
hands-on booklet

Arduino 8-bit
Sound Generation

David Cuartielles
(Arduino Co-Founder)

1

David Cuartielles (1974, Zaragoza, Spain) is a
Telecommunications Engineer. In 2000 he de-
veloped the net-art called The Wake Interacti-
ve, a web version of Finnegans Wake, the James
Joyce classic, that led him to K3, the art and
communication school at Malmö University,
Sweden.
His academic activity is focused on model con-
ceptualization, indoor localization systems and
real-time technologies for artistic performan-
ces.
Currently he is Head of the Prototyping Laboratory at K3, and owns a
Research Fellow position in Interaction Design at the Medea Research
Studio.
David has a permanent interest in embedded electronics and education,
having taught courses and delivered lectures at several institutions around
the world including UCLA, NYU, Samsung Art and Design Institute, Co-
penhagen Institute for Interaction Design, Tecnologico de Monterrey, and
others.
Co-author of the well-known Arduino platform for electronic prototy-
ping since 2005, David has continued developing new boards and tea-
ching tools which expand Arduino’s application scope.
As part of his outreach activities David collaborates with Elektor by suppl-
ying didactically driven articles.
In its ongoing outreach work, David is collaborating with Elektor writing
the didactic articles who underpinning this collection.

David Cuartielles
(Arduino Co-Founder)

Arduino 8-bit
Sound Generation

5

Arduino 8-bit sound generation

Arduino 8-bit
sound generation

This booklet is going to lay the foundations for creating Interactive
Sound Machines using a standard Arduino Uno board. However, all the
knowledge described here as well as the code can be easily ported to
Arduino Mega, Arduino Mini or any other member of the Arduino 8-bit
family. Jump the Arduino bandwagon, this stuff comes straight from a
creator of the platform!

Arduino 8-bit sound generation

6

Practice makes perfect and in this the first of a series of booklets I will
focus in presenting all the bits and pieces you need to understand in order
to play 1-bit sound from a digital pin on your Arduino board. We will start
by looking at the easiest way to create sound by means of a simple piezo
buzzer or a speaker. I will then introduce the Arduino Tone Library, as a
simplified way to achieve the same functionality. And I will close by intro-
ducing an advanced technique that allows playing short sounds stored in
the form of .wav files.
When it comes to the theory, you will be introduced to a technique known
as 1-bit Delta Sigma Digital to Analog conversion, but don’t be scared by
the name, the methods and technologies are presented along with exam-
ples you can easily reproduce with a minimal set of parts.

Get out your materials

If you aim at reproducing all the examples in this booklet you need to
have:
•   an Arduino Uno board, though some of the other boards in the Ardui-

no line using ATmega328, ATmega168, ATmega128 or ATmega256 will
work as well;

•   a USB cable to connect your Arduino to a computer;
•   a piezo buzzer to play tones;
•   alternatively a mini loudspeaker or headphones and a socket to connect 

them to the Arduino board;
•   a computer running the Arduino IDE and a tool called SoundData for 

the IDE (check the download links in the references section).

Sound machines

When talking about interactive music instruments, I like to refer to them
as Sound Machines. They consist of three blocks: the data used to generate
the sound, the user interface, and the actual sound engine.
The data refers to the way the sound is used. It could be generated, we
could play back sounds from a sample collection, or just perform re-
al-time sound alteration. Data is the actual sound, the tones in a piano, or
the bytes stored inside the channels in a sampler.
The user interface defines the way the sound structures will be manipu-
lated, or the mechanisms to modify the sound characteristics. The easiest

Arduino 8-bit sound generation

7

example is the volume control usually implemented as potentiometer or
rotary encoder. The UI is what the user manipulating the instrument has
his/her hands (or mind) on to alter the sound engine’s behavior.
Finally, the engine defines the way data is displayed. It takes the data and
renders it as sound according to the control parameters introduced by the
user through the UI. In our case, the engine is the Digital to Analog con-
verter we are going to implement via software.

From blink to bee

The “Hello World” example to start using Arduino is making the LED on
pin 13 blink. The code looks like this:

/* Blink

 Get the LED on pin 13 to go on/off

 http://arduino.cc

*/

int ledPin = 13; // define the LEDs pin

void setup()

{

 pinMode(ledPin, OUTPUT); // configure the pin as output

}

void loop()

{

 digitalWrite(ledPin, HIGH); // turn the pin on

 delay(1000); // wait 1sec

 digitalWrite(ledPin, LOW); // turn the pin off

 delay(1000); // wait 1sec

}

The example is self explanatory. With little changes we can use the same example
to start playing sound out of our Arduino. We will be using a piezoelectric buzzer
and later on we will move into using a proper loudspeaker to increase the quality
of the sound output.

