time around the main 
loop. For bug-free code, OLDRPG should be updated with the value of NEWRPG read 
at the beginning of the function rather than by reading and masking PORTB again.

The RPG function compares the value of NEWRPG (0, 1, 2, or 3) with the value 
found 10 ms ago. If these values differ, a change has taken place in the RPG position. 
If the bits have changed in a CW direction, one of the following four cases will have 
occurred:

00 → 01

01 → 11

11 → 10

10 → 00 



PORTBbits.RB3 = 1;              // Power up RPG pullup resistors
Nop();                          // Wait a microsecond
OLDRPG = PORTB & 0b00000011;    // Load OLDRPG for RPG
PORTBbits.RB3 = 0;              // Power down RPG

(a) Initial function additions

/*******************************
 * RPG
 *
 * This function generates DELRPG = +1 for a CW increment of the RPG,
 * -1 for a CCW increment, and 0 for no change.
 *******************************
 */
void RPG()
{
   DELRPG = 0;                   // Clear for "no change" return value
   PORTBbits.RB3 = 1;            // Power up RPG pullup resistors
   Nop();                        // Wait a microsecond
   NEWRPG = PORTB & 0b00000011;  // Read PORTB
   PORTBbits.RB3 = 0;            // Power down RPG
   if (NEWRPG != OLDRPG)         // Any change?
   {
      if (0b00000010 & (NEWRPG ^ (OLDRPG << 1))) // CW or CCW?
      {
         DELRPG = -1;            // CCW change
      }
      else
      {
         DELRPG = +1;            // CW change
      } 
   }
   OLDRPG = NEWRPG;              // Save present RPG state for next loop
}

(b) The function.

FIGURE 10-3 RPG function

Note that in every case the MSb (most-significant bit) of the new number is the same 
as the LSb of the old number. If the RPG is changed in a CCW direction, then:

00 → 10

10 → 11

11 → 01

01 → 00
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In every case the MSb of the new number is the complement of the LSb of the old 
number. This information forms the basis for the test, namely:

• Shift OLDRPG left so that its bit 0 is moved to the bit 1 position.

• Exclusive-OR the resulting shifted value in OLDRPG with NEWRPG.

• Mask off all but bit 1 to obtain a nonzero value for a CCW change and a zero 
value for a CW change.

The value of DELRPG is set accordingly.
The RPGcounter function of Figure 10-4 uses the RPG output, DELRPG, to 

increment or decrement RPGNUM and to display it on the two rightmost characters 
of the LCD.

10.5 THE DETENTED RPG

When the same technique used for the Bourns RPG is applied to the detented ALPS 
RPG of Figure 10-1, two issues arise:

   RPGNUM = 0;                  // Initialize to 0

(a) Initial function addition

/*******************************
 * RPGcounter
 *
 * This function uses DELRPG to increment/decrement the signed char variable,
 * RPGNUM.  RPGNUM is then displayed in LCDSTRING[6] and LCDSTRING[7].
 *******************************
 */
void RPGcounter()
{
   RPGNUM += DELRPG;            // Update counter if RPG has been turned
   if (RPGNUM > 99)
   {
      RPGNUM = 0;
   }
   else if (RPGNUM < 0)
   {
      RPGNUM = 99;
   }
   LCDSTRING[6] = '0' + (RPGNUM / 10);  // Tens digit
   LCDSTRING[7] = '0' + (RPGNUM % 10);  // Units digit
   LCDFLAG = 1;                 // Set flag to display
}

(b) The function.

FIGURE 10-4 RPGcounter function



• The output representing a change occurs only at each detented position when 
the two pins are either in state 00 or state 11. But the transition state of 01 or 10 
must also be read, to determine the direction of change.

• Because the detent mechanism inserts a snap into the movement, the two pins 
must use a shorter interval between samples (e.g., 3.333 ms) to read each state 
reliably during the transition from one detented position to the next.

The interrupt approach of Figure 3-2, repeated in Figure 10-5a, resolves these two 
issues. For this approach, the pull-up resistor on the output that goes to the MCU’s 
interrupt pin must be continuously pulled high, resulting in a continuous current draw 
when the RPG is left standing in state 00. Using a 1-MΩ pull-up resistor has two ben-
eficial effects:

• For an application that uses the RPG, the RE2 pin that powers the pull-up resis-
tor for the interrupt input produces a quiescent current draw of only 3 µA when 
the RPG outputs are at the “00” position (and 0 µA otherwise).

• The 1-MΩ pull-up resistor on the INT2 interrupt input coupled with the associ-
ated low stray capacitance filters out the effect of contact bounce.

To determine the direction of rotation of the RPG, use is made of an INTEDG2 
control bit that determines whether the INT2 input will be sensitive to a rising or a 
falling edge:

• If INTEDG2 = 1, then an interrupt will occur in response to a rising edge into 
INT2.

• If INTEDG2 = 0, then an interrupt will occur in response to a falling edge into 
INT2.

In response to each interrupt, INTEDG2 is toggled. Consequently, every edge into 
INT2 will produce an interrupt.

Consider the CCW rotation shown in Figure 10-5b. Note that in going from one 
detented position to the next, either a rising edge or a falling edge always occurs on the 
INT2 input. Furthermore, for this CCW direction of motion, the state of INTEDG2 
at the time of the INT2 interrupt always matches the state of the RE1 input read from 
the other RPG output. On the other hand, CW rotation produces a mismatch between 
INTEDG2 and RE1, as shown in Figure 10-5c. This match or mismatch condition is 
used by the high-priority interrupt service routine of Figure 10-6b. Because more than 
one increment or decrement of DELRPG may take place during a 10-ms looptime, 
the HPISR may increment or decrement DELRPG more than once in that interval. 
The RPGcounter function of Figure 10-6c decrements a positive value of DELRPG 
toward zero while at the same time incrementing RPGNUM. It increments a nega-
tive value of DELRPG toward zero while at the same time decrementing RPGNUM. 
Thus RPGNUM simply accumulates all the increments and decrements of DELRPG 
into a value that is converted to a two-digit ASCII representation. The LCD is updated 
by setting LCDFLAG only when the RPG is turned.  

A complete, testable source file, RPG.c, is listed in Figure 10-7. It includes the 
modification of the Initial function to handle the RPG shown in Figure 10-6a. Note 
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140 Chapter 10 Rotary Pulse Generator (RPG.c)

that after RE2 of PORTE is set to power the 1-MΩ pull-up resistor for the interrupt 
input from the RPG, a 100-µs delay is inserted before RB2/INT2 is read and used to 
initialize INTEDG2 appropriately. Unlike other inputs that can be read with only 
a microsecond pause after the associated pull-up resistor has been powered up, the 
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   PORTEbits.RE2 = 1;           // Power up the pullup for the RPG's interrupt
   Delay(10);                   // Pause for 100 us
   INTCON2bits.INTEDG2 = !PORTBbits.RB2; // Select initial interrupt edge
   INTCON3bits.INT2IE = 1;      // Enable INT2 interrupt source
   INTCON3bits.INT2IP = 1;      // Use INT2 for high-priority interrrupts
   INTCON3bits.INT2IF = 0;      // Clear interrupt flag
   DELRPG = 0;                  // Indicate no initial edge
   RPGNUM = 0;                  // and initial RPG position of 00
   LCDFLAG = 1;                 // Display initial 00 value

(a) Initial function additions

/*******************************
 * HiPriISR
 *
 * Respond to rising and falling edges on INT2 input from RPG.
 *******************************
 */
void HiPriISR()
{
   PORTEbits.RE0 = 1;           // Power pullup resistor to read direction
   INTCON3bits.INT2IF = 0;      // Reset interrupt flag
   if (PORTEbits.RE1 == INTCON2bits.INTEDG2)  // Direction?
   {
      ++DELRPG;
   }
   else
   {
      --DELRPG;
   }
   PORTEbits.RE0 = 0;           // Power down pullup resistor
   INTCON2bits.INTEDG2 ^= 1;    // Toggle edge sensitivity
}

(b) High-priority interrupt service routine

/*******************************
 * RPGcounter
 *
 * This function uses DELRPG to update the signed char variable, RPGNUM.
 * DELRPG is returned to zero.
 * LCDSTRING[6] and LCDSTRING[7] display RPGNUM.
 *******************************
 */
void RPGcounter()
{
   while (DELRPG > 0)
   {
      --DELRPG;

FIGURE 10-6 Program code for detented RPG
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      if (++RPGNUM > 99)        // Increment RPGNUM, modulo 100
      {
         RPGNUM -= 100;
      }
      TEMPCHAR = RPGNUM;
      LCDSTRING[6] = '0' + TEMPCHAR / 10;
      LCDSTRING[7] = '0' + TEMPCHAR % 10;
      LCDFLAG = 1;              // Set flag to display
   }
   while  (DELRPG < 0)
   {
      ++DELRPG;
      if (--RPGNUM < 0)         // Decrement RPGNUM, modulo 100
      {
         RPGNUM += 100;
      }
      TEMPCHAR = RPGNUM;
      LCDSTRING[6] = '0' + TEMPCHAR / 10;
      LCDSTRING[7] = '0' + TEMPCHAR % 10;
      LCDFLAG = 1;              // Set flag to display
   }
}

(c) RPGcounter function called from main.

FIGURE 10-6 (continued)

/******* RPG.c *************
 *
 * Fosc = 4 MHz for Fcpu = Fosc/4 = 1 MHz.
 * Timer1 is clocked by the Timer1 crystal oscillator.
 * LoopTime function puts chip to sleep.  Timer1 awakens chip every 10 ms
 * within LoopTime function.  CPU adjusts Timer1 content for it to timeout
 * after another 10 milliseconds.
 * INT2 edges from RPG produce high-priority interrupts and inc/dec DELRPG.
 * RPGcounter increments/decrements a two-digit number from DELRPG.
 * RC2 output is toggled every 10 milliseconds for measuring looptime.
 * LED on RD4 is blinked for 10 ms every four seconds.
 *
 * Current draw =  16 or 19 uA (depending on RPG position,
 *                              with LED and LCD switched off)
 *
 ******* Program hierarchy *****
 *
 * main
 *    Initial
 *    BlinkAlive
 *    RPGcounter
 *    UpdateLCD
 *       Display

FIGURE 10-7 RPG.c



 *    LoopTime
 *
 * HiPriISR
 *
 * LoPriISR
 *
 *******************************
 */

#include <p18f4321.h>           // Define PIC18LF4321 registers and bits

/*******************************
 * Configuration selections
 *******************************
 */
#pragma config OSC = INTIO1     // Use internal osc, RA6=Fosc/4, RA7=I/O
#pragma config PWRT = ON        // Enable power-up delay
#pragma config LVP = OFF        // Disable low-voltage programming
#pragma config WDT = OFF        // Disable watchdog timer initially
#pragma config MCLRE = ON       // Enable master clear pin
#pragma config PBADEN = DIG     // PORTB<4:0> = digital
#pragma config CCP2MX = RB3     // Connect CCP2 internally to RB3 pin
#pragma config BOR = SOFT       // Brown-out reset controlled by software
#pragma config BORV = 3         // Brown-out voltage set for 2.0V, nominal
#pragma config LPT1OSC = OFF    // Deselect low-power Timer1 oscillator

/*******************************
 * Global variables
 *******************************
 */
char LCDFLAG;                   // Flag, set to send string to display
char LPISRFLAG;                 // Flag, set when LP interrupt has been handled
unsigned char i;                // Index into strings
unsigned int DELAY;             // Sixteen-bit counter for obtaining a delay
unsigned int ALIVECNT;          // Scale-of-400 counter for blinking "Alive" LED
signed char DELRPG;             // RPG output
signed char RPGNUM;             // For display of RPG position
signed char TEMPCHAR;           // Temporary signed character

/*******************************
 * Variable strings
 *******************************
 */

char LCDSTRING[] = "      00 "; // Ongoing display string (9 characters)

/*******************************
 * Function prototypes
 *******************************
 */
void Initial(void);

FIGURE 10-7 (continued)
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void BlinkAlive(void);
void RPGcounter(void);
void UpdateLCD(void);
void Display(void);
void LoopTime(void);
void HiPriISR(void);
void LoPriISR(void);

/*******************************
 * Macros
 *******************************
 */
#define Delay(x) DELAY = x; while(--DELAY){ Nop(); Nop(); }

/*******************************
 * Interrupt vectors
 *******************************
 */
// For high priority interrupts:
#pragma code high_vector=0x08
void interrupt_at_high_vector(void)
{
  _asm GOTO HiPriISR _endasm
}
#pragma code
#pragma interrupt HiPriISR

// For low priority interrupts:
#pragma code low_vector=0x18
void interrupt_at_low_vector(void)
{
  _asm GOTO LoPriISR _endasm
}
#pragma code
#pragma interruptlow LoPriISR

/*******************************
 * HiPriISR
 *
 * Respond to rising and falling edges on INT2 input from RPG.
 *******************************
 */
void HiPriISR()
{
   PORTEbits.RE0 = 1;           // Power pullup resistor to read direction
   INTCON3bits.INT2IF = 0;      // Reset interrupt flag
   if (PORTEbits.RE1 == INTCON2bits.INTEDG2)  // Direction?
   {
      ++DELRPG;
   }

FIGURE 10-7 (continued)



   else
   {
      --DELRPG;
   }
   PORTEbits.RE0 = 0;           // Power down pullup resistor
   INTCON2bits.INTEDG2 ^= 1;    // Toggle edge sensitivity
}

/*******************************
 * LoPriISR
 *
 * Control 10 ms looptime
 *******************************
 */
void LoPriISR()
{
   T1CONbits.TMR1ON = 0;        // Pause Timer1 counter
   TMR1L += 0xB9;               // Cut out all but 328 counts of Timer1
   T1CONbits.TMR1ON = 1;        // Resume Timer1 counter
   TMR1H = 0xFE;                // Upper byte of Timer1 will be 0xFE
   PIR1bits.TMR1IF = 0;         // Clear interrupt flag
   LPISRFLAG = 1;               // Set a flag for LoopTime
}

/////// Main program //////////////////////////////////////////////////////////

/*******************************
 * main
 *******************************
 */
void main()
{
   Initial();                   // Initialize everything
   while (1)
   {
      PORTCbits.RC2 ^= 1;       // Toggle pin, for measuring loop time
      BlinkAlive();             // Blink "Alive" LED
      RPGcounter();
      UpdateLCD();              // Update LCD
      LoopTime();               // Use Timer1 to wakeup and loop again
   }
}

/*******************************
 * Initial
 *
 * This function performs all initializations of variables and registers.
 *******************************
 */

FIGURE 10-7 (continued)
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void Initial()
{
   OSCCON = 0b01100010;         // Use Fosc = 4 MHz (Fcpu = 1 MHz)
   SSPSTAT = 0b00000000;        // Set up SPI for output to LCD
   SSPCON1 = 0b00110000;
   ADCON1 = 0b00001011;         // RA0,RA1,RA2,RA3 pins analog; others digital
   TRISA = 0b00001111;          // Set I/O for PORTA
   TRISB = 0b01000100;          // Set I/O for PORTB
   TRISC = 0b10000000;          // Set I/O for PORTC
   TRISD = 0b10000000;          // Set I/O for PORTD
   TRISE = 0b00000010;          // Set I/O for PORTE
   PORTA = 0;                   // Set initial state for all outputs low
   PORTB = 0;
   PORTC = 0;
   PORTD = 0b00100000;          // except RD5 that drives LCD interrupt
   PORTE = 0;
   LCDFLAG = 0;                 // Flag to signal LCD update is initially off
   ALIVECNT = 300;              // Blink immediately
   SSPBUF = ' ';                // Send a blank to initialize state of UART
   Delay(50000);                // Pause for half a second
   RCONbits.SBOREN = 0;         // Now disable brown-out reset

   T1CON = 0b01001111;          // Timer1 - loop time via low-pri interrupts
   TMR1H = 0xFE;                // Set Timer1 to be 10 ms away from
   TMR1L = 0xB9;                // next roll over (65536 + 1 - 328 = 0xFEB9)
   PIE1bits.TMR1IE = 1;         // Enable local interrupt source
   IPR1bits.TMR1IP = 0;         // Use Timer1 for low-priority interrupts
   LPISRFLAG = 0;               // Flag to signal that LPISR has been executed

   PORTEbits.RE2 = 1;           // Power up the pullup for the RPG's interrupt
   Delay(10);                   // Pause for 100 us
   INTCON2bits.INTEDG2 = !PORTBbits.RB2; // Select initial interrupt edge
   INTCON3bits.INT2IE = 1;      // Enable INT2 interrupt source
   INTCON3bits.INT2IP = 1;      // Use INT2 for high-priority interrrupts
   INTCON3bits.INT2IF = 0;      // Clear interrupt flag
   DELRPG = 0;                  // Indicate no initial edge
   RPGNUM = 0;                  //  and initial RPG position of 00
   LCDFLAG = 1;                 // Display initial 00 value

   RCONbits.IPEN = 1;           // Enable high/low priority interrupt feature
   INTCONbits.GIEL = 1;         // Global low-priority interrupt enable
   INTCONbits.GIEH = 1;         // Enable both high and low interrupts
}

/*******************************
 * BlinkAlive
 *
 * This function briefly blinks the LED every four seconds.
 * With a looptime of about 10 ms, count 400 looptimes.
 *******************************
 */

FIGURE 10-7 (continued)



void BlinkAlive()
{
   PORTDbits.RD4 = 0;           // Turn off LED
   if (++ALIVECNT == 400)       // Increment counter and return if not 400
   {
      ALIVECNT = 0;             // Reset ALIVECNT
      PORTDbits.RD4 = 1;        // Turn on LED for one looptime
   }
}

/*******************************
 * RPGcounter
 *
 * This function uses DELRPG to update the signed char variable, RPGNUM.
 * DELRPG is returned to zero.
 * LCDSTRING[6] and LCDSTRING[7] display RPGNUM.
 *******************************
 */
void RPGcounter()
{
   while (DELRPG > 0)
   {
      --DELRPG;
      if (++RPGNUM > 99)        // Increment RPGNUM, modulo 100
      {
         RPGNUM -= 100;
      }
      TEMPCHAR = RPGNUM;
      LCDSTRING[6] = '0' + TEMPCHAR / 10;
      LCDSTRING[7] = '0' + TEMPCHAR % 10;
      LCDFLAG = 1;              // Set flag to display
   }

   while  (DELRPG < 0)
   {
      ++DELRPG;
      if (--RPGNUM < 0)         // Decrement RPGNUM, modulo 100
      {
         RPGNUM += 100;
      }
      TEMPCHAR = RPGNUM;
      LCDSTRING[6] = '0' + TEMPCHAR / 10;
      LCDSTRING[7] = '0' + TEMPCHAR % 10;
      LCDFLAG = 1;              // Set flag to display
   }
}

/*******************************
 * UpdateLCD
 *
 * This function updates the 8-character LCD if the LCDFLAG is set.
 *******************************
 */

FIGURE 10-7 (continued)
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void UpdateLCD()
{
   if (LCDFLAG)
   {
      Display();
      LCDFLAG = 0;
   }
}

/*******************************
 * Display
 *
 * This function sends LCDSTRING to the LCD.
 *******************************
 */
void Display()
{
   PORTDbits.RD5 = 0;           // Wake up LCD display
   for (i = 0; i < 9; i++)
   {
      PIR1bits.SSPIF = 0;       // Clear SPI flag
      SSPBUF = LCDSTRING[i];    // Send byte
      while (!PIR1bits.SSPIF);  // Wait for transmission to complete
   }
   PORTDbits.RD5 = 1;           // Return RB5 high, ready for next string
}

/*******************************
 * LoopTime
 *
 * This function puts the chip to sleep upon entry.
 * It wakes up and executes a HPISR and then returns to sleep.
 * It wakes up and executes a LPISR and then exits.
 *******************************
 */
void LoopTime()
{
   while (!LPISRFLAG)           // Sleep upon entry and upon exit from HPISR
   {                            // Return only if LPISR has been executed,
      Sleep();                  //  which sets LPISRFLAG
      Nop();
   }
   LPISRFLAG = 0;               // Sleep upon next entry to LoopTime
}

FIGURE 10-7 (continued)

RB2/INT2 pin exhibits a 75-µs rise time after RE2 is raised to 3 V when the RPG is 
in the “11” position.

Since RE2 will be left high thereafter, this 75-µs rise time occurs every time the RPG 
is changed from its “00” position to its “11” position. The long rise time is what damps 
out any contact-bounce “chatter” when the RPG is changed from its “11” position to 



its “00” position. The INT2 input is not affected by the slow rise time, inasmuch as the 
signal on the input pin is subjected to a Schmitt trigger before being passed along to the 
interrupt circuitry. The Schmitt trigger converts its slowly rising input to a fast snap of 
a change on its output. It also subjects the input to hysteresis, having a slightly higher 
rising-voltage threshold at which the output snaps than its falling-voltage threshold at 
which the output snaps back. This hysteresis also mitigates the effect of any contact-
bounce chatter. The result is an RPG whose performance matches the ideal, with one 
increment of the displayed value for each detented click of the knob.

PROBLEMS

10-1 RPGcounter modification 

 a)  Modify the RPGcounter function of Figure 10-4 and its initialization to 
use two variables

RPGTENS and RPGONES

   in place of RPGNUM. Each time DELRPG causes an increment or dec-
rement of RPGNUM in the old RPGcounter function, now increment 
or decrement the ASCII-coded value in RPGTENS and RPGONES 
appropriately. Refer to T2.c’s Time function in Figure 5-5 for ideas. 

 b) Repeat for the RPGcounter function of Figure 10-6.

10-2 Polled RPG.c

 a)  Modify the RPG function of Figure 10-3 to poll the two outputs of the 
detented RPG of Figure 10-5a. Because the 1-MΩ pull-up resistor on the 
RB2 input produces such a long response time, initialize RE2 high and 
leave it high.

 b)  Write a PolledRPG.c file derived from the RPG.c file of Figure 10-7 by 
removing the high-priority ISR and adding the RPG function of Part (a), 
called from the main loop. Also replace the RPGcounter function with 
that of Figure 10-3.

 c)  Read an 8-bit value from the pot every 20th time around the main loop. 
Use this to modify the loop time proportional to the pot value and from 
(about) 1 ms if the pot is fully CCW and (about) 10 ms if the pot is fully 
CW.

 d)  As the RPG is turned, either slowly or at a faster (but “normal”) rate, 
determine the maximum loop time for which RPG clicks (almost 
always) produce increments or decrements on the LCD. Measure the 
time between edges of RC2 to determine this loop time.
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11.1 OVERVIEW

Coding a microcontroller application in C has benefits and drawbacks, listed in Section 
2.9. As mentioned there, the size of the resulting program is not a dominating issue, as 
long as it fits in the available program memory within the target microcontroller. The 
speed of execution of algorithms is another story, given the weight placed on coin cell 
current draw and the resulting effect on coin cell life. The faster execution of an algo-
rithm leads directly to more sleep time (with the MCU drawing less than 2 µA) and less 
awake time (with the MCU drawing more than 1 mA).

In this chapter, the monitoring of both code size and execution time will be dis-
cussed. C coding provides little insight into either issue. Being able to monitor code 
size and execution time allows the comparison of alternative codings of an algorithm. 
From such a comparison, coding choices can be made intelligently.

11.2 CODE SIZE

Alex Singh’s C18 utility:

• Compiles and links a source file.
• Lists the number of program bytes.
• Shows the percentage of available program memory used.

MEASUREMENTS

Chapter 

11



In an environment where the C compiler may need to insert complex subroutines 
to implement a few lines of seemingly simple source code, this gross view of the code 
generated provides helpful insight.

Example 11-1 Compare the amount of code generated by Figure 11-1a with 
the amount of code generated by the alternative implementation of the same 
function shown in Figure 11-1b. This latter implementation uses the same 
technique of incrementing or decrementing an ASCII-coded two-digit num-
ber as was used in the Pushbutton function of the T2.c template program 
(Figure 5-5).

Solution

Compiling the two source files containing the two versions of the RPGcounter 
produces program byte counts for each file. The program containing the code 
of Figure 11-1a generates 22 more bytes of code than the identical program 
with only the RPGcounter function replaced by the code of Figure 11-1b.
This example illustrates several points:

• While the implementation of Figure 11-1b uses slightly less memory 
than the implementation of Figure 11-1a, it is more complicated to write 
and more difficult for someone else to understand. These are significant 
considerations.

• The amount of code generated does not correlate well with the number of 
lines in the source file. In the implementation of Figure 11-1a, the formation 
of LCDSTRING[6] incurs the call of a divide subroutine. The formation 
of LCDSTRING[7] has the compiler calling the same subroutine with the 
same divisor and dividend to form the (previously discarded) remainder. 
The algorithm of Figure 11-1b replaces these divides with increments, 
decrements, compares, and reinitializations.

/*******************************
 * RPGcounter
 *
 * This function uses DELRPG to update the signed char variable, RPGNUM.
 * DELRPG is returned to zero.
 * LCDSTRING[6] and LCDSTRING[7] display count.
 *******************************
 */
void RPGcounter()
{
   while (DELRPG > 0)
   {
      --DELRPG;

FIGURE 11-1 Two implementations of RPGcounter
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      if (++RPGNUM > 99)
      {
         RPGNUM -= 100;
      }
      LCDFLAG = 1;              // Set flag to display
   }

   while  (DELRPG < 0)
   {
      ++DELRPG;
      if (--RPGNUM < 0)
      {
         RPGNUM += 100;
      }
      LCDFLAG = 1;              // Set flag to display
   }
   TEMPCHAR = RPGNUM;
   LCDSTRING[6] = '0' + (TEMPCHAR / 10);
   LCDSTRING[7] = '0' + (TEMPCHAR % 10);
}

(a) Implementation of RPGcounter using two divide operations

/*******************************
 * RPGcounter
 *
 * This function uses DELRPG to update ASCII-coded RPGTENS:RPGUNITS
 * DELRPG is returned to zero.
 * LCDSTRING[6] and LCDSTRING[7] display count.
 *******************************
 */
void RPGcounter()
{
   while (DELRPG > 0)
   {
      --DELRPG;
      if (++RPGUNITS > '9')
      {
         RPGUNITS = '0';
         if (++RPGTENS > '9')
         {
            RPGTENS = '0';
         }
      }
      LCDFLAG = 1;              // Set flag to display
   }

   while  (DELRPG < 0)
   {
      ++DELRPG;

FIGURE 11-1 (continued) 



11.3 CODE EXECUTION

Using an oscilloscope to measure time intervals, the user program can be modified to 
set a pin prior to the execution of the code segment whose duration is to be measured 
and to clear the pin on its completion. If the RB0 pin is used for this purpose, its use 
will be simplified by the addition of the macro definitions shown in Figure 11-2a. 

Example 11-2 Assume that TEMPCHAR contains a number ranging bet-
ween 0 and 99 and is to be displayed as a two-digit number on the LCD display. 
Determine the time taken to form LCDSTRING[6] and LCDSTRING[7] in 
Figure 11-2b.

Solution

The two lines are preceded by a Disable() macro to postpone interrupts and 
a Start() macro to set the RB0 pin. The lines are followed by a Stop() macro 
and an Enable() macro to produce a pulse on the RB0 pin of 210 µs. Subtract-
ing the 1-µs interval that is produced if Start() is immediately followed by 
Stop() yields an execution time of 209 µs for the two lines that form the two 
LCDSTRING bytes.
 If the code for which a time interval is to be measured resides in the main 
code, it will occasionally be interrupted if one or more high-priority interrupt 
sources are being employed. By disabling interrupts before the pulse on RB0 
is initiated and reenabling interrupts after the pulse has been completed, any 
intervening interrupts will not be lost, only delayed until the completion of the 
RB0 pulse.

      if (--RPGUNITS < '0') 
      {
         RPGUNITS = '9';
         if (--RPGTENS < '0')
         {
            RPGTENS = '9';
         }
      }
      LCDFLAG = 1;           // Set flag to display
   }
   LCDSTRING[6] = RPGTENS;   // Update display string
   LCDSTRING[7] = RPGUNITS;
}

(b) Implementation of RPGcounter incrementing ASCII-coded RPGTENS:RPGUNITS.

FIGURE 11-1 (continued) 
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/*******************************
 * Macro definitions
 *******************************
 */
#define Disable() INTCONbits.GIE = 0
#define Start()   PORTBbits.RB0 = 1
#define Stop()    PORTBbits.RB0 = 0
#define Enable()  INTCONbits.GIE = 1 

(a) Definition of Start() and Stop() macros.

   Disable();
   Start();
   LCDSTRING[0] = '0' + (TEMPCHAR / 10);
   LCDSTRING[1] = '0' + (TEMPCHAR % 10);
   Stop();
   Enable();

(b) Formation of two ASCII-coded digits.
Execution time = 210 − 1 = 209 µs.

FIGURE 11-2 Execution time determination

11.4 VARIABLE CODE EXECUTION

If the code segment whose execution time is being measured varies, an oscilloscope’s 
“persist” or “autostore” mode will overwrite the display with each successive trace, 
as illustrated in Figure 11-3. Using the scope’s time cursors, both the minimum pulse 
width and maximum pulse width are easily ascertained. Taking advantage of the 
brightness of the range of falling edges, a casual estimate of the mean pulse width is 
also easily obtained.

FIGURE 11-3 Use of oscilloscope’s 
“persist” mode



11.5 INTERRUPT TIMING MEASUREMENT

Measuring how long the CPU digresses from its main function in response to an inter-
rupt request can take advantage of the Delay macro of Section 4.7. First determine the 
minimum time between successive interrupts. Then set the delay parameter to some-
thing less than one-tenth of this number of microseconds. This will produce a pulse 
that will be interrupted zero or one time, but no more than one.

Example 11-3 Determine the minimum time overhead of a high-priority 
interrupt.

Solution

Add the code of Figure 11-4a to the main function. When an interrupt occurs, 
the pulse width will be extended by the exact time of digression for the CPU to 
deal with the interrupt. The HPISR of Figure 7-6 has been reduced, in Figure 
11-4b, to do nothing more than clear the interrupt flag. When the program is 
executed and the pulse displayed in the “persist” mode, the display of Figure 
11-4c is produced. After sufficient time to have at least one interrupt occur 
concurrently with a pulse, the display of Figure 11-4c will result, where the 
trigger point on the rising edge of the pulse has been moved about 1 ms off 
to the left of the screen. The difference between the two falling edges of 15 µs 
indicates that the CPU digressed for 15 µs as it set aside the program counter 
and other selected CPU registers, vectored to the HPISR, executed the one 
flag-clearing instruction (taking 1 µs to do so), restored the selected CPU reg-
isters, and returned to where it left off in the main code.

   Start();
   Delay(100);                  // Pause for 1 ms
   Stop();

(a) One-millisecond pause in main loop.

/*******************************
 * HiPriISR
 *
 * Measure time CPU digresses from main to execute this minimal HPISR.
 *******************************
 */
void HiPriISR()
{
   PIR2bits.TMR3IF = 0;         // Clear interrupt flag
}

(b) A minimal high-priority interrupt service routine.

FIGURE 11-4 Determining the minimum time overhead of a high-priority interrupt service 
routine.
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11.6 TIME SPENT DOING USEFUL WORK IN MAIN LOOP

By inserting the Start() macro at the beginning of the main loop and the Stop() macro 
just before the call of the LoopTime function, the time taken to do useful work can 
be monitored. Each time around the main loop, some time will be spent in functions 
called from main and some time within intervening interrupts.

Generally, it is valuable to know the average of this time since it leads to the aver-
age current draw from the coin cell:

Average current draw =   
 T USEFUL WORK 

 (µS)
  _________________  

10,000 (µS)
   × 1 mA 

where 10,000 µs is the loop time, and (from Figure 2-4) 1 mA represents the current 
draw when the chip is clocked continuously with FOSC = 4 MHz. The oscilloscope’s 
“persist” mode again helps to identify a reasonable average for TUSEFUL WORK. It 
also permits the measurement of the worst-case value, even when that value rarely 
occurs.

11.7 CLEANING UP SURPRISES

When the average current draw is higher than expected, the use of the Start() and 
Stop() macros provides an easy way to close in on the source of the problem. The exe-
cution time of questionable functions in the main loop becomes a good place to start. 
A long-duration function at that level leads to the functions it calls. In this way, one or 

(c) Scope’s screen dump

FIGURE 11-4 (continued)



more offending functions can be identified. Testing makes all the difference, whereas 
looking at a long source file is a difficult method of debugging. As once pointed out to 
the author, “paper never protests”.