The piezoelectric buzzer

The contact microphone, also known as piezo buzzer is an electronic com-
ponent made of a combination of two discs of different materials. One of

Arduino 8-bit sound generation

8

them is metallic and the other one is usually ceramic, having the piezo-
electric properties. When applying a voltage to the component, the mate-
rials will repel each other, producing an audible click. Making the voltage
difference zero will cause the materials to return to their original position,
again producing a click sound.
By applying a voltage of a sufficiently high frequency, the click produced 
by the piezoelectric will modulate into an audible tone.
You can test this by connecting a piezoelectric buzzer to Arduino by wring
its positive pin to, say, Arduino’s pin 8 and the negative pin to Arduino
ground (GND), see Figure 1. Take the previous code and modify the line
that determines the pin the LED is connected to:

int ledPin = 8; // define the pin for your Speaker or Piezoelectric

When running this program you will hear the piezoelectric clicking once
per second, which is the times when the voltage changes at its pins. You
can modify the code to make the delay between clicks. The smaller the
delay, the more the clicks will merge into a modulated tone. Try to change
both lines in your program affecting the time between clicks to be:

delay(1);

Now you will be hearing a sound with a frequency of 500 Hz. You will
also notice the sound to be louder due to a property of the piezoelectric
components. They resonate in the kilohertz range, at least the ones we
find commercially available, as they are designed to be buzzers or contact
microphones.
If you want to experiment further in sound production with this tech-
nique, I would encourage you to not use the delay() function from
Arduino. The reason for this is that you will need a better time-resolution
to produce a richer selection of tones. The function delayMicrosec-
onds() is much more suitable to sound production, as it is three orders
of magnitude more accurate.
Adding all these changes to the original Blink program, will give us the 
Bee program:

Arduino 8-bit sound generation

9

/* Bee
 Make a piezoelectric oscillate on pin 8
 http://arduino.cc
*/

int piezoPin = 8; // define where the piezoelectric is connected

void setup()
{
 pinMode(piezoPin, OUTPUT);
}

void loop()
{
 digitalWrite(piezoPin, HIGH);
 delayMicroseconds(1000);
 digitalWrite(piezoPin, LOW);
 delayMicroseconds(1000);
}

Playing tones

According to Fourier’s Law every sound is the result of adding a series of
sinusoidal sound sources having different phases and amplitudes. We could
say that sine and cosine waves are the fundamental components of sound.
Unfortunately microcontrollers, and the one on the Arduino Uno is not
an exception, cannot imitate the sinusoidal shape perfectly. We can any-
way produce square waves by repeatedly switching a pin HIGH and LOW.
The tones produced in this way have the same frequency, but are not clean
as they add components to the pure sinewave. In musical terms, the in-
strument making square waves has a different tonal characteristic than
the one making sinusoidal ones, although the tones proper are the same.
The only issue we find here is that sound is expressed in frequency (hertz
or Hz) while microcontrollers work with time. The total amount of time
a HIGH-LOW oscillation lasts is what we call the period (seconds). There
is a relationship between period p and frequency f as expressed in the
following formula:

= → =f
p

p
f

1 1

In other words, period is the inverse of frequency and vice-versa. In this
way, if we want to know the delay needed to play say, the A4 tone using
Arduino, we need to do a bit of maths again like:

Arduino 8-bit sound generation

10

= = = =p s ms µs
1
440

0.002272 2.272 2272

If we want the program “Bee” to play A4, we need to modify it so that the
total time in both calls to delayMicroseconds() adds up to 2272
microseconds.

digitalWrite(piezoPin, HIGH);

delayMicroseconds(1136);

digitalWrite(piezoPin, LOW);

delayMicroseconds(1136);

Table 1. Available musical notes / tone frequencies

Tone Frequency [Hz] Period [µs] Delay [µs]

C4 261.63 3822 1911

D4 293.66 3405 1703

E4 329.63 3024 1517

F4 349.23 2863 1432

G4 392.00 2551 1276

A4 440.00 2272 1136

B4 493.88 2025 1012

C5 523.25 1911 956

The different tones within a scale can be mapped to time-delays so that
they can be played using Arduino. Table 1 shows a full octave.

Arduino’s tone library

There is more to sound playing than just the tone. Musical scores are ex-
pressed in notes, which are the tones played for just a certain amount of
time. In order to simplify the possibility of playing basic melodies using
Arduino, we added a library to the system that handles all the math ex-
plained so far in this article, as well as note durations. Now that you un-
derstand how to play a tone at a relatively low level, I think it is convenient
to introduce this abstraction to make easier for you to create programs
playing sound.

Arduino 8-bit sound generation

11

This library is called tone and brings in a function allowing playing a
tone. In the background this is done by controlling some of the internal
timers in the processor. One timer takes care of the tone itself, while the
other monitors its duration. There are two functions to play sound, called
the same, but with a different amount of parameters.

tone(pin, frequency); // play a tone
tone(pin, frequency, duration); // play a note, duration in milliseconds

You should note how time is measured. The function’s argument ‘duration’
will play the note for a certain number of milliseconds (ms). If you want to
have a function counting the time in a way that is closer to how it is made
in musical scores, you will have to decide how long the different notes will
be. The following code assigns durations to the different notes considering
that the basic note lasts 0.5 seconds.

/* we define durations as numbers between 1 and 7:
 1 – whole note - 1 unit
 2 – half note - 0.5 units
 3 – crotchet - 0.25 units
 4 - quaver - 0.125 units
 5 – semi quaver - 0.0625 units
 6 – demi semi quaver - 0.03125 units
 7 – hemi demi semi quaver - 0.015625 units
*/
void playNote(int speaker, int theTone, int duration)
{
 // we give for granted that the half note lasts 0.5 segundos
 long time = 500 / pow(2, duration-1);

 // assign the note to the speaker
 tone(speaker, theTone, time);
}

The function above could also be written in a way that would make use
of the more common variable of the beats per minute (bpm). In that way
we could make the instrument play at different speeds depending on the
desired tempo for the melody.

Arduino 8-bit sound generation

12

/* we define durations as numbers between 1 and 7:
 [...]
*/
void playNote(int speaker, int theTone, int duration, int bpm)
{
 // menmotecnic: 120 bpm - - > 1000 milliseconds for half note
 // source http://bradthemad.org/guitar/tempo_calculator.php
 long time = (1000 * bpm / 120) / pow(2, duration);

 // assign the note to the speaker
 tone(speaker, theTone, time);
}

Chained melodies

It’s “awesome and stuff” to play a short melody at some point during the
execution of a program. A melody consists of notes and silences. Here we
are going to see how to play a melody stored as an array of numbers. In-
side the Arduino IDE there is an example dealing exactly with this. Open
the program under File → Examples → 2.Digital → toneMelody:

/*
 Melody

 Plays a melody
 [...]
*/
 #include “pitches.h”

 // notes in the melody:
 int melody[] = {
 NOTE_C4, NOTE_G3, NOTE_G3, NOTE_A3, NOTE_G3, 0, NOTE_B3, NOTE_C4};

 // note durations: 4 = quarter note, 8 = eighth note, etc.:
 int noteDurations[] = { 4, 8, 8, 4, 4, 4, 4, 4 };

 void setup() {
 // iterate over the notes of the melody:
 for(int thisNote = 0; thisNote < 8; thisNote++) {

 // to calculate the note duration, take one second
 // divided by the note type.
 //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
 int noteDuration = 1000 / noteDurations[thisNote];
 tone(8, melody[thisNote], noteDuration);

Arduino 8-bit sound generation

13

 // to distinguish the notes, set a minimum time between them.
 // the note’s duration + 30% seems to work well:
 int pauseBetweenNotes = noteDuration * 1.30;
 delay(pauseBetweenNotes);

 // stop the tone of playing:
 noTone(8);
 }
 }

 void loop() {
 // no need to repeat the melody.
 }

You will notice that the melody is stored in two arrays: the notes are in
one, while the note durations are in a different one. Durations are ex-
pressed differently from what we saw earlier. Our previous example was
using durations expressed in the way it is done in music.
The first command in the program includes a file called pitches.h that
comes as part of the code into a different tab within the example. The file
sadly is too large for printing here. It includes a series of constants repre-
senting the frequencies for each tone. In that way, the constant NOTE_A4
represents the numeric value 440, or the 440 Hz for the note A4.