Some of the issues that can arise are:

• A function may calculate a value using long-duration multiplies and divides 
each time around the main loop while the value is used to update the display 
only once every 10 loop times.

• An interrupt service routine that occurs many times per 10-ms loop time also 
carries out an extensive routine to handle each occurrence. Instead, it might 
accumulate successive changes in a variable and then let a main function han-
dle the accumulated change each loop time before resetting the variable.

• Alternative implementations of a function may yield quite different execution 
times. It is difficult to discern this from the source file. It is easy to discern it by 
the measurement of the alternatives. Time is not spent looking for alternatives 
to code that only looked like it might produce a long execution time, when, in 
fact, it does not.

PROBLEMS

11-1  Function size Consider the T3.c template of Figure 7-6. Determine the 
number of program bytes generated by the Pushbutton function. First, com-
pile the code as is and note the number of program bytes generated. Then 
form a T3A.c template with /* inserted before the line

void Pushbutton()

  and a */ after the function’s final }. Then recompile and note the reduced 
number of program bytes generated. The difference between these two num-
bers is the number of bytes sought.

11-2  Function size Form a T3B.c template program by rewriting the Push-
button function of Figure 7-6 using a new signed char variable, PBNUM, to 
represent the number of pushbutton pushes. Use the code of Figure 11-1a as 
a model for how to use PBNUM, including the final three lines of code

TEMPCHAR = PBNUM;

LCDSTRING[0] = '0' + (TEMPCHAR / 10);

LCDSTRING[1] = '0' + (TEMPCHAR % 10);

 a)  Compare the number of program bytes generated by T3B.c with the num-
ber found for T3A.c of Problem 11-1, for which the Pushbutton code was 
commented out.
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11-3 Execution time

 a) In the main function of T3.c, insert the Disable and Start macros before

Pushbutton();

  and the Stop and Enable macros after it. Recompile and measure the execu-
tion time of the Pushbutton function. What is the value when the pushbutton 
is not pressed? What is the value when the number changes from 2 to 3? From 
9 to 10?

 b) Repeat for T3B.c.
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12.1 OVERVIEW

Interrupts provide a way for the CPU to break out of the lockstep sequence of tasks 
dictated by the function calls in the main loop. Stepping the stepper motor with a 
step period other than some multiple of the loop time represents a common interrupt 
application. Sensing RPG motion only when the RPG generates edges represents 
another.

How interrupt service routines are written in C has a profound effect on both exe-
cution time and program size. The first part of this chapter pinpoints this issue. The 
remainder of the chapter identifies the control and status bits associated with every 
interrupt source in the PIC18LF4321.

12.2 MCU INTERRUPT RESPONSE

Chapter Seven introduced the use of both high- and low-priority interrupts. First, the 
code was inserted into the source file to have the compiler handle the two interrupt 
vectors to HiPriISR and LoPriISR. Then, the interrupt service routines, HiPriISR and 

INTERRUPTS
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LoPriISR, were written and added to the source file just like any other function. When 
an interrupt of main program execution occurs, the CPU:

1. Suspends its main program execution.

2. For a low-priority interrupt, further low-priority interrupts are disabled, but 
any high-priority interrupts that have been enabled are left enabled. For a high-
priority interrupt, all interrupts are disabled.

3. Vectors to the interrupt service routine.

4. Copies any CPU registers that, if changed by the execution of the interrupt 
service routine, might corrupt the execution of the interrupted main program.

5. Executes the interrupt service routine.

6. Restores the CPU registers set aside in Step 4.

7. Reenables the interrupt level (high or low) that was disabled in Step 2.

8. Returns to the main program at the point where execution was suspended in 
Step 1.

12.3 COMPILER HANDLING OF INTERRUPTS

In this section, the extra code introduced by the compiler for Steps 4 and 6 will be 
examined. The intent is to discern how the writing of the code of Step 5 impacts what 
the compiler does with Steps 4 and 6. Snippets from several source file examples will be 
examined.

The code of Figure 12-1a is taken from a file called IntProg1.c (available from the 
www.qwikandlow.com web site). It shows a main function that uses the Delay macro 
to generate a 140-µs pulse on the RC2 output pin every 140 µs + 200 µs = 340 µs. 
Timer1 and Timer3 have been set up to be clocked by the CPU’s 1-MHz clock (rather 
than the Timer1 oscillator) so that interrupts will be synchronized to the CPU clock. 
For testing purposes, the Initial function includes the two lines shown in Figure 12-1b 
that control whether or not either timer runs, and therefore whether or not it generates 
interrupts.

Within each interrupt service routine of Figure 12-1c, the two lines of code to 
reload a timer and clear an interrupt flag compile to three machine code instructions 
that execute in 3 µs. This knowledge will be used to translate from the total time 
that the CPU takes to deal with an interrupt to the portion of that time that repre-
sents overhead. It is this overhead that can be drastically influenced by how the code is 
written. The reorganization of each interrupt service routine in Figure 12-1d breaks 
out these same two lines to reload a timer and clear an interrupt flag into two separate 
“handler” functions.

The two ways of expressing the interrupt service routines (Figure 12-1c on the one 
hand and Figure 12-1d on the other) plus the disabling of one interrupt source or the 
other via the lines of Figure 12-1b allow four experiments to be run. As each is com-
piled, downloaded, and run, the 140-µs pulse generated by the main loop of Figure 
12-1a is monitored. The trailing edge of this pulse is extended whenever an interrupt 
strikes during the pulse. The amount of the extension equals the ISR overhead plus 



void main()
{
   Initial();                  // Initialize everything
   while (1)
   {
      PORTCbits.RC2 = 1;       // Set pin high
      Delay(14);               // Pause for 140 microseconds
      PORTCbits.RC2 = 0;       // Set pin low
      Delay(20);               // Pause for 200 microseconds
   }
}

(a) Setup to measure the digression from a constant duration pulse by an interrupt.

//   PIE1bits.TMR1IE = 1;         // Enable local interrupt source
   PIE2bits.TMR3IE = 1;         // Enable local interrupt source

(b) Lines from Initial function, for enabling only one interrupt source at a time.

/*******************************
 * HiPriISR
 *
 * Reload TMR3H, clear flag, and return.
 *******************************
 */
void HiPriISR()
{
   TMR3H = 0xFF;
   PIR2bits.TMR3IF = 0;         // Clear interrupt flag
}

/*******************************
 * LoPriISR
 *
 * Reload TMR1H, clear flag, and return.
 *******************************
 */
void LoPriISR()
{
   TMR1H = 0xFF;
   PIR1bits.TMR1IF = 0;         // Clear interrupt flag
}

(c) One way of writing ISRs (from IntProg1.c in www.qwikandlow.com)

FIGURE 12-1 Snippets from IntProg1.c and IntProg2.c
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/*******************************
 * HiPriISR
 *******************************
 */
void HiPriISR()
{
   Timer3Handler();
}

/*******************************
 * LoPriISR
 *******************************
 */
void LoPriISR()
{
   Timer1Handler();
}

/*******************************
 * Timer3Handler
 *******************************
 */
void Timer3Handler()
{
   TMR3H = 0xFE;                // Reload Timer3
   PIR2bits.TMR3IF = 0;         // Clear interrupt flag
}

/*******************************
 * Timer1Handler
 *******************************
 */
void Timer1Handler()
{
   TMR1H = 0xFE;                // Reload Timer1
   PIR1bits.TMR1IF = 0;         // Clear interrupt flag
}

(d) Another way of writing ISRs (from IntProg2.c in www.qwikandlow.com).

FIGURE 12-1 (continued) 

the 3 µs to reload the timer and clear the flag. Thus, when the code of Figure 12-1c is 
executed with only Timer3 producing high-priority interrupts, the 140-µs pulse is 
extended 14 µs by an intervening interrupt. The ISR overhead of 11 µs (i.e., 14 µs − 3 µs) 
is listed in the top line of Figure 12-2.

The results of all four experiments are summarized in this table of Figure 12-2. 
The second line shows an ISR overhead of 21 µs. The 10 µs less taken by the HiPriISR 
to do the same thing occurs because the high-priority ISR automatically and quickly 
copies three CPU registers into three shadow registers on entry and quickly restores 
them on exit. The low-priority ISR must also set aside and later restore these same 



three CPU registers, but there is no automatic, fast mechanism to do so. Rather, the 
compiler adds instructions to do the setting aside and restoring for the low-priority 
interrupt service routine.

When the two source code lines in an interrupt service routine, to reload the timer 
and clear the flag, are broken out to a separate “handler” function as in Figure 12-1d, 
evidently the C compiler loses track of what registers the service routine will be using. 
As shown in the third and fourth lines of Figure 12-2, the compiler adds 276 bytes of 
code. This extra code evidently sets aside and restores every conceivable CPU register 
and compiler-generated variable that might ever be corrupted by an interrupt service 
routine. When this code is executed, it also adds 88 µs to the interrupt service routine’s 
execution time.

These four tests provide the insight that a large performance penalty is incurred for 
both the program code size and execution time by delegating interrupt service routine 
code to a separate “handler” function.

12.4 USING ONE PRIORITY LEVEL ONLY

Given the performance perspective of Figure 12-2, it may make sense for many appli-
cations to use just one interrupt priority level. Such an application assumes that no 
interrupt service routine excessively delays the handling of other interrupt sources.  
This delay requirement is referred to as the acceptable worst-case latency of an interrupt 
source. It is the time beyond which the interrupt source may experience performance 
degradation. For example, if the stepper motor has a maximum stepping rate of about 
1,000 steps/s, then at this maximum rate, Timer3 is interrupting every millisecond. 
Even if two other interrupts line up to be serviced first, their presumably short han-
dlers are not going to insert enough of an irregularity in the timing of the steps to 
throw the motor out of its fast coasting rhythm.

A snippet of code from an IntProg3.c file is shown in Figure 12-3. Each of three 
interrupt sources makes use of the same high-priority interrupt service routine. Within 
HiPriISR, each interrupt flag is polled to determine whether it is requesting service. If 
so, its handler is executed in line (without breaking out to a separate handler function 
and invoking the performance hit discussed in the last section).

The Initial function includes the three lines shown in Figure 12-3b so that two of 
the three interrupts can be disabled for each of three experiments. Upon compiling and 
running and monitoring the main function’s pulse on RC2, each interrupt causes the 
CPU to digress from its execution of the main function with an ISR overhead of 19 µs. 
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ISR overhead Compiled bytes in entire file

HiPriISR of Figure 12-1c 11
431

LoPriISR of Figure 12-1c 21 = (11 + 10) 

HiPriISR of Figure 12-1d 99 = (11 + 88) 
707 = (431 + 276)

LoPriISR of Figure 12-1d 109 = (21 + 88) 

FIGURE 12-2 Effect of interrupt service routine code writing alternatives on performance
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void main()
{
   Initial();                   // Initialize everything
   while (1)
   {
      PORTCbits.RC2 = 1;        // Set pin high
      Delay(14);                // Pause for 140 microseconds
      PORTCbits.RC2 = 0;        // Set pin low
      Delay(20);                // Pause for 200 µs
   }
}

(a) Setup to measure the digression from a constant duration pulse by an interrupt.

   T1CONbits.TMR1ON = 1;        // Enable Timer1
//   T3CONbits.TMR3ON = 1;        // Enable Timer3
//   INTCON3bits.INT2IE = 1;      // Enable INT2 interrupt source

(b) Lines from Initial function, for disabling all but one interrupt source.

/*******************************
 * HiPriISR
 *******************************
 */
void HiPriISR()
{
   if (PIR2bits.TMR3IF)         // Timer3 interrupt?
   {
      TMR3H = 0xFE;
      PIR2bits.TMR3IF = 0;
   }
   if (PIR1bits.TMR1IF)         // Timer1 interrupt?
   {
      TMR1H = 0xFE;
      PIR1bits.TMR1IF = 0;
   }
   if (INTCON3bits.INT2IF)      // INT2 interrupt?
   {
      INTCON3bits.INT2IF = 0;
   }
}

(c) A third way of writing ISRs (from IntProg3.c in www.qwikandlow.com).

Compiles to 423 bytes.
CPU digresses for 22-3 = 19 us to handle HiPriISR for Timer3.
CPU digresses for 22-3 = 19 us to handle HiPriISR for Timer1.
CPU digresses for 20-1 = 19 us to handle HiPriISR for INT2.

(d) Results

FIGURE 12-3 Snippets from IntProg3.c



12.5 PIC18LF4321 INTERRUPT SOURCES

The following three lines of initialization are required to enable interrupts globally:

RCONbits.IPEN = 1;  // Enable high/low priority interrupt feature

INTCONbits.GIEL = 1;   // Globally enable low-priority interrupts

INTCONbits.GIEH = 1;   // Globally enable high/low interrupts

In addition, each interrupt source has its own local interrupt control bits:

• A priority control bit

• A local enable bit

• A local flag bit

To have any interrupt source be given high-priority interrupt servicing, its priority 
control bit must first be set. Alternatively, the priority control bit must be cleared to 
have it responded to as a low-priority interrupt source.

Each interrupt source has a local enable bit that is disabled at reset. Consequently, 
nothing need be done to initialize the many possible interrupt sources that go unused 
in any given application.

Figure 12-4 lists each possible interrupt source and identifies the register and bit 
names for the priority control bit, the local enable bit, and the local flag bit.

12.6 USE OF THE INTERRUPT MECHANISM + IDLE MODE

In Section 2.7, the MCU’s idle mode was discussed. Setting the IDLEN bit in the 
OSCCON register enables this mode. Then, when a Sleep macro is executed, the 
clocking of the CPU is halted, stopping the execution of further instructions. Mean-
while, all internal peripheral modules that had been running continue to be clocked 
by FOSC. The result is the halving of the current draw by the MCU, as indicated in 
Figure 2-9.

To make use of this feature of the MCU, all local interrupt enable bits other than 
the one that will awaken the chip must be cleared, the IDLEN bit of OSCCON must 
be set, and the GIEH bit of INTCON must be cleared. An internal peripheral module 
event can be initiated and the Sleep mode executed. On the completion of the event, 
as signaled by the setting of the module’s interrupt flag, the CPU will awaken and 
continue code execution with the code that follows the Sleep macro.

12.7 EXTERNAL INTERRUPTS

The detented RPG discussed in Chapter Ten made use of one of the MCU’s three 
external interrupt pins. The bits associated with all three of these pins are described in 
Figure 12-5.
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FIGURE 12-4 PIC18LF4321 interrupt sources

Name Priority Bit Local Enable Bit Local Flag Bit 

INT0 external interrupt * INTCONbits.INT0IE INTCONbits.INT0IF 

INT1 external interrupt INTCON3bits.INT1IP INTCON3bits.INT1IE INTCON3bits.INT1IF 

INT2 external interrupt INTCON3bits.INT2IP INTCON3bits.INT2IE INTCON3bits.INT2IF 

RB port change interrupt INTCON2bits.RBIP INTCONbits.RBIE INTCONbits.RBIF 

TMR0 overflow interrupt INTCON2bits.TMR0IP INTCONbits.TMR0IE INTCONbits.TMR0IF 

TMR1 overflow interrupt IPIR1bits.TMR1IP PIE1bits.TMR1IE PIR1bits.TMR1IF 

TMR3 overflow interrupt IPR2bits.TMR3IP PIE2bits.TMR3IE PIR2bits.TMR3IF 

TMR2 matches PR2 interrupt IPR1bits.TMR2IP PIE1bits.TMR2IE PIR1bits.TMR2IF 

CCP1 interrupt IPR1bits.CCP1IP PIE1bits.CCP1IE PIR1bits.CCP1IF 

CCP2 interrupt IPR2bits.CCP2IP PIE2bits.CCP2IE PIR2bits.CCP2IF 

A/D converter interrupt IPR1bits.ADIP PIE1bits.ADIE PIR1bits.ADIF 

USART receive interrupt IPR1bits.RCIP PIE1bits.RCIE PIR1bits.RCIF 

USART transmit interrupt IPR1bits.TXIP PIE1bits.TXIE PIR1bits.TXIF 

Synchronous serial port int. IPR1bits.SSPIP PIE1bits.SSPIE PIR1bits.SSPIF 

I2C bus collision interrupt IPR2bits.BCLIP PIE2bits.BCLIE PIR2bits.BCLIF 

Parallel slave port int. IPR1bits.PSPIP PIE1bits.PSPIE PIR1bits.PSPIF 

High/low-voltage detect int. IPR2bits.HLVDIP PIE2bits.HLVDIE PIR2bits.HLVDIF 

Oscillator failure int. IPR2bits.OSCFIP PIE2bits.OSCFIE PIR2bits.OSCFIF 

Comparator interrupt IPR2bits.CMIP PIE2bits.CMIE PIR2bits.CMIF 

Data EEPROM write done int. IPR2bits.EEIF PIE2bits.EEIE PIR2bits.EEIF 

* INT0 can only be used as a high-priority interrupt

   INT0 input is shared with RB0 pin
   INT1 input is shared with RB1 pin
   INT2 input is shared with RB2 pin

   Initialize TRISB bits with -  1s for interrupt or digital inputs
                              -  0s for digital outputs or unused pins

(a) Initialization of PORTB pins as inputs or outputs

   RCONbits.IPEN = 1;           // Enable high/low priority mechanism
   INTCONbits.GIEL = 1;         // Globally enable low-priority interrupts
   INTCONbits.GIEH = 1;         // Globally enable high-priority interrupts

(b) Global interrupt initialization

FIGURE 12-5 External interrupts



   INTCON2bits.INTEDG0 = 1;     // Sense rising (1) or falling (0) edge
   INTCONbits.INT0IE = 1;       // Local enable for INT0 interrupts
   INTCONbits.INT0IF = 0;       // Clear flag initially, test flag subsequently

(c) INT0 interrupt initialization (high priority only)

   INTCON2bits.INTEDG1 = 1;     // Sense rising (1) or falling (0) edge
   INTCON3bits.INT1IP = 1;      // High (1) or low (0) priority selection
   INTCON3bits.INT1IE = 1;      // Local enable for INT0 interrupts
   INTCON3bits.INT1IF = 0;      // Clear flag initially, test flag subsequently

(d) INT1 interrupt initialization

   INTCON2bits.INTEDG2 = 1;     // Sense rising (1) or falling (0) edge
   INTCON3bits.INT2IP = 1;      // High (1) or low (0) priority selection
   INTCON3bits.INT2IE = 1;      // Local enable for INT0 interrupts
   INTCON3bits.INT21IF = 0;     // Clear flag initially, test flag subsequently

(e) INT2 interrupt initialization

FIGURE 12-5 (continued)

12.8 PORTB-CHANGE INTERRUPTS

If either RB4 or RB5 is set up as an input, a low-to-high change or a high-to-low 
change on that input will set the RBIF flag of Figure 12-4. This flag setting can be 
used to generate an interrupt to the CPU if the chip is awake at the time of the change. 
Alternatively, it can be used to awaken the chip and begin execution with the next 
instruction after the Sleep macro.

When PORTB is read, the value read for either of these two pins set up as an 
input will be copied into an internal (i.e., inaccessible) flip-flop. It is the subsequent 
mismatch between an input pin and the internal copy that sets RBIF. Once set, RBIF 
remains set, even if the input pin changes back to match the internal flip-flop. A two-
step process is used to reset the RBIF flag:

1. Read PORTB so that the internal flip-flop matches the state of the input pin. 
A write to PORTB for which the bit “written” to the input pin on RB4 or RB5 
matches the internal flip-flop will also satisfy this first step. 

2. Once the state of the input pin matches the state of the internal flip-flop, then

INTCONbits.RBIF = 0;

 will clear the flag.
If both RB4 and RB5 are set up as inputs, there may be an ambiguity concerning 
which input changed, setting RBIF. A narrow 0 → 1 → 0 or 1 → 0 → 1 pulse that 
is shorter than the response time to a resulting interrupt will have trouble identifying 
which pin caused the interrupt (if that matters).
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Normally, RB6 and RB7 can be set up as inputs to serve as two more interrupt-on-
change pins. However, with QwikBug installed, RB6 and RB7 are taken over by the 
chip’s debug mode, features of which are used by QwikBug.

PROBLEMS

12-1  Measure HiPriISR of Figure 12-1c Modify the Measure.c program of 
Chapter Six to determine how long the CPU digresses from its execution 
of the main loop code to deal with the HiPriISR of Figure 12-1c. Your pro-
gram should never stop. Rather, it should loop with timing such that one 
(but not more than one) interrupt is as likely as not to occur during each pass 
around the loop. Your main loop code should look like that of Figure 12-1a, 
but with the setting of RC2 replaced by the Start Function and the clearing 
of RC2 replaced by the Stop and Send functions. Modify the duration of the 
Delay macros to obtain an interrupt between Start and Stop as often as not.

12-2  Measure HiPriISR of Figure 12-1d Repeat the procedure of Problem 12-1 
for the HiPriISR of Figure 12-1d.  

12-3  Determining what affects execution time of HiPriISR Modify the code 
and measurement of Problem 12-2 by introducing a new char variable, 
NUMBER, that is multiplied by five: 

 a) Only in the Initial function.

 b) Only in the main loop, but not between Start and Stop.

 c) Only in the HiPriISR before it calls Timer3Handler.

 d) Only in Timer3Handler.

 Consider the measurement result in each case, compared with the measure-
ment result for Problem 12-2 and explain any difference and what must be 
happening. Note that the multiply instruction employs the CPU registers 
PRODH and PRODL.
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13.1 OVERVIEW

Chapter Eleven explored various timing measurements with the help of an oscil-
loscope. This chapter will use Timer0 and Timer1 to calibrate FCPU, the nominal 
1-MHz clock, against the 50 parts per million, 32,768-Hz Timer1 oscillator. Incre-
menting/decrementing the OSCTUNE register can then bring the actual value of 
FCPU close to 1 MHz. Alternatively, any time interval measurement can be scaled 
from timer counts to microseconds using a previously determined calibration 
factor.

Either of the MCU’s two CCP (capture, compare, PWM) modules can be used 
in conjunction with Timer3 to measure the duration of a pulse input to a CCP pin. 
Because the duration is measured as the number of CPU cycles occurring between the 
leading and trailing edges of the pulse, the time of each edge has the 1-µs resolution of 
the CPU clock. The duration can be calibrated as it is converted from CPU cycles to 
microseconds.

For measuring the execution time of an algorithm, it is the cycle count that 
provides the definitive measure, not the microseconds. The Start, Stop, and Send 
functions first used in Chapter Six are developed at the end of this chapter.

TIMING 
MEASUREMENTS 
REVISITED 
(CALIBRATE.c)

Chapter 
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13.2 TIMER0 OPERATION

Timer0 is a 16-bit counter. Its use raises several issues that will be addressed in this 
section. Then it will be used in the next section to help calibrate FOSC.

Timer0’s operation as a 16-bit counter of FCPU cycles is shown in Figure 13-1. The 
upper byte of the counter is buffered with the TMR0H register shown. Thus, a read of 
TMR0H does not read the upper byte of the counter itself, but rather the content of the 
upper byte of the counter at the instant that TMR0L was last read. This feature simpli-
fies the reliable reading of Timer0 without first stopping its clocking by clearing the 
TMR0ON bit. Even if TMR0L rolls over from 255 to 0 between the read of TMR0L 
and a subsequent read of TMR0H, the 16-bit value read will be the value that was in 
the counter at the moment TMR0L was read.

In like manner, the content of Timer0 can be updated reliably even as the counter 
continues to count. First, TMR0H is loaded. Then, when TMR0L is written to, the 
2 bytes of the counter itself are loaded simultaneously.

While buffering of the upper byte is mandatory for Timer0, it is an option for 
Timer1 and Timer3. If the timer is first stopped and then either read or loaded, the 
buffering does not help, and can actually get in the way. (For this reason, buffering for 
Timer1 and Timer3 was not used in Chapter Seven.)

Consider the addition of a 16-bit number, NUMH:NUML, to Timer0. The follow-
ing code might be used:

TEMPL = TMR0L + NUML;  // Read 16-bit counter and add

TEMPH = TMR0H + (NUMH + STATUSbits.C);  // Add with carry

TMR0H = TEMPH;   // Load TMR0H buffer

TMR0L = TEMPL;   // Update 16-bit counter

Note that the read of the 16-bit counter takes place during the read of TMR0L in the 
first line. The write back into the 16-bit counter takes place during the write to TMR0L 
in the fourth line. Thus, the addition of NUMH:NUML into TMR0H:TMR0L while 
it continues to run, will result in somewhat less of a change in TMR0H:TMR0L than 
the number of counts in NUMH:NUML. For example, adding 0x0000 sets the coun-
ter back to what was in it when it was read with the first line of the code sequence 
listed above.

The use of Timer0 in the next section will actually start and stop the counter. Nev-
ertheless, the buffering with TMR0H makes it imperative that the bytes be read (or 
written to) in the order dictated by Figure 13-1.

Before leaving this section, consider the Timer0 use shown in Figure 13-2. With 
T0CON initialized as shown, Timer0 is incremented by each rising edge into the 
Qwik&Low board’s uncommitted RA4/T0CKI pin. The synchronizer assumes the 
edges of the input waveform occur at a slower rate than FOSC. The synchronizer delays 
each input edge until the time in each CPU cycle when the circuit of Figure 13-1 incre-
ments the counter. Because of this, TMR0L can be read, or written to, by the CPU 
reliably.
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Timer0 also includes a prescaler option (not shown in either figure) for dividing 
the counter input edges by any multiple of 2 from 2 to 256. For information on this (or 
any) option, refer to the data manual on the www.microchip.com web site.

13.3 INTERNAL OSCILLATOR CALIBRATION

To make accurate timing measurements, the CPU clock can be calibrated against the 
50-ppm-accurate Timer1 oscillator. This calibration can be done at startup. If it is 
done again, either periodically or in response to temperature change, this calibration 
can compensate for any subsequent drift in the internal oscillator frequency.

The calibration procedure counts 256 increments of the Timer1 oscillator while 
at the same time counting Timer0 from zero as it is clocked by the CPU’s (nominal) 
1-MHz clock. This time interval is

256 × (1,000,000/32,768) = 7,812.5 µs

The count will be formed in an unsigned int variable, CALIB. A subsequent time inter-
val measurement formed in the unsigned int variable, TIME, can be converted from 
counts to microseconds with the calculation

 TIME = (TIME × 7,812)/CALIB (13-1)

Alternatively, if CALIB is less than 7,812, the internal oscillator is slow. It can be 
speeded up by incrementing the OSCTUNE register, as indicated in Figure 13-3. 
Successive increments or decrements of OSCTUNE to minimize the deviation from 
7,812 may make the value of a TIME measurement sufficiently accurate for a specific 
purpose without resorting to Equation 13-1.

The calibration strategy suggested in this section makes use of the revised organi-
zation of program code shown in Figure 13-4. A calibration supervisor function, Cal-
Sup1, is inserted at the beginning of the main loop and another, CalSup2, is inserted 
at the end, just before the call of LoopTime. A state variable, CAL, lets each of these 

Maximum frequency

Power-on default center frequency

Minimum frequency

Unimplemented bit

31.25 kHz source (see Figure 2-3)

OSCTUNE
0 −
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0
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•
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•
•

FIGURE 13-3 Tuning the internal 
oscillator
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two functions know where they are in the calibration process, from one loop to the 
next. Normally, CAL = 0 and neither function does anything more than just return. 
When Initial, or subsequently a main loop task, wants to initiate a calibration, it sets 
CAL = 1 (“Ready”). Figure 13-5 shows how the subsequent calibration sequence 
plays out. When CalSup1 is next called (with CAL = 1), it stops and resets Timer0 to 
zero. It stops Timer1 and reloads it with 0xFFFE, clears its overflow flag, and enables 
its counting of the slow 32,768-Hz Timer1 clock again (having not missed a clock 
edge). When Timer1 has progressed two more counts and rolls over, Timer0 is started 
(“Go”). TMR1H is reloaded with 0xFF and its overflow flag is cleared. Then CAL is 
set to 2 so that the CalSup2 function will be there waiting for the rollover of Timer1 
after exactly 256 clock edges from the Timer1 oscillator.

After the main loop tasks have been completed for this pass around the loop, Cal-
Sup2 is called. It sees CAL = 2 and takes charge of the calibration process. Instead 
of the chip returning to sleep immediately, CalSup2 waits for TMR1IF to be set, at 
which time, Timer0 is stopped. Meanwhile, Timer1 is 2 + 256 counts on its way to 
the 328 counts that define the 10-ms loop time. So Timer1 is stopped, 0xBA is added 
to TMR1L, Timer1 is started again, and TMR1H is reloaded with 0xFF so that the 
next Timer1 overflow will occur 10 ms from the beginning of the loop, analogous to 

Power
on

CalSup1

CalSup2

Main loop tasks

LoopTime

Initial sets
CAL = 1 to

initiate calibration

FIGURE 13-4 Reorganizing main loop for 
calibrating Fosc
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what is done by the LoPriISR of T3.c in Figure 7-6. Timer0 is read and used to form 
an unsigned int variable, CALIB, with

CAL1BL = TMR0L;   // Read in correct sequence

CALIBH = TMR0H;   // into unsigned int variables

CALIB = (CALIBH << 8) + CALIBL;  // Form CALIB = CALIBH:CALIBL

Finally, CAL is set to 3 and the TMR1IF flag is reset. On returning from the CalSup2 
function, the CPU calls the LoopTime function and returns to sleep for the remainder 
of the 10-ms loop time, as shown in Figure 13-5. On the next pass around the main 
loop, CalSup2 converts CALIB to its four-digit ASCII representation and sends it to 
the PC for display.

The Calibrate.c file of Figure 13-6 illustrates the entire process. A PBcalibrate 
function is included that increments Figure 13-3’s OSCTUNE each time the pushbut-
ton is pushed. With OSCTUNE initialized to 0b00011111, the first press will produce 
the power-on default center frequency.