/**
* Public Constants *
**/

#define NOTE_B0 31
#define NOTE_C1 33
#define NOTE_CS1 35
[...]
#define NOTE_G4 392
#define NOTE_GS4 415
#define NOTE_A4 440
#define NOTE_AS4 466
[...]
#define NOTE_CS8 4435
#define NOTE_D8 4699
#define NOTE_DS8 4978

The above example can be modified to make use of the beats-per-minute
(BPM), what will allow changing the speed at which the melody plays. We 

Arduino 8-bit sound generation

14

just need to include the playNote function we made earlier and modify
the way we express the durations to be expressed in the same terms as in
our new function:

#include "pitches.h"

int melody[]= {NOTE_C4, NOTE_G3, NOTE_G3, NOTE_A3, NOTE_G3, 0, NOTE_B3,
NOTE_C4};
int noteDurations[] = { 2, 3, 3, 2, 2, 2, 2, 2 };
int bpm = 120;

void playNote(int speaker, int theTone, int duration, int bpm)
{
 // mnemotécnico: 120 bpm - - > 1000
 // 1000 milliseconds for half note
 // source http://bradthemad.org/
 // guitar/tempo_calculator.php
 long time = (1000 / bpm * 120) / pow(2, duration);

 tone(speaker, theTone, time); // assign the note to the speaker
 delay(time*1.30); // add 30% for the silence between notes
}

void setup() {
 for(int thisNote = 0; thisNote < 8; thisNote++) {
 playNote(8, melody[thisNote], noteDurations[thisNote], bpm);
 }
 }

void loop() {
 // let’s listen to it just once
}

Now try including a potentiometer or any other analog sensor to modify
the BPM rate and in that way play the melody at different speeds.

1-bit Sound Generation … What?!?

Up to this point, you have been experimenting with code that can be gen-
erated directly out of the Arduino language. Now we proceed with meth-
ods of hacking the processor on the Arduino Uno (the ATmega 328) at a
low level, aiming to create a block of code that will use sound data coming
from a WAV file for storage inside program memory — and playing back
of course.

Arduino 8-bit sound generation

15

The method used is not trivial. A good way to start is to look at sound
based in terms of its spectrum rather than from any sort of representation
in time.

Sound spectrum

The sound spectrum is a representation of the energy transmitted by, say, a
loudspeaker as a function of frequency. Looking at the spectrum of sound,
you do not normally get a clear view of the sound itself as in Figure 1.
Rather, the graph represents the amount of energy for different discrete
frequencies within a certain amount of time. Typically we represent the
spectrum for a whole song (see Figure 2).
Alternatively, we can look at the spectrum of just 0.5 seconds of a song.
The smaller the time frame we’re
watching, the better the spectral
representation of the sound gen-
erated at that very instant. The
shape of the wave generating
that spectrum can be anything.
As a matter of fact, two different
sound signals can generate very
similar spectra.
Thus, the size of the time frame de-
termines the similarity of that sig-
nal is to the original one. The hu-
man ear is stimulated by the energy
content of the sound, therefore two
signals having identical spectra
will be perceived as the same, but
only if the time resolution is small
enough. This is key to the whole
science of sound compression: the
ability of getting signals that are
‘good enough’ for us to understand
the sound, even if the sound is very
different from the original one.
This is also the way 1-bit sound
generation works [1]. We can

Figure 1. Recording of human speech saying “ta-te-
ti-to-tu”.

Figure 2. Spectrum of human speech saying “ta-te-
ti-to-tu”.

Arduino 8-bit sound generation

16

generate sound by having a pulse width modulated (PWM) signal whose
average energy level is similar enough to the one of the original signal.
This mathematical trick allows generating medium-quality sound by a
microcontroller. The following paragraphs show how to take advantage of
this. We will start from a WAV file that can be recorded with your comput-
er. Next, we’ll filter it, and transform it into an array of numbers for storing
inside Arduino.

Optimal digitalization and filtering

Many different tools exist for recording sounds. I can only recommend the
use of Audacity [2], an open source and free software tool that provides
most of the options needed to reproduce sound with microcontrollers
(Figures 1 and 2 are screenshots from Audacity).
Before you move on, you should filter  the sound. I use a  low-pass filter 
with a 4 kHz roll-off frequency. The Arduino sound player shown here
uses a sampling frequency of 8 kHz (i.e. 8000 samples per second), which
means that if there were sound components above 4 kHz in your original
file, you would hear artifacts in the sound.
With microcontrollers it is possible to reproduce reasonable quality sound,
however these chips are limited in terms of memory space. Consequently
you need to use sound formats of lower quality that will allow generating
several seconds of sound without the use of external memory chips.
A sound format that can be of great use is the 8-bit PCM WAVE (also
called Microsoft unsigned 8 bit). This sound format is of sufficient quality 
to reproduce, for instance, recorded human voice. Thus, the file you’ll need
in the following step of the process should be exported as: mono (1-chan-
nel), 8-bit, PCM WAVE.

Converting sound to text

Let’s look at importing your sound file as a header file that you can add
to your Arduino sketch. Since the ATmega 328 microcontroller has 32 KB 
of Flash memory space, you can use part of that space to store the sound
file. You can store large chunks of data into memory arrays by using the
Progmem library from Atmel’s toolchain. 8-bit sound is nothing but a
stream of numbers between 0 and 255. It can be declared like:

Arduino 8-bit sound generation

17

const unsigned char sounddata_data[] PROGMEM = {128, 128, 128,
[...]
69, 62, 59, 57, 52, 50, 56, 65, 74, 86, 96, 109, 116, };

I have created a tool for Arduino’s IDE that enables you to open WAV files
and import them directly as part of your code. You can download it from
the link mentioned in the reference list, and add it to your sketchbook
folder. Place the file into your Arduino sketchbook folder and uncompress
it there.
It will add the following folder to your sketchbook: tools/SoundData
After rebooting the IDE, you will see a new item under the Tools menu
called SoundData. Clicking on it produces a dialog window enabling you
to select a WAV file (see Figure 3). The second button, titled Generate
Code will open the WAV file, check whether it is properly encoded, and
add a new tab to your code titled sounddata.h. This new file contains
everything you need to play your WAV file as a 1-bit sound. The file will
look like this:

// soundData for your Arduino sound project
// automatically generated data
// - original sound file:/development/tmp/matis.wav
// - sampleRate:8000
// - encoding:8 bits
// - channels:1

const int sounddata_length = 7969;

const signed char sounddata_data[] PROGMEM = {127, 127, 127, 127, 127, 127,
[...]
69, 62, 59, 57, 52, 50, 56, 65, 74, 86, 96, 109, 116, };

But keep on reading before press-
ing the Generate Code but-
ton on the dialog window, be-
cause there is more to it!

The Sound Player

Playing back a sampled sound
is not obvious, since it requires
changing some of the features of

Figure 3. Dialog Window to import WAV files into
your Arduino sketches as header files.

Arduino 8-bit sound generation

18

the Arduino core works. There
exist libraries for Arduino Uno
that hide all of the complexity of
making this type of sound play-
er. However, I want you to take a
chance and see how this is done at
low level, like in Figure 4.
The trick that can get Ardui-
no to play a sound sample is the
so-called Fast PWM, a feature
of Atmel’s Atmega family (other
brands have it as well, but Ardu-
ino Uno runs on Atmel chips).
There is a register that allows run-
ning PWM at the amazing rate of
up to half the clock speed. This
allows nice things to be done like
playing sound with 1-bit outputs.
The only limitation of Fast PWM
is that it operates at a resolution

of 8 bits only. That’s why you should encode your sound files at 8 bits.
To get it all to work, you use two out of the three internal timer registries
inside the processor:
•   The first clock operates at SAMPLE_RATE and is used to read the next 

value from the computer generated sounddata_data array. This value
sets up the duty cycle for the PWM stream being output through pin 11.

•   The second timer ticks at 62500 times per second (16000000 / 256), i.e. 
much faster than the playback rate (default SAMPLE_RATE is 8 kHz). 
As explained earlier, this generates a digital signal whose spectrum is
very similar in shape to that of the original sound file. In other words,
by means of increasing the PWM frequency, the generated signal gets a
spectrum that resembles the one of the sound. In many applications this
is more than enough to play sound at a low price.

Note: by adding this code to your Arduino sketch you will be overriding
some of the basic commands of the Arduino language. E.g. the PWM will
stop working at some of the pins, and the delay() function will not
operate as expected. This will only affect this sketch.