/******* Calibrate.c ***********
 *
 * Use Fosc = 4 MHz for Fcpu = Fosc/4 = 1 MHz.
 * Calibrate Fosc each time that the pushbutton is pressed, starting with
 * the nominal value and incrementing OSCTUNE with each subsequent press.
 * Display CALIB on PC.  CALIB = 7812 if Fosc/4 = 1 MHz exactly.
 * Use Timer1 to set loop time to 10 ms.
 * Blink LED on RD4 for 10 ms every 2.5 seconds.
 *
 ******* Program hierarchy *****
 *
 * main
 *    Initial
 *    InitTX
 *    CalSup1
 *    CalSup2
 *    BlinkAlive
 *    PBcalibrate
 *    LoopTime
 *
 *******************************
 */

#include <p18f4321.h>           // Define PIC18LF4321 registers and bits

/*******************************
 * Configuration selections
 *******************************
 */

#pragma config OSC = INTIO1     // Use internal osc, RA6=Fosc/4, RA7=I/O
#pragma config PWRT = ON        // Enable power-up delay

FIGURE 13-6 Calibrate.c
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#pragma config LVP = OFF        // Disable low-voltage programming
#pragma config WDT = OFF        // Disable watchdog timer initially
#pragma config WDTPS = 4        // 16 millisecond WDT timeout period, nominal
#pragma config MCLRE = ON       // Enable master clear pin
#pragma config PBADEN = DIG     // PORTB<4:0> = digital
#pragma config CCP2MX = RB3     // Connect CCP2 internally to RB3 pin
#pragma config BOR = SOFT       // Brown-out reset controlled by software
#pragma config BORV = 3         // Brown-out voltage set for 2.0V, nominal
#pragma config LPT1OSC = OFF    // Deselect low-power Timer1 oscillator

/*******************************
 * Global variables
 *******************************
 */
unsigned char ALIVECNT;         // Scale-of-400 counter for blinking "Alive" LED
signed char i;                  // Index into strings
unsigned int DELAY;             // Sixteen-bit counter used by Delay macro
unsigned int TIMEL;             // Int version of TMR0L
unsigned int TIMEH;             // Int version of TMR0H
unsigned int CALIB;             // Calibration constant
unsigned char CAL;              // Calibration state variable
char OLDPB;                     // Old pushbutton state
char NEWPB;                     // New pushbutton state
char PCSTRING[] = "xxxx";       // String to represent 0 - 9999 value

/*******************************
 * Function prototypes
 *******************************
 */

void Initial(void);
void InitTX(void);
void BlinkAlive(void);
void CalSup1(void);
void CalSup2(void);
void PBcalibrate(void);
void LoopTime(void);

/*******************************
 * Macros
 *******************************
 */
#define Delay(x) DELAY = x; while(--DELAY){ Nop(); Nop(); }
#define TXascii(in)  TXREG = in; while(!TXSTAbits.TRMT)

/////// Main program //////////////////////////////////////////////////////////

/*******************************
 * main
 *******************************
 */

FIGURE 13-6 (continued)
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void main()
{
   Initial();                   // Initialize everything
   InitTX();                    // Initialize UART's TX output
   while (1)
   {
      CalSup1();                // First part of calibration supervisor
      PORTCbits.RC2 ^= 1;       // Toggle for looptime
      BlinkAlive();             // Blink "Alive" LED
      PBcalibrate();            // Calibrate each time Pushbutton is pressed
      Delay(600);               // Pause
      CalSup2();
      LoopTime();               // Sleep, letting watchdog timer wake up chip
   }
}
/*******************************
 * Initial
 *
 * This function performs all initializations of variables and registers.
 *******************************
 */

void Initial()
{
   OSCCON = 0b01100010;         // Use Fosc = 4 MHz (Fcpu = 1 MHz)
   ADCON1 = 0b00001011;         // RA0,RA1,RA2,RA3 pins analog; others digital
   TRISA = 0b00001111;          // Set I/O for PORTA
   TRISB = 0b01000100;          // Set I/O for PORTB
   TRISC = 0b10000000;          // Set I/O for PORTC
   TRISD = 0b10000000;          // Set I/O for PORTD
   TRISE = 0b00000010;          // Set I/O for PORTE
   PORTA = 0;                   // Set initial state for all outputs low
   PORTB = 0;
   PORTC = 0;
   PORTD = 0b00100000;          // except RD5 that drives LCD interrupt
   PORTE = 0;
   Delay(50000);                // Pause for half a second
   RCONbits.SBOREN = 0;         // Now disable brown-out reset
   ALIVECNT = 247;              // Blink immediately
   OLDPB = 0;                   // Initialize pushbutton flags
   NEWPB = 0;
   CAL =0;                      // Calibration state variable - do nothing yet
   OSCTUNE = 0b00011111;        // CALIB = default value after first PB push
   PIE1bits.TMR1IE = 1;         // Enable local interrupt source
   TMR1H = 0xFF;                // Initial value
   TMR1L = 0x00;                //
   T1CON = 0b01001111;          // Timer1 runs from 32768 Hz oscillator
   PIR1bits.TMR1IF = 0;         // Clear Timer1 flag
   INTCONbits.GIEL = 1;         // Enable wake-up from sleep
}

FIGURE 13-6 (continued)



/*******************************
 * InitTX
 *
 * This function initializes the UART for its TX output function.  It assumes
 * Fosc = 4 MHz.  For a different oscillator frequency, use Figure 6-3c to
 * change BRGH and SPBRG appropriately.
 *******************************
 */

void InitTX()
{
    RCSTA = 0b10010000;         // Enable UART
    TXSTA = 0b00100000;         // Enable TX
    SPBRG = 12;                 // Set baud rate
    BAUDCON = 0b00111000;       // Invert TX output
}

/*******************************
 * BlinkAlive
 *
 * This function briefly blinks the LED every four seconds.
 * With a looptime of about 10 ms, count 250 looptimes.
 *******************************
 */

void BlinkAlive()
{
   PORTDbits.RD4 = 0;           // Turn off LED
   if (++ALIVECNT == 250)       // Increment counter and return if not 250
   {
      ALIVECNT = 0;             // Reset ALIVECNT
      PORTDbits.RD4 = 1;        // Turn on LED for one looptime
   }
}

/*******************************
 * PBcalibrate
 *
 * Calibrate each time pushbutton is pressed with an increase calibration value
 *******************************
 */
void PBcalibrate()
{
   PORTEbits.RE0 = 1;           // Power up the pushbutton
   Nop();                       // Delay one microsecond before checking it
   NEWPB = !PORTDbits.RD7;      // Set flag if pushbutton is pressed
   PORTEbits.RE0 = 0;           // Power down the pushbutton
   if (!OLDPB && NEWPB)         // Look for last time = 0, now = 1
   {
      CAL = 1;                  // Initiate a calibration sequence

FIGURE 13-6 (continued)
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      ++OSCTUNE;                // Increment calibration value
   }
   OLDPB = NEWPB;               // Save present pushbutton state
}

/*******************************
 * CalSup1
 *
 * First part of calibration supervisor.
 *
 *******************************
 */
void CalSup1()
{
   if (CAL == 1)
   {
      T0CON = 0b00001000;       // Timer0 stopped
      TMR0H = 0;                // Timer0 = 0
      TMR0L = 0;
      T1CON = 0b01001110;       // Stop Timer1
      TMR1H = 0xFF;             // Wait for exact rollover
      TMR1L = 0xFE;
      PIR1bits.TMR1IF = 0;      // Clear flag
      T1CONbits.TMR1ON = 1;     // Start Timer1 again
      while (!PIR1bits.TMR1IF); // and wait for it to set again
      T0CONbits.TMR0ON = 1;     // Start Timer0
      TMR1H = 0xFF;             // Next overflow in 256 counts of Timer1
      PIR1bits.TMR1IF = 0;      // Clear flag (if not already cleared)
      CAL = 2;
   }
}

 /*******************************
 * CalSup2
 *
 * Second part of calibration supervisor.
 *
 *******************************
 */
void CalSup2()
{
   if (CAL == 2)                // Collect measurement
   {
      while (!PIR1bits.TMR1IF); // Wait for Timer1 to roll over and set flag
      T0CONbits.TMR0ON = 0;     // Stop Timer0
      T1CONbits.TMR1ON = 0;     // Pause Timer1 counter
      TMR1L += 0xBB;            // Cut out remaining counts of Timer1
      T1CONbits.TMR1ON = 1;     // Resume Timer1 counter
      TMR1H = 0xFF;             // Upper byte of Timer1 will be 0xFF
      PIR1bits.TMR1IF = 0;      // Clear interrupt flag
      TIMEL = TMR0L;            // Read Timer0 in correct sequence

FIGURE 13-6 (continued)



      TIMEH = TMR0H;
      CALIB = (TIMEH << 8) +TIMEL;  // Form calibration factor
      CAL = 3;                  // Done with calibration sequence
   }
   else if (CAL == 3)           // Display result
   {
      for (i = 3; i >= 0; --i)  // Form digits and display on PC
      {
         PCSTRING[i] = (CALIB % 10) + 0x30;
         CALIB = CALIB / 10;
      }
      for (i = 0; i <= 3; ++i)
      {
         TXascii(PCSTRING[i]);
      }
      TXascii(0x0D);            // Carriage return
      TXascii(0x0A);            // Line feed
      CAL = 0;
   }
}

/*******************************
 * LoopTime
 *
 * This function puts the chip to sleep, to be awakened by Timer1 rollover.
 *******************************
 */
void LoopTime()
{
   Sleep();
   Nop();
   T1CONbits.TMR1ON = 0;        // Pause Timer1 counter
   TMR1L += 0xB9;               // Cut out all but 328 counts of Timer1
   T1CONbits.TMR1ON = 1;        // Resume Timer1 counter
   TMR1H = 0xFE;                // Upper byte of Timer1 will be 0xFE
   PIR1bits.TMR1IF = 0;         // Clear interrupt flag
}

FIGURE 13-6 (continued)

13.4 EXTERNAL TIME MEASUREMENT

The PIC18LF4321 has two CCP (capture, compare, PWM) modules that can be set 
up in a variety of ways to enhance the functionality of the chip’s timers. Consider 
the circuit of Figure 13-7. Either the CCP1 input or the CCP2 input can be used 
to measure the duration of an input pulse. For example, if the CCP1 input is used, 
then CCP1CON is initialized to 0b00000101, as shown, and the CCP1IF flag is 
cleared. When the flag is set by the reception of a rising edge, CCPR1 is copied to an 
unsigned int LEADINGEDGE variable, the CCP1M0 edge-select bit is cleared, and 
the CCP1IF flag is cleared. When this flag is set again (while the chip remains awake, 
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to continue clocking TMR3), CCPR1 is copied to an unsigned int TRAILINGEDGE 
variable. Then

TIME = TRAILINGEDGE − LEADINGEDGE;

Note that with all three variables being declared to be unsigned integers, the difference 
will be correct even if Timer3 rolls over between the leading edge capture and the trail-
ing edge capture. For example, the hex subtraction

0002 − FFFF

produces a difference of 0003 (plus a borrow that is lost to the 16-bit unsigned result).
This capture mode determination of an input pulse width produces a timing reso-

lution of 1 µs for each edge. However, it is important to read the captured time before 
the same edge occurs again and overwrites the previously captured time. Because the 
flag bits can be set up to interrupt the CPU, the CPU can actually be undertaking other 
tasks while the measurement is under way. However, the CPU cannot be allowed to 
sleep during the measurement because that will stop the 1-MHz clocking of Timer3.

13.5 START, STOP, AND SEND FUNCTIONS

An opportunity afforded by the serial test port and its connection to the PC is its 
availability for displaying the number of CPU clock cycles required to execute a 
function or code segment. The tools needed are the Start, Stop and Send functions, 
already used by the Measure.c program of Figure 6-9. These functions are being 
explained here based on the present understanding of Time0’s use in the configura-
tion of Figure 13-1. 

• Start – This function initializes Timer0 for counting CPU cycles, clears Timer0, 
and then starts the clocking of Timer0 with the 1-MHz CPU clock. 

• Stop – This function stops the counting of Timer0 and forms the number of CPU 
cycles occurring between Start and Stop in the unsigned int variable, CYCLES.

• Send – This function converts CYCLES to its decimal representation as a num-
ber ranging from 0 to 9,999 CPU cycles, expressed as four ASCII-coded digits 
and sends the resulting number to QwikBug’s Console display on the PC. 

The three functions are listed in Figure 13-8.

PROBLEMS

13-1  Adding into Timer0 A user, unaware of the buffering of TMR0H shown in 
Figure 13-1, might make the mistake of adding NUMH:NUML to TMR0H:
TMR0L with

TMR0L += NUML;

TMR0H += (NUMH + STATUSbits.C);

  What would be the result?
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/*******************************
 * Start
 *
 * This function clears Timer0 and then starts it counting.
 *******************************
 */
void Start()
{
   T0CON = 0b00001000;     // Set up Timer0 to count CPU clock cycles
   TMR0H = 0;              // Clear Timer0
   TMR0L = 0;
   T0CONbits.TMR0ON = 1;   // Start counting
}

(a) Start function.

/*******************************
 * Stop
 *
 * This function stops counting Timer0, and reads the result into CYCLES.
 *******************************
 */
void Stop()
{
   T0CONbits.TMR0ON = 0;   // Stop counting
   CYCLES = TMR0L;         // Form CYCLES from TMR0H:TMR0L
   CYCLES += (TMR0H * 256);
   CYCLES -= 3;            // Remove 3 counts so back-to-back Start-Stop
}                          // functions produce CYCLES = 0

(b) Stop function.

/*******************************
 * Send
 *
 * This function converts CYCLES to four ASCII-coded digits and sends
 * the result to the PC for display.
 *******************************
 */
void Send()
{
   BIGNUM = CYCLES;        // Load ASCII4's input parameter
   ASCII4();               // Convert
   TXascii('\r');          // Send carriage return
   TXascii('\n');          // Send line feed
   TXascii(THOUSANDS);     // Send four-digit number
   TXascii(HUNDREDS);
   TXascii(TENS);
   TXascii(ONES);
}

(c) Send function.

FIGURE 13-8 Start, Stop, and Send functions



13-2  Clock-edge synchronization A look at the .lst file of some code that 
employs the Start and Stop functions of Figure 13-8 shows that a two-cycle 
subroutine return instruction follows the setting of the TMR0ON bit at the 
end of the Start function. A two-cycle subroutine call instruction is executed 
before the TMR0ON bit is cleared at the beginning of the Stop function. 
Noting that the setting of a port pin immediately followed by the clearing 
of the pin produces a 1-µs pulse, so the setting of TMR0ON immediately 
followed by the clearing of TMR0ON ought to produce a count of one in 
the previously cleared Timer0 counter. Consequently, the back-to-back calls 
of the Start and Stop functions of Figure 13-8 ought to produce a count of 
2 + 1 + 2 = 5 and require a correction of

CYCLES −= 5;

  not the

CYCLES −= 3;

  shown in the Stop function. The two-cycle difference occurs because of a 
clock synchronizer circuit. This circuit is shown in Figure 13-2 because of 
its important role in dealing with an unsynchronized clock input, T0CKI. 
Because it is a distraction, it has been left out of the simplified schematic 
of Figure 13-1. However, unlike the clock synchronizer associated with 
Timer1, it cannot be bypassed via the setting or clearing of a bit in a control 
register.

To verify the loss of the first two counts after TMR0ON is set, write a lit-
tle test program that clears TRM0H, clears TMR0L, sets TMR0ON, clears 
TMR0ON, and then displays TMR0L. Repeat this by inserting one Nop 
macro, then two Nop macros, and finally three Nop macros between the set-
ting and clearing of the TMR0ON bit. What is the result in each case, and 
how do you (now) explain it?

13-3  Oscillator calibration Run the Calibrate.c program.

 a)  What is the frequency increment corresponding to a single increment of 
the OSCTUNE register? 

 b)  What value of OSCTUNE will produce the integer value of CALIB that is 
closest to 7,812.5, the value corresponding exactly to FCPU = 1.0000 MHz? 

 c)  Form a new CalibrateX.c program that uses the RPG to increment or 
decrement the five frequency controlling bits of OSCTUNE. Use the 
pushbutton to determine a new value of CALIB. Display on the LCD 
both of these values, using the format

±D CCCC

    where ±D represents the signed frequency-setting number in OSCTUNE 
(i.e., −1, 0, +1, etc.) and

  CCCC represents the value of CALIB. Whenever the RPG is turned, 
blank CCCC until the pushbutton is next pressed.
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 d)  Use CalibrateX.c to tune the oscillator as close to 7,812 as possible. Then, 
without changing the tuning, record CALIB immediately and 1 and 2 
min later. 

 e)  Create a CalibrateY.c program that, in contrast to CalibrateX.c, never 
sleeps. That is, modify the LoopTime function so that it just waits for 
Timer1 to roll over before reloading the value in Timer1. The intent is to 
then repeat Part (d) with the chip drawing an average current of about a 
milliampere. See whether any attendant heating within the chip affects 
the calibration. 

13-4  External Time Measurement The Display function that is used through-
out this book clears RD5, sends the nine ASCII-coded characters in LCD-
STRING to the LCD, and then sets RD5. Connect the TP10 test point (RD5) 
to the RC2/CCP1 pin on the H4 proto area header. Then write a little test 
program that uses the CCP1 circuit of Figure 13-7 to capture the number 
of CPU clock cycles between the falling edge and the rising edge. Send the 
resulting number to QwikBug for display in its Console window.

13-5  Start, Stop, and Send functions Repeat Problem 13-4 by modifying the 
Display function with the Start, Stop, and Send functions to make the same 
measurement by counting cycles from the instruction that clears RD5 at the 
beginning of Display to the instruction that sets RD5 at the end. Then dis-
play the result on the PC.
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14.1 OVERVIEW

The PIC18LF4321 contains 256 bytes of data EEPROM, hereafter referred to as 
EEPROM. This is nonvolatile memory that can be written to a byte at a time, the same 
as a RAM location. Reads from the EEPROM take just one CPU cycle, the same 
as RAM. In contrast to RAM, EEPROM’s nonvolatility means that its data will be 
retained even when power is removed from the chip and then subsequently restored. 
Also, unlike RAM, for which a write operation takes just one cycle, a write to a byte 
of EEPROM typically takes 4 ms, with the write operation being self-timed by the 
EEPROM module. This chapter describes EEPROM use.

14.2 EEPROM USE

Having nonvolatile memory available is an invaluable resource across the full spec-
trum of technical activity:

• Automotive: security system, digital radio, seat control, . . .

• Communication: cell phone personalization, answering machines, . . .

• Consumer: digital TV, monitors, home appliances, games, . . .

EEPROM (EETEST.c)

Chapter

14
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• Industrial: instruments, access cards, motor control, alarms, . . .

• Computer: motherboards, wireless optical mice, hard drives, . . .

Many applications require much more that the 256 bytes of EEPROM available in 
the PIC18LF4321, and instead typically use 1 Kbit–1 Mbit EEPROM parts hav-
ing a serial interface. Many other applications are served well by a small number of 
bytes. One example is the exposure calibration adjustment built into a digital camera. 
Another is channel selection information built into a TV remote. When an oscillo-
scope has the ability to retain and restore a complicated setup state, this indicates 
the presence of a small EEPROM. When a lawn sprinkler controller remembers its 
settings through a power glitch or a power outage, this points to a small EEPROM. 
When the Qwik&Low board powers up and retrieves the most recently determined 
clock calibration byte from EEPROM and loads it in the OSCTUNE register, this 
represents a use of the PIC18LF4321’s built-in EEPROM.

14.3 EEPROM REGISTERS AND FUNCTIONS

The 256 bytes of EEPROM on the PIC18LF4321 are accessed indirectly, by way of 
the registers listed in Figure 14-1. Reading a byte is carried out by writing the address 
to EEADR, setting the RD bit in the EECON1 register, and then reading the result 
from EEDATA. In contrast, writing is a safeguarded process, to reduce the chance 
of a runaway CPU overwriting important information. For example, as the chip is 
powering down with the brown-out reset module enabled, the CPU will go directly 
from executing code properly to being reset. On the other hand, if the brown-out reset 
module is not enabled, then as the chip is powering down, the CPU can find its pro-
gram counter bits being corrupted, leading to a jump to anywhere in the program 
memory and executing unintended code, including an EEPROM-write instruction 
sequence. Protecting this EEPROM-write instruction sequence will be addressed in 
Section 14.5.

For an application using the EEPROM memory, Figure 14-2a lists a line to be 
added to the Initial function. By clearing the upper 4 bits of EECON1, this line sets 
the destination of subsequent reads and writes to be the EEPROM memory module. 
Figure 14-2b lists a line to be added to the beginning of the main loop. Because each 
write lasts about 4 ms and because most of this time will usually be spent while the 
CPU has completed its other useful tasks and returned to sleep for the last of the 10-ms 
loop time, this line is executed well after the write of a byte has been completed. It dis-
ables any further write operations until a subsequent write sequence reenables it.

The EEread function of Figure 14-2c begins by testing the WR bit in the EECON1 
register to determine whether a write operation has already been initiated during this 
loop time. If so, it waits for that write operation to be completed before initiating 
the read operation. Of course, to minimize coin cell current, it is better to organize 
the program code within the main loop so that all EEPROM reads occur before any 
EEPROM writes take place. Given this, the chip can be asleep during most of the 
write operation. 



The EEwrite function of Figure 14-2d likewise begins with a test to see if a write is 
taking place. If so, it waits for the completion of the write before proceeding. Similar to 
the case of the EEread function, it is better to organize program code so that only one 
EEPROM write occurs during each pass around the main loop. The EEwrite function 
then enables the brown-out reset module. The module’s 34-µA current draw will con-
tinue for about 10 µs. The brown-out reset module will ensure that a powering-down 
CPU that may have inadvertently been led into code that called the EEwrite function 
will proceed no further.

Because the three-line sequence:

EECON2 = 0x55;               // Write first key

EECON2 = 0xAA;               // Write second key

EECON1bits.WR = 1;           // Set WR bit to initiate write

must be executed consecutively with no gaps in between, interrupts are suspended (if 
they were enabled) during the write operation. At the end of the function, both GIE 
and SBOREN are restored to their former state.

EECON1

RD

WR

WREN

WRERR

Setting RD initiates an EEPROM read.
The RD bit is automatically cleared.
The RD operation takes one CPU cycle.

Used by the 3-line sequence of Section 14.2 to
initiate a self-timed 4-millisecond write cycle.
The WR bit is automatically cleared when done.

1:  Enable writes 
0:  Disable writes

1:  A write operation is still going on (if WR = 1) 
     or was prematurely terminated by a reset
0:  A write operation was completed successfully.

Used in the write sequence

EECON2

EEADR

EEDATA

(8 bits)

(8 bits)

Data EEPROM
(256 bytes)

0 0 0 0

FIGURE 14-1 EEPROM registers
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EECON1 = 0;                      // Initialize module state  

(a) Addition to the Initial subroutine.

EECON1bits.WREN = 0;             // Disable further EEPROM writes

(b) Instruction to add to the beginning of the main loop, to disable WREN after 
any EEwrite during the previous loop.

/****************************
* EEread
*
* This function reads from the EEPROM address identified by EEADR
* into EEDATA.
****************************
*/
void EEread()
{
    while (EECON1bits.WR);        // Wait on the completion of any ongoing write
   EECON1bits.RD = 1;
}

(c) EEread function.

/****************************
* EEwrite
*
* This function writes the data contained in EEDATA into the EEPROM
* address identified by EEADR.
* The write is self-timed and takes about 4 milliseconds.
****************************
*/
void EEwrite()
{
    while (EECON1bits.WR);              // Complete any ongoing write
    SBORENCOPY = RCONbits.SBOREN = 1;   // Copy SBOREN for subsequent restore
   RCONbits.SBOREN = 1;                // Enable brown-out reset
    GIEHCOPY = INTCONbits.GIEH;         // Copy GIEH for subsequent restore
   INTCONbits.GIEH = 0;                // Disable all interrupts
   EECON1bits.WREN = 1;                // Enable write operation
   EECON2 = 0x55;                      // Write first key
   EECON2 = 0xAA;                      // Write second key
   EECON1bits.WR = 1;                  // Set WR bit to initiate write
   INTCONbits.GIEH = GIEHCOPY;         // Restore global interrupt state
   RCONbits.SBOREN = SBORENCOPY;       // Restore brown-out reset state
}

(d) EEwrite function.

FIGURE 14-2 EEPROM functions



14.4 MULTIPLE WRITE SEQUENCES

Quite often an update of data stored in EEPROM involves a sequence of writes. If 
the writes are destined for consecutive EEPROM addresses, the EEArrayWrite func-
tion of Figure 14-3 will serve. Before the function is called, the bytes are first writ-
ten into consecutive RAM addresses and RAMPTR is loaded with the first of these 
addresses. Then EEADDRESS is loaded with the first EEPROM destination address, 
and EECNT is loaded with the number of bytes to be copied. The EEArrayWrite func-
tion can be called every time around the main loop. It acts only if EECNT is nonzero. 
Its action is to copy 1 byte, decrement EECNT and return. When all bytes have been 
copied, EECNT will have been decremented to zero so that calls of EEArrayWrite 
during subsequent passes around the main loop do nothing until the RAM array, the 
two pointers and EECNT have been reloaded for a new multiple-byte write sequence.

The example code of Figure 14-4a implements the example listed in the header of 
Figure 14-3e to execute two writes to EEPROM addresses 0x20 and 0x21. It precedes 
these two writes with a write to EEPROM address 0x10. The logic analyzer capture 
of these three writes is shown in Figure 14-4b and expanded for the second write in 
Figure 14-4c. To help identify when each write takes place, RC2 is toggled and a 
1-ms delay is inserted. This delay keeps the chip awake and is reflected in the 1 ms 
of FOSC/4 clocking after each write. Figure 14-4d displays the resulting content of 
EEPROM as read by the PICkit 2 programmer.

14.5 PROTECTING THE WRITE SEQUENCE

The discussion associated with the EEwrite function of Figure 14-2 has already 
addressed the recurring problem of applications for which power is turned off as a 
matter of regular practice. By enabling the brown-out reset feature of the chip for 

(a) Registers

RAMPTRRAM EEADDRESS EEPROM

EECNT

•
•
•

•
•
•

FIGURE 14-3 EEArrayWrite functions
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char GIEHCOPY;                   // Copy of GIEH bit for EEPROM writes
char SBORENCOPY;                 // Copy of SBOREN bit for EEPROM writes
char* RAMPTR;                    // Pointer to RAM array to be copied to EEPROM
char TEMPARRAY[] = {'a','b','c','d'};  // Characters to copy
unsigned char EEADDRESS;         // Starting address in EEPROM
unsigned char EECNT;             // Number of bytes to copy

(b) Global variable additions.

void EEread(void);
void EEwrite(void);
void EEArrayWrite(void);

(c) Function prototype additions.

EECON1 = 0;                      // Initialize module state
RAMPTR = TEMPARRAY + 1;          // Experiment with EEPROM
EEADDRESS = 0x20;
EECNT = 2;                       // Set up for writes 2 and 3

(d) Additions for Initial function.

/****************************
 * EEArrayWrite
 *
 *  Each time this function is called with EECNT != 0, it writes one byte
 *  from the RAM char[] pointed by RAMPTR, into the EEPROM location whose
 *  address is in EEADDRESS. Then it increments RAMPTR and EEADDRESS and
 *  decrements EECNT. RAMPTR, EEADDRESS and EECNT should not be modified
 * by other code until EECNT is 0.
 * Variable declaration:
 *  char* RAMPTR;       unsigned char EEADDRESS;      unsigned char EECNT;
 * Example usage:
 *  char TEMPARRAY[] = {'a','b','c','d'};
 *  RAMPTR = TEMPARRAY + 1;
 *  EEADDRESS = 0x20;
 *  EECNT = 2;
 *  After 2 calls of EEArrayWrite, EECNT = 0;
 *   and EEPROM has 'b' and 'c' in address 0x20 and 0x21 respectively.
 ****************************
 */
void EEArrayWrite()
{
   if(EECNT && !EECON1bits.WR)
   {
      EEDATA = *(RAMPTR++);
      EEADR = EEADDRESS++;
      EEwrite();
      EECNT--;
   }
}

(e) Function.

FIGURE 14-3 (continued)



/******* EEtest.c **************
 *
 *  Test Alex's example. 
 *  Show EEwrites by awake times on scope (using Delay(100)).
 *
 ******* Program hierarchy *****
 *
 * main
 *  Initial
 *
 *******************************
 */

#include <p18f4321.h>            // Define PIC18LF4321 registers and bits

/*******************************
 * Configuration selections
 *******************************
 */

#pragma config OSC = INTIO1      // Use internal osc, RA6=Fosc/4, RA7=I/O
#pragma config PWRT = ON         // Enable power-up delay
#pragma config LVP = OFF         // Disable low-voltage programming
#pragma config WDT = OFF         // Disable watchdog timer initially
#pragma config WDTPS = 4         // 16 millisecond WDT timeout period, nominal
#pragma config MCLRE = ON        // Enable master clear pin
#pragma config PBADEN = DIG      // PORTB<4:0> = digital
#pragma config CCP2MX = RB3      // Connect CCP2 internally to RB3 pin
#pragma config BOR = SOFT        // Brown-out reset controlled by software
#pragma config BORV = 3          // Brown-out voltage set for 2.1V, nominal
#pragma config LPT1OSC = OFF     // Deselect low-power Timer1 oscillator

/*******************************
 * Global variables
 *******************************
 */
char GIEHCOPY;                   // Copy of GIEH bit for EEPROM writes
char SBORENCOPY;                 // Copy of SBOREN bit for EEPROM writes
char* RAMPTR;                    // Pointer to RAM array to be copied to EEPROM
char TEMPARRAY[] = {'a','b','c','d'};  // Characters to copy
unsigned char EEADDRESS;         // Starting address in EEPROM
unsigned char EECNT;             // Number of bytes to copy
unsigned int DELAY;              // Sixteen-bit counter for obtaining a delay

/*******************************
 * Function prototypes
 *******************************
 */

void Initial(void);
void EEread(void);

FIGURE 14-4 Multiple EEPROM writes
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void EEwrite(void);
void EEArrayWrite(void);

/*******************************
 * Macros
 *******************************
 */
#define Delay(x) DELAY = x; while(--DELAY){ Nop(); Nop(); }

/////// Main program ///////////////////////////////////////////////////////////

/*******************************
 * main
 *******************************
 */

void main()
{
   Initial();              // Initialize everything

   EEADR = 0x10;
   EEDATA = 0xAA;
   EEwrite();              // Do the first write              // Write 1

   while (1)
   {
      EECON1bits.WREN = 0; // Disable further EEPROM writes
      EEArrayWrite();      // Deal with EEPROM writes         // Writes 2 and 3
      Sleep();        // Sleep through writes to EEPROM  // Check this
      Nop();
   }
}

/*******************************
 * Initial
 *
 * This function performs all initializations of variables and registers.
 *******************************
 */
void Initial()
{
  OSCCON = 0b01100010;     // Use Fosc = 4 MHz (Fcpu = 1 MHz)
  SSPSTAT = 0b00000000;    // Set up SPI for output to LCD
  SSPCON1 = 0b00110000;
  ADCON1 = 0b00001011;      // RA0,RA1,RA2,RA3 pins analog; others digital
  TRISA = 0b00001111;      // Set I/O for PORTA
  TRISB = 0b01000100;      // Set I/O for PORTB
  TRISC = 0b10000000;      // Set I/O for PORTC
  TRISD = 0b10000000;      // Set I/O for PORTD
  TRISE = 0b00000010;      // Set I/O for PORTE
  PORTA = 0;               // Set initial state for all outputs low

FIGURE 14-4 (continued)



  PORTB = 0;
  PORTC = 0;
  PORTD = 0b00100000;            // except RD5 that drives LCD interrupt
  PORTE = 0;
  Delay(50000);                  // Pause for half a second
  RCONbits.SBOREN = 0;           // Now disable brown-out reset
  WDTCONbits.SWDTEN = 1;         // Enable watchdog timer

  EECON1 = 0;                    // Initialize module state
  RAMPTR = TEMPARRAY + 1;        // Experiment with EEPROM
  EEADDRESS = 0x20;
  EECNT = 2;                     // Set up for writes 2 and 3
}

/****************************
 * EEArrayWrite
 *
 * Each time this function is called with EECNT != 0, it writes one byte
 * from the RAM char[] pointed by RAMPTR, into the EEPROM location whose
 * address is in EEADDRESS. Then it increments RAMPTR and EEADDRESS and
 * decrements EECNT. RAMPTR, EEADDRESS and EECNT should not be modified
 * by other code until EECNT is 0.
 * Variable declaration:
 * char* RAMPTR;   unsigned char EEADDRESS;  unsigned char EECNT;
 * Example usage:
 *  char TEMPARRAY[] = {'a','b','c','d'};
 *  RAMPTR = TEMPARRAY + 1;
 *  EEADDRESS = 0x20;
 *  EECNT = 2;
 *  After 2 calls of EEArrayWrite, EECNT = 0;
 *  and EEPROM has 'b' and 'c' in address 0x20 and 0x21 respectively.
 ****************************
 */
void EEArrayWrite()
{
   if(EECNT && !EECON1bits.WR)   // Skip to next loop time for second write
   {
      EEDATA = *(RAMPTR++);
      EEADR = EEADDRESS++;
      EEwrite();
      EECNT--;
   }
}

/****************************
 * EEread
 *
 * This function reads from the EEPROM address identified by EEADR
 * into EEDATA.
 ****************************
 */

FIGURE 14-4 (continued)
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void EEread()
{
   while (EECON1bits.WR);               // Wait on the completion of any write
   EECON1bits.RD = 1;                   // Read from EEADR into EEDATA
}

/****************************
 * EEwrite
 *
 * This function writes the data contained in EEDATA into the EEPROM
 * address identified by EEADR.
 * The write is self-timed and takes about 4 milliseconds.
 ****************************
 */
void EEwrite()
{
   while (EECON1bits.WR);               // Wait on the completion of any write
   SBORENCOPY = RCONbits.SBOREN;        // Copy SBOREN for subsequent restore
   RCONbits.SBOREN = 1;                 // Enable brown-out reset
   GIEHCOPY = INTCONbits.GIEH;          // Copy GIEH for subsequent restore
   INTCONbits.GIEH = 0;                 // Disable all interrupts
   EECON1bits.WREN = 1;                 // Enable write operation
   EECON2 = 0x55;                       // Write first key
   EECON2 = 0xAA;                       // Write second key
   EECON1bits.WR = 1;                   // Set WR bit to initiate write
   INTCONbits.GIEH = GIEHCOPY;          // Restore global interrupt state
   RCONbits.SBOREN = SBORENCOPY;        // Restore brown-out reset state

   PORTCbits.RC2 ^= 1;                  // Toggle pin to flag where write occurs
   Delay(100);                          // Add a delay to show sleep after 1 ms
}

(a) EEtest.c

FIGURE 14-4 (continued)

(b) Three writes + 1 ms markers
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the duration of the write sequence, a powering-down of the chip that is already in 
progress and has reached the point where VDD is below 2 V will reset the chip. The 
out-of-range value of VDD may have produced a transmutation of a bit in the program 
counter that was following a path to the call and execution of the EEwrite function. 
However, when the CPU executed the brown-out reset enable instruction, the CPU’s 
execution of further instructions was stopped dead in its tracks.