Figure 4. View of the “ta-te-ti-to-tu” sound file
within the Arduino IDE after importing it with the
SoundData tool.

Arduino 8-bit sound generation

19

The first time this technique was
shown in the Arduino world was
back in 2008. Michael Smith pub-
lished an example on the Ardui-
no playground that would play
the sound of a MAC computer
booting up, upon reset of the Ar-
duino Diecimila board. Michael’s
code was based upon the work of
many others which I have includ-
ed as references [3].
Just to make it easy, the SoundData
tool will not just generate the sound
information, but also include the
code to the basic sound-playback
example inside your sketch. Beware, 
make sure your sketch is empty
when calling the tool, as it will over-
write anything on your IDE.
The basic program to play 1-bit sound (Figure 5) includes a lot of low lev-
el commands in order to override the timers. I will describe the functions
one by one. Let’s start with TIMER1:

ISR(TIMER1_COMPA_vect) {
 if (sample >= sounddata_length) {
 if (sample == sounddata_length + lastSample) {
 // this is the condition of reaching the last sample
 stopPlayback();
 } else {
 // Ramp down to zero to reduce the click at the end of
 // playback.
 OCR2A = sounddata_length + lastSample - sample;
 }
 }
 else {
// OCR2A is the register in memory that will push
// PWM at high frequency to pin 11
// pgm_read_byte reads data out arrays stored in
// program memory
 OCR2A = pgm_read_byte(&sounddata_data[sample]);
 }

 // increase the sample count
 ++sample;
}

Figure 5. Screendump of the basic sound player after
automatically generating the code.

Arduino 8-bit sound generation

20

ISR is the name for the interrupt handling function inside the micro-
controller. An interrupt is an event that will tell the chip to stop doing
anything it is into at the time and attend a certain event. Processors can
have both internal and external interrupts. The internal ones are timers,
while the external ones happen when certain pins change from HIGH to
LOW or vice versa.
This one instance of the ISR function is taking care of the arrival of inter-
nal TIMER1 events. Every time TIMER1 ticks, this function will do the
following:
•   increase the counter used to address the sound data;
•   check whether the end of the sound data array is reached;
•   if not at the end, load the next sample from the array;
•   if at the end, fade the sound to zero.

Both timers TIMER1 and TIMER2 are initialized as part of the start-
Playback function. Let’s see how what looks like:

void startPlayback()
{
 pinMode(speakerPin, OUTPUT);

 // Set up Timer 2 to do pulse width modulation on the speaker
 // pin.

 // Use internal clock (datasheet p.160)
 ASSR &= ~(_BV(EXCLK) | _BV(AS2));

 // Set fast PWM mode (p.157)
 TCCR2A |= _BV(WGM21) | _BV(WGM20);
 TCCR2B &= ~_BV(WGM22);

 // Do non-inverting PWM on pin OC2A (p.155)
 // On the Arduino this is pin 11.
 TCCR2A = (TCCR2A | _BV(COM2A1)) & ~_BV(COM2A0);
 TCCR2A &= ~(_BV(COM2B1) | _BV(COM2B0));

 // No prescaler (p.158)
 TCCR2B = (TCCR2B & ~(_BV(CS12) | _BV(CS11))) | _BV(CS10);

 // Set initial pulse width to the first sample.
 OCR2A = pgm_read_byte(&sounddata_data[0]);

 // Set up Timer 1 to send a sample every interrupt.
 cli();

 // Set CTC mode (Clear Timer on Compare Match) (p.133)
 // Have to set OCR1A *after*, otherwise it gets reset to 0!
 TCCR1B = (TCCR1B & ~_BV(WGM13)) | _BV(WGM12);
 TCCR1A = TCCR1A & ~(_BV(WGM11) | _BV(WGM10));

Arduino 8-bit sound generation

21

 // No prescaler (p.134)
 TCCR1B = (TCCR1B & ~(_BV(CS12) | _BV(CS11))) | _BV(CS10);

 // Set the compare register (OCR1A).
 // OCR1A is a 16-bit register, so we have to do this with
 // interrupts disabled to be safe.
 OCR1A = F_CPU / SAMPLE_RATE; // 16e6 / 8000 = 2000

 // Enable interrupt when TCNT1 == OCR1A (p.136)
 TIMSK1 |= _BV(OCIE1A);

 lastSample = pgm_read_byte(&sounddata_data[sounddata_length-1]);
 sample = 0;
 sei();
}