Another type of concern arises when an application is subjected to a perturbation 
(e.g., the RF interference resulting from a lightning strike) that reaches all the way 
into the chip and toggles a bit of the program counter. This produces the same threat 
as that of the last section without any help from the solution offered there. 

As an example of a different approach, consider how QwikBug writes downloaded 
user code into the flash program memory using the WriteInitiateSequence function 
of Figure 14-5. The first line of the function tests a bit in an undocumented DEBUG 
register. When the chip is in the Background Debug Mode used by Microchip’s 
programming/debugging tools such as the PICkit 2 and also used by QwikBug, the 
INBUG bit is set. A perturbation of the program counter that produces an inadvertent 
write sequence can only be to the program memory address produced by the 

EECON2 = 0x55;             // Write first key

line. None other of the 8,192 addresses making up program memory will lead into 
the undesirable sequence. Even at that, the address pointer at that moment is pointing 

(c) Second write and its 1 ms marker 

(d) PICkit2 verification of the three writes 

FIGURE 14-4 (continued)
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into the user area of program memory, not into the area that holds QwikBug. In this 
way, the QwikBug code is protected against corruption by the inadvertent execution 
of its own code by a user program.

A similar tack can be taken when an EEPROM write is initiated by an external 
event, the press of a pushbutton, for example. If the press is used to set a PRESS flag 
while the release is used to set a RELEASE flag, then a test of PRESS can be used to 
load up the registers used by the EEwrite function, and the following sequence used 
to initiate the write:

if (PRESS && RELEASE)
{
   EEwrite();
   PRESS = 0;
   RELEASE = 0;
}

14.6 EEPROM LIFE

The finite life of EEPROM bits is a factor of little consequence for most applica-
tions. Each write to an EEPROM byte is translated by the EEPROM module into an 
erase operation followed by the actual write operation. Each of the 256 addresses of 
EEPROM memory in the PIC18LF4321 is specified to be able to sustain a minimum 
of 100,000 erase per write cycles before an error may occur. This can be extended to 
1,000,000 erase per write cycles for any addresses that have not been written to in 
the last 100,000 writes to the module by refreshing them. Knowing the rate at which 
EEPROM writes are being carried out by a heavy duty EEPROM application, and 
knowing how long it has been since the last refresh cycle, provides the information 
needed to copy the content of each of the 256 addresses back to itself after every 
100,000 writes.

Another refresh scheme for an application that uses only n bytes of EEPROM 
is to use one of those bytes as a counter and increment it each time any of the 
other bytes is written to. When the counter reaches 100,000/2 = 50,000 (because 
each write is accompanied by a write to the counter), the next n bytes are used. 

WriteInitiateSequence()
{
   if (DEBUGbits.INBUG)
   {
      EECON2 = 0x55;             // Write first key
      EECON2 = 0xAA;             // Write second key
      EECON1bits.WR = 1;         // Set WR bit to initiate write
   }
}

FIGURE 14-5 QwikBug’s WriteInitiateSequence function.



For example, if only 50 bytes are used, the EEPROM memory can be divided into 
256/50 blocks:

            0–49
           50–99
          100–149
          150–199
          200–249

with six addresses left over. One of these last six (e.g., address 255) can serve as a 
block pointer to indicate which of the five blocks is the active block. Within each 
block, one address (e.g., 0 or 50 or 100 or 150 or 200) can serve as the counter of 
writes to the block. When the counter reaches 100,000, the 50 bytes are copied to the 
next block, the counter in the new block zeroed and the block pointer incremented. In 
this case, this scheme extends the life of the EEPROM module to

(100,000/2) × 10 × 5 = 2,500,000

erase per write cycles.
This section has been a detailed look at handling the finite EEPROM life issue 

that never even arises for most applications. For example, the EEPROM within the 
microcontroller within a camera may be written to a few times during its exposure 
calibration at the completion of its assembly and then never written to again. In this 
case, the EEPROM is invaluable to the application, but its erase per write endurance 
is not an issue. If the MCU in the camera were a PIC18LF4321, its more relevant spec 
is its minimum data retention of 40 years.

PROBLEMS

14-1  SendMicroSec function 

 a)  Modify the code developed for the CalibrateX.c program of Problem 
13-3 so that it stores the content of OSCTUNE into address 0xFD of 
EEPROM and the content of CALIB into 0xFE and 0xFF after each 
calibration carried out in response to a pushbutton press.

 b)  Create a new InitOSCTUNE function. This function first looks at the 
char value located at 0xFF. This should hold the upper byte of CALIB 
if the CalibrateY.c program has been run. If CALIB = 7,812 = 0x1E84, 
then this upper byte will be 0x1E. Test to see if this upper byte stored 
in EEPROM address 0xFF falls within the range 0x1C to 0x21. If not, 
send the word “Recalibrate” to the Qwik&Low Console. If so, copy the 
EEPROM value from 0xFD into OSCTUNE. If this InitOSCTUNE 
function is called toward the end of the Initial function of a user pro-
gram, that user program will be armed to produce calibrated microsec-
ond measurements in addition to cycle count measurements.
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 c)  Create a SendMicroSec function analogous to the Send function of 
Figure 13-8c. Use Equation 13-1 from Section 13.3 to convert CYCLES 
to BIGNUM.

 d)  Use the Delay macro to generate a 2,000 cycle pulse with Delay(200) 
that is immediately preceded by the call of the Start function and then 
the setting of RB0, and immediately followed by the clearing of RB0 
and then the call of the Stop function and the SendMicroSec function. 
Compare the pulse width on RB0 with the result that is displayed on the 
PC. Now comment out just the Delay macro and do this again. The dif-
ference between these two measurements is the result of exactly 2,000 
cycles of execution. How close is the resulting number of microseconds 
for the pulse width to the number calculated from the PC values?

 e)  If a “universal counter” is available to you, use its extraordinarily accu-
rate time interval and frequency measurement capability to check both 
the pulse width of RB0 and also the accuracy of FOSC/4, the CPU clock 
frequency, on test point TP6. Use this information to comment on the 
results found in Part (d).
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15.1 OVERVIEW

Dallas Semiconductor, now a part of Maxim Integrated Circuits, has a family of parts 
that employ a 1-wire interface. These parts fit well in the low-current environment of 
the Qwik&Low board, as exemplified by the Silicon Serial Number part of Figure 3-2. 
As shown there, one MCU pin is used to power the part. Another pin is used for bidi-
rectional communication between the MCU and the part, with the MCU controlling 
the timing of each bit, each byte, and each multiple-byte message transfer.

The chapter begins with the 1-wire protocol and its implementation by Alex Singh 
in the SSN.c template file to read back the unique 8-byte serial number from a DS2401 
Silicon Serial Number part. Then the broader issue of dealing with other 1-wire devices 
is discussed.

15.2 INTERFACE CIRCUITRY

The interface circuit of both a 1-wire part and the MCU is shown in Figure 15-1. The 
1-wire part has a true open-drain output that can pull the I/O line low by overriding the 
pull-up resistor. If its internal line labeled “Output” in Figure 15-1 is low, the MOSFET 

1-WIRE INTERFACE 
(SSN.c)

Chapter

15
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will pull the I/O line low. If  “Output” is high, the MOSFET is turned off and the I/O 
line will be pulled high by the pull-up resistor unless some other device (the MCU in 
this circuit) pulls the line low. Thus, the 1-wire chip:

• Drives its “Output” low to force a “0” on the I/O line.

• Drives its “Output” high to generate an (open-drain) output of “1”.

• Drives its “Output” high whenever it is expecting input data so that the MCU 
can control the I/O line.

• Draws “parasitic” power from the I/O line. The 1-wire protocol supports this 
by including at least a 180-µs “high” interval on the I/O line before ones and 
zeros are transferred. This interval is sufficient to charge the internal capacitor 
that keeps the internal logic supplied during a message transfer.

For its part, the MCU must simulate having an open-drain output with what is 
actually a totem-pole output; that is, an output driver with one MOSFET to pull the 
I/O line down to ground and another MOSFET to pull the I/O line up to VDD. It 
is this latter MOSFET that must never be turned on. This is achieved by treating the 
TRISD2 pin as the open-drain output. Thus, the MCU:

• Drives TRISD2 low (with RD2 low) to force a “0” on the I/O line.

• Drives TRISD2 high to generate an “open-drain” output of “1”.

• Drives TRISD2 high whenever it is expecting input data so that the 1-wire chip 
can control the I/O line.

MCU
RD3

(power-switching)

Input Input

1-wire chip
Parasitic power
for chip

Output

Output high = open drain out or input
Output low  = 0 V out

I/0 line

5 kΩ

RD2 = 0

TRISD2

TRISD2 high = open drain output 
 or input
TRISD2 low  = 0 V out

FIGURE 15-1 1-wire interface circuit



15.3 WRITING ONES AND ZEROS

The MCU controls the timing for each bit that it sends or receives. Consequently, 
input and output are treated somewhat differently. Figure 15-2a illustrates the timing 
to send a one by pulling the line low with

PORTDbits.RD2 = 0;

TRISDbits.TRISD2 = 0;

60 µs ≤    Tlow    ≤ Tslot  < 120 µs 
  1 µs ≤ Trecover < ∞

(a) Writing a one.

(b) Writing a zero.

I/O line

Tlow

Tslot

Trecover

Controlled by MCU

Controlled by pull-up resistor

Start of bit

Start of next bit

I/O line

Tlow

Tslot
Trecover

Controlled by MCU

Controlled by pull-up resistor

Start of bit

Start of next bit

1 µs ≤
≤
≤

Tlow ≤ 15 µs

60 µs Tslot <
<

120 µs

1 µs Trecover ∞

FIGURE 15-2 Writing ones and zeros
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and releasing it immediately with 

TRISDbits.TRISD2 = 1;

and then waiting out the Tslot time with

Delay(6);

For clarity in his SSN.c source file, Alex Singh represents the first two of these steps 
with macros:

OpenDrainLow;

and

OpenDrainHigh;

The code to send a one becomes

OpenDrainLow;

OpenDrainHigh:         // Send ONE

Delay(6);

and the code to send the zero shown in Figure 15-2b becomes

OpenDrainLow;

Delay(6);             // Send ZERO

OpenDrainHigh;

15.4 MESSAGE PROTOCOL

The protocol for a complete message between the MCU and the DS2401 Silicon Serial 
Number part is illustrated in Figure 15-3. If it begins with the I/O line powered down 
for longer than half a millisecond, the DS2401 will begin operation in its reset state, as 
required. More generally, for multiple 1-wire devices sharing a single 1-wire I/O bus, 
pulling the I/O line low for the half-millisecond Reset pulse shown in Figure 15-3 will 
force their interface circuitry to the reset state.

When the I/O line is released by the MCU, the DS2401 and any other 1-wire 
devices sharing the I/O line will pull the line low to signal their presence on the bus. 
The MPU can look for the line to be low 60 µs after it was released at the end of the 
reset pulse. This Presence pulse may last for up to 240 µs, but the MCU can continue 
with the next step of the protocol after a high recovery time of at least 180 µs.

All 1-wire devices expect the Presence pulse time slot to be followed by the reception 
from the MCU of a 1-byte command, sent LSb (least-significant-bit) first. The DS2401 
responds to the Read ROM command, coded as 0x33. It is sent out by the MCU with

BYTETOSEND = 0x33;

SendByte();
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/******* SSN.c *****************
 *
 * Read the DS2401 serial number and then sleep with RD3 high and RD2 = input
 * Use Fosc = 4 MHz for Fcpu = Fosc/4 = 1 MHz.
 * Developed by Alex Singh.
 *
 ******* Program hierarchy *****
 *
 * main
 *    Initial
 *    InitTX
 *    DS2401
 *       PresenceTest
 *       SendByte
 *       ReadByte
 *       SaveByte
 *       SendSSNSTRING
 *
 *******************************
 */

#include <p18f4321.h>           // Define PIC18LF4321 registers and bits

/*******************************
 * Configuration selections
 *******************************
 */
#pragma config OSC = INTIO1     // Use internal osc, RA6=Fosc/4, RA7=I/O
#pragma config PWRT = ON        // Enable power-up delay
#pragma config LVP = OFF        // Disable low-voltage programming
#pragma config WDT = OFF        // Disable watchdog timer initially
#pragma config MCLRE = ON       // Enable master clear pin
#pragma config PBADEN = DIG     // PORTB<4:0> = digital
#pragma config CCP2MX = RB3     // Connect CCP2 internally to RB3 pin
#pragma config BOR = SOFT       // Brown-out reset controlled by software
#pragma config BORV = 3         // Brown-out voltage set for 2.0V, nominal
#pragma config LPT1OSC = OFF    // Deselect low-power Timer1 oscillator

/*******************************
 * Global variables
 *******************************
 */
unsigned char i, j;             // Loop counters
unsigned int DELAY;             // Sixteen-bit counter for obtaining a delay
unsigned char BYTETOSEND;       // Used by SendByte
unsigned char SSNBYTE;          // Used to store byte read from DS2401

FIGURE 15-4 SSN.c

in the DS2401 function of the SSN.c code of Figure 15-4. Each of the 8 bits is sent 
as discussed in the last section. In response, the DS2401 expects to be queried for its 
64-bit SSN, received a bit at a time (LSb first) as discussed in the next section.



char SSNSTRING[20] = "xxxxxxxxxxxxxxxx\n\r\0"; // To hold DS2401's serial number

/*******************************
 * Constant array in program memory
 *******************************
 */

const char rom FormHex[] = "0123456789ABCDEF";

/*******************************
 * Function prototypes
 *******************************
 */
void Initial(void);
void InitTX(void);
void DS2401(void);
char PresenceTest(void);
void SendByte(void);
void ReadByte(void);
void SaveByte(void);
void SendSSNSTRING(void);

/*******************************
 * Macros
 *******************************
 */
#define Delay(x) DELAY = x; while(--DELAY){ Nop(); Nop(); }
#define TXascii(in)  TXREG = in; while(!TXSTAbits.TRMT)
#define OpenDrainHigh TRISDbits.TRISD2 = 1
#define OpenDrainLow  PORTDbits.RD2 = 0; TRISDbits.TRISD2 = 0

/////// Main program ///////////////////////////////////////////////////////////

/*******************************
 * main
 *******************************
 */
void main()
{
   Initial();                   // Initialize everything
   InitTX();                    // Initialize UART
   DS2401();                    // Read and display SSN on PC
   Sleep();                     // Done
   Nop();
}

/*******************************
 * Initial
 *
 * This function performs all initializations of variables and registers.
 *******************************
 */

FIGURE 15-4 (continued)
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void Initial()
{
   OSCCON = 0b01100010;         // Use Fosc = 4 MHz (Fcpu = 1 MHz)
   SSPSTAT = 0b00000000;        // Set up SPI for output to LCD
   SSPCON1 = 0b00110000;
   ADCON1 = 0b00001011;         // RA0,RA1,RA2,RA3 pins analog; others digital
   TRISA = 0b00001111;          // Set I/O for PORTA
   TRISB = 0b01000100;          // Set I/O for PORTB
   TRISC = 0b10000000;          // Set I/O for PORTC
   TRISD = 0b10000100;          // Set I/O for PORTD
   TRISE = 0b00000010;          // Set I/O for PORTE
   PORTA = 0;                   // Set initial state for all outputs low
   PORTB = 0;
   PORTC = 0;
   PORTD = 0b00100000;          // except RD5 that drives LCD interrupt
   PORTE = 0;
   Delay(50000);                // Pause for 0.5 second for contact bounce
   RCONbits.SBOREN = 0;         // After this delay, disable brown-out reset
}

/*******************************
 * InitTX
 *
 * This function initializes the UART for its TX output function.  
 * It assumes Fosc = 4 MHz.
 *******************************
 */
void InitTX()
{
   RCSTA = 0b10010000;          // Enable UART
   TXSTA = 0b00100000;          // Enable TX
   SPBRG = 12;                  // Set baud rate
   BAUDCON = 0b00111000;        // Invert TX output
}

/*******************************
 * DS2401
 *
 * This function displays on the PC the serial number given
 * by the DS2401. If it is not present, turn on red LED and halt.
 *******************************
 */
void DS2401()
{
   PORTDbits.RD3 = 1;           // Apply power to SSN part
   OpenDrainLow;
   Delay(50);                   // Master Reset with 500 us negative pulse
   OpenDrainHigh;

   if(!PresenceTest())          // Presence Test
   {
      PORTDbits.RD4 = 1;        // Turn on LED

FIGURE 15-4 (continued)



      Sleep();                  //  and be done
      Nop();
   }
   else
   {
      BYTETOSEND = 0x33;        // Send "Read ROM" command to get back
      SendByte();               //  serial number
      for (j = 16; j > 0; j-=2) // Read and save 8 bytes
      {
         ReadByte();
         SaveByte();
      }
      SendSSNSTRING();
   }
   OpenDrainHigh;               // Leave I/O pin as an input
   PORTDbits.RD3 = 1;           // Leave SSN part empowered
}

/*******************************
 * PresenceTest
 *
 * This function returns a 1 if DS2401 is present and a 0 otherwise.
 *******************************
 */
char PresenceTest()
{
   Delay(10);                   // After 100 us
   if (!PORTDbits.RD2)          //  check for Presence
   {
      while (!PORTDbits.RD2);   // Wait for line to be released
      return 1;
   }
   return 0;
}

/*******************************
 * SendByte
 *
 * This function sends BYTETOSEND to DS2401. Tslot = 85 us for ONE or for ZERO.
 *******************************
 */
void SendByte()
{
   for (i = 0; i <= 7; i++)     // Send 8 bits of command
   {
      if (BYTETOSEND & 1)       // Test bit 0
      {
         OpenDrainLow;
         OpenDrainHigh;         // Send ONE
         Delay(6);
      }

FIGURE 15-4 (continued)
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      else
      {
         OpenDrainLow;
         Delay(6);              // Send ZERO
         OpenDrainHigh;
      }
      BYTETOSEND >>= 1;         // Move on to next bit
   }
}

/*******************************
 * ReadByte
 *
 * This function reads in the 64-bit serial number a byte at a time.
 * Tslot = 70 us for ONE or for ZERO.
 * DS2401 holds line low for zero for 35 us.
 *******************************
 */
void ReadByte()
{
   SSNBYTE = 0;                 // Initialize SSNBYTE
   for (i = 0; i <= 7; i++)     // Read 8 bits from DS2401
   {
      SSNBYTE >>= 1;            // Move on to next bit
      OpenDrainLow;
      OpenDrainHigh;
      Delay(1);                 // Sample 13 us after 'clocking'
      if (PORTDbits.RD2)
      {
         SSNBYTE += 0b10000000; // Copy bit into SSNBYTE
      }
      Delay(3);
   }
}

/*******************************
 * SaveByte
 *
 * This function converts the binary value in SSNBYTE into two
 * ASCII-coded digits in SSNSTRING.
 *******************************
 */
void SaveByte()
{
 SSNSTRING[j - 2] = FormHex[SSNBYTE >> 4];   // Save upper nibble
 SSNSTRING[j - 1] = FormHex[SSNBYTE & 0x0F]; // Save lower nibble
}

FIGURE 15-4 (continued)



15.5 READING ONES AND ZEROS

Figure 15-5 illustrates the reading of ones and zeros from the DS2401. The MCU 
clocks each bit time by pulling the I/O line low and then immediately releasing it. The 
DS2401 responds to the falling edge and leaves the line released for a “1” or pulls the 
line low for a “0”. The MCU samples the line after about 15 µs. It waits for something 
over 60 µs (the Tslot time of Figure 15-5) before initiating the falling edge to clock the 
next bit response.

The DS2401 function listed in Figure 15-4 calls its ReadByte function eight times 
to acquire the 64-bit SSN. Each call of ReadByte reads the I/O line eight times, shift-
ing the bits into SSNBYTE. Each ReadByte is followed by a SaveByte that breaks 
SSNBYTE into two ASCII-coded hexadecimal characters and inserts these into the 
long SSNSTRING string. After SSNSTRING has been loaded with the 16 hex char-
acters, the entire string is sent to the PC for display. Then the I/O pin is left in the 
Open-DrainHigh (i.e., input) state while RD3 is powered down before the MCU is 
put to sleep. The board at that point draws just 0.1 µA from the coin cell. Even if the 
DS2401 chip is left empowered, it adds just 0.2 µA to this shutdown current.

15.6 GENERALIZING FROM THE SSN.c TEMPLATE

• The intent of the code of Figure 15-4 is to illustrate the general principles of 
1-wire messaging including:

• Reset pulse generation

• Presence pulse detection

• Sending a 1-byte command

• Sending or receiving bytes to or from a 1-wire device

The SSN.c file does nothing more than to initialize the chip, read the SSN, and then 
go to sleep.
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/*******************************
 * SendSSNSTRING
 *
 * This function sends SSNSTRING to the PC.
 *******************************
 */

void SendSSNSTRING()
{
   for (i=0; SSNSTRING[i]; ++i)
   {
      TXascii(SSNSTRING[i]);  // Send all bytes until null terminator
   }
}

FIGURE 15-4 (continued)
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(a) Reading a one

I/O line

Tlow

Tslot

Tread

Controlled by MCU

Controlled by DS2401

Controlled by pull-up resistor

Start of bit

Start of next bit

(b) Reading a zero

1 µs ≤ Tlow < 15 µs
Tread = 15 µs

60 µs ≤ Tslot < 120 µs

I/O line

Tlow
Tread

Tslot

Trelease
Trecover

Controlled by MCU

Controlled by DS2401

Start of bit

Start of next bit

Controlled by pull-up resistor

1 µs ≤ Tlow < 15 µs
Tread = 15 µs

0 µs ≤Trelease< 45 µs

60 µs ≤ Tslot < 120 µs

1 µs ≤ Trecover < ∞

FIGURE 15-5 Reading ones and zeros



More generally, 1-wire device interactions can be employed during the on-going 
operation of a larger program, to take advantage of the versatility of 1-wire devices. 
During such interactions, it is important to disable interrupts before each bit transfer 
is initiated. Nothing is lost if an interrupt service routine intervenes after the MCU 
releases the I/O line and has, in addition, completed the reading or the writing of 
a bit. While the I/O line is high, an I/O message string can be paused indefinitely. 
However, if an interrupt occurs while the MCU is holding the line low and the result-
ing pause causes a 1-wire device to be held low for more than 120 µs, the serial I/O 
messaging protocol may be reset.

15.7 MULTIPLE 1-WIRE DEVICES ON A SINGLE BUS

The Dallas/Maxim repertoire of 1-wire integrated circuits includes real-time clocks, 
temperature sensors, analog-to-digital converters, battery usage (current × time) moni-
tors, and nonvolatile memory with security key access. As an example of the applica-
tion of multiple devices, several DS1825 digital thermometer chips may be used to 
monitor potential hot spots of a PC board. Each chip, housed in a tiny 8-pin surface-
mount package, has four of its pins hard-wired as a 4-bit address. Thus, not only is 
temperature measured, but also the location of a hot spot can be identified.

Dallas/Maxim’s significantly pricier iButton parts are housed in a rugged coin-
cell-like package and can employ extended self-powered capabilities afforded by an 
internal lithium battery. For example, one of their Thermochron parts can be included 
in a shipment of perishable food to log temperature samples, to verify whether the 
shipment was handled as intended.

In this section, the emphasis will be on identifying and selecting a specific 1-wire 
device from among several sharing a single bus. The two 1-wire commands that are 
used to identify and select any one device are

  Search ROM (0xF0)

  Match ROM (0x55)

The ROM that is being referred to here is the unique 64-bit serial number included in 
every 1-wire device, not just the DS2401 Silicon Serial Number part discussed earlier.

The Search ROM command is used iteratively to determine the ROM content of 
each device on the 1-wire bus. Once found, each of these can be stored in the MCU’s 
EEPROM, and used thereafter to select a device. This Search ROM command will be 
discussed shortly.

Following the Reset pulse/Presence pulse sequence, a specific device is selected 
by sending the Match ROM command followed by the 64-bit ROM contents in the 64 
time slots (LSb first) that follow the eight time slots of the Match ROM command. The 
selected device will then respond to all subsequent commands while the unselected 
devices will stay idle until they receive another Reset pulse.

The Search ROM command is followed by two 1-bit reads and a 1-bit write. In 
response to the first read, all devices send the state of the LSb of their ROM address. Dur-
ing the second read, all devices send the complement of the LSb of their ROM address. 
The interpretation of the response to these two reads is listed in Figure 15-6a. The next 
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time slot (Figure 15-6b) is used as a write, to select all devices that match the bit written 
to them. Figure 15-6c illustrates the Search ROM process of successive read-read-write 
bits to sort out the ROM address of one of the devices. If a “1” is written during the third 
of the three time slots each time a bit mismatch is detected (by a read-read of 0-0), the 
result will be to select the part with the highest ROM address.

If only two 1-wire parts are connected to the 1-wire bus, the first bit mismatch 
found will be the only bit mismatch needed to obtain the second part’s ROM address. 
Instead of writing a one back for this bit, a zero is written, deselecting the chip whose 

First
read

1 0 All devices have a 1 in this ROM address position

All devices have a 0 in this ROM address position

Only devices with a 1 in this ROM address position remain enabled

Only devices with a 0 in this ROM address position remain enabled

Devices differ in this ROM address position

0

1

0

0Bit number

ROM address of selected part

Select both devices

Mismatch detected between parts

Select one device

1

Read-read-write sequence 0 0 0 0 0 0 0 01 1 1 1 1 11

1

0

2 3 4

1 1 0

1

0 0

Second
read

Interpretation

InterpretationWrite

(a) Interpretation of a pair of reads.

(b) Meaning of the write during the next Time slot.

(c) Example, obtaining the ROM address of one of a pair of 1-wire parts.

• • •

• • •

Keep selecting the selected part 
to obtain its complete ROM address • • •

FIGURE 15-6 Search ROM procedure



ROM address has already been found in order to continue to determine the ROM 
address for the second part.

For three 1-wire parts connected to the 1-wire bus, the path to select one of the 
first two chips will include a second mismatch. If the part having a one in this second 
mismatch position is taken, then subsequently the path having a zero in this second 
mismatch position must be followed.

For more than three 1-wire parts connected to the 1-wire bus, the determination of 
each ROM address amounts to tracing out each branch of a tree having 64 bits in it, as 
illustrated in Figure 15-7. Dallas/Maxim addresses this determination systematically 
in an application note that can be found by Googling “Book of iButton Standards” 
and then finding on PDF page 58, Section C.3 Search ROM Command:

“The general principle of this search process is to deselect one device after another 
at every conflicting bit position. At the end of each ROM Search process, the master 
has learned another ROM’s contents. The next pass is the same as the previous pass 
up to the point of the last decision. At this point, the master goes in the opposite direc-
tion and continues. If another conflict is found, again zero is written, and so on. After 
both paths at the highest conflicting bit position are followed to the end, the master 
goes the same way as before but deciding oppositely at a lower conflicting position, 
and so on, until all ROM data are identified.”

15.8 DS2415 1-WIRE TIME CHIP

The Dallas/Maxim DS2415 1-wire time chip can be added to the Qwik&Low board 
using the surface-mount pattern in the prototyping area of the board. The additional 
circuitry is shown in Figure 15-8 with the time chip drawing power directly from the 
Qwik&Low coin cell, retaining power even when the power switch is turned off. Were 
the circuit of Figure 15-8 to use the same I/O bus as the SSN part, the Search ROM 
procedure would have to be executed and the ROM address of each part stored in 
EEPROM memory. Alternatively, two otherwise unused pins of the MCU (e.g., RA5 

1 2 3 4 5 6 7 8 9

1 1

1 0

0Bit position

110 0

1 0

1 1 10 0 0 • • •

1 1 1 10 0 • • •

1 1 • • •

0 0 • • •

1 1 10 • • •

• • •

FIGURE 15-7 Tree of ROM addresses for five 1-wire parts
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and RA4 selected from Figure 3-7) can be used. Although it would seem that the 
pull-up resistor could be powered directly from the coin cell, unfortunately when the 
power switch is opened, the pull-up resistor voltage will exceed the MCU’s VDD volt-
age of 0 V and will lead to a constant current drain of 3 V/5 kΩ = 600 µA.

The DS2415 time chip has the following features:

• It draws a maximum of 0.25 µA with its oscillator incrementing an internal set-
table and readable 32-bit counter every second.

• By being continuously powered, its counter can be employed as a real-time 
clock, accumulating 136 years of seconds before rolling over.

With just one 1-wire device on the bus of Figure 15-8, the message protocol of 
Figure 15-9 begins with the Reset pulse/Presence pulse sequence. This is followed by 
the 

  Skip ROM (0xCC)

command so that all subsequent I/O interactions will be responded to by that chip.
Once selected by the Skip ROM command, the DS2415 responds to just the two 

commands shown in Figure 15-9:

  Write Clock (0x99)

  Read Clock (0x66)

3 V 
coin cell

DS2415 
Time chip

VBAT

VDD

VDD

GND

GND

6

32768 Hz
crystal

0.1 µF

5 kΩ

5

3

2

4

Power
switch

MCU

RA5 
(power switching)

RA4

1

X2

+

X1

1-wire

FIGURE 15-8 DS2415 1-wire time chip connections



Thus, to control the oscillator and set the counter, the write sequence of Figure 15-9a 
produces the following actions:

• The reception of the control byte immediately starts (0x0C) or stops (0x00) the 
DS2415 oscillator.

• The 4 bytes destined for the counter are received least-significant-byte first and 
are loaded into a buffer, not the counter itself.

• The final reset pulse transfers the buffer to the counter.

The read sequence of Figure 15-9b is responded to as follows:

• When the Read Clock command has been received, the 32-bit counter is copied 
into the buffer.

• The next 5 bytes received are the control byte followed by the 4-byte counter 
content.

PROBLEMS

15-1  Interrupts and 1-wire devices As pointed out in Section 15.6, interrupts 
can occur during a 1-wire transfer without corrupting the transfer if inter-
rupts are disabled during each bit transfer and enabled momentarily between 
successive bit transfers. Add repeated reads of the DS2401 every second to 
the T3.c template file that uses both Timer1 and Timer3 for interrupts.

 a) Execute your resulting code. Does the serial number, repeatedly read, 
ever get corrupted? Explain.

Line
idle

Line
idle

Reset
pulse

Presence
pulse

Skip
ROM

(a) Write sequence

Write
clock

Control
byte LSB MSB

Reset
pulse

Counter

Line
idle

Line
idle

Reset
pulse

Presence
pulse

Skip
ROM

Read
clock

Control
byte LSB MSB

Counter

(b) Read sequence

:  Start oscillator
:  Stop oscillator

:  Oscillator is running
:  Oscillator is stopped

FIGURE 15-9 DS2415 write and read message sequences. (Each byte is sent, or received, 
least significant bit first)
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 b) Add Delay (50) to your HighPriorityISR so that you are introducing a 
500-µs pause every 4 ms. Does the serial number, repeatedly read, ever 
get corrupted? Explain.

 c) Modify the SendByte and ReadByte functions in the code for Part (b) 
with

PIE2bits.TMR3IE = 0; // Disable Timer3 interrupts

  and

PIE2bits.TMR3IE = 1; // and quickly reenable

  lines appropriately placed, as suggested in Section 15.6. Now does the 
serial number, repeatedly read, ever get corrupted? If so, add one or two 
Nop macros between an enable and a following disable, to ensure the 
momentary enabling of the Timer3 interrupts. Explain what you find 
including any need for N intervening Nop macros.

15-2  Search ROM command Use the Search ROM command of Section 15.7 
to keep the DS2401 chip enabled for the first 55 bits of its serial number. As 
each bit is determined, send it back to the PC for display, as an ASCII-coded 
one or zero. Send a space character (0x20) after every group of eight charac-
ters sent to the PC. For the 56th bit, send the complement of the found bit 
both to the PC and the DS2401. Thereafter, again send each of the remain-
ing 8 bits read via the Search ROM 3-bit-time procedure back to the PC for 
display. Compare what you get relative to what the SSN.c program pro-
duces. Explain the result.

15-3  DS2415 time chip Assume that the DS2415 was cleared to zero and started 
counting many days ago.

 a) Write a function, Days, that will take the number read back into the 
unsigned long variable, TIME, and convert it to an LCD display of days, 
with a resolution of 0.01 day and a range up to 9,999.99 days.

TIME = (60×60×24×51) + (60×60×24×.16)

     = 4406400 + 13824

     = 4420224 seconds

  then the LCD display should show

0051.16

 b) Write a second function, DeltaDays, that displays, in the same format, 
the difference

TIMEEND − TIMESTART
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16.1 OVERVIEW

The PIC18LF6390 is the second microcontroller on the Qwik&Low board, dedicated 
to the very specific role of operating the eight-alphanumeric-character LCD display. 
This chapter will begin with a discussion of how a multiplexed LCD display works, 
and the waveforms that its LCD controller must generate. Then, Alex Singh’s LCD.c 
code will be examined and his use of data structures to sort out the complexities of the 
chip will be explained.

16.2 STARBURST DISPLAY CONFIGURATION

The eight-alphanumeric-character starburst display is shown in Figure 16-1. It has 
36 pins to control 32 × 4 = 128 segments. A 14-segment coding represents each of 
the 8 characters. Also associated with each character are an apostrophe segment and 
a decimal point segment, as shown in Figure 16-2a. Each of the 16 segments associ-
ated with a character position is controlled by a conductive segment on the front of 
the display and an identically shaped conductive segment on the back of the display, 
with liquid-crystal material sandwiched in between. To turn on a segment, a low-
frequency (37 Hz) complex waveform is imposed between the frontplane segment and 

STARBURST DISPLAY 
(LCD.c)

Chapter 

16
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the backplane segment. Its RMS value must be above a threshold specific to the liquid-
crystal medium. Correspondingly, to turn off a segment, the RMS value between the 
frontplane segment and the backplane segment must be below a specified threshold.

The job of controlling LCD segments is simplified for a nonmultiplexed display 
such as a three-digit, seven-segment numeric display. Its 7 × 3 = 21 digit segments, 
2 decimal points, and a single backplane driver are brought out to 24 pins. A low-
frequency squarewave between VDD and GND is applied to the entire backplane. An 
“off” segment has the same waveform applied to its frontplane (for an RMS value 
of 0 V across the liquid-crystal medium for that segment). An “on” segment has the 
inverted squarewave applied to its front plane (for an RMS value of VDD volts). Thus, 
for VDD = 3 V, the liquid-crystal medium must only distinguish between 0 V and 3 V. 
The result is a display with a sharp distinction between on and off segments, regard-
less of the viewing angle.

In contrast, as will be discussed shortly, the ¼ multiplexing used by the Qwik&Low 
LCD is supported by complex waveforms for which each period is made up of stair-
step values of 0 V, 1 V, 2 V, and 3 V. The liquid-crystal medium must draw a distinc-
tion between an RMS “on” voltage of 1.73 V and an RMS “off ”  voltage of 1.00 V. 
The result is a display with a strong sensitivity to viewing angle. The Qwik&Low 
board’s LCD is designed to be viewed from the 6:00 o’clock position that results when 
the board sits flat on the workstation in front of a user. The characters fade as the 
viewing angle approaches the straight on position or is moved to either side. This is a 
drawback of using a display with only 36 pins and an LCD controller chip designed to 
drive it while drawing a miniscule current of just a few microamperes.

Returning to Figure 16-2b, each frontplane SEGi pin is connected to four segments. 
For example, the SEG0 pin is connected to segments A, B, C, and P (the decimal point) 
for the character in POSITION 0 (the left-most character position of the display). SEG4 
is connected to segments A, B, C and P for the character in POSITION 1.

Each backplane COMj pin is connected, on the back of the display, to just one of 
the four segments associated with each frontplane SEGi pin. Thus, it is a controlling 
factor for

8 (characters) × 4 (segment pins per character) = 32 segments

FIGURE 16-1 Starburst display 
(Varitronix)



16.3 LCD CONTROLLER CIRCUIT

The LCD controller circuit is shown, in simplified form, in Figure 16-3. Omitted in 
this figure are the LCD PICkit 2 connections for programming the chip as well as 
seven 0.1 µF bypass capacitors. The circuit employs a four-pole-double-throw (4PDT) 
push-to-make, push-to-break switch. It connects power and SPI inputs from the MCU 

(a) Segment coding

(b) Connections for frontplane SEG drivers and backplane COM drivers

• • •
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COM0

COM1

COM2

COM3

SEG0 SEG2 SEG4 SEG6
SEG1

A

B

C

P

X

F

E

D

H

G

L

M

I

J

K

N

A

B

C

P

X

F

E

D

H

G

L

M

I

J

K

N

SEG3 SEG5 SEG7

• • •

SEG2

X A

C

B

X A

SEG6 SEG4SEG0

Position 0
(left-most character)

Position 1

COM0

COM1

F
H I

K

J

N

D P D P

G

M
L

E C

BF
H I

K

J

N

G

M
LE

COM2

COM3

SEG1 SEG3 SEG5 SEG7

FIGURE 16-2 Starburst display configuration
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to the LCD controller or, alternatively, it breaks these connections to power down the 
LCD. The latter condition is used to clarify the current draw by Qwik&Low circuitry 
independent of the LCD current draw. It is also used to measure the small increase 
in current draw when the LCD current is added into that drawn for a Qwik&Low 
application.

The three pins that control the use of the Serial Peripheral Interface (SPI) for updat-
ing the display from the MCU are also disconnected from the MCU when the LCD 
controller is powered down. If this were not done, any MCU operation that left any of 
these outputs high would produce a leakage current, measured in milliamperes, through 

Qwik&Low
power

Microchip
LCD controller
PIC18LF6390
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Varitronix
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Digi-Key No. 153–1113
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•
•
•

FIGURE 16-3 LCD controller circuit (simplified)



the overvoltage protection diodes on the LCD controller inputs to the grounded VDD 
pin on the LCD controller.

In addition to the three test points for monitoring Serial Peripheral Interface trans-
fers, the LCD controller offers two other test points. TP11 (FOSC/4) is used to moni-
tor how long it takes the LCD controller to respond to new SPI data and to format 
the characters received for display into the chip’s LCD registers before going back to 
sleep, the normal state of the LCD controller’s CPU. Another pin, labeled on the back 
of the Qwik&Low board as TP7 (6390 RC7), provides a user-defined flag. It can be 
used to monitor conditions or measure time intervals introduced if modifications are 
made to the LCD.c file employed by the LCD controller.

16.4 MULTIPLEXED LCD VOLTAGE WAVEFORMS

The PIC18LF6390 is designed for versatility in its role as an LCD controller. It sup-
ports four distinct serial input modes for accepting new display data. It can control 
nonmultiplexed LCDs as well as 1/2-, 1/3-, and 1/4-multiplexed LCDs. In addition 
to the 64-pin PIC18LF6390 part, there is an otherwise identical 80-pin PIC18LF8390 
that can control up to 4 × 48 = 192 LCD segments (half again as many as the 
64-pin part).

With its LCD control registers initialized for 1/4-multiplexed operation, the COM0, 
COM1, COM2, and COM3 stairstepped waveforms are shown in Figure 16-4. With 
the refresh rate initialized to 37 Hz, each frame is repeated every 1/37 s. Note how each 
waveform selects a quarter frame by first dropping to 0 V and then rising to 3 V dur-
ing the second half of the selected quarter frame. During the remaining three-quarter 
frames, each waveform rises to 2 V during the first half of the quarter frame and drops 
to 1 V during the second half.

Now consider Figure 16-5a that shows the waveform that the LCD controller 
will use to drive one of the SEGj pins for which all four segments are turned off. 
Figure 16-5b shows the waveform that the LCD controller uses to drive the backplane 
COM0 pin. Referring to Figure 16-2b, this voltage is seen by the "A", "X", "H", and 
"I" segments of the eight starburst characters. Figure 16-5c shows the voltage wave-
form responded to by the liquid-crystal medium. Parts d, e, and f of Figure 16-5 form 
the RMS value of the waveform by first squaring each section (part d) and finding the 
mean value of the squared waveform (part e). The RMS value of the waveform (part f) 
is the square root of this mean value, 1.00 V in this case.

Figure 16-6a, b, and c show the waveforms seen when the same “A” or “X” or 
“H” or “I” segment of one of the eight starburst characters is turned on. The ±3 V 
difference across the liquid-crystal medium for the first two-eighths of the frame pro-
duces a large change in the resulting RMS voltage to 1.73 V, as calculated in parts 
d, e, and f.

Note that neither voltage waveform across the liquid-crystal medium (Figures 
16-5c and 16-6c) has a DC component. This is important to the longevity of the 
medium. An LCD can tolerate brief moments of DC without apparent ill effect. How-
ever, a long-term exposure to DC will turn the medium dark and no longer useful as 
a display.
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16.5 LCDDATAi REGISTER USE

The PIC18LF6390 refreshes the display automatically while its CPU sleeps. To do 
this, each ASCII-coded character sent to it must be converted to its 14-segment rep-
resentation. The result must be broken into four 4-bit parts and stored in half of four 
8-bit registers. For example, the segments for POSITION 0 (the left-most character) 
must be stored in the lower nibble (i.e., the lower 4 bits) of 
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FIGURE 16-4 Backplane waveforms



LCDDATA0 and LCDDATA6 and LCDDATA12 and LCDDATA18

The allocation of the segments for all eight characters is shown in Figure 16-7.

16.6 ASCII CODE TO LCDDATAi REPRESENTATION

Each ASCII-coded character must not only be represented by its 14-segment code of 
Figure 16-2a. In addition, these 14 bits must be ordered for loading into the LCDDATAi 
registers of Figure 16-7. To facilitate this loading, the 8-bit ASCII code is used as an 
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driver, SEGi

(b) COM0 driver

(c) SEGi – COM0

(d) (SEGi – COM0)2 = 1 V2 1 V2 1 V2 1 V2 1 V2 1 V2 1 V2 1 V2
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(f) RMS value = 1 V2  =  1.00 V

FIGURE 16-5 All four segments selected by SEGi are off
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offset into the table of 256 2-byte entries shown in Figure 16-8. As shown by the com-
ment at the beginning of this table, each table entry consists of the 4 nibbles

JGFB  IHXA  NMDP  KLEC

packed into the 2 bytes of an unsigned int constant stored in program memory. The 
LCD.c file of Figure 16-13 will unpack the nibbles for each character to be displayed 
and load them into the appropriate LCDDATAi registers.
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driver, SEGi

(b) COM0 driver

(c) SEGi – COM0

(d) (SEGi – COM0)2 = 9 V2 9 V2 1 V2 1 V2 1 V2 1 V2 1 V2 1 V2
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FIGURE 16-6 RMS voltage across a selected turned-on segment
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35 SEG0 LCDDATA0,0  A LCDDATA6,0  B LCDDATA12,0  C LCDDATA18,0  P

1 SEG1 LCDDATA0,1  X LCDDATA6,1  F LCDDATA12,1  E LCDDATA18,1  D

36 SEG2 LCDDATA0,2  H LCDDATA6,2  G LCDDATA12,2  L LCDDATA18,2  M

2 SEG3 LCDDATA0,3  I LCDDATA6,3  J LCDDATA12,3  K LCDDATA18,3  N

1

33 SEG4 LCDDATA0,4  A LCDDATA6,4  B LCDDATA12,4  C LCDDATA18,4  P

3 SEG5 LCDDATA0,5  X LCDDATA6,5  F LCDDATA12,5  E LCDDATA18,5  D

34 SEG6 LCDDATA0,6  H LCDDATA6,6  G LCDDATA12,6  L LCDDATA18,6  M

4 SEG7 LCDDATA0,7  I LCDDATA6,7  J LCDDATA12,7  K LCDDATA18,7  N

2

31 SEG8 LCDDATA1,0  A LCDDATA7,0  B LCDDATA13,0  C LCDDATA19,0  P

5 SEG9 LCDDATA1,1  X LCDDATA7,1  F LCDDATA13,1  E LCDDATA19,1  D

32 SEG10 LCDDATA1,2  H LCDDATA7,2  G LCDDATA13,2  L LCDDATA19,2  M

6 SEG11 LCDDATA1,3  I LCDDATA7,3  J LCDDATA13,3  K LCDDATA19,3  N

3

29 SEG12 LCDDATA1,4  A LCDDATA7,4  B LCDDATA13,4  C LCDDATA19,4  P

7 SEG13 LCDDATA1,5  X LCDDATA7,5  F LCDDATA13,5  E LCDDATA19,5  D

30 SEG14 LCDDATA1,6  H LCDDATA7,6  G LCDDATA13,6  L LCDDATA19,6  M

8 SEG15 LCDDATA1,7  I LCDDATA7,7  J LCDDATA13,7  K LCDDATA19,7  N

4

27 SEG16 LCDDATA2,0  A LCDDATA8,0  B LCDDATA14,0  C LCDDATA20,0  P

9 SEG17 LCDDATA2,1  X LCDDATA8,1  F LCDDATA14,1  E LCDDATA20,1  D

28 SEG18 LCDDATA2,2  H LCDDATA8,2  G LCDDATA14,2  L LCDDATA20,2  M

10 SEG19 LCDDATA2,3  I LCDDATA8,3  J LCDDATA14,3  K LCDDATA20,3  N

5

25 SEG20 LCDDATA2,4  A LCDDATA8,4  B LCDDATA14,4  C LCDDATA20,4  P

11 SEG21 LCDDATA2,5  X LCDDATA8,5  F LCDDATA14,5  E LCDDATA20,5  D

26 SEG22 LCDDATA2,6  H LCDDATA8,6  G LCDDATA14,6  L LCDDATA20,6  M

12 SEG23 LCDDATA2,7  I LCDDATA8,7  J LCDDATA14,7  K LCDDATA20,7  N

6

23 SEG24 LCDDATA3,0  A LCDDATA9,0  B LCDDATA15,0  C LCDDATA21,0  P

13 SEG25 LCDDATA3,1  X LCDDATA9,1  F LCDDATA15,1  E LCDDATA21,1  D

24 SEG26 LCDDATA3,2  H LCDDATA9,2  G LCDDATA15,2  L LCDDATA21,2  M

14 SEG27 LCDDATA3,3  I LCDDATA9,3  J LCDDATA15,3  K LCDDATA21,3  N

7

21 SEG28 LCDDATA3,4  A LCDDATA9,4  B LCDDATA15,4  C LCDDATA21,4  P

15 SEG29 LCDDATA3,5  X LCDDATA9,5  F LCDDATA15,5  E LCDDATA21,5  D

22 SEG30 LCDDATA3,6  H LCDDATA9,6  G LCDDATA15,6  L LCDDATA21,6  M

16 SEG31 LCDDATA3,7  I LCDDATA9,7  J LCDDATA15,7  K LCDDATA21,7  N

FIGURE 16-7 Allocation of starburst segment bits to PIC18LF6390 registers
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// Table-entry coding of segments:   J G F B  I H X A  N M D P  K L E C
const rom unsigned int ASCII[] = {
   // ASCII column 0
   0x0100, 0x1000, 0x0001, 0x0020,      // Chris Bruhn's and Peter Ralston's
   0x0002, 0x2000, 0x4000, 0x0400,      // modification for PV.c, their
   0x0800, 0x8000, 0x0008, 0x0080,      // performance verification program
   0x0040, 0x0004, 0x0200, 0x0010,

   // ASCII column 1
   0xffff, 0xcedc, 0xffff, 0xffff,      // CB and PR again
   0xffff, 0xffff, 0xffff, 0xffff,
   0xffff, 0xffff, 0xffff, 0xffff,
   0xffff, 0xffff, 0xffff, 0xffff,

   // ASCII column 2
   0x0000, 0xffff, 0xffff, 0x0480,  // blank,!,",#
   0xffff, 0xffff, 0xffff, 0x0200,  // $,%,&,'
   0x8080, 0x0404, 0xc48c, 0x4848,  // (,),*,+
   0x0000, 0x4008, 0xb137, 0x8004,  //  , ,-,/

   // ASCII column 3
   0xb127, 0x1001, 0x512a, 0x1129,  // 0,1,2,3
   0x7009, 0x6129, 0x612b, 0x8140,  // 4,5,6,7
   0x712b, 0x7129, 0xb137, 0x0000,  // 8,9,0,
   0x8080, 0x4028, 0x0404, 0x7108,  // <,= >,?

   // ASCII column 4
   0xffff, 0x710b, 0x1969, 0x2122,  // @,A,B,C
   0x1961, 0x6122, 0x6102, 0x212b,  // D,E,F,G
   0x700b, 0x0960, 0x1023, 0xe082,  // H,I,J,K
   0x2022, 0xb403, 0x3483, 0x3123,  // L,M,N,O

   // ASCII column 5
   0x710a, 0x31a3, 0x718a, 0x6129,  // P,Q,R,S
   0x0940, 0x3023, 0xa006, 0x3087,  // T,U,V,W
   0x8484, 0x8440, 0x8124, 0xffff,  // X,Y,Z,
   0xffff, 0xffff, 0x0084, 0xffff,  //  , ,^,

   // ASCII column 6
   0xffff, 0x710b, 0x1969, 0x2122,  // @,A,B,C
   0x1961, 0x6122, 0x6102, 0x212b,  // D,E,F,G
   0x700b, 0x0960, 0x1023, 0xe082,  // H,I,J,K
   0x2022, 0xb403, 0x3483, 0x3123,  // L,M,N,O

   // ASCII column 7
   0x710a, 0x31a3, 0x718a, 0x6129,  // P,Q,R,S
   0x0940, 0x3023, 0xa006, 0x3087,  // T,U,V,W
   0x8484, 0x8440, 0x8124, 0xffff,  // X,Y,Z,
   0xffff, 0xffff, 0xffff, 0xffff,  //  , , ,

};

FIGURE 16-8 ASCII Table



16.7 AWAKENING VERSUS INTERRUPT VECTORING

The LCD controller expects to be awakened by a falling edge applied to its 
INT0 input. This external interrupt in the PIC18LF6390 is identical in operation 
to the INT0 input in the PIC18LF4321. However as used in the LCD.c code of 
Figure 16-13, the interrupt mechanism is initialized all the way up to the global inter-
rupt enable bit, GIE, which is left disabled. The effect of the falling edge occurring 
on the INT0 pin when the chip is asleep and GIE = 0 is to awaken the chip. How-
ever, instead of the normal interrupt response (i.e., stacking the program counter 
and vectoring to an interrupt service routine), the CPU simply executes the instruc-
tion that follows the Sleep macro.

16.8 RECEPTION OF SPI BYTES INTO VSTRING

The main loop of LCD.c is broken out to Figure 16-9. When the CPU is awakened by 
the INT0 input edge, it expects to receive 9 bytes over the Serial Peripheral Interface. 
As each byte is received, it is loaded into the variable string, VSTRING. When all 
9 bytes have been received, the DisplayV function translates each ASCII-coded byte 
and loads the resulting nibbles into the appropriate LCDDATAi registers.

If, on the other hand, a user sends fewer than 9 bytes, Timer0 is used as a breakout 
timer, to break out of the loop that awaits the reception of bytes that actually were 

void main()
{
   Initial();                   // Initialize everything
   while (1)
   {
      Sleep();
      Nop();
      CHAR = SSPBUF;            // Clear buffer initially
      INTCONbits.INT0IF = 0;    // Clear wake up flag
      TMR0L = 0;                // Reset breakout timer
      INTCONbits.TMR0IF = 0;    // Clear breakout timer flag
      for (RECEIVED = 0; RECEIVED < 9; RECEIVED++)  // Receive 9 chars
      {
         PIR1bits.SSPIF = 0;    // Clear SPI flag
                                // Wait limited amount of time for character
         while ((!PIR1bits.SSPIF) && (!INTCONbits.TMR0IF)) ;
         if (INTCONbits.TMR0IF)
         {
            break;
         }
         VSTRING[RECEIVED] = SSPBUF;  // Get character and put into string
      }
      DisplayV();
   }
}

FIGURE 16-9 Main loop
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not sent. Rather than wait indefinitely with the (FOSC = 8 MHz) clock drawing its 
relatively heavy current, the CPU stops waiting, displays what it has received, and 
returns to sleep.

16.9 DECIMAL POINT

The reception of (the ASCII representation of) a decimal point into VSTRING must 
be treated differently from the reception of any other character, as discussed earlier in 
Section 5.5. DisplayV normally displays each received byte in each successive posi-
tion of the display. However, DisplayV not only reads a byte from VSTRING into 
CHAR, it also looks ahead to the next byte in VSTRING. If this next byte represents a 
decimal point, DisplayV sets DPFLAG and increments past the decimal point. When 
WriteCharacter handles the byte in CHAR, it also sets the bit for that character’s 
decimal point.

An apostrophe could also be handled as an exceptional character and packed in 
with the character it follows. Instead, LCD.c simply takes up an entire character posi-
tion to display an apostrophe.

16.10 DATA STRUCTURES

To access the 4 nibbles of a selected ASCII table entry, the WriteCharacter function 
first copies the character into LCDDATA.ALL as shown in Figure 16-10a. LCD-
DATA is the name of a data structure in RAM, six parts of which have been assigned 
the members shown in Figure 16-10b. The assigning of these members is shown in 
Figure 16-10c.

In similar fashion, Alex Singh has created another data structure with members 
identifying the nibble locations in the registers of Figure 16-7, where the nibbles for 
the ASCII table entry must be sent to display that character in a certain character posi-
tion. For example, the 4 nibbles associated with the character to be displayed in the 
left-most character position (POSITION 0 of Figure 16-7) must be written as follows, 
given the source of the nibbles from Figure 16-10:

Lower nibble of LCDDATA0   = LCDDATA.nHL     (i.e., IHXA)

Lower nibble of LCDDATA6   = LCDDATA.nHH    (i.e., JGFB)

Lower nibble of LCDDATA12 = LCDDATA.nLL     (i.e., KLEC)

  Lower nibble of LCDDATA18 = LCDDATA.nLH     (i.e., NMDP)

The data structure is set up so that a pointer can be used to identify the lowest of the 
four addresses. From Figure 16-7, it can be seen that the lowest address for POSI-
TION 0 and POSITION 1 is the address of LCDDATA0. The lowest address for 
POSITION 2 and POSITION 3 is the address of LCDDATA1, etc. Then, depending 
on whether POSITION is even or odd, the RAM nibbles will be written to the lower 
nibble or upper nibble of the selected register.



Figure 16-11 lists the actual addresses of the LCDDATAi registers. The data 
structures of Figure 16-12 assign members that will be written to, once the pointer has 
been set to point to the first address (e.g., the address of LCDDATA1 for Character 
Number 2).

As the DisplayV function reads an ASCII code from VSTRING into CHAR, 
it also forms POSITION, the character location destined to display the character. 
WriteCharacter, in turn, forms the pointer:

ptr = (oneLCDSEG *) (&LCDDATA0 + POSITION / 2);

LCDDATA.ALL = ASCII [CHAR]; // Load table entry to be written

(a) Reading from table into data structure

JGFB IHXA NMDP KLEC

LCDDATA.P
(decimal point bit)

LCDDATA.nHH

LCDDATA.nHL

LCDDATA.nLH

LCDDATA.nLL

LCDDATA.ALL

(b) Desired members within the data structure,  LCDDATA

(c) Data structure definition to assign members to parts of ASCII table entry.

union
{
 struct
 {
  unsigned int ALL; // To identify entire structure
 };
 struct
 {
  unsigned nLL:4; // To identify 4 nibbles for each table entry
  unsigned nLH:4;
  unsigned nHL:4;
  unsigned nHH:4;
 };
 struct
 {
  unsigned:4;
  unsigned P:1; // To identify the decimal point bit
 };
} LCDDATA; // structure to handle table entries as nibbles

FIGURE 16-10 ASCII table entry members
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Hex address Register name

F60

+5

+10

+5

LCDDATA0
F61 LCDDATA1
F62 LCDDATA2
F63 LCDDATA3
F64
F65
F66 LCDDATA6
F67 LCDDATA7
F68 LCDDATA8
F69 LCDDATA9
F6A
F6B
F6C
F6D
F6E
F6F
F70
F71 LCDDATA12
F72 LCDDATA13
F73 LCDDATA14
F74 LCDDATA15
F75
F76
F77 LCDDATA18
F78 LCDDATA19
F79 LCDDATA20
F7A LCDDATA21

FIGURE 16-11 Actual addresses of 
LCDDATAi registers

typedef struct
{
   long _4bytes;
   char _1byte;
} _5bytes;

(a) This structure will be used below to add an offset of five bytes to an 
address in the oneLCDSEG data structure

typedef struct
{
   unsigned nAL:4;              // LCDDATA(x)
   unsigned nAH:4;
   _5bytes a;
   unsigned nBL:4;              // LCDDATA(x+6)

FIGURE 16-12 Naming LCDDATAi nibbles



   unsigned nBH:4;
   _5bytes b;
   _5bytes c;
   unsigned nCL:4;              // LCDDATA(x+12)
   unsigned nCH:4;
   _5bytes d;
   unsigned nDL:4;              // LCDDATA(x+18)
   unsigned nDH:4;
} oneLCDSEG;

(b) oneLCDSEG is a structure that assigns members to LCDDATA.

FIGURE 16-12 (continued)

/******* LCD.c *****************
 *
 * Display a string received having a length of 9 characters (including
 * an optional decimal point).
 *
 * Because of the quirky translation of the starburst segments ABCDEFGHIJKLMNPX
 * into their positions in the LCDDATAi registers, the tables showing the coding
 * for numbers and letters are coded with two-byte table entries in the
 * following order:
 *    J G F B   I H X A     N M D P   K L E C
 * where P is the decimal point and X is the apostrophe.
 * Thus the letter "K" made up of segments EFGJN is translated into the table
 * entry   db  0xe0,0x82      because
 *    1 1 1 0   0 0 0 0     1 0 0 0   0 0 1 0
 *
 * Use Fosc = 8 MHz.                          Starburst display draws 6 uA.
 * Developed by Alex Singh.
 *
 ******* Program hierarchy *****
 *
 * main
 *   Initial
 *   DisplayV
 *     WriteCharacter
 *
 *******************************
 */

FIGURE 16-13 LCD.c
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that it uses to write each nibble from the LCDDATA data structure to the nibble of a 
register with a line exemplified by:

ptr→nAL = LCDDATA.nHL;

The entire file is listed in Figure 16-13.
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#include <p18f6390.h>

/*******************************
 * Assembler directives
 *******************************
 */

#pragma config OSC = INTIO7     // Internal osc, RA6=CLKO, RA7=I/O
#pragma config WDT = OFF        // WDT disabled (control through SWDTEN bit)
#pragma config PWRT = ON        // PWRT enabled
#pragma config MCLRE = ON       // MCLR pin enabled; RG5 input pin disabled
#pragma config XINST = OFF      // Instruction set extension disabled
#pragma config BOREN = ON       // Brown-out controlled by software
#pragma config BORV = 3         // Brown-out voltage set for 2.0V, nominal

/*******************************
 * Structure definitions
 *******************************
 */
                                // Structures to map LCDDATA (as nibbles)
typedef struct
{
   long _4bytes;
   char _1byte;
} _5bytes;

typedef struct
{
   unsigned nAL:4;              // LCDDATA(x)
   unsigned nAH:4;
   _5bytes a;
   unsigned nBL:4;              // LCDDATA(x+6)
   unsigned nBH:4;
   _5bytes b;
   _5bytes c;
   unsigned nCL:4;              // LCDDATA(x+12)
   unsigned nCH:4;
   _5bytes d;
   unsigned nDL:4;              // LCDDATA(x+18)
   unsigned nDH:4;
} oneLCDSEG;

/*******************************
 * Global variables
 *******************************
 */

union
{
   struct

FIGURE 16-13 (continued)



   {
      unsigned int ALL;         // To identify entire structure
   };
   struct
   {
      unsigned nLL:4;           // To identify 4 nibbles for each table entry
      unsigned nLH:4;
      unsigned nHL:4;
      unsigned nHH:4;
   };
   struct
   {
      unsigned:4;
      unsigned P:1;             // To identify the decimal point bit
   };
} LCDDATA;                      // Structure to handle table entries as
                                // nibbles

char DPFLAG;                    // Flag to handle a received decimal point
unsigned char CHAR;             // ASCII character from string
unsigned char POSITION;         // LCD character position (0 to 7)
unsigned char i;                // Used as index for loops and VSTRING
unsigned int DELAY;             // Sixteen-bit counter for obtaining a delay
unsigned int j;                 // Used for delay in Initial
unsigned int RECEIVED;          // Used to keep track of characters received
oneLCDSEG *ptr;                 // Pointer that maps to our LCD nibbles
char *CLEARptr;                 // Pointer used to clear all LCDDATA
unsigned char VSTRING[10];      // Variable string to display

/*******************************
 * Constant strings
 *******************************
 */

// Table-entry coding of segments:   J G F B  I H X A  N M D P  K L E C
const rom unsigned int ASCII[] = {

   // ASCII column 0
   0x0100, 0x1000, 0x0001, 0x0020,      // Chris Bruhn's and Peter Ralston's
   0x0002, 0x2000, 0x4000, 0x0400,      // modification for PV.c, their
   0x0800, 0x8000, 0x0008, 0x0080,      // performance verification program
   0x0040, 0x0004, 0x0200, 0x0010,

   // ASCII column 1
   0xffff, 0xcedc, 0xffff, 0xffff,      // CB and PR again
   0xffff, 0xffff, 0xffff, 0xffff,
   0xffff, 0xffff, 0xffff, 0xffff,
   0xffff, 0xffff, 0xffff, 0xffff,

FIGURE 16-13 (continued)
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   // ASCII column 2
   0x0000, 0xffff, 0xffff, 0x0480,      // blank,!,",#
   0xffff, 0xffff, 0xffff, 0x0200,      // $,%,&,'
   0x8080, 0x0404, 0xc48c, 0x4848,      // (,),*,+
   0x0000, 0x4008, 0xb137, 0x8004,      // , ,-,/

   // ASCII column 3
   0xb127, 0x1001, 0x512a, 0x1129,      // 0,1,2,3
   0x7009, 0x6129, 0x612b, 0x8140,      // 4,5,6,7
   0x712b, 0x7129, 0xb137, 0x0000,      // 8,9,0,
   0x8080, 0x4028, 0x0404, 0x7108,      // <,= >,?