Although the sequence of low level commands is explained in the code, a
summary of it may be useful for the non-expert:
•   turn the pin for the speaker into an output;
•   configure the board to use the internal clock for this;
•   initialise Fast PWM mode;
•   configure TIMER2 to run the PWM that will play the sound, the way to

set the duty cycle to the PWM is by changing the value of the register
called OCR2A;

•   load the first sound sample into OCR2A;
•   stop the interrupts for a second – cli()– so that we can configure the 
TIMER1 without breaks;

•   configure TIMER1 to tick for picking up the next sample;
•   load the last sound sample;
•   restart the interrupts – sei().

In a similar fashion, you need to have a function that will stop the timers
of counting this way once the end of the sound is reached.

void stopPlayback()
{
 // Disable playback per-sample interrupt.
 TIMSK1 &= ~_BV(OCIE1A);

 // Disable the per-sample timer completely.
 TCCR1B &= ~_BV(CS10);

 // Disable the PWM timer.
 TCCR2B &= ~_BV(CS10);

 digitalWrite(speakerPin, LOW);
}

Arduino 8-bit sound generation

22

Th is leaves you with a series of functions you can call anywhere from a
program to play sound this way. In this case, the example by default will
call startPlayback() within setup. In this way the sound will be
played just once.

void setup()
{
 startPlayback();
}

void loop()
{
 // do nothing
}

Closing words

Th is article is an introduction to diff erent ways of producing sound us-
ing Arduino. You have seen how to play tones by means of basic Ardui-
no functions. Libraries have been described that simplify the way basic

melodies can be played using in-
expensive piezo buzzers. Finally
you got a sneak peek at the pro-
gramming behind Fast PWM to
generate 1-bit sound.
All code chunks and tools discussed
here are packed into a ZIP fi le [4],
including properly formatted sound
fi les for you to try all the examples. I
also created a new tool for the Ardu-
ino IDE that will help you with the
importing of short WAVE fi les into
Arduino’s program memory. Th e
tool enables you to load sounds and
play them back, change their sample
rate, play them backwards or scratch
the sound. In terms of hardware,
you connect your loudspeaker as
shown in Figure 6.

Figure 6. Arduino Uno is perfectly capable of driving
a small loudspeaker directly.

Arduino 8-bit sound generation

23

But don’t stop here! There is a lot to explore — for instance using pin 3 in 
parallel with pin 11 to produce stereo sound. Or create 8-bit synthesiz-
ers with the ability of mixing four sound lines on a single channel. What
about transforming your Arduino board into a MIDI activated soundcard.

Arduino 8-bit sound generation

24

References

[1] 1-bit Sigma Delta DA Converters: www.digitalsignallabs.com/presentation.pdf
[2] Audacity, the free and open source sound studio: audacity.sourceforge.net
[3] Various references from the example by Michael Smith:
 Arduino reference on the use of the tone library: arduino.cc/en/Reference/Tone
 Original article on the Arduino Playground: arduino.cc/playground/Code/PC-

MAudio
 www.uchobby.com/index.php/2007/11/11/arduino-sound-part-1/
   www.atmel.com/dyn/resources/prod_documents/doc2542.pdf
 www.evilmadscientist.com/article.php/avrdac
 http://gonium.net/md/2006/12/27/i-will-think-before-i-code/
 http://fly.cc.fer.hr/GDM/articles/sndmus/speaker2.html
 www.gamedev.net/reference/articles/article442.asp
[4] Example files for this article: www.elektor.com/120427

Stay tuned to our communication channels!
Follow us on Facebook and on Twitter.

 www.facebook.com/arduinonext

 @arduinonext

Check out the Arduino products already
on sale at www.elektor.com

Arduinonext is an initiative powered by an electronics and
microcontrollers specialist team aiming to help all those who are
entering in the technology world, using the well-known Arduino
platform to take the next step in electronics.

We strive to bring you the necessary knowledge and experience
for developing your own electronics applications; interacting
with environment; measuring physical parameters; processing
them and performing the necessary control actions.

This is the fi rst title in the ‘Hands-On’ series in which Arduino
platform co-founder, David Cuartielles, introduces board
programming, and demonstrates the making of an 8-bit Sound
Generator.

Powered ByPowered By