   // ASCII column 4
   0xffff, 0x710b, 0x1969, 0x2122,      // @,A,B,C
   0x1961, 0x6122, 0x6102, 0x212b,      // D,E,F,G
   0x700b, 0x0960, 0x1023, 0xe082,      // H,I,J,K
   0x2022, 0xb403, 0x3483, 0x3123,      // L,M,N,O

   // ASCII column 5
   0x710a, 0x31a3, 0x718a, 0x6129,      // P,Q,R,S
   0x0940, 0x3023, 0xa006, 0x3087,      // T,U,V,W
   0x8484, 0x8440, 0x8124, 0xffff,      // X,Y,Z
   0xffff, 0xffff, 0x0084, 0xffff,      // , ,^,

   // ASCII column 6
   0xffff, 0x710b, 0x1969, 0x2122,      // @,A,B,C
   0x1961, 0x6122, 0x6102, 0x212b,      // D,E,F,G
   0x700b, 0x0960, 0x1023, 0xe082,      // H,I,J,K
   0x2022, 0xb403, 0x3483, 0x3123,      // L,M,N,O

   // ASCII column 7
   0x710a, 0x31a3, 0x718a, 0x6129,      // P,Q,R,S
   0x0940, 0x3023, 0xa006, 0x3087,      // T,U,V,W
   0x8484, 0x8440, 0x8124, 0xffff,      // X,Y,Z
   0xffff, 0xffff, 0xffff, 0xffff,      // , , ,

};

/*******************************
 * Variable strings
 *******************************
 */

/*******************************
 * Function prototypes
 *******************************
 */

void Initial(void);
void DisplayV(void);
void WriteCharacter(void);

FIGURE 16-13 (continued)



/*******************************
 * Macros
 *******************************
 */
#define Delay(x) DELAY = x; while(--DELAY){ Nop(); Nop(); }

/*******************************
 * main()
 *******************************
 */

void main()
{
   Initial();                   // Initialize everything
   while (1)
   {
      Sleep();
      Nop();
      CHAR = SSPBUF;            // Clear buffer initially
      INTCONbits.INT0IF = 0;    // Clear wake up flag
      TMR0L = 0;                // Reset breakout timer
      INTCONbits.TMR0IF = 0;    // Clear breakout timer flag
      for (RECEIVED = 0; RECEIVED < 9; RECEIVED++)  // Receive 9 chars
      {
         PIR1bits.SSPIF = 0;    // Clear SPI flag
                                // Wait limited amount of time for character
         while ((!PIR1bits.SSPIF) && (!INTCONbits.TMR0IF)) ;
         if (INTCONbits.TMR0IF)
         {
            break;
         }
         VSTRING[RECEIVED] = SSPBUF;  // Get character and put into string
      }
      DisplayV();
   }
}

/*******************************
 * Initial()
 *
 * This subroutine performs all initializations of variables and registers.
 *******************************
 */

void Initial()
{
   OSCCON = 0b01110010;         // Select 8 MHz internal oscillator
   LCDSE0 = 0b11111111;         // Enable all LCD segments
   LCDSE1 = 0b11111111;
   LCDSE2 = 0b11111111;
   LCDSE3 = 0b11111111;
   LCDCON = 0b10001011;         // 1/4 mux; INTRC clock

FIGURE 16-13 (continued)
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   LCDPS = 0b00110110;          // 37 Hz frame frequency
   CLEARptr = (char *) &LCDDATA0;  // Point to first segment
   for (i = 0; i < 28; i++)     // Turn off all segments
   {
      *CLEARptr++ = 0x00;
   }
   LCDDATA21 = 0b00010000;      // Turn on rightmost decimal point initially
   ADCON1 = 0b00111111;         // Make all ADC/IO pins digital
   TRISA = 0;                   // Make all pins outputs but RB0, SCK, SDI
   TRISB = 0b00000001;
   TRISC = 0b00011000;
   PORTA = 0;
   PORTB = 0;
   PORTC = 0;
   SSPCON1 = 0b00110101;        // Initialize SPI as slave
   SSPSTAT = 0b00000000;
   T0CON = 0b11000011;          // Use Timer0 to timeout on incomplete input
   INTCON2bits.INTEDG0 = 0;     // Wake up with falling edge on INT0
   INTCONbits.INT0IF = 0;       // Clear flag
   INTCONbits.INT0IE = 1;       // Enable INT0 source
   // Don't enable interrupt, only wakeup
   DPFLAG = 0;
   Delay(30000);                // Initial delay is 300/2 milliseconds
   RCONbits.SBOREN = 0;         // Now disable brownout reset
}

/*******************************
 * DisplayV()
 *
 * This subroutine displays the string stored in VSTRING
 *******************************
 */

void DisplayV()
{
   // Iterate through all received
   for (i = 0, POSITION = 0; i < RECEIVED; i++, POSITION++)
   {
      CHAR = VSTRING[i];        // Save byte
      if (VSTRING[i + 1] == '.')  // Deal with decimal point
      {                         // Check next character for decimal point
         DPFLAG = 1;            // If it is, set flag
         i++;                   // and increment pointer past decimal point
      }
      WriteCharacter();         // Display current character
   }
}

FIGURE 16-13 (continued)



/*******************************
 * WriteCharacter()
 *
 * This subroutine writes the selected character to the display
 *******************************
 */

void WriteCharacter()
{
   LCDDATA.ALL = ASCII[CHAR];   // Load table entry to be written
                                // Ppoint to corresponding LCDDATAs
   ptr = (oneLCDSEG *) (&LCDDATA0 + POSITION / 2);
   if (DPFLAG)                  // if FLAG is set
   {
      LCDDATA.P = 1;            // Write decimal point
      DPFLAG = 0;               // and clear flag
   }
   if (!(POSITION % 2))         // If even position
   {
      ptr->nAL = LCDDATA.nHL;   // write to lower nibbles
      ptr->nBL = LCDDATA.nHH;
      ptr->nCL = LCDDATA.nLL;
      ptr->nDL = LCDDATA.nLH;
   }
   else                         // If odd position
   {
      ptr->nAH = LCDDATA.nHL;   // write to upper nibbles
      ptr->nBH = LCDDATA.nHH;
      ptr->nCH = LCDDATA.nLL;
      ptr->nDH = LCDDATA.nLH;
   }
}

FIGURE 16-13 (continued)

PROBLEMS

16-1  Algorithm testing This problem requires the availability of a PICkit 2 
programmer plus a 6-pin, 100-mil-spaced header to bridge between the pro-
grammer’s 6-pin female output and the Qwik&Low board’s unpopulated H5 
“LCD PICkit 2” header.

 •  Modify the LCD.c code to set RC7 before the call of WriteCharacter 
in DisplayV and to clear RC7 on the return from WriteCharacter. 
Compile your modified LCD.c code with the same c18.exe utility used 
to compile the code for the PIC18LF4321. Note the message produced 
by this utility indicating its recognition (and acceptance) of this code 
for the PIC18LF6390 LCD controller chip. 
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 •  Use the PICkit 2 programming utility (rather than QwikProgram 
used to program QwikBug into the PIC18LF4321) to program the 
LCD controller chip. When you do this, make sure that SW2, the big 
4PDT switch in the center of the board, is down or in (i.e., on, not off). 
Otherwise, this switch shorts the LCD controller’s VDD pin to ground, 
as can be seen in Figure 16-3.

 •  Monitor test point TP7 with a scope while running MCU code that 
writes to the LCD display. This test point is labeled on the back of the 
board below TP8, TP9, TP10, and TP11. It can, or course, be probed 
from the front of the board at the pad located below the TP8 label.

 a)  Does the duration of WriteCharacter vary with the position of 
the character on the display? To test this, have the MCU send 
“AAAAAAAAA” to the display. What is this duration?

 b)  Does the duration of WriteCharacter vary with the character code? 
To test this, you already know the effect of the position of the char-
acter. Now have the MCU send “AOPZ.aopz” to the display. 
What do you find?
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17.1 OVERVIEW

The Serial Peripheral Interface (SPI) facility used by the MCU to send a display string 
to the LCD controller can also be employed for communication with other peripheral 
chips to enhance the features of the MCU. This chapter will begin with the clocking 
options used to match the SPI to another chip’s SPI. It will end with the use of two 
peripheral chips.

The SPI circuitry is part of the PIC18LF4321’s Master Synchronous Serial Port 
(MSSP) module that supports either SPI or I2C bus transfers. The Qwik&Low board 
is committed to the SPI function because:

• Two of the three SPI pins are already committed to communication with the 
LCD controller.

• I2C bus use requires a relatively low 2.2-KΩ pull-up resistor for each of its two 
I2C pins. These resistors present a large current draw during I2C transfers. They 
must also be individually disabled for SPI transfers that use the same pins.

• SPI transfers are inherently faster than I2C transfers, and thereby take up less 
CPU awake time. The SPI clock is more than twice as fast as that specified for 
I2C. I2C message strings always require the time to send one more (address) 
byte than a similarly functioning SPI chip would require.

SPI FOR FEATURE 
ENHANCEMENT

Chapter 

17



242 Chapter 17 SPI for Feature Enhancement

MCU

SPI

PIR1

SSPIF flag

SSPBUF

Write to
SSPBUF

SCK

SDO b7 b6 b5 b4 b3

8 µs

b2 b1 b0

SSPIF

Internal
shift
register

Control
circuitry

CS

CS

Clear flag
Flag set upon
completion of transfer

Select a specific device

Serial data out
(most-significant bit first)

SCK (RC3)

SDO (RC5)

(a) Function of pins

(b) Waveforms

Chip select 
(general-purpose output)

Serial clock
(eight clock pulses are emitted
in response to a write to SSPBUF)

FIGURE 17-1 SPI use for serial output

• Many peripheral functions available with an I2C interface are also available 
with an SPI interface. For example, the AD5601 digital-to-analog (DAC) con-
sidered later in this chapter is the SPI counterpart of the AD5602, a DAC with 
an I2C interface and an otherwise identical feature set.

17.2 SPI OUTPUT FUNCTIONALITY

The SPI functioning for transfers to the LCD controller was illustrated in Figure 5-1 
and is repeated in Figure 17-1. Note that the byte that is written to the SSPBUF reg-
ister is transferred out of the MCU most-significant bit first. This is a defining charac-
teristic of the SPI interface. Peripheral chips with an SPI interface are designed to use 
transferred data in this most-significant-bit-first order.



The registers associated with the SPI module are shown in Figure 17-2. If the SPI 
is only being used for output transfers (as it is for the Qwik&Low board without add-
on parts), then the initialization of bit 4 of TRISC to zero (as it is initialized in all of 
the earlier template files) allows the SDI pin to be used as a general-purpose output 
pin, RC4.

The SPI clock rate is controlled by the lower 4 bits of SSPCON1. The 0000 choice 
shown sets this rate to its maximum value of 1 MHz when FOSC = 4 MHz so that an 
8-bit transfer will take just 8 µs.

Two control bits, CKP and CKE, serve a vital role for SPI output transfers. CKP 
selects whether the clock output, SCK, idles high or low. These two control bits are 
initialized before initiating an SPI transfer to a device. If the device requires each 
incoming bit to be stable at the time of the rising edge of its SCK input, then either 
Figure 17-3a or c will serve. On the other hand, if the Figure 17-3b or d choice were 
made, that device would see a changing, ambiguous bit on SDO at the time of each 
rising edge of SCK.

For a device that requires stable data with the rising edge of the clock, either Figure 
17-3a or c will work. For a device that requires stable data with the falling edge of the 
clock, either Figure 17-b or d will work. Between the two choices for a device, the 
better choice is the one that does not change CKP from its previous value. Changing 

SCK = output

SPI clock rate = FOSC/4
CKP - see Figure 17-3

CKE - see Figure 17-3

SSPEN = 1 to enable SPI module

SMP - used by SPI inputs, see Figure 17-5

Unused in SPI mode

Unused in SPI mode

SDO = output

SDI/RC4

0 0
34567

TRISC
2 1 0

1:  for use by SPI for serial input transfers 
0:  for use as a general-purpose output

SSPIF

A write to SSPBUF initiates a transfer

1:  Transfer completed (must be cleared before transfer) 
0:  SPI ready to transfer

x x x x x

1 0
34567

SSPCON1
2 1 0

0 0 0 0 0

0 0 0
34567

SSPSTAT
2 1 0
0 0 0

34567
PIR1

2 1 0

SSPBUF

FIGURE 17-2 SPI registers
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SDO

SCK

SDO

(a) CKP = 1, CKE = 0 (selection for transfers to LCD controller)

(b) CKP = 1, CKE = 1

b7 b6 b5 b4 b3 b2 b1 b0

SCK

SCK

SDO

(d) CKP = 0, CKE = 0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

SCK

SDO

(c) CKP = 0, CKE = 1

b7 b6 b5 b4 b3 b2 b1 b0

FIGURE 17-3 CKP and CKE options for output transfers

CKP introduces two extra edges, one of which will clock falling-edge-sensitive devices 
and one of which will clock rising-edge-sensitive devices. For example, as indicated by 
Figure 17-3a, the LCD controller is sensitive to rising clock edges. If CKP is changed 
to zero for an SPI transfer to another device, that change in CKP will drop the idle 
SCK line from high to low. That change may clock the other device and produce an 
inadvertent 9-bit transfer to the device. Likewise, when CKP is changed back to one 
for the next SPI transfer to the LCD controller, an extra rising edge will occur on the 
SCK input to the LCD controller. If the LCD controller’s CPU has not yet been awak-
ened by the interrupt input from the MCU (see Figure 5-1a), then this extra edge will 
be ignored. On the other hand, less careful dealing with this sequence by first dropping 
RD5 to wake up the LCD controller’s CPU and then changing CKP will clock a gar-
bage bit into the LCD controller and thereby garble what is received. This potential 
problem never arises if CKP is never changed.

SPI output transfers to a device generally involve an extra control line in addi-
tion to the SCK to SCK connection and the SDO to SDI connection (see Figure 5-1). 
In the case of the MCU transfers to the LCD controller, the extra control line is the 
MCU’s RD5 pin used to awaken the LCD controller’s CPU with a falling-edge INT0 
interrupt. Some other devices use the extra input as a chip enable, ignoring the wig-
gling SCK and SDO lines except when enabled. However it is used, this extra input to 
a device must serve the device in the manner specified in that device’s data sheet.



17.3 SPI INPUT FUNCTIONALITY

Reading serial input from an SPI peripheral chip makes use of the three pins of 
Figure 17-4a, with a general-purpose output pin used as specified by the peripheral 
chip’s data sheet. The output from this pin may serve as a chip enable, taking a tri-
state SDO output from the peripheral chip out of its high-impedance state so it can 
drive the MCU’s SDI input. For another chip, the output from this pin may load a 
register with the content to be shifted back to the MCU. In any case, after clearing the 
SSPIF flag in the PIR1 register, a write to the SSPBUF register initiates the shifting of 
whatever was written to SSPBUF out of the SDO pin. At the same time, whatever the 
external device presents to the SDI pin is shifted into SSPBUF.

(a) Function of pins

(b) Example waveforms

CS

Clear flag

SSPIF

SCK

Input sampling
of SDI pin

SDI b7 b6 b5 b4 b3 b2 b1 b0

Write to
SSPBUF

Flag set upon
completion of transfer

MCU

Control
Circuitry

SSPIF flag

SPI

PIR1

SSPBUF
Internal

shift
register

Chip select CS Select a specific device

Serial clock
(eight clock pulses are emitted
in responce to a write to SSPBUF)

Serial data in
(most-significant bit first)

SCK (RC3)

SDI (RC4)
(SDO)

FIGURE 17-4 SPI use for serial input
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As in the case of SPI output transfers, an SPI input transfer can use any of several 
timing alternatives. In addition to the role of the CKP and CKE control bits, input 
transfers are also controlled by an SMP sampling bit, as shown in Figure 17-4b. If the 
input transfer makes use of the same CKP = 1 value used for output transfers to the 
LCD controller, the SCK line will not experience any extra, spurious clock edges that 
might otherwise throw the input data off by 1-bit time, as discussed in the last section.

Figure 17-5a shows the three timing alternatives in the case for which CKP = 1. 
For example, the “chip select” pin to the peripheral chip may load its SPI output reg-
ister so that the most-significant bit is then sitting on its SDO output and, thereby, on 
the MCU’s SDI input. If the peripheral chip is sensitive to rising SCK clock edges, the 
use of the CKP = 1, SMP = 0 timing choice will have the MCU’s SPI sampling its 
SDI input before the first shift takes place, just as desired. The alternative sampling time 
choices are obtained by loading SSPSTAT appropriately, as shown in Figure 17-2.

17.4 AD5601 DAC OUTPUT

Analog Devices has a family of three tiny 6-pin nanoDAC  digital-to-analog convert-
ers for 8-bit, 10-bit, or 12-bit conversions of an input value, N, to an output voltage

VOUT =   N __ 
2k   × VDD

where k = 8 for the AD5601, k = 10 for the AD5611, and k = 12 for the AD5621. The 
units operate over a supply voltage range of 2.7 V–5.5 V. One of these units can be 

SCK

CKE = 1, SMP = 0

CKE = 1, SMP = 1
or

CKE = 0, SMP = 0

CKE = 0, SMP = 1

SCK

CKE = 1, SMP = 0

CKE = 1, SMP = 1
or

CKE = 0, SMP = 0

CKE = 0, SMP = 1

(a) SDI sampling times for CKP = 1 (for which SCK idles high)

(b) SDI sampling times for CKP = 0 (for which SCK idles low)

FIGURE 17-5 CKP, CKE, and SMP options for input transfers



soldered to the Qwik&Low board using the 0.65 mm surface-mount pattern located 
on the back of the board. Using the circuit of Figure 17-6, it can be connected to the 
MCU with 30-gauge wirewrap wire soldered between the AD5601 pins and the pins 
of the H4 terminal strip.

At power-on reset, one of these units typically draws 40 µA, but when sent a standby 
command, the current draw drops to 0.1 µA. When sent a power-up command to pro-
duce an output voltage, the unit typically draws 60 µA, producing an output with the 
very low output impedance of 0.5 Ω. In standby mode, the output impedance will be

• 1 kΩ to ground

• 100 kΩ to ground

• Three-state (i.e., essentially open circuit)

depending on 2 bits of the int value sent to the chip.
A block diagram of the DAC is shown in Figure 17-7. The resistor string-

multiplexer combination ensures a monotonic output; that is, an output that always 
increases as the digital input increases. A relative accuracy specification of ±0.5 LSb for 
the 8- and 10-bit DACs means that the output deviates from a straight line between 
0 V and VDD by no more than

±0.5 ×   
VDD ____ 
2k  

For the 12-bit DAC, the specification is relaxed slightly to ±1 LSb. This DAC family 
exhibits close to ideal specs, even including a typical settling time of 6 µs.

To control the DAC, 2 bytes must be sent to the chip over the SPI to load its input 
register, with the effect shown in Figure 17-8. The chip’s SPI interface expects to see 
stable data on its SDI input at the time of the falling edges on its SCK input. This tim-
ing dictates the choice of Figure 17-3b. Therefore, before the transfer is initiated, CKE 
is set to one (from its value of zero dictated by the LCD controller’s requirement) as 
shown in Figure 17-9. The DAC then expects a low→high→low pulse on its SYNC 
input. With the circuit of Figure 17-6, this is accomplished by

PORTAbits.RA5 = 1;

PORTAbits.RA5 = 0;

VDD

GND

MCU

RA5

SCK

SDO

SYNC

SCK

SDI

VOUT VOUT

GND

VDD

1

AD5601

2

3

6

5

4

FIGURE 17-6 AD5601 DAC 
circuit connections
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•
•
•

•
•
•

−

+

VDD

Resistor
string

Multiplexer

Operational amplifier
follower circuit

VOUT

FIGURE 17-7 Block diagram of AD5601 DAC

With FOSC = 4 MHz, this sequence will produce a 1-µs pulse, easily meeting the 
SYNC pulse-width specification of 20-ns minimum. The chip uses this pulse to reset, 
or synchronize, its SPI interface. It expects this pulse to be followed by 16 falling edges 
on its SCK input. It will shift the SDI input into its DAC input register in response to 
each of these falling edges. In response to the 16th falling edge, the DAC will act on 
the input register contents, as specified in Figure 17-8.

The sequence of events to update the DAC is shown in Figure 17-9. After setting 
the CKE bit, and pulsing the SYNC input, the MCU clears the SSPIF bit, writes the 
upper byte to SSPBUF, waits for SSPIF = 1, clears it again, writes the lower byte to 
SSPBUF, waits for SSPIF = 1, and finally clears the CKE bit to leave this bit in its 
default state for the LCD controller. If DACREG is the 16-bit int variable to be sent 
to the DAC, then

DACREGL = DACREG & 0x00FF; //Form lower byte

DACREGH = DACREG >> 8;  //Form upper byte

forms the two 8-bit unsigned char variables to be written to SSPBUF.



17.5 MOSI/MISO TERMINOLOGY

The Serial Peripheral Interface was developed many years ago by Motorola. The intent 
was to have an interface that could swap the contents of two 8-bit registers between two 
devices using the 3-wire interface shown in Figure 17-10. The term master-out, slave-in 
(MOSI) is applied to the line that transmits data from the master (i.e., the chip that drives 
the clock line) to the slave (i.e., the chip that uses its clock pin as a clock input). This 
MOSI term (and the corresponding MISO term) avoids the naming confusion associ-
ated with a line that connects an SDO pin on one chip to an SDI pin on another chip.

A fourth, active-low slave-select ( 
___

 SS ) input is also defined for the slave, driven by a 
corresponding slave-select output from the master. For multiple slaves (the configu-
ration being considered in this chapter), each slave has a single ( 

___
 SS ) input while the 

master has one ( 
___

 SS ) for each slave. The original intent of the ( 
___

 SS ) input was to force 
a slave’s MISO output to the high-impedance state and to keep a slave from respond-
ing to activity on the MOSI and SCLK lines unless its ( 

___
 SS ) line was driven low by 

the master for the duration of the transfer. Present usage employs a more generally 
defined pin to signal the slave of an impending transfer (e.g., the SYNC input of the 

b7 b6 b5 b4

N

(a) AD5601 input register (for 8-bit DAC)

0 0 Power up; generate output
0 1 Standby with output of 1 kΩ to ground
1 0 Standby with output of 100 kΩ to ground
1 1 Standby with open-cicuit output

N

(b) AD5611 input register (for 10-bit DAC)

0 0 Power up; generate output
0 1 Standby with output of 1 kΩ to ground
1 0 Standby with output of 100 kΩ to ground
1 1 Standby with open-cicuit output

N

(c) AD5621 input register (for 12-bit DAC)

0 0 Power up; generate output
0 1 Standby with output of 1 kΩ to ground
1 0 Standby with output of 100 kΩ to ground
1 1 Standby with open-cicuit output

b3 b2 b1 b0 x x x x x x

b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 x x x x

b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 x x

FIGURE 17-8 DAC input register
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last section or the INT0 input of the LCD controller) in addition to the original role of 
framing the transfer. For any device, it is important to read the data sheet to determine 
how the device expects this input to be used.

The Motorola standard defines four SPI modes. Each of these modes specifies a 
combination of CKP, CKE, and SMP of Figures 17-3 and 17-5 so that data is read by 
both master and slave half a clock period before data is changed. Two parameters are 
used to define the four modes, as shown in Figure 17-11:

• CPOL = 0 means the clock line idles low  (same as CKP = 0)

• CPOL = 1 means the clock line idles high (same as CKP = 1) 

• CPHA = 0 means sample on the leading clock edge

• CPHA = 1 means sample on the trailing clock edge

The table of Figure 17-11 also lists the values of CKP, CKE, and SMP that produce 
each mode, derived from a translation of Figures 17-3 and 17-5.

17.6 ADT7301 SPI TEMPERATURE SENSOR

Analog Devices makes an SPI-connected temperature sensor, their ADT7301. It is 
available in a 6-pin SOT-23 package or an 8-pin SOIC package, either of which can 
be added to the surface-mount patterns in the lower-right corner of the Qwik&Low 
board. Because the chip powers up into an active mode, drawing almost 200 µA of 
current, the chip must be initialized by sending it a shutdown command, after which 
current drawn by the chip drops to less than a microampere.

A schematic for connecting this temperature sensor to the MCU is shown in 
 Figure 17-12a. Features of the chip, listed in Figure 17-12b, include a resolution of 
well less than a tenth of a degree Fahrenheit. While the chip’s current as it carries out 

SPI master

(SCK)

(SDI)

(SDO)

SCLK

SPI slave

(SCK)

(SDO)

(SDI)

SS

MISO

MOSI
(most-significant bit first)

FIGURE 17-10 MOSI/MISO terminology
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(a) Schematic

VDD

VDDVDD

(RC3) SCK
SCLK

MISO

MOSI

SCK

SDO

SDI

(RC4) SDI

(RC5) SDO

GND

MCU

RB4 CS

ADT7301

SPI

FIGURE 17-12 ADT7301 temperature 
sensor

MODE

0

1

2

3

0

0

1

1

0

1

0

1

low

low

high

high

rising edge

falling edge

falling edge

rising edge

falling edge

rising edge

rising edge

falling edge

0

0

1

1

1

0

1

0

0

0

0

0

CPOL CPHA
Clock
idles

Clock edge
upon which
data is read

Clock edge
upon which

data is changed CKP CKE SMP

SCLK for CPOL = 0

SCLK for CPOL = 1

MISO & MOSI
for CPHA = 0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0
MISO & MOSI

for CPHA = 1

FIGURE 17-11 SPI mode numbers and correlation to CKP, CKE, SMP
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a conversion is high, a conversion once per second with the chip otherwise shut down 
produces an average current draw on the coin cell supply of only

  208 _________ 1,000,000   × 1,600 = 0.33 µA

Alternatively, the chip might be sent the serial command to power up and begin a con-
version once per second. If, 10 ms later, the MCU shuts down the sensor and at the 
same time retrieves the converted result, the average current drawn by the temperature 
sensor is 

0.33 µA +   10 _____ 1,000   × 190 µA = 2.2 µΑ

Figure 17-13a shows the two commands that the chip understands. Although it is the 
state of the third bit received that draws the distinction between the shutdown com-
mand and the wakeup and convert command, the chip requires the reception of all 16 
clock edges before the CS pin is raised or it will ignore the command.

The simultaneous operation of reading out an already converted result and put-
ting the chip in shutdown mode is illustrated in Figure 17-13b. The examples of 
Figure 17-12c illustrate that if the 2-byte result is formed in a signed int variable, 
RAWTEMP, the temperature will be expressed in units of 0.03125°C. For a tem-
perature above 0°C, the Centigrade temperature is expressed as

CENTIGRADE = RAWTEMP >> 5;      //Temperature in units of degrees

or

TENTHS = (10 ∗ RAWTEMP) >> 5;   //Temperature in units of 0.1 degree

Supply voltage +2.7V to 5.5V
Accuracy ±0.5°C from 0°C to 70°C
Resolution 0.03125°C = 0.05625°F
Operating temperature range -40°C to +150°C
Supply current
  Converting 1600 µA, typical
  Not converting 190 µA, typical
  Shutdown mode 0.2 µA, typical
Conversion time 208 µs
Package 6-lead SOT-23 or 8-lead SOIC

(b) Features

Temperature Output
-0.03125°C 11 1111 1111 1111
0°C 00 0000 0000 0000
+0.03125°C 00 0000 0000 0001
1°C 00 0000 0010 0000
32°C 00 0100 0000 0000

(c) Conversion examples

FIGURE 17-12 (continued)
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PROBLEMS

17-1  DAC Output

 a) Write a little InitDAC function that sends a standby command to the 
AD5601 digital-to-analog converter described in Section 17.4 for an output 
impedance of 1 kΩ and a current draw of less than 1 µA. Assume the chip 
is connected to the MCU with the circuit of Figure 17-6.

 b) If you are willing to add a call of this InitDAC from the Initial function 
for all of the code that subsequently uses this augmented board, follow 
the directions at the beginning of Section 17.4 to add the part and to wire 
the connections. (Without running InitDAC, any code that uses the board 
will suffer an extra current draw of about 40 µA.)

 c) Write a DAC.c program that powers up the pot and keeps it powered up. 
Then read the 8-bit output of the pot and write it to the DAC every tenth of 
a second. Using two DMMs, measure the DC voltage of the DAC output 
relative to the pot output and also measure the pot voltage as you turn the 
pot from full CCW to full CW. Make a plot of this voltage difference ver-
sus the pot voltage over the full range of the pot output.

17-2  Temperature sensor

 a) As was done for the last problem, and for the same reason, write a little 
Init7301 function that sends the shutdown command described in Fig-
ure 17-13a assuming the circuit connections of Figure 17-12 (and with no 
change in the SPI initialization of SSPSTAT and SSPCON1 already car-
ried out for the LCD).

 b) Subject to the same caution as was raised in Part (b) of the last problem, 
add an ADT7301 to the SOIC surface-mount pattern on the front of the 
Qwik&Low board, being careful to avoid the use of any pins used by a part 
(such as the DAC for the last problem) on the back of the board.

 c) Write a TenthCent function that, once a second, initiates a conversion. 
One loop time later it retrieves the converted result while simultaneously 
shutting the chip down. Then the function displays the temperature with a 
format exemplified by

27.3°C

   right justified on the LCD. Assume that the temperature will never exceed 
99.9°C.

 d) Write a TenthFahr function analogous to the function of Part (c) that will 
display the Fahrenheit temperature with a format exemplified by 

104.5°F

   If the temperature is below 100.0°F, blank the hundreds digit.
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A1.1 INTRODUCTION

QwikBug is a small utility used to aid developers in the testing and debugging of 
C programs compiled for use on the Qwik&Low board. QwikBug was developed for 
the PIC18F4321 series of 8-bit PIC microcontrollers and makes full use of the PIC’s 
built-in background debug mode (BDM).

A1.1.1 Architecture

There are two components to QwikBug: the QwikBug kernel, which is a program that 
resides in the PIC’s program memory, and the QwikBug software interface, which 
provides the graphical user interface from a standard Windows-based PC.

The QwikBug kernel and software interface communicate using the computer’s 
serial port, over a standard RS-232 connection. A custom protocol was developed to 
facilitate communications between the two components. This simple protocol defines 
many standard debugging commands, such as run, step, and add breakpoint. The 
protocol also defines commands that allow the QwikBug kernel to dynamically pro-
gram the PIC’s flash memory using the serial port. This allows the user to download a 
C program to the PIC without any additional hardware or software.

QWIKBUG PROGRAM 
DEBUGGER
By Ryan Hutchinson

Appendix

A1



QwikBug uses the PGC (Program Clock) input pin on the microcontroller to ini-
tiate BDM (Background Debug Mode). This same pin is used by Microchip’s ICD2 
programmer/debugger to communicate to the PIC. This is accomplished by tying the 
RX input pin that is used by the PIC’s UART to the PGC input pin. In this fashion, 
whenever data is received by the PIC on the UART, the PGC pin will trigger the 
microcontroller to enter BDM. 

The QwikBug kernel makes use of the PIC’s low-power features by placing itself 
into sleep mode when idle. Because of this, the software interface will “wake up” the 
chip when transmitting commands by first sending a “wake-up” byte that is ignored 
by the kernel and is only used to awaken the chip and return it to BDM.

Since the QwikBug kernel is no different from any other program that is written 
for a PIC microcontroller, it requires the use of various PIC resources to function. 
The goal behind the QwikBug program was to make it as non-intrusive as possible 
and to use the minimum amount of resources so that a user program could operate 
as if it were the only program running on the microcontroller. The QwikBug kernel 
occupies 1,536 bytes (768 words) of the PIC’s memory. The kernel is located high in 
the PIC’s program memory starting at address 0x1A00 and extends to the very end 
of its memory at address 0x1FFF. Since the PIC18LF4321 has a total of 8,192 bytes 
(4,096 words) of program memory available, this leaves 6,656 bytes (3,328 words) of 
program memory for the user’s programs.

QwikBug also requires some RAM registers to operate. It utilizes a total of 
56 bytes of RAM to perform its operations. As with program memory, these 56 bytes 
are located high in the PIC’s address range to prevent collisions with user program 
variables. The RAM used by the QwikBug kernel begins at address 0x1C8 and extends 
through address 0x1FF. Since all RAM used by QwikBug is above 0x0FF, it makes 
exclusive use of bank 1 for all of its operations. As long as the user’s programs do not 
write to registers in the range specified above, QwikBug can operate as intended. If the 
registers shared by QwikBug are written to, however, unexpected results may occur.

The third resource that is shared by QwikBug and by user programs is the UART. 
QwikBug uses both the transmit and receive functionality of the UART to communi-
cate behind the scenes with the QwikBug software interface. QwikBug requires exclu-
sive utilization of the UART’s receive buffer, making it unavailable to the user except 
by moving a jumper on header H1, thereby assigning RX to an add-on user connec-
tion. The transmit buffer, however, can be shared between the two. The incoming 
user data is separated from communications-related data by the software interface and 
presented to the user via the QwikBug console.

To accomplish the seamless transition from BDM to user code, QwikBug shadows 
many of the PIC special function registers (SFRs). This means that many of the timer- 
and peripheral-related SFRs are saved to temporary locations before being modified 
by QwikBug. Once QwikBug returns from BDM, the registers are restored and opera-
tions can continue as if the user program was never interrupted. QwikBug also uses 
a clock frequency and serial baud rate that could be different from the user’s. When 
BDM is first entered, QwikBug shadows the SFRs related to the clock speed and serial 
baud rate and uses its own, pre-defined values so that communications with the soft-
ware interface is always possible.
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A1.1.2 Features

The QwikBug software interface was designed to be lightweight and easy-to-use while 
still providing powerful debugging features. The following features are all part of the 
QwikBug package:

• Simple, free debugging interface

• Run, pause, and single-step through C source code

• Load and erase programs from a C18-compiled hex file using the PIC’s 
UART

• Monitor watch variables in multiple display formats, variable types, and array 
sizes

• Modify watch variable values while program execution is suspended

• Soft reset of program to initial program vector

• Add a single breakpoint to stop execution at a specific C source line

• Quickly search through C source code by navigating to subroutines

• Display user data received on the PC’s serial port using the built-in console tab

A1.2 INSTALLATION

A1.2.1 Prerequisites

The following prerequisites are required to run the QwikBug software interface:

• PC running Windows XP or Windows Vista

• Standard PC serial port via any COMi address, from COM1 through COM7

The following prerequisites are required to install the QwikBug kernel:

• Qwik&Low board

• Microchip PICkit 2 programmer

• QwikProgram 2 software installed (found online at www.qwikandlow.com)

• Standard PC USB port

Note that QwikBug could potentially be installed on a PIC18F4321 chip that was 
not part of the Qwik&Low board. However, QwikBug was designed to work with 
the Qwik&Low board and this guide will only cover installation for Qwik&Low 
boards.

A1.2.2 Installing QwikBug Kernel with QwikProgram 2

• Download the latest QwikBug kernel HEX file and HEX.VECTOR files from 
the webpage at www.qwikandlow.com. Place both the HEX file and the HEX.
VECTOR file in the same directory.
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• Attach the PICkit 2 programmer to the computer’s USB port.

• Attach the other end of the PICkit 2 to H5 on the Qwik&Low board. This header 
also has the label “MCU PICkit 2” and is specifically for the PIC18LF4321 on 
the Qwik&Low board. A 6-pin male-to-male header strip is required to connect 
the female end of the PICkit 2 to the female header on the Qwik&Low board. 
Ensure that the arrow on the board lines up with the arrow on the PICkit 2.

• Verify that power is turned off to the Qwik&Low board and run QwikProgram 2
on the computer. The following window should appear:

• Verify that the PIC18F4321 was detected as labeled in the QwikProgram 2 sta-
tus bar before proceeding. If the PIC was not detected, try disconnecting and 
reconnecting the PICkit 2 from the USB port and running Detect from Qwik-
Program 2’s Device menu.

• Select File -> Open hex file. . . from the QwikProgram 2 menu. Locate the pre-
viously downloaded HEX file and click Open. The window should now look as 
shown:

• Click the Write button once the HEX file has been loaded. This will write the 
QwikBug kernel to the proper vector location on the PIC. If the verification of 
the write did not succeed, reseat the PICkit 2 connection and try again.

• Now the QwikBug kernel has been installed and the QwikBug software inter-
face can be used to communicate with the kernel residing on the PIC.

A1.2.3 Installing QwikBug Software Interface

• Download the QwikBug software interface install file from the website at www.
qwikandlow.com.
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• Launch the setup program. If QwikBug has already been installed on the com-
puter then it will prompt to uninstall the old version before proceeding. Other-
wise, click Next after selecting the desired options.

• Select the COM port that will be used to communicate with the QwikBug 
kernel from the drop-down list. Click Next to continue installation.

• Select the installation folder for QwikBug. The default installation folder is rec-
ommended. Click Install to begin the installation of the software.

• After installation has successfully completed, click Close. The QwikBug soft-
ware interface has now been installed.

• After installation, it is possible to tweak particular QwikBug settings. To do so, 
open the settings.xml file located in the QwikBug installation directory chosen 
above using a standard text editor such as Notepad. To change the setting values, 
modify the value attribute for the desired XML element. Caution; modification 



of the name or type attributes or other aspects of the file could corrupt the XML 
file and cause QwikBug to malfunction. The table below outlines the settings 
that can be tweaked:

Setting Name Default Value Description

COMPort (chosen during setup) The COM port that QwikBug uses to communicate 
with the kernel. This value was created during setup 
and can be changed if needed.

BaudRate 19,200 baud The serial port baud rate used to communicate with 
the kernel. This setting should generally not be 
changed unless the QwikBug kernel is modified to 
also use the same baud rate.

SerialTimeout 300 ms The amount of time in milliseconds to wait before 
a timeout error occurs when issuing a command to 
the QwikBug kernel.
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A1.3 GRAPHICAL USER INTERFACE

The following figure outlines the various components of the QwikBug user interface. 
Those components that will be referred to later are called out to provide a reference.

Watch grid

Menu bar

Toolbar

Source box

Tab button to console box

State label

Progress bar

Status label

Abnormal stop source indicator

Interaction with the QwikBug user interface is identical to that of most commonly 
used Windows programs. Several of the popup windows that are part of the QwikBug 
program are set as topmost windows and will always remain on top of other windows 
while they are open. This is to help the user to quickly relocate the popup windows 
when needed.

A1.4 LOADING A PROGRAM

A1.4.1 Opening a List File

QwikBug gathers all of the information it needs about the user program from the LST 
and COD files that are generated by the Microchip C18 compiler. It also requires the 
HEX file that is generated by the compiler to download the program to the PIC. It is 
recommended that the user downloads and uses the C18 compilation utility that is 
freely available on the website at www.qwikandlow.com. The C18 utility utilizes the 
C18 compiler and passes in compiler arguments needed to compile C programs for the 
PIC18LF4321. It also provides the user with program memory utilization and factors 
in the program memory occupied by QwikBug when doing so.

To open a list file, select Open File from the File menu or click the Open File  
toolbar button. A dialog box will appear prompting the user for the desired LST file. 
Locate the compiled LST file from the dialog and click Open. Note that the associated 



HEX and COD files must be in the same directory as the LST file and have the same 
beginning file name or QwikBug will produce an error.

Once the list file has been processed, the source code for the C program will appear in 
the source box. The progress bar will show the progress of the file as it is being opened. 
Note that the state label shows “Disconnected”, indicating that the user program has 
not yet been loaded into the PIC.

Ensure that the Qwik&Low board is powered on and that the serial cable is prop-
erly connected from the PC to the Qwik&Low board’s female DB-9 serial port con-
nector. To load the program into the PIC, select Load from the Program menu or click 
the Load  toolbar button. The progress bar should begin to increase as the program 
is downloaded over the serial port. If there was an error downloading, the following 
message box will appear:

This error message indicates that the software interface was unable to communicate 
with the QwikBug kernel. If this error occurs, check the power to the PIC and the serial 
port connections. Also verify that the QwikBug kernel has been properly installed as 
described in the previous section.
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Upon successful load of the program, the state label will change to “Paused” and 
the status label should read “Program paused [Reset executed]”. Note that the Reset 

, Run , and Step  toolbar buttons are all now enabled. Refer to the associated 
sections to learn about the use of all of QwikBug’s debugging features.

A1.4.2 Erasing the Program Memory

QwikBug allows the user to erase the program memory of the PIC (up to the QwikBug 
kernel’s vector location). To execute an erase, select Erase from the Program menu or 
click the Erase  toolbar button. Erase is only allowed when the state is either discon-
nected or paused. If the erase is successful, the state will change to disconnected and 
the status label will read “Program memory erased”.

A1.4.3 Monitoring of List File

QwikBug will constantly monitor the list file once it has been opened. If the list file 
changes for any reason (e.g., the source file is changed and recompiled), QwikBug will 
disconnect, clear out the source box, and the status label will change to read “List file 
has been changed, please reopen file”. This is done to ensure that the user is kept up-
to-date when the source file has been recompiled and that an old copy of the program 
is not accidentally used with QwikBug. To reopen a list file at any time after the file 
has initially been opened, select Reopen File from the File menu or click the Reopen 
File  toolbar button.

A1.5 PROGRAM CONTROL

A1.5.1 Running

While the PIC is in the running state, it is executing code without any intervention by 
QwikBug. To place the PIC in run mode after a program has been loaded into pro-
gram memory, select Run from the Debug menu or click the Run  toolbar button. 
The PIC cannot be placed into run mode unless it is currently paused. The state label 
will change to “Running” while in run mode and will be highlighted green.

Once in run mode, watch variable values will not be updated until the PIC reaches 
a paused state. If the PIC reaches a breakpoint while running it will also enter the 
paused state. The PIC can also be reset while in the running state.

A1.5.2 Pausing

No user program code is executed by the PIC while in the paused state. To place the 
PIC in pause mode after a program has been loaded into program memory, select 
Pause from the Debug menu or click the Pause  toolbar button. The PIC can be 



paused while it is in run or step mode. Paused is also the default state of the PIC after 
coming out of reset or performing a program download. The state label will change to 
“Paused” while in paused mode and will be highlighted yellow.

The values of the watch variables will be updated as soon as the PIC is placed in the 
paused state. While in pause mode, breakpoints can be added or removed and watch 
variables can be added. It is also possible to reload the program into the PIC while in 
pause mode or to erase the program memory. From pause mode, the user can place 
the PIC in run mode or step mode.

While the PIC is in the paused state, a yellow highlight will appear in the source 
box to let the user know what code is about to be executed. It is important to remem-
ber that the line that is highlighted has not yet been executed or has been partially 
executed, as is the case for C source lines that contain multiple instructions should the 
PIC be paused while in the middle of executing the line. The figure below shows an 
example of a highlighted C source line just before execution:

A1.5.3 Stepping

While the PIC is stepping, code is being executed one instruction at a time. The PIC 
will continue to step until its program counter reaches a value that is outside the range 
of the C source code line. There are generally multiple instructions that are executed 
for each line of C source code. To place the PIC in step mode after a program has been 
loaded into program memory, select Step from the Debug menu or click the Step  
toolbar button. The PIC can be stepped while it is in pause mode only. The state label 
will change to “Stepping” while in step mode and will be highlighted orange.

If a C source line contains loops that cause the line to continually execute, it could 
take significant time before the PIC steps out of one C source code line. Because of 
this, QwikBug allows the user to discontinue step mode by selecting Pause from the 
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Debug menu or clicking the Pause  toolbar button. This will cause the PIC to sus-
pend single-step execution and the state will change back to paused.

A1.5.4 Resetting

QwikBug provides a soft reset feature. To issue a soft reset to the PIC, select Reset 
from the Program menu or click the Reset  toolbar button. This will cause the pro-
gram counter to reset to the default initialization vector of 0x0000. Additionally, all 
PIC special function registers (SFRs) and RAM values will be reset to their initial 
states. A reset can be executed while the PIC is in either run or paused mode. It can-
not be executed while the PIC is stepping. QwikBug will return the PIC to the paused 
state at the initialization vector after a reset.

A1.6 BREAKPOINTS

QwikBug provides the user with a single breakpoint that can be placed on any line 
of C source code that contains PIC instructions. Breakpoints cause an executing PIC 
program to halt when the program counter reaches a specified value.

A1.6.1 Breakpoint Execution Order

Breakpoint execution order is different for QwikBug than for many other debugging 
programs that the user may be used to. When a breakpoint is set in QwikBug, the 
breakpoint is actually put at the last instruction contained in the C source code line. 
This is because the PIC executes the line of code that the breakpoint is placed on and 
then increments the program counter before entering BDM. When a breakpoint is 
placed on a C source line is QwikBug, the PIC will execute the very last instruction 
contained in the line and then pause.

A1.6.2 Adding a Breakpoint

To add a breakpoint in QwikBug, the program must first be loaded onto the PIC and 
the PIC must be in a paused state. Once paused, simply right-click on a line of source 
code in the source box and select Add Breakpoint as shown below:



A line that has a breakpoint associated with it will be highlighted red as shown 
below:

Note that only one breakpoint is available with QwikBug. If another breakpoint already 
exists when the Add Breakpoint selection is clicked, the previous breakpoint will be 
automatically cleared and the newly selected breakpoint line will be highlighted red. 
Also note that source lines that do not have any PIC instructions associated with them 
(e.g., comment lines) cannot have breakpoints added to them. If a line that is not asso-
ciated with any instructions is selected, the Add Breakpoint option will be grayed-out 
and disabled from the right-click menu.

A1.6.3 Clearing a Breakpoint

To clear the current breakpoint either select Clear Breakpoint from the Debug menu 
or select Clear Breakpoint from the menu that appears when a C source line is right-
clicked. Breakpoints can only be cleared when the PIC is in the paused state. When a 
breakpoint is cleared, the red highlight will also disappear from the breakpoint line in 
the source box.

A1.7 WATCH VARIABLES

Watch variables are pointers into the values stored in the PIC’s RAM and Special 
Function Registers. The variables are defined in the C source file. QwikBug uses the 
compiler-generated COD file to locate address information for the variable symbol 
names. Once a watch variable has been added to the watch grid in QwikBug, the user 
can view the actual value of the register prior to entering BDM. The user also has the 
ability to modify the value of the watch variable and display the variable in multiple 
formats, including decimal, hexadecimal, binary, and ASCII. QwikBug allows the 
user to manually choose the variable type for a specified watch variable (e.g., char, int, 
short long, long) as well as the number of elements if the variable is an array. In addi-
tion, QwikBug allows the user to watch PIC SFRs and modify their values just like a 
normal, user-defined C variable.
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A1.7.1 Adding Watch Variables to the Watch Grid

Watch variables can be added while the PIC is in any state. The values, however, 
will only be updated while the PIC is in its paused state. To add a watch variable 
after opening a list file, right-click on the variable anywhere it is used in the C source 
box. QwikBug will automatically highlight the entire word that was clicked on in the 
source box. If the variable is found in QwikBug’s symbol table the Add Watch option 
will be selectable. Note that QwikBug does not support watching local function vari-
ables. If a user-defined variable is intended to be watched in QwikBug, it must be a 
global C variable. The figure below shows an example of a highlighted variable in the 
source box as well as the Add Watch selection:

Once Add Watch is selected, the variable will be added to the watch grid. The variable 
will be added with the default variable type and display type, and will be initialized 
with an array size of one element, meaning that the variable is not an array. Only one 
copy of the variable can exist at a time in the watch grid, and QwikBug will ignore 
requests to add the same watch variable multiple times. The figure below shows the 
watch grid after the example variable has been added for watching:

Now that the variable exists in the watch grid the value will be updated whenever the 
PIC enters the paused state. The Type, Array, and Display columns in the QwikBug 
watch grid will need to be manually updated for the new watch variable since they will 
all be set to the default values. Refer to the section on variable and display types below 
for more information on these columns.



A1.7.2 Removing Watch Variables from the Watch Grid

To remove a watch variable, simply right-click anywhere on the variable’s row in the 
watch grid and select Remove Watch as shown in the figure below:

If multiple rows were selected, all of the selected watch variables will be removed 
from the watch grid. Multiple rows can be selected at a time by clicking the leftmost 
column and dragging the mouse to select the desired rows. It is also possible to use the 
keyboard’s Del key to quickly delete selected rows from the watch grid. To clear all of 
the watch variables that are shown in the watch grid, select the Clear All option after 
right-clicking on the watch grid.

A1.7.3 Add Watch Variable Popup

The add watch variable popup is a way to alphabetically view all possible variables 
that can be watched and can be used as an alternate method of adding and removing 
watch variables from the watch grid. The add watch variable popup window can be 
opened by selecting Add Watch from the Debug menu and is always the topmost 
window. The figure below shows a typical example of the add watch variable popup 
in QwikBug:
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The add watch variable popup is divided into two list boxes: user-defined variables and 
PIC special function registers. The user-defined variables list box contains all globally-
defined C variables that are user defined in the source program. The PIC special func-
tion registers list box contains all of the defined SFRs that can be read from or written 
to on the PIC18LF4321.

The variables that are currently being watched are highlighted in the appropriate 
list box, as shown in the example above. To add or remove a watch variable simply 
click on the variable name in either list box. If the variable is not being watched, it will 
become highlighted and will be added to the watch grid. Conversely, if the variable is 
currently being watched, the highlight will be removed from the list box and the vari-
able will be removed from the watch grid.

A1.7.4 Watch Variable Types and Display Types

The Type column in the watch grid represents the declared type of the C variable in 
the source program. The table below lists all of the possible variable types and their 
associated size:

Type Size (of each element)

char 1 byte

int 2 bytes

short long 3 bytes

long 4 bytes

Note that the variable type applies to each element of an array. Structures and other 
multi-type variables are not supported by QwikBug. The variable type for PIC SFRs 
cannot be modified and will be highlighted gray because all SFRs are single-byte reg-
isters and thus have an inherent type of char.

The Array column in the watch grid displays the number of elements contained in 
the associated watch variable. If the variable consists of only one element, the Array 
column will display No, implying that the watch variable is not an array. To change 
the number of elements in a watch variable, click on the cell button in the column. 
The following popup will appear:



To make the variable an array of elements, check the Array box on the popup. Then, 
select the total length of the array and click OK to update the watch variable. Note 
that the Array column will be disabled and grayed-out for SFRs because they can only 
be single-byte registers.

The Display column determines how the watch variable’s value in the Value col-
umn should be displayed to the user. The table below lists all of the possible display 
type options as well as an example display of each for a single-element char:

Display Example

Unsigned 165

Signed −91

Hex 0xA5

Binary 10100101

ASCII G

For variables that have been defined as arrays, the displayed value will be comma-
separated with each element following the display formatting shown above. For ASCII 
display types, only the least significant byte is used to determine the ASCII character. 
For variables types larger than a char this means that all of the upper bytes are ignored 
when displaying the value as ASCII.

A1.7.5 Writing to Watch Variables

QwikBug allows the user to modify the values of variables that are being watched. 
Watch variable values can only be modified when the PIC is in the paused state. 
To modify the value, double-click on the cell in the Value column for the associated 
watch variable in the watch grid. This action will open a popup that can be used to 
modify the variable’s value(s), as shown below:
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For variables that are configured as arrays, a row will be present for each element in 
the array and the associated index number is shown in the column to the left of an 
element’s value. For ASCII display types only one row will be shown and the value 
is treated as a contiguous string. Click on each of the variable’s elements that are to 
be modified and type in a new value for the element. Be sure to use the same display 
format when overwriting an element’s value. QwikBug will verify all values before 
they are written to the PIC. If the value entered cannot be interpreted for the chosen 
display type or if the value is outside the range of the variable type, the old value will 
remain in the element’s row. 

Once all element values have been modified to the desired new values, click the 
OK button to have QwikBug update the PIC with the new values. The Value column 
in the watch grid will then be updated with the variable’s new value(s) once they have 
been successfully read back from the PIC. 

To discard any modifications simply click the Cancel button on the popup win-
dow and the variable will not be written to.

A1.7.6 Import/Export of Watch Variables

QwikBug contains a feature that allows the user to import and export watch variable 
configurations to the hard drive to expedite watch variable creation at different points 
in time. To export the current watch variable configuration once a list file has been 
opened and the watch grid has been configured as desired, select Export Watch Vari-
ables from the File menu. A dialog will appear prompting the user for a destination 
file to save to:



Select the file to save the watch variable configuration to and click the Save button. 
The name of the file is insignificant to QwikBug and is only used to help the user keep 
track of multiple watch variable export files. 

Once a configuration has been exported, the file can be imported by selecting 
Import Watch Variables from the File menu. The following dialog will appear:

Select the file that contains the configuration that should be imported and click the 
Open button to begin the import process. Watch variables can only be imported after 
a list file has been opened. QwikBug will clear all current watch variables out of the 
watch grid once an import is initiated and will add the variables from the exported file 
to the watch grid. 

QwikBug does not associate watch variable export files with specific list files. 
Therefore, it is possible to import any watch variable configuration with any list file. 
QwikBug will check each variable during an import to ensure that it exists in the cur-
rent source program. QwikBug will not add the variable to the watch grid if the variable 
name does not exist or if there is a mismatch between the addresses of the exported 
variable and the current program’s variable.

A1.8 ADDITIONAL FEATURES

A1.8.1 Find Subroutine Popup

The find subroutine popup allows the user to quickly locate a C subroutine in the 
source box. To open the find subroutine popup window, select Find Subroutine from 
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the Debug menu; it will be opened as the topmost window. The popup window will 
display a list of all subroutine symbols that QwikBug has located in the source file:

Double-clicking on the name of the subroutine in the list box will scroll the source box to 
the location of the first C source line in the selected subroutine and highlight the line.

A1.8.2 Abnormal Stop Sources

An abnormal stop occurs any time the PIC enters BDM for an irregular reason. Poten-
tial reasons include: brown-out reset, stack over/underflow, power-on reset, and 
watchdog timer overflow. If an abnormal stop occurs after a program has been loaded, 
the following icon will appear in QwikBug:

Click on the abnormal stop source indicator to display a popup window with details 
on the abnormal stop source. An example is shown below:



Click the OK button to close the popup window and clear the abnormal stop source 
indicator warning. Click Cancel to close the popup window but keep the abnormal 
stop source indicator shown on the main QwikBug window. When an abnormal stop 
occurs, the PIC will generally be in a reset condition and the user can resume execu-
tion from the reset vector or correct the reason for the abnormal stop source in the C 
source code.

A1.8.3 Console Tab

The console text box displays data received by the serial port that is not part of the 
QwikBug interface communications. The console tab will flash when new data is 
received and the console tab is not in focus. New data is appended to the end of the 
text box, and the box will scroll to always display the most recent data at the bottom 
of the console box. To clear the console box, right-click anywhere in the text box and 
select Clear, as shown below:

A1.8.4 Recently Opened Files

QwikBug displays a list of the four most recently opened files. The names of the files 
can be found under the File menu as shown below:
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To open any of the previous files, simply click on its name in the File menu. The 
most recent file is positioned at the top of the list and the oldest is positioned at the 
bottom.

A1.9 KEYBOARD SHORTCUTS

The table below shows all defined QwikBug keyboard shortcuts:

Function Keyboard Shortcut Alternate Keyboard Shortcut

Open File Ctrl+O none 

Reload File Ctrl+Shift+O none 

Show Add Watch Popup Ctrl+W none 

Show Find Subroutine Popup Ctrl+F none 

Clear Breakpoint Ctrl+Shift+B none 

Clear Console Ctrl+Del none 

Export Watch Variables Ctrl+X none 

Import Watch Variables Ctrl+I none 

Usage Guide F1 none 

Reset PIC F2 Ctrl+T

Load Program F3 Ctrl+L

Pause F5 Ctrl+P

Run F7 Ctrl+R

Step F8 Ctrl+S

Erase Program F12 Ctrl+E

Both the keyboard shortcut and the alternate keyboard shortcut provide the same 
functionality. Note that some of the keyboard shortcuts that use Ctrl will not work 
with the cursor positioned in the main source code text box. Click outside the text box 
to change the focus so that these keyboard shortcuts will work.
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A2.1 OVERVIEW

This appendix will describe the PIC18LF4321 CPU structure, program memory, 
RAM and Special Function Registers, addressing options, and instruction set. The 
intent is not to arm the reader to write assembly code for the MCU. Rather, it is to 
help with the interpretation of the list file generated by the C18 compiler. When the 
execution of a user program does not match the expectations of the code writer, the 
resulting .lst file translates the code writer’s expectations into the reality of what is 
actually being executed by the MCU

Cody Planteen has written a qwiklst.exe utility used by Alex Singh’s C18.exe util-
ity to translate the *.lst file produced by the compiler into a qwik.lst file that is easier 
to interpret. It substitutes the name of a variable or of a Special Function Register in 
place of the normal .lst file’s cryptic display of the address of the variable or register. 
For instructions that return an operand to either of two locations, it substitutes an F or 
a W for the more cryptic 0x1 or 0x0 (see Section A2.4). 

A2.2 HARVARD ARCHITECTURE

The PIC18LF4321 CPU is organized around two buses in what is known as the 
Harvard architecture, shown in Figure A2-1. One bus reaches out to program memory 
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and fetches one of the CPU’s many 2-byte instructions during each CPU clock cycle. 
These fetches of 1-cycle instructions are occasionally augmented by the fetches of 
2-cycle, 4-byte instructions.

At the same time that the CPU is fetching one instruction, it is executing the 
instruction fetched during the previous cycle. The Harvard architecture has a twofold 
impact on the performance of the CPU relative to the performance of a single-bus 8-bit 
microcontroller:

• The wide 16-bit instruction bus can fetch instructions with half the fetch cycles 
and thus twice the speed for a given clock rate.

• The time required to execute instructions is largely hidden beneath the ongoing 
fetching of successive instructions rather than requiring additional cycles.

The effect of the pipelined operation can be explained via the four-line qwik.lst exam-
ple of Figure A2-2 derived from the T3.lst file. The left column lists the first of the two 
addresses (i.e., 0116 and 0117) holding an instruction. The next column lists the 2-byte 
opcode (i.e., 0E2C) that identifies the instruction to the CPU. The next two columns 
list the assembly language instruction(s) that the compiler has selected to implement 
the source file line shown to the right. That is,

MOVLW  0x2C

MOVWF  ALIVECNTL

MOVLW  0x01

MOVWF  ALIVECNTH

implements the source file line

ALIVECNT = 300;  //Blink immediately

The CPU fetches each 2-byte instruction during its 1-microsecond fetch cycle. Further-
more, as the MOVWF instruction is being fetched, the preceding MOVLW instruc-
tion is being executed. 

Program
memory

(8192 bytes)

Program address

13 bits

Instruction

16 bits

CPU

Operand
memory

(RAM and
Special

Function
Registers)

Operand address

Data

8 bits

12 bits

FIGURE A2-1 Harvard architecture



A2.3 INSTRUCTION SET AND DIRECT ADDRESSING

The PIC18 family of microcontrollers has the instruction set shown in Figure A2-3. To 
understand the role of an instruction beyond the somewhat cryptic Description expressed 
in the table, it is necessary to understand the role of the operands associated with an 
instruction. The operand, f, associated with many instructions is an 8-bit field in the 
16-bit instruction that accounts for 8 bits of the 12-bit direct address of the operand. In 
addition to the 8-bit address field of an instruction, another bit (“a” in Figure A2-4a) 
indicates how the remaining bits of an operand address are to be formed. For programs 
making use of less than 128 bytes of RAM, the default case for the C18.exe utility, the 
compiler uses the access-bank direct addressing of Figure A2-4b. The 8-bit address field 
in an instruction can access any of 128 RAM bytes using addresses ranging from 0 to 
127 (i.e., 0x00 to 0x7F). In effect, the microcontroller behaves as if it only has 128 bytes 
of RAM, not the 512 actually available.

If a program were to use more than 128 named RAM addresses, some of these 
addresses would be accessed using the banked-memory, direct-addressing scheme of 
Figure A2-4c. An instruction using this scheme is preceded by a 

MOVLB  0x00

or a 

MOVLB  0x01

instruction to load the Bank Select Register with the number to be used as the upper 
nibble (i.e., upper four bits) of the full 12-bit address.

An application making use of more than 128 bytes of RAM is likely to use 
indirect addressing to access one or more large arrays. These would extend over 
the RAM locations that cannot be reached by access-bank direct addressing. Cody 
Planteen’s QwikLst utility suppresses the a = 0 parameter of an access-bank directly 
addressed RAM variable. The result is one less parameter in the .lst file calling for 
interpretation.

A2.4 F/W DISTINCTION

Another parameter associated with instructions that directly address an operand is the 
destination parameter, F/W. It is one of the distinguishing characteristics of Microchip’s 
PIC microcontrollers that the result of an operation on a variable can be returned 

0116   0E2C      MOVLW     0x2C          ALIVECNT = 300;    // Blink immediately
0118   6E05      MOVWF     ALIVECNTL
011A   0E01      MOVLW     0x01
011C   6E06      MOVWF     ALIVECNTH

FIGURE A2-2 A snippet from qwik.lst
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FIGURE A2-3 Assembly language instruction set

Mnemonic Operands Description Words Cycles
Status bits 
affected

ADDLW k Add literal value into WREG 1 1 C,OV,N,Z

ADDWF f,F/W Add WREG and f, putting result into F or W 1 1 C,OV,N,Z

ADDWFC f,F/W Add WREG and f and carry bit, putting result into F or W 1 1 C,OV,N,Z

ANDLW k AND literal value into WREG 1 1 N,Z

ANDWF f,F/W AND WREG with f, putting result into F or W 1 1 N,Z

BC label If carry or if no borrow (C=1), then branch to labeled instruction 1 2 or 1 -

BCF f,b Clear bit b of register f, where b = 0 to 7 1 1 -

BN label If negative (N=1), then branch to labeled instruction 1 2 or 1 -

BNC label If no carry or if borrow (C=0), then branch to labeled instruction 1 2 or 1 -

BNN label If ≥0 (N=0), then branch to labeled instruction 1 2 or 1 -

BNOV label If no overflow of signed-number operation, then branch to labeled 
instruction

1 2 or 1 -

BNZ label If not zero (Z=0), then branch to labeled instruction 1 2 or 1 -

BRA label Branch to labeled instruction 1 2 -

BSF f,b Set bit b of register f, where b = 0 to 7 1 1 -

BTFSC f,b Test bit b of register f, where b = 0 to 7; skip if clear 1 2 or 1 -

BTFSS f,b Test bit b of register f, where b = 0 to 7; skip if set 1 2 or 1 -

BTG f,b Toggle bit b of register f, where b = 0 to 7 1 1 -

BOV label If overflow of signed-number operation, then branch to labeled 
instruction

1 2 or 1 -

BZ label If zero (Z=1), then branch to labeled instruction 1 2 or 1 -

CALL label Call subroutine 2 2 -

CALL label,FAST Call subroutine; copy (WREG)→ WS, (STATUS)→ STATUSS, (BSR)→ BSRS 2 2 -

CLRF f Load f with 0x00 1 1 Z

CLRWDT Clear watchdog timer 1 1 -

COMF f,F/W Complement f, putting result into F or W 1 1 N,Z

CPFSEQ f Skip if f is equal to WREG 1 2 or 1 -

CPFSGT f Skip if f is greater than WREG (unsigned compare) 1 2 or 1 -

CPFSLT f Skip if f is less than WREG (unsigned compare) 1 2 or 1 -

DAW Decimal adjust binary sum in WREG of two packed BCD numbers 1 1 C

DECF f,F/W Decrement f, putting result into F or W 1 1 C,OV,N,Z

DECFSZ f,F/W Decrement f, putting result into F or W; skip if zero 1 2 or 1 -

DCFSNZ f,F/W Decrement f, putting result into F or W; skip if not zero 1 2 or 1 -

GOTO label Go to labeled instruction 2 2 -

INCF f,F/W Increment f, putting result into F or W 1 1 C,OV,N,Z

INCFSZ f,F/W Increment f, putting result into F or W; skip if zero 1 2 or 1 -

INFSNZ f,F/W Increment f, putting result into F or W; skip if not zero 1 2 or 1 -

IORLW k Inclusive-OR literal value into WREG 1 1 N,Z

IORWF f,F/W Inclusive-OR WREG with f, putting result into F or W 1 1 N,Z

LFSR i,k Load FSRi with address of operand 2 2 -

MOVF f,F/W Move f to F or W 1 1 N,Z
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Mnemonic Operands Description Words Cycles
Status bits 
affected

MOVFF fS,fD Move fS to fD 2 2 -

MOVLB k Move literal value to BSR<3:0>, where k = 0 to 15, to set the bank 
for direct addressing with a=1

1 1 -

MOVLW k Move literal value to WREG 1 1 -

MOVWF f Move WREG to f 1 1 -

MULLW k Multiply unsigned WREG with literal value, putting result into 
PRODH:PRODL

1 1 -

MULWF f Multiply unsigned WREG with f, putting result in PRODH:PRODL 1 1 -

NEGF f Change sign of a twos-complement-coded one-byte number 1 1 C,OV,N,Z

NOP No operation 1 1 -

POP Discard address on top of stack 1 1 -

PUSH Push address of next instruction onto stack 1 1 -

RCALL label Call subroutine 1 2 -

RESET Software reset to same state as is achieved with the MCLR input 1 1 C,OV,N,Z

RETFIE Return from interrupt; reenable interrupts 1 2 -

RETFIE FAST Return from interrupt; reenable interrupts; restore state from 
shadow registers (WS)→ WREG, (STATUSS)→ STATUS, (BSRS)→ BSR

1 2 C,OV,N,Z

RETLW k Return from subroutine, putting literal value into WREG 1 2 -

RETURN Return from subroutine 1 2 -

RETURN FAST Return from subroutine; restore state from shadow registers (WS)→ 
WREG

1 2 C,OV,N,Z

RLCF f,F/W Copy f into F or W; rotate left through carry bit (9-bit rotate left) 1 1 C,N,Z

RLNCF f,F/W Copy f into F or W; rotate left without carry bit (8-bit rotate left) 1 1 N,Z

RRCF f,F/W Copy f into F or W; rotate right through carry bit (9-bit rotate 
right)

1 1 C,N,Z

RRNCF f,F/W Copy f into F or W; rotate right without carry bit (8-bit rotate 
right)

1 1 N,Z

SETF f Load f with 0xFF 1 1 -

SLEEP Normally enter sleep mode; if IDLEN=1, enter idle mode 1 1 -

SUBFWB f,F/W Subtract f and  borrow bit from WREG, putting result into F or W 1 1 C,OV,N,Z

SUBLW k Subtract WREG from literal value, putting result into WREG 1 1 C,OV,N,Z

SUBWF f,F/W Subtract WREG from f, putting result into F or W 1 1 C,OV,N,Z

SUBWFB f,F/W Subtract WREG and borrow bit from f, putting result into F or W 1 1 C,OV,N,Z

SWAPF f,F/W Swap four-bit nibbles of f, putting result into F or W 1 1 -

TBLRD Read from program memory location pointed to by TBLPTR into TABLAT 1 2 -

TBLRDPOSTDEC
Read from program memory location pointed to by TBLPTR into TABLAT, 
then decrement TBLPTR

1 2 -

TBLRDPOSTINC
Read from program memory location pointed to by TBLPTR into TABLAT, 
then increment TBLPTR

1 2 -

TBLRDPREINC
Increment TBLPTR, then read from program memory location pointed to 
by TBLPTR into TABLAT

1 2 -

TSTFSZ f Test f; skip if zero 1 2 or 1 -

XORLW k Exclusive-OR literal value into WREG 1 1 N,Z

XORWF f,F/W Exclusive-OR WREG with f, putting result into F or W 1 1 N,Z

FIGURE A2-3 (continued)
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to the variable or, alternatively, to the CPU’s WREG working register, as shown in 
Figure A2-5. The .lst file generated by the linker shows both the “a” parameter of the 
last section and the “F/W” parameter of this section as

0x0  or  0x1

8-bit address

128 RAM
addresses

128 Special
Function Register

addresses

(b) Access bank direct addressing (a = 0).

Full 12-bit address

Bank Select Register, BSR

12-bit effective
operand address

opcode
Instruction

a

1

f

(Access bank
RAM)

More RAM

Bank0

512 bytes
of RAM

Bank1Still more RAM

Unused memory
space

Special Function
Registers

(c) Banked memory direct addressing (a = 1).

(a) Nine bits of an instruction identifying the source of an operand.

opcodeInstruction
15 9 8

a f

7 0

FIGURE A2-4 Direct addressing



The QwikLst utility suppresses the a = 0 parameter (as discussed in the last section) and 
converts the 0 or 1 value listed for the “F/W” parameter into a W when the destination 
of the operation is WREG and an F when the operation returns the result back to the 
source address used by the instruction.

A2.5 NAME REPLACEMENTS FOR OPERAND ADDRESSES

The final and most significant clarification performed by the QwikLst utility is the 
replacement of the .lst file’s listing of the address of an operand by its name. This clari-
fication is especially helpful when one source file line produces many lines of assembly 
code. For example, consider the raw .lst file code segment shown in Figure A2-6a and 
the recasting of the segment into the qwik.lst code segment of Figure A2-6b. Using a 
utility developed by Kenneth Kinion, the two-byte int variable, ALIVECNT, is reex-
pressed as ALIVECNTL and ALIVECNTH, to indicate the low and high bytes. The 
improvement in clarity is evident.

A2.6 COUNTING CYCLES

One reason to look at the .lst file is to discern the number of cycles that a segment of 
code generated by the compiler will take to execute. Consider the assembly code pro-
duced for implementing the Delay macro, shown in Figure A2-7. The loop that is tra-
versed repeatedly as the delay parameter is counted down to zero ends with the line

00FA  D7F7     BRA  L002

Section A2.6 Counting Cycles 283

Addressed location

WREG

W

F

Instruction
operation

(a) One-operand instruction (e.g., INCF).

Instruction
operation

Addressed location

WREG

W

F

(b) Two-operand instruction (e.g., ADDWF).
FIGURE A2-5 Specifying the F or W 
destination of an instruction
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The BRA instruction tells the CPU to branch to the program address labeled L002 
that holds the instruction

00EA  060F L002 DECF  DELAYL,F

This instruction decrements the low byte of the 2-byte variable DELAY.
Every instruction in this loop of instructions executes in one cycle except BRA 

(2 cycles) and BZ (2 or 1 cycles). The BZ instruction tests the result of an operation that 
preceded it. If that 8-bit result was 0x00, the CPU will take two cycles as it branches 
to address 0x00FC. However, while the CPU is looping for the first 49,999 times, the 
BZ instruction does not branch. Thus, the number of cycles taken to execute one of 
these 49,999 loops (beginning with the DECF instruction and ending with the BRA 
instruction) is

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 2 = 10 cycles

A2.7 FLAG BITS

The right-most column of Figure A2-3 lists any of four STATUS register flags that are 
affected by an instruction. For example, the CLRF instruction, in addition to writing 
0x00 to a RAM variable or a Special Function Register, will set the Z bit. As another 
example, the IORWF instruction will (inclusive) OR the content of WREG bit by 
bit with the addressed operand, putting the result back into either the operand (F) or 
WREG (W). If this result is 0x00, the Z bit will be set to 1; otherwise, the Z bit will be 
cleared to 0.

The C bit will be set by an add operation of two unsigned 1-byte numbers that 
produces a result that is greater than 255, the largest 8-bit unsigned number. Actually, 
the CPU does not know if numbers are signed or unsigned. It just sets the C bit if that 
ninth bit of the operation is a 1 and clears C otherwise.
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00E2   0E50      MOVLW     0x50      Delay(50000);    // Pause for half a second
00E4   6E0F      MOVWF     DELAYL
00E6   0EC3      MOVLW     0xC3
00E8   6E10      MOVWF     DELAYH
00EA   060F L002 DECF      DELAYL,F
00EC   0E00      MOVLW     0x00
00EE   5A10      SUBWFB    DELAYH,F
00F0   500F      MOVF      DELAYL,W
00F2   1010      IORWF     DELAYH,W
00F4   E003      BZ        L001
00F6   0000      NOP
00F8   0000      NOP
00FA   D7F7      BRA       L002
00FC   9CD0 L001

FIGURE A2-7 Delay macro’s assembly code
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An add operation of two signed 1-byte numbers expressed in two’s-complement 
code will set the OV (overflow) bit if the result is larger than 127, the largest 1-byte 
signed number. For a source file that adds two 1-byte numbers, the C compiler will 
look to see if they are defined as unsigned or signed numbers and then test the C bit or 
the OV bit to determine whether an overflow occurred.

Subtract operations of unsigned and signed numbers represent a borrow condi-
tion with the complement of the C and OV bits. That is, a borrow resulting from an 
unsigned subtraction will produce C = 0. A borrow resulting from a signed subtraction 
will produce OV = 0.

The N status bit signifies whether the result of an operation on signed numbers is 
negative (N = 1). If the result is 0 or positive, then N = 0.

A2.8 INDIRECT ADDRESSING OF RAM VARIABLES

The PIC18 family of microcontrollers includes in the CPU three 12-bit pointers, any 
one of which can be loaded with the address of an operand. Then the operand can be 
accessed indirectly via this pointer. This is especially useful for implementing pointers 
arising in a user program, but is also employed by the C compiler for more prosaic 
tasks, such as providing a function with scratchpad variables.

An example of indirect addressing is illustrated in Figure A2-8. FSR1, one of the 
three pointers in the CPU, has been initialized to point to the first byte of MSGSTRING 
in Figure A2-8a. The initialization of FSR1 can be carried out in either of two ways, 
as shown in Figure A2-8b. Figure A2-8c shows the instruction that can be included in 
a loop of instructions to send each byte to the LCD. The instruction tells the CPU to 
read a byte from the location pointed to by FSR1, to increment FSR1, and to write the 
byte to the Serial Peripheral Interface’s SSPBUF register.

FSR1

FSR1H FSR1L

12-bit address of operand

(a) FSR1 use as a variable pointer

MSGSTRING 'P'
'R'
'E'
'S'
'S'
'  '
'P'
'B'
'  '

RAM

•
•
•

•
•
•

FIGURE A2-8 Indirect addressing into a variable string



The five operations associated with indirect addressing are INDFi, POSTINCi, 
POSTDECi, PREINCi, and PLUSWi, where i = 0, 1, or 2 to identify which of the 
three pointers, FSR0, FSR1, or FSR2, is to be used for carrying out the operation. If 
the operand is INDFi, the CPU accesses the location pointed to by FSRi. If the oper-
and is POSTINCi, the CPU accesses the location pointed to by FSRi and then incre-
ments FSRi. If the operand is POSTDECi, the CPU accesses the location pointed 
to by FSRi and then decrements FSRi. If the operand is PREINCi, the CPU first 
increments FSRi and then accesses the location pointed to by the incremented FSRi. 
Finally, if the operand is PLUSWi, the CPU temporarily adds its working register, 
WREG (treated as a signed number), to the address in FSRi to form the address of the 
instruction operand.

It should be pointed out that the address associated with any one of the five indi-
rect addressing operations is not a physical register. Rather, the CPU interprets an 
access of the address as a signal to carry out the specified indirect addressing opera-
tion. Thus the instruction

INCF  INDF1,F

increments the location pointed to by FSR1.

A2.9 CPU REGISTERS

The CPU registers are shown in Figure A2-9, together with the operands associated 
with indirect addressing (e.g., INDF0). Notice that the working register is identified in 
two ways. As the destination of an operation, it is W:

SUBWF  COUNTER,W
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MOVLW  low MSGSTRING            ;FSR1L = low byte of address of MSGSTRING
MOVWF  FSR1L
MOVLW  high MSGSTRING           ;FSR1H = high byte of address of MSGSTRING
MOVWF  FSR1H

     or

LFSR  1,MSGSTRING               ;FSR1 = address of MSGSTRING

(b)  Loading FSR1 pointer 

MOVFF  POSTINC1,SSPBUF          ;Send string element to PC

(c)  Copy operand pointed to by FSR1 to SSPBUF, then increment FSR1

FIGURE A2-8 (continued)
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As the source of an operation, it is WREG:

BCF  WREG,7

Any multiply operation makes use of one of the two 8-bit unsigned multiply instruc-
tions, MULLW or MULWF, putting the 16-bit result into the CPU registers PRODH:
PRODL. Any instruction that operates on the program counter operates on the lower 
8 bits, PCL. If that instruction is going to write back to PCL, then, at the same time 
that the write takes place, the content of PCLATH (Program Counter LATcH) is writ-
ten into the upper byte of the program counter.

Subroutine calls and interrupts nest return addresses onto the 31-level stack. The 
PIC18 family of microcontrollers has an extended instruction set that can be used to 
facilitate the extension of the stack into RAM, to support a more powerful compila-
tion. However, for the benefit of QwikBug and also for the benefit of execution speed, 
that extended instruction set is disabled.

A2.10 INDIRECT ADDRESSING OF PROGRAM MEMORY

The instruction set of Figure A2-3 includes four instructions that are used for access-
ing constant strings, arrays, and tables stored in program memory with the mechanism 
shown in Figure A2-10. These instructions are 

TBLRD,       TBLRDPOSTINC,       TBLRDPOSTDEC,       TBLRDPREINC

They use the TBLPTRH:TBLPTRL register pair to identify the program memory 
address that is to be copied to the TABLAT register. They include the option of postin-
crementing, postdecrementing, or preincrementing TBLPTRH:TBLPTRL.

An example of the creation and use of a table is shown in Figure A2-11. This 
FormHex table expects to be handed a char variable containing a value ranging from 
0 to 15. It returns the ASCII-coded hex character corresponding to that value. Thus, 
in the example whose qwik.lst file segment is shown in Figure A2-11b, the source file 
line

ASCII = FormHex[NIBBLE];

produces the result in ASCII in 10 cycles.

A2.11 SPECIAL FUNCTION REGISTERS

The special function registers are listed in Figure A2-12 along with their addresses, 
both in 3-nibble full address form and 2-nibble Access Bank address form.

Section A2.11 Special Function Registers 289
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Program
memory

Selected
bytes

Program address

13 bits

Instruction

16 bits

CPU

13 bits

Address of byte to be read

Operand
memory

TBLPTRH
TBLPTRL

TABLAT

Data

8 bits

Content of selected address

8 bits

TBLRD Read from program memory location pointed to by
TBLPTRH:TBLPTRL into TABLAT

Read from program memory location pointed to by
TBLPTRH:TBLPTRL into TABLAT,
then increment TBLPTRH:TBLPTRL

Read from program memory location pointed to by
TBLPTRH:TBLPTRL into TABLAT,
then decrement TBLPTRH:TBLPTRL

Increment TBLPTRH:TBLPTRL, 
then read from program memory location pointed to by
 TBLPTRH:TBLPTRL into TABLAT

TBLRDPOSTINC

TBLRDPOSTDEC

TBLRDPREINC

(a) Special mechanism for reading from program memory.

(b) Special instructions for reading from program memory.

Operand address

12 bits

FIGURE A2-10 Reading operands from program memory

                 /*******************************
                 * Constant table
                 *******************************
                 */

                 const char rom FormHex[] = "0123456789ABCDEF";

(a)  A table to be compiled into program memory beginning at address 0x02F8.

FIGURE A2-11 Creation and use of a program memory table to convert a number between 
0 and 15 to the ASCII code for its hex representation



02ce   502d      MOVF      NIBBLE,W       ASCII = FormHex[NIBBLE];     
02d0   6af7      CLRF      TBLPTRH
02d2   0f46      ADDLW     0xF8
02d4   6ef6      MOVWF     TBLPTRL
02d6   0e04      MOVLW     0x02
02d8   22f7      ADDWFC    TBLPTRH,F
02da   0008      TBLRD
02dc   50f5      MOVF      TABLAT,W
02de   6e2e      MOVWF     ASCII

(b)  Assembly code for ASCII = FormHex[NIBBLE]; executes in 10 cycles.

FIGURE A2-11 (continued)

ADCON0 FC2 INDF0 FEF PORTD F83 T2CON FCA

ADCON1 FC1 INDF1 FE7 PORTE F84 T3CON FB1

ADCON2 FC0 INDF2 FDF POSTDEC0 FED TABLAT FF5

ADRESH FC4 INTCON FF2 POSTDEC1 FE5 TBLPTRH FF7

ADRESL FC3 INTCON2 FF1 POSTDEC2 FDD TBLPTRL FF6

BAUDCON FB8 INTCON3 FF0 POSTINC0 FEE TBLPTRU FF8

BSR FE0 IPR1 F9F POSTINC1 FE6 TMR0H FD7

CCP1CON FBD IPR2 FA2 POSTINC2 FDE TMR0L FD6

CCP2CON FBA LATA F89 PR2 FCB TMR1H FCF

CCPR1H FBF LATB F8A PREINC0 FEC TMR1L FCE

CCPR1L FBE LATC F8B PREINC1 FE4 TMR2 FCC

CCPR2H FBC LATD F8C PREINC2 FDC TMR3H FB3

CCPR2L FBB LATE F8D PRODH FF4 TMR3L FB2

CMCON FB4 OSCCON FD3 PRODL FF3 TOSH FFE

CVRCON FB5 OSCTUNE F9B RCON FD0 TOSL FFD

ECCP1AS FB6 PCL FF9 RCREG FAE TOSU FFF

ECCP1DEL FB7 PCLATH FFA RCSTA FAB TRISA F92

EEADR FA9 PCLATU FFB SPBRG FAF TRISB F93

EECON1 FA6 PIE1 F9D SPBRGH FB0 TRISC F94

EECON2 FA7 PIE2 FA0 SSPADD FC8 TRISD F95

EEDATA FA8 PIR1 F9E SSPBUF FC9 TRISE F96

FSR0H FEA PIR2 FA1 SSPCON1 FC6 TXREG FAD

FSR0L FE9 PLUSW0 FEB SSPCON2 FC5 TXSTA FAC

FSR1H FE2 PLUSW1 FE3 SSPSTAT FC7 WDTCON FD1

FSR1L FE1 PLUSW2 FDB STATUS FD8 WREG FE8

FSR2H FDA PORTA F80 STKPTR FFC

FSR2L FD9 PORTB F81 T0CON FD5

HLVDCON FD2 PORTC F82 T1CON FCD

FIGURE A2-12a Special Function Registers and their full hex addresses
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ADCON0 C2 INDF0 EF PORTD 83 T2CON CA

ADCON1 C1 INDF1 E7 PORTE 84 T3CON B1

ADCON2 C0 INDF2 DF POSTDEC0 ED TABLAT F5

ADRESH C4 INTCON F2 POSTDEC1 E5 TBLPTRH F7

ADRESL C3 INTCON2 F1 POSTDEC2 DD TBLPTRL F6

BAUDCON B8 INTCON3 F0 POSTINC0 EE TBLPTRU F8

BSR E0 IPR1 9F POSTINC1 E6 TMR0H D7

CCP1CON BD IPR2 A2 POSTINC2 DE TMR0L D6

CCP2CON BA LATA 89 PR2 CB TMR1H CF

CCPR1H BF LATB 8A PREINC0 EC TMR1L CE

CCPR1L BE LATC 8B PREINC1 E4 TMR2 CC

CCPR2H BC LATD 8C PREINC2 DC TMR3H B3

CCPR2L BB LATE 8D PRODH F4 TMR3L B2

CMCON B4 OSCCON D3 PRODL F3 TOSH FE

CVRCON B5 OSCTUNE 9B RCON D0 TOSL FD

ECCP1AS B6 PCL F9 RCREG AE TOSU FF

ECCP1DEL B7 PCLATH FA RCSTA AB TRISA 92

EEADR A9 PCLATU FB SPBRG AF TRISB 93

EECON1 A6 PIE1 9D SPBRGH B0 TRISC 94

EECON2 A7 PIE2 A0 SSPADD C8 TRISD 95

EEDATA A8 PIR1 9E SSPBUF C9 TRISE 96

FSR0H EA PIR2 A1 SSPCON1 C6 TXREG AD

FSR0L E9 PLUSW0 EB SSPCON2 C5 TXSTA AC

FSR1H E2 PLUSW1 E3 SSPSTAT C7 WDTCON D1

FSR1L E1 PLUSW2 DB STATUS D8 WREG E8

FSR2H DA PORTA 80 STKPTR FC

FSR2L D9 PORTB 81 T0CON D5

HLVDCON D2 PORTC 82 T1CON CD

FIGURE A2-12b Special Function Registers and their Access Bank hex addresses
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The Qwik&Low board was designed by the author, with creative insights from Rick 
Farmer who developed the board layout and from Bill Kaduck and Dave Cornish of 
MICRODESIGNS who are producing the board. The Gerber files for the board art-
work are freely available from www.qwikandlow.com along with the schematic and 
parts list for the board.

What follows are a few comments to explain some of the circuitry. The UART 
circuitry shown in the top left of Figure A3-1 includes an (unpopulated) 3-pin header, 
H1. The cuttable link on the back of the board between the pins labeled PC and RX 
provide the default connection. If a user wants to add a transducer to the board that 
has a UART output, the link between the PC and RX pins is cut, a 3-pin header is 
added to the board, and the UART output from the new device is connected to the 
RX' pin of the header (using #30 wirewrap wire). Then a jumper (i.e., the 100-mil 
shunt, H2X, in the parts list of Figure A3-2) can be used to connect PC to RX for 
downloading user code. The jumper can be moved between RX' and RX to run the 
user code.

The RX' pin is connected to a 100kΩ pull-up resistor, R4, to ensure that the RX 
input does not float. The input is pulled high to match a transducer with a normal idle-
high UART output. In this case, the application program must reinitialize the UART 
so that RXDTP = 0 in the BAUDCON register. This undoes QwikBug’s inversion of 

QWIK&LOW BOARD 
IN DETAIL
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FIGURE A3-1 Qwik&Low schematic
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the RX input. If a transducer is used with a UART output that idles low, the R4 resis-
tor should be removed from the board.

One interesting addition to the board is a 12-key (0–9, *, #) keypad with an 80¢, 
14-pin PIC16F505 microcontroller providing:

• The decoding of the keypad.

• A bit-banged UART interface.

The CPU clock of the PIC16F505 is 1 MHz ± 2%. This is sufficiently accurate so 
that if an output pin is changed appropriately at intervals of 

1,000,000/19,200 = 52.08333 µs ≈ 52 µs

then the MCU will read this serial input exactly as it would from a 19,200 baud 
UART.

The Timer1 crystal oscillator circuitry shown in Figure A3-1 immediately below 
the UART circuitry includes pads labeled R11. The intent is to make it possible to add 
a high-impedance (e.g., ≈ 3 MΩ) resistor, to try to get the Timer1 oscillator to run reli-
ably with the

# pragma config LPT10SC = ON

configuration choice. This choice, the reliability of which has not been thoroughly 
explored, would decrease the current draw of the Timer1 oscillator and the Timer1 
counter from about 6 µA to 1 µA. That low-power oscillator configuration is meant 
to run with a 5 V supply, not the 3 V supply of the Qwik&Low board. A Microchip 
application engineer intimately involved with the oscillator design suggested this pull-
up resistor modification.

The unpopulated H4 header provides test points for the pin of a scope probe, to 
test user-generated outputs (e.g., for a pulse-width measurement on the RC2 or RB0 
pin). The unpopulated header also provides solder points for an add-on part installed 
on the surface-mount pads located on the front or the back of the board. Point-to-point 
wiring with #30 wirewrap wire can produce a clean job of the addition. Be sure to 
remove any solder flux, especially if water-soluble (i.e., conductive) flux is used.

The prototype area on the board allows DIP parts and discrete parts to be added 
easily. For surface-mount parts that do not fit on the available surface-mount patterns 
(e.g., an SOIC part with up to 28 pins), consider the use of one of the surface-mount-
to-DIP adapters available from www.beldynsys.com. 

The test points dispersed over the board are designed for the pin probe of a scope. 
FOSC/4, the CPU clock for each of the PIC microcontrollers on the board, allows a 
user to gauge the awake/sleep behavior of each chip under varying circumstances.

An output pin on the MCU can be employed in a user program to monitor time 
intervals of interest. In like manner, one of the few free output pins of the LCD con-
troller, RC7, can be monitored. TP7 is such a test point, located near the right edge 
of the board below TP8. It is unlabeled (but can be probed) on the front of the board. 
It is labeled on the back of the board. The intent is to be unobtrusive for normal use 
of the board, but available for users who wish to explore modifications to the LCD 
controller’s program code.
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FIGURE A3-3 Front and back of Qwik&Low board
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The parts list includes the same Digi-Key part number, A26512-40, for all of the 
single-in-line (SIP) headers, H1, H2, H3, H4, and H5. This part is actually a 40-pin 
strip that is designed to be cut with diagonal cutters into headers having the desired 
number of pins. 

The parts list shows the Qwik&Low board as being manufactured by PCBCART 
(www.pcbcart.com), a vendor for having low-cost, high-quality boards made in China 
with a nominal two-week delivery schedule. The $6.00 price shown in Figure A3-2 
was the approximate unit price with an order for 30 boards. The Gerber files on the 
www.qwikandlow.com website can be used to place an order for boards. However, 
proceed cautiously! As the artwork of Figure A3-3 for the front and the back of the 
board illustrates, the surface-mount parts for the back of the board, particularly the 
two PIC microcontrollers, call for considerable experience in dealing with fine-pitch 
parts. Also, when completed, a PICkit 2 programmer must be available to program 
the two chips. Before undertaking such a venture, be sure to consider the alternative of 
purchasing a built and tested board from www.microdesignsinc.com.

Chris Bruhn and Peter Ralston have developed a Performance Verification pro-
gram, PV.c, available from the www.qwikandlow.com website. This program can be 
compiled, loaded via QwikBug, and run. It initially sends the serial number from the 
DS2401 chip (Chapter Fifteen) to the QwikBug console, verifying both the chip and the 
serial interface. It then runs the LCD display through four quick tests before moving on 
to display the temperature, and to verify the operation of the Timer1 oscillator and the 
operation of the potentiometer/ADC combination. If the Timer1 oscillator is working 
correctly, the middle number on the display will increment every second. The LED 
also blinks every second. As the potentiometer is turned from full CCW to full CW, the 
right-hand number changes from 00 to FE or FF. Turning the RPG turns on individual 
segments of the LCD, verifying that no adjacent pins of the display are shorted together. 
Turning the RPG clockwise or counterclockwise also increments/decrements a num-
ber sent to the QwikBug console. The LED is turned on in response to the pressing of 
the RPG’s pushbutton. The current draw of the board while running this program (with 
the LED jumper removed and the LCD switched off) is about 20 µA.
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The schematic for the stepper-motor controller board discussed in Chapter Eight 
is shown in Figure A4-1. Its 12 V power is supplied by a wall-transformer power 
supply. The Schottky rectifier, D1, is present to reduce the risk of burning out the 
board circuitry by inadvertently plugging in a wrong wall transformer having its 
polarity reversed.

The 3.3 V voltage regulator, U2, derives the logic supply voltage used by the con-
troller chip, U1, from the 12 V motor supply voltage. (If a higher motor supply voltage 
is used, it must not exceed the 20 V maximum input specification of this voltage regu-
lator.) The input and output capacitors, C9 and C8, are included to meet the stability 
requirements of the voltage regulator. The 0.1 µF ceramic capacitor, C5, provides an 
RF bypass for the Allegro chip’s logic supply voltage. The intent of using a supply 
voltage of 3.3 V (rather than 3.0 V) is to ensure that the DIR (Direction) and STEP 
inputs from the Qwik&Low board do not exceed this supply voltage.

The motor current can be monitored by connecting a digital milliammeter between 
the two pins of the H1 header labeled

Vm → I

and opening the power switch, TB2Y. As the motor steps, the DMM will display the 
average current. This current is set by the values of the two current-sensing resistors, R4 

STEPPER-MOTOR 
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FIGURE A4-1 Stepper motor driver board
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and R6, shown in the lower-right corner of Figure A4-1. The Allegro chip is designed 
to be able to drive each of the two stepper-motor windings with a voltage of up to 30 V 
and a current of up to ±750 mA. When full stepping (the default stepping mode), the 
current in each winding is approximated by the equation1

Iwinding = ±   0.707 × VREF ___________ 
8 × Rs

   = ±   292 ____ 
Rs

   mA

with VREF = 3.3 V. With Rs = 1.5Ω, Iwinding = 194 mA. When operating in the full-
step mode, both windings are energized with this (±) current at each step position for 
a total load of 386 mA for the wall transformer. The Allegro chip carries out full step-
ping by alternately reversing the current in one winding and then the other winding.

The stepper motor listed in the parts list of Figure A4-2 steps 200 full steps per 
revolution. Even finer resolution (i.e., 400 s/r, 800 s/r, or 1,600 s/r) can be achieved 
by adding a 2 × 3 pin header in the H4 header pattern on the board, cutting the two 
links on the back of the board as shown near the upper right of Figure A4-1, and then 
adding two jumpers to select the stepping mode. For example, if both center pins 
are connected to the bottom pins of H4, eighth-step operation will result. While the 
total current drawn from the wall transformer for full stepping is constant, for any 
of the other modes, the total current varies with the step position, between a maxi-
mum equal to that found for full stepping and a minimum equal to 0.707 times that 
value.

The pulse-width-modulation (PWM) control circuit defaults to the nominal RC 
values suggested by Allegro in the data sheet for this driver chip. Each motor winding 
is subjected to a current that alternates between ramping up and decaying down. When 
one of the winding currents is low, the 12 V power supply voltage is applied across 
the winding until the voltage across the current-sensing resistor crosses its threshold 
voltage. At that point, the power supply voltage is cut off from the motor winding. 
The winding current decays for a time determined by C2−R3 (for one winding) or 
C6−R8 (for the other one). The rate of decay is determined by the voltage on the PFD 
pin of Figure A4-1. With this pin voltage defaulting to 3.3 V, the current decays rela-
tively slowly, with minimum current ripple. The maximum stepping rate is evidently 
achieved with the fast decay setting of 0 V on the PFD pin, albeit with increased 
audible noise and vibration.

In contrast to the Qwik&Low board, the stepper-motor board is a simpler board to 
build. Figure A4-3 shows the front and back artwork. Even though the board employs 
size 1206 surface-mount resistors and capacitors, these are relatively large (for surface-
mount parts). The resistors are stamped with their resistor values, a help for check-
ing the board. Check with www.microdesignsinc.com for the price and availability of 
complete stepper-motor assemblies, ready for lab use. Check with www.qwikandlow.
com for information on obtaining the bare stepper-motor controller board.

1 Allegro Microsystems Technical Paper STP 01-2, pp. 3–4
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AD22103 temperature sensor, 127
AD5601 DAC, 246
ADC (analog-to-digital converter), 119
ADT7301 temperature sensor, 251
Analog vs. digital I/O pins, 54
ASCII and ASCIID functions, 79 
ASCII conversion of a hex digit, 290
ASCII4 and ASCII4D functions, 81
Assembly language instruction set, 280
Average current

intermittent sleep mode, 23
example (table), 26

Awakening vs. interrupt vectoring, 229

BDM (Background Debug Mode) vector, 17
address, 32
pin, 257

Bit manipulations in C, 50
Breakout timer, 229
Brownout reset module (figure), 49

C programming language use, 28
Calibrate.c, 176
CCP1 and CCP2 modules, 181

capture mode (figure), 182
C18 utility, 56, 150
Coin cell (CR2032)

aging, 37
characteristics, 19

Compilation of C code, 56
Configuration selections, 47

without QwikBug, 17
CPU registers, 288
Crystal oscillator, 38

schematic, 294

DAC (digital-to-analog converter), 246
Delay macro, 51
Digital inputs vs. outputs, 54
Direct addressing of CPU, 282
Display function, 68
Display strings, 61
Displayable characters, 62
DMM, 31
DS2415 1-wire time chip, 215

Editor, Crimson, 57
EEPROM, 187
EEtest.c, 193

Electronix Express (www.elexp.com), 31
Expansion header, 40

4PDT switch, 221
Fosc/4 test point, 33

Global variables vs. local variables, 50, 51
Gray code, 134

Harvard architecture, 278

iButton, 213
Idle mode

current (table), 27
and interrupts, 165

I2C bus, 241
Indirect addressing of CPU

of program memory, 289
of RAM variables, 286

Interrupts, 89, 159
high- and low-priority, 89
effect of separate handlers, 163
sources (table), 166

INTOSC internal oscillator, 21
block diagram, 22
calibration, 173

INTRC low-power internal oscillator, 21
block diagram, 22
effect on run/idle mode current, 27

Keypad interface, 297

LCD (liquid crystal display), 38, 219
controller, 15, 58, 219
controller test points, 223
multiplexed waveforms, 223
schematic, 222, 294
SPI interface, 59
starburst segment coding, 221
LCD.c, 233

Learning curve, 14
Local vs. global variables, 50, 51
Loop time

via Timer1, 91
via watchdog timer, 55

Lst files, 277

MCU (microcontroller unit)
block diagram, 16
clock rate decision, 53

INDEX
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current draw vs. frequency (chart), 23
pin use (table), 41
schematic, 294

Measure.c, 82
Measurement

interrupt duration, 155
useful work in main loop, 156

Microchip Technology
Steve Sanghi, 13
5 billion microcontrollers, 15
C18 compiler, 17, 57
nanoWatt Technology, 19

MICRODESIGNS, 31
Monotonic DAC output, 247
Motorola, 15

Nop macro, 56
Number-to-ASCII conversion, 78

1-wire interface, 201
for multiple devices, 213

Open-drain output, 201
Oscilloscope

for loop time measurement, 52
for time interval measurement, 153
persist mode, 154

OSCTUNE register, 169

Parasitic power, 202
PIC18LF6390, 219
PIC18LFxxxx

family features, 20
PICkit 2 programmer, 17, 29, 32, 258
Pipelined operation of CPU, 278
Power-on resetting of MCU and LCD controller, 68
Pushbutton

debouncing, 25
function, 67, 69

PV.c, performance verification program, 299

Qwik&Low board, cover, 27, 32, 293, 298
parts list, 296
schematic, 294

QwikBug, 17, 256
console window, 71

QwikProgram 2 utility, 17, 32, 258

RPG (rotary pulse generator), 133
interrupt-driven RPG.c, 142
polled RPG function, 137

RPGcounter function
for interrupt-driven RPG, 141
for polled operation, 138

Serial test port, 32
signal inversion, 32
USB-to-serial adapter, 33

SFRs (special-function registers)
8-bit parts of 16-bit SFRs, 53

Shadow registers, 162
Sleep plus Nop macro combination, 56
Special Function Register addresses, 291
SPI (Serial Peripheral Interface), 58, 241

MOSI/MISO terminology, 249
SSN (silicon serial number), 201
SSN.c, 206
Start and Stop macros, 154
Start, Stop, and Send functions, 183

in Measure.c, 85
Stepper motor, 107

stepping code, 115
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I/O connections, 55
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Time function, 66, 69
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As embedded microcontrollers reach into all corners of modern 
life, many applications can benefit from coin-cell battery power.  
Some benefits are reduced product size and cost, enhanced 
design simplicity, portability, and electrical isolation. Microchip 
Technology, the number one supplier of 8-bit microcontrollers 
in the world, is using their nanoWatt Technology™ features to 
achieve these benefits.

This book explores  how these features impact the design 
process. It employs the Qwik&Low board shown on the cover 
as the learning vehicle  for the reader. The board is available 
from MICRODESIGNS ( www.microdesignsinc.com )   

This book introduces the reader to code writing for a 
microcontroller via a series of template files and using 
Microchipʼs free version of their C compiler for their PIC18™ 
family of microcontrollers. Free supporting tools are available at 
the authorʼs website, www.qwikandlow.com , including 
QwikBug, a debugging user interface for downloading code to 
the Qwik&Low board, running that code, and debugging it using 
a serial PC connection (via either a serial cable or a USB-to-
serial adapter).
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